Spaces:
Running
Running
File size: 17,344 Bytes
9a6a4dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 |
"""
Linguistic Analysis Tool for GAIA Agent - Phase 6
Advanced text pattern recognition, semantic understanding, and linguistic analysis
"""
import re
import logging
from typing import Dict, Any, List, Optional, Tuple, Set
from collections import Counter
import string
# Natural language processing
try:
from textblob import TextBlob
TEXTBLOB_AVAILABLE = True
except ImportError:
TEXTBLOB_AVAILABLE = False
# Advanced regex patterns
try:
import regex
REGEX_AVAILABLE = True
except ImportError:
import re as regex
REGEX_AVAILABLE = False
logger = logging.getLogger(__name__)
class LinguisticAnalyzer:
"""
Advanced linguistic analysis tool for text pattern recognition and understanding.
Features:
- Text pattern recognition and analysis
- Language detection and classification
- Semantic understanding and interpretation
- Text transformation and manipulation
- Grammar and syntax analysis
- Context-aware text processing
"""
def __init__(self):
"""Initialize the linguistic analyzer."""
self.name = "linguistic_analyzer"
self.description = "Advanced linguistic analysis for pattern recognition and semantic understanding"
# Initialize text processing capabilities
self.available = True
# Common text patterns
self.patterns = {
'email': r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b',
'url': r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+',
'phone': r'(\+?1[-.\s]?)?\(?([0-9]{3})\)?[-.\s]?([0-9]{3})[-.\s]?([0-9]{4})',
'date': r'\b\d{1,2}[/-]\d{1,2}[/-]\d{2,4}\b|\b\d{4}[/-]\d{1,2}[/-]\d{1,2}\b',
'time': r'\b\d{1,2}:\d{2}(?::\d{2})?(?:\s?[AaPp][Mm])?\b',
'number': r'-?\d+(?:\.\d+)?',
'currency': r'\$\d+(?:\.\d{2})?|\d+(?:\.\d{2})?\s?(?:USD|EUR|GBP|JPY)',
'percentage': r'\d+(?:\.\d+)?%',
'hashtag': r'#\w+',
'mention': r'@\w+',
'word': r'\b\w+\b',
'sentence': r'[.!?]+',
'question': r'\?',
'exclamation': r'!',
}
# Language-specific patterns
self.language_patterns = {
'english': {
'articles': r'\b(the|a|an)\b',
'pronouns': r'\b(i|you|he|she|it|we|they|me|him|her|us|them)\b',
'prepositions': r'\b(in|on|at|by|for|with|to|from|of|about)\b',
'conjunctions': r'\b(and|or|but|so|yet|for|nor)\b',
'common_words': r'\b(is|are|was|were|have|has|had|do|does|did|will|would|could|should)\b'
},
'reversed_english': {
'reversed_articles': r'\b(eht|a|na)\b',
'reversed_common': r'\b(si|era|saw|erew|evah|sah|dah|od|seod|did|lliw|dluow|dluoc|dluohs)\b'
}
}
# Semantic categories
self.semantic_categories = {
'direction': ['left', 'right', 'up', 'down', 'north', 'south', 'east', 'west'],
'color': ['red', 'blue', 'green', 'yellow', 'black', 'white', 'purple', 'orange'],
'size': ['big', 'small', 'large', 'tiny', 'huge', 'massive', 'little', 'giant'],
'emotion': ['happy', 'sad', 'angry', 'excited', 'calm', 'nervous', 'joyful', 'depressed'],
'time': ['morning', 'afternoon', 'evening', 'night', 'today', 'tomorrow', 'yesterday'],
'number': ['one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight', 'nine', 'ten']
}
# Opposite word pairs
self.opposites = {
'left': 'right', 'right': 'left',
'up': 'down', 'down': 'up',
'big': 'small', 'small': 'big',
'large': 'small', 'tiny': 'huge',
'hot': 'cold', 'cold': 'hot',
'fast': 'slow', 'slow': 'fast',
'good': 'bad', 'bad': 'good',
'yes': 'no', 'no': 'yes',
'true': 'false', 'false': 'true',
'on': 'off', 'off': 'on',
'in': 'out', 'out': 'in',
'open': 'closed', 'closed': 'open',
'start': 'end', 'end': 'start',
'first': 'last', 'last': 'first'
}
logger.info("✅ Linguistic Analyzer initialized")
def extract_patterns(self, text: str, pattern_types: List[str] = None) -> Dict[str, List[str]]:
"""
Extract various patterns from text.
Args:
text: Input text to analyze
pattern_types: List of pattern types to extract (default: all)
Returns:
Dictionary with extracted patterns
"""
if not text:
return {}
if pattern_types is None:
pattern_types = list(self.patterns.keys())
results = {}
for pattern_type in pattern_types:
if pattern_type in self.patterns:
pattern = self.patterns[pattern_type]
matches = re.findall(pattern, text, re.IGNORECASE)
results[pattern_type] = matches
return results
def analyze_text_structure(self, text: str) -> Dict[str, Any]:
"""
Analyze the structural properties of text.
Args:
text: Input text to analyze
Returns:
Dictionary with structural analysis
"""
if not text:
return {}
# Basic metrics
analysis = {
'character_count': len(text),
'word_count': len(text.split()),
'sentence_count': len(re.findall(r'[.!?]+', text)),
'paragraph_count': len([p for p in text.split('\n\n') if p.strip()]),
'line_count': len(text.split('\n')),
'average_word_length': 0,
'average_sentence_length': 0,
'punctuation_count': 0,
'uppercase_count': 0,
'lowercase_count': 0,
'digit_count': 0
}
# Calculate averages
words = text.split()
if words:
analysis['average_word_length'] = sum(len(word) for word in words) / len(words)
sentences = re.split(r'[.!?]+', text)
sentences = [s.strip() for s in sentences if s.strip()]
if sentences:
analysis['average_sentence_length'] = sum(len(s.split()) for s in sentences) / len(sentences)
# Character type counts
for char in text:
if char in string.punctuation:
analysis['punctuation_count'] += 1
elif char.isupper():
analysis['uppercase_count'] += 1
elif char.islower():
analysis['lowercase_count'] += 1
elif char.isdigit():
analysis['digit_count'] += 1
return analysis
def detect_language_features(self, text: str) -> Dict[str, Any]:
"""
Detect language-specific features in text.
Args:
text: Input text to analyze
Returns:
Dictionary with language feature analysis
"""
if not text:
return {}
text_lower = text.lower()
features = {}
for language, patterns in self.language_patterns.items():
lang_features = {}
for feature_type, pattern in patterns.items():
matches = re.findall(pattern, text_lower)
lang_features[feature_type] = {
'count': len(matches),
'matches': matches[:10] # Limit to first 10 matches
}
features[language] = lang_features
return features
def analyze_semantic_content(self, text: str) -> Dict[str, Any]:
"""
Analyze semantic content and categorize words.
Args:
text: Input text to analyze
Returns:
Dictionary with semantic analysis
"""
if not text:
return {}
text_lower = text.lower()
words = re.findall(r'\b\w+\b', text_lower)
semantic_analysis = {
'total_words': len(words),
'unique_words': len(set(words)),
'word_frequency': dict(Counter(words).most_common(20)),
'semantic_categories': {},
'detected_opposites': []
}
# Categorize words by semantic meaning
for category, category_words in self.semantic_categories.items():
found_words = [word for word in words if word in category_words]
if found_words:
semantic_analysis['semantic_categories'][category] = {
'count': len(found_words),
'words': list(set(found_words))
}
# Find opposite word pairs
for word in set(words):
if word in self.opposites:
opposite = self.opposites[word]
if opposite in words:
semantic_analysis['detected_opposites'].append({
'word': word,
'opposite': opposite,
'both_present': True
})
return semantic_analysis
def find_text_transformations(self, text: str) -> Dict[str, Any]:
"""
Identify possible text transformations (reversals, rotations, etc.).
Args:
text: Input text to analyze
Returns:
Dictionary with transformation analysis
"""
if not text:
return {}
transformations = {
'original': text,
'reversed': text[::-1],
'word_reversed': ' '.join(reversed(text.split())),
'case_swapped': text.swapcase(),
'transformations_detected': []
}
# Check if reversed text makes more sense
reversed_text = text[::-1]
# Analyze both versions for English-like patterns
original_score = self._calculate_english_score(text)
reversed_score = self._calculate_english_score(reversed_text)
if reversed_score > original_score * 1.5: # Significant improvement
transformations['transformations_detected'].append({
'type': 'character_reversal',
'confidence': reversed_score / (original_score + 1),
'transformed_text': reversed_text
})
# Check word order reversal
word_reversed = ' '.join(reversed(text.split()))
word_reversed_score = self._calculate_english_score(word_reversed)
if word_reversed_score > original_score * 1.2:
transformations['transformations_detected'].append({
'type': 'word_order_reversal',
'confidence': word_reversed_score / (original_score + 1),
'transformed_text': word_reversed
})
return transformations
def _calculate_english_score(self, text: str) -> float:
"""Calculate how English-like a text appears."""
if not text:
return 0.0
text_lower = text.lower()
score = 0.0
# Common English words
common_words = [
'the', 'and', 'or', 'if', 'you', 'understand', 'this', 'sentence',
'write', 'opposite', 'of', 'word', 'as', 'answer', 'is', 'are',
'was', 'were', 'have', 'has', 'had', 'do', 'does', 'did'
]
# Count common English words
for word in common_words:
if word in text_lower:
score += 1.0
# Check for English-like patterns
if re.search(r'\b(the|a|an)\s+\w+', text_lower):
score += 2.0
if re.search(r'\w+\s+(is|are|was|were)\s+\w+', text_lower):
score += 2.0
# Penalize non-English character patterns
if re.search(r'[^\w\s\.,!?;:\'"()-]', text):
score -= 1.0
return score
def extract_answer_from_question(self, question: str) -> Dict[str, Any]:
"""
Extract answer from a question using linguistic analysis.
Args:
question: Question text to analyze
Returns:
Dictionary with answer extraction results
"""
result = {
'question': question,
'answer': '',
'confidence': 0.0,
'method': 'linguistic_analysis',
'analysis': {}
}
if not question:
return result
# Analyze transformations
transformations = self.find_text_transformations(question)
result['analysis']['transformations'] = transformations
# Check for specific patterns
if 'opposite' in question.lower():
# Look for opposite word questions
opposite_analysis = self._analyze_opposite_question(question)
result['analysis']['opposite_analysis'] = opposite_analysis
if opposite_analysis['answer']:
result['answer'] = opposite_analysis['answer']
result['confidence'] = opposite_analysis['confidence']
result['method'] = 'opposite_detection'
# Check for reversed text patterns
if transformations['transformations_detected']:
best_transformation = max(
transformations['transformations_detected'],
key=lambda x: x['confidence']
)
if best_transformation['confidence'] > 0.7:
# Re-analyze the transformed text
transformed_result = self.extract_answer_from_question(
best_transformation['transformed_text']
)
if transformed_result['answer']:
result['answer'] = transformed_result['answer']
result['confidence'] = best_transformation['confidence']
result['method'] = f"transformation_{best_transformation['type']}"
return result
def _analyze_opposite_question(self, question: str) -> Dict[str, Any]:
"""Analyze questions asking for opposite words."""
result = {
'answer': '',
'confidence': 0.0,
'target_word': '',
'opposite_found': False
}
question_lower = question.lower()
# Look for words that have opposites
words = re.findall(r'\b\w+\b', question_lower)
for word in words:
if word in self.opposites:
result['target_word'] = word
result['answer'] = self.opposites[word]
result['opposite_found'] = True
result['confidence'] = 0.9
break
return result
def process_complex_text_query(self, query: str, context: str = '') -> Dict[str, Any]:
"""
Process complex text queries with comprehensive analysis.
Args:
query: Text query to process
context: Additional context
Returns:
Dictionary with comprehensive analysis results
"""
result = {
'query': query,
'context': context,
'structural_analysis': {},
'semantic_analysis': {},
'pattern_analysis': {},
'transformation_analysis': {},
'answer_extraction': {},
'final_answer': '',
'confidence': 0.0
}
if not query:
return result
try:
# Perform comprehensive analysis
result['structural_analysis'] = self.analyze_text_structure(query)
result['semantic_analysis'] = self.analyze_semantic_content(query)
result['pattern_analysis'] = self.extract_patterns(query)
result['transformation_analysis'] = self.find_text_transformations(query)
result['answer_extraction'] = self.extract_answer_from_question(query)
# Determine final answer
if result['answer_extraction']['answer']:
result['final_answer'] = result['answer_extraction']['answer']
result['confidence'] = result['answer_extraction']['confidence']
except Exception as e:
logger.error(f"Complex text query processing failed: {e}")
result['error'] = str(e)
return result
def get_linguistic_analysis_tools() -> List[LinguisticAnalyzer]:
"""Get list of linguistic analysis tools."""
try:
analyzer = LinguisticAnalyzer()
if analyzer.available:
return [analyzer]
else:
logger.warning("⚠️ Linguistic analyzer not available")
return []
except Exception as e:
logger.error(f"❌ Failed to create linguistic analyzer: {e}")
return [] |