File size: 23,508 Bytes
9a6a4dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
"""
Spreadsheet Formula Evaluator for GAIA Agent - Phase 4
Excel formula parsing, evaluation, and calculation engine

Features:
- Excel formula parsing and evaluation
- Built-in function support (SUM, AVERAGE, COUNT, etc.)
- Cell reference resolution
- Conditional logic evaluation
- Mathematical operations on ranges
- Error handling for invalid formulas
"""

import logging
import re
import pandas as pd
import numpy as np
from typing import Dict, Any, List, Optional, Union, Tuple
from decimal import Decimal, ROUND_HALF_UP
import math

logger = logging.getLogger(__name__)


class FormulaEvaluator:
    """Excel formula evaluator for GAIA data analysis tasks."""
    
    def __init__(self):
        """Initialize the formula evaluator."""
        self.available = True
        self.functions = self._init_builtin_functions()
        self.cell_cache = {}
        
    def _init_builtin_functions(self) -> Dict[str, callable]:
        """Initialize built-in Excel functions."""
        return {
            'SUM': self._sum,
            'AVERAGE': self._average,
            'AVG': self._average,  # Alias
            'COUNT': self._count,
            'COUNTA': self._counta,
            'MIN': self._min,
            'MAX': self._max,
            'MEDIAN': self._median,
            'STDEV': self._stdev,
            'VAR': self._var,
            'IF': self._if,
            'AND': self._and,
            'OR': self._or,
            'NOT': self._not,
            'ROUND': self._round,
            'ABS': self._abs,
            'SQRT': self._sqrt,
            'POWER': self._power,
            'MOD': self._mod,
            'CONCATENATE': self._concatenate,
            'LEFT': self._left,
            'RIGHT': self._right,
            'MID': self._mid,
            'LEN': self._len,
            'UPPER': self._upper,
            'LOWER': self._lower,
            'TRIM': self._trim,
            'SUMIF': self._sumif,
            'COUNTIF': self._countif,
            'AVERAGEIF': self._averageif,
        }
    
    def evaluate_formula(self, formula: str, data: pd.DataFrame = None, 
                        cell_references: Dict[str, Any] = None) -> Union[float, str, bool, None]:
        """
        Evaluate an Excel formula.
        
        Args:
            formula: Excel formula string (with or without leading =)
            data: DataFrame containing the data
            cell_references: Dictionary of cell references and their values
            
        Returns:
            Evaluated result of the formula
        """
        try:
            # Clean the formula
            formula = formula.strip()
            if formula.startswith('='):
                formula = formula[1:]
            
            if not formula:
                return None
            
            # Store data and cell references for function access
            self.current_data = data
            self.current_cell_refs = cell_references or {}
            
            # Parse and evaluate the formula
            result = self._parse_and_evaluate(formula)
            
            return result
            
        except Exception as e:
            logger.error(f"❌ Formula evaluation failed for '{formula}': {e}")
            return f"#ERROR: {str(e)}"
    
    def evaluate_cell_range(self, range_expr: str, data: pd.DataFrame) -> List[Any]:
        """
        Evaluate a cell range expression (e.g., A1:A10, B2:D5).
        
        Args:
            range_expr: Range expression string
            data: DataFrame containing the data
            
        Returns:
            List of values in the range
        """
        try:
            # Parse range expression
            if ':' in range_expr:
                start_cell, end_cell = range_expr.split(':')
                start_row, start_col = self._parse_cell_reference(start_cell)
                end_row, end_col = self._parse_cell_reference(end_cell)
                
                values = []
                for row in range(start_row, end_row + 1):
                    for col in range(start_col, end_col + 1):
                        if row < len(data) and col < len(data.columns):
                            value = data.iloc[row, col]
                            if pd.notna(value):
                                values.append(value)
                
                return values
            else:
                # Single cell reference
                row, col = self._parse_cell_reference(range_expr)
                if row < len(data) and col < len(data.columns):
                    value = data.iloc[row, col]
                    return [value] if pd.notna(value) else []
                return []
                
        except Exception as e:
            logger.error(f"❌ Range evaluation failed for '{range_expr}': {e}")
            return []
    
    def _parse_and_evaluate(self, formula: str) -> Any:
        """Parse and evaluate a formula expression."""
        # Handle parentheses first
        while '(' in formula:
            # Find innermost parentheses
            start = -1
            for i, char in enumerate(formula):
                if char == '(':
                    start = i
                elif char == ')' and start != -1:
                    # Evaluate expression inside parentheses
                    inner_expr = formula[start + 1:i]
                    inner_result = self._evaluate_expression(inner_expr)
                    # Replace with result
                    formula = formula[:start] + str(inner_result) + formula[i + 1:]
                    break
        
        return self._evaluate_expression(formula)
    
    def _evaluate_expression(self, expr: str) -> Any:
        """Evaluate a simple expression without parentheses."""
        expr = expr.strip()
        
        # Check if it's a function call
        func_match = re.match(r'([A-Z]+)\((.*)\)', expr, re.IGNORECASE)
        if func_match:
            func_name = func_match.group(1).upper()
            args_str = func_match.group(2)
            return self._evaluate_function(func_name, args_str)
        
        # Check if it's a cell reference
        if re.match(r'^[A-Z]+\d+$', expr, re.IGNORECASE):
            return self._get_cell_value(expr)
        
        # Check if it's a range reference
        if ':' in expr and re.match(r'^[A-Z]+\d+:[A-Z]+\d+$', expr, re.IGNORECASE):
            return self.evaluate_cell_range(expr, self.current_data)
        
        # Check for arithmetic operations
        for op in ['+', '-', '*', '/', '^', '=', '<>', '>', '<', '>=', '<=']:
            if op in expr:
                return self._evaluate_arithmetic(expr, op)
        
        # Try to convert to number
        try:
            if '.' in expr:
                return float(expr)
            else:
                return int(expr)
        except ValueError:
            pass
        
        # Return as string if nothing else works
        return expr.strip('"\'')
    
    def _evaluate_function(self, func_name: str, args_str: str) -> Any:
        """Evaluate a function call."""
        if func_name not in self.functions:
            raise ValueError(f"Unknown function: {func_name}")
        
        # Parse arguments
        args = self._parse_function_args(args_str)
        
        # Evaluate each argument
        evaluated_args = []
        for arg in args:
            if isinstance(arg, str):
                evaluated_args.append(self._evaluate_expression(arg))
            else:
                evaluated_args.append(arg)
        
        # Call the function
        return self.functions[func_name](*evaluated_args)
    
    def _parse_function_args(self, args_str: str) -> List[str]:
        """Parse function arguments, handling nested functions and ranges."""
        if not args_str.strip():
            return []
        
        args = []
        current_arg = ""
        paren_depth = 0
        in_quotes = False
        quote_char = None
        
        for char in args_str:
            if char in ['"', "'"] and not in_quotes:
                in_quotes = True
                quote_char = char
                current_arg += char
            elif char == quote_char and in_quotes:
                in_quotes = False
                quote_char = None
                current_arg += char
            elif char == '(' and not in_quotes:
                paren_depth += 1
                current_arg += char
            elif char == ')' and not in_quotes:
                paren_depth -= 1
                current_arg += char
            elif char == ',' and paren_depth == 0 and not in_quotes:
                args.append(current_arg.strip())
                current_arg = ""
            else:
                current_arg += char
        
        if current_arg.strip():
            args.append(current_arg.strip())
        
        return args
    
    def _evaluate_arithmetic(self, expr: str, operator: str) -> Any:
        """Evaluate arithmetic expressions."""
        parts = expr.split(operator, 1)
        if len(parts) != 2:
            raise ValueError(f"Invalid arithmetic expression: {expr}")
        
        left = self._evaluate_expression(parts[0].strip())
        right = self._evaluate_expression(parts[1].strip())
        
        # Convert to numbers if possible
        try:
            left_num = float(left) if not isinstance(left, (int, float)) else left
            right_num = float(right) if not isinstance(right, (int, float)) else right
        except (ValueError, TypeError):
            left_num, right_num = left, right
        
        # Perform operation
        if operator == '+':
            return left_num + right_num
        elif operator == '-':
            return left_num - right_num
        elif operator == '*':
            return left_num * right_num
        elif operator == '/':
            if right_num == 0:
                return "#DIV/0!"
            return left_num / right_num
        elif operator == '^':
            return left_num ** right_num
        elif operator == '=':
            return left == right
        elif operator == '<>':
            return left != right
        elif operator == '>':
            return left_num > right_num
        elif operator == '<':
            return left_num < right_num
        elif operator == '>=':
            return left_num >= right_num
        elif operator == '<=':
            return left_num <= right_num
        else:
            raise ValueError(f"Unknown operator: {operator}")
    
    def _get_cell_value(self, cell_ref: str) -> Any:
        """Get value from cell reference."""
        if cell_ref in self.current_cell_refs:
            return self.current_cell_refs[cell_ref]
        
        if self.current_data is not None:
            try:
                row, col = self._parse_cell_reference(cell_ref)
                if row < len(self.current_data) and col < len(self.current_data.columns):
                    return self.current_data.iloc[row, col]
            except Exception:
                pass
        
        return 0  # Default value for missing cells
    
    def _parse_cell_reference(self, cell_ref: str) -> Tuple[int, int]:
        """Parse cell reference (e.g., A1, B10) to row and column indices."""
        match = re.match(r'^([A-Z]+)(\d+)$', cell_ref.upper())
        if not match:
            raise ValueError(f"Invalid cell reference: {cell_ref}")
        
        col_letters = match.group(1)
        row_num = int(match.group(2))
        
        # Convert column letters to index (A=0, B=1, ..., Z=25, AA=26, etc.)
        col_index = 0
        for char in col_letters:
            col_index = col_index * 26 + (ord(char) - ord('A') + 1)
        col_index -= 1  # Convert to 0-based index
        
        row_index = row_num - 1  # Convert to 0-based index
        
        return row_index, col_index
    
    # Built-in function implementations
    def _sum(self, *args) -> float:
        """SUM function implementation."""
        total = 0
        for arg in args:
            if isinstance(arg, list):
                total += sum(self._to_number(x) for x in arg if self._is_number(x))
            elif self._is_number(arg):
                total += self._to_number(arg)
        return total
    
    def _average(self, *args) -> float:
        """AVERAGE function implementation."""
        values = []
        for arg in args:
            if isinstance(arg, list):
                values.extend([self._to_number(x) for x in arg if self._is_number(x)])
            elif self._is_number(arg):
                values.append(self._to_number(arg))
        
        return sum(values) / len(values) if values else 0
    
    def _count(self, *args) -> int:
        """COUNT function implementation (counts numeric values)."""
        count = 0
        for arg in args:
            if isinstance(arg, list):
                count += sum(1 for x in arg if self._is_number(x))
            elif self._is_number(arg):
                count += 1
        return count
    
    def _counta(self, *args) -> int:
        """COUNTA function implementation (counts non-empty values)."""
        count = 0
        for arg in args:
            if isinstance(arg, list):
                count += sum(1 for x in arg if x is not None and str(x).strip() != '')
            elif arg is not None and str(arg).strip() != '':
                count += 1
        return count
    
    def _min(self, *args) -> float:
        """MIN function implementation."""
        values = []
        for arg in args:
            if isinstance(arg, list):
                values.extend([self._to_number(x) for x in arg if self._is_number(x)])
            elif self._is_number(arg):
                values.append(self._to_number(arg))
        
        return min(values) if values else 0
    
    def _max(self, *args) -> float:
        """MAX function implementation."""
        values = []
        for arg in args:
            if isinstance(arg, list):
                values.extend([self._to_number(x) for x in arg if self._is_number(x)])
            elif self._is_number(arg):
                values.append(self._to_number(arg))
        
        return max(values) if values else 0
    
    def _median(self, *args) -> float:
        """MEDIAN function implementation."""
        values = []
        for arg in args:
            if isinstance(arg, list):
                values.extend([self._to_number(x) for x in arg if self._is_number(x)])
            elif self._is_number(arg):
                values.append(self._to_number(arg))
        
        if not values:
            return 0
        
        sorted_values = sorted(values)
        n = len(sorted_values)
        if n % 2 == 0:
            return (sorted_values[n//2 - 1] + sorted_values[n//2]) / 2
        else:
            return sorted_values[n//2]
    
    def _stdev(self, *args) -> float:
        """STDEV function implementation."""
        values = []
        for arg in args:
            if isinstance(arg, list):
                values.extend([self._to_number(x) for x in arg if self._is_number(x)])
            elif self._is_number(arg):
                values.append(self._to_number(arg))
        
        if len(values) < 2:
            return 0
        
        mean = sum(values) / len(values)
        variance = sum((x - mean) ** 2 for x in values) / (len(values) - 1)
        return math.sqrt(variance)
    
    def _var(self, *args) -> float:
        """VAR function implementation."""
        values = []
        for arg in args:
            if isinstance(arg, list):
                values.extend([self._to_number(x) for x in arg if self._is_number(x)])
            elif self._is_number(arg):
                values.append(self._to_number(arg))
        
        if len(values) < 2:
            return 0
        
        mean = sum(values) / len(values)
        return sum((x - mean) ** 2 for x in values) / (len(values) - 1)
    
    def _if(self, condition, true_value, false_value) -> Any:
        """IF function implementation."""
        if self._to_boolean(condition):
            return true_value
        else:
            return false_value
    
    def _and(self, *args) -> bool:
        """AND function implementation."""
        return all(self._to_boolean(arg) for arg in args)
    
    def _or(self, *args) -> bool:
        """OR function implementation."""
        return any(self._to_boolean(arg) for arg in args)
    
    def _not(self, value) -> bool:
        """NOT function implementation."""
        return not self._to_boolean(value)
    
    def _round(self, number, digits=0) -> float:
        """ROUND function implementation."""
        return round(self._to_number(number), int(digits))
    
    def _abs(self, number) -> float:
        """ABS function implementation."""
        return abs(self._to_number(number))
    
    def _sqrt(self, number) -> float:
        """SQRT function implementation."""
        num = self._to_number(number)
        if num < 0:
            return "#NUM!"
        return math.sqrt(num)
    
    def _power(self, number, power) -> float:
        """POWER function implementation."""
        return self._to_number(number) ** self._to_number(power)
    
    def _mod(self, number, divisor) -> float:
        """MOD function implementation."""
        return self._to_number(number) % self._to_number(divisor)
    
    def _concatenate(self, *args) -> str:
        """CONCATENATE function implementation."""
        return ''.join(str(arg) for arg in args)
    
    def _left(self, text, num_chars) -> str:
        """LEFT function implementation."""
        return str(text)[:int(num_chars)]
    
    def _right(self, text, num_chars) -> str:
        """RIGHT function implementation."""
        return str(text)[-int(num_chars):]
    
    def _mid(self, text, start_num, num_chars) -> str:
        """MID function implementation."""
        start = int(start_num) - 1  # Excel uses 1-based indexing
        return str(text)[start:start + int(num_chars)]
    
    def _len(self, text) -> int:
        """LEN function implementation."""
        return len(str(text))
    
    def _upper(self, text) -> str:
        """UPPER function implementation."""
        return str(text).upper()
    
    def _lower(self, text) -> str:
        """LOWER function implementation."""
        return str(text).lower()
    
    def _trim(self, text) -> str:
        """TRIM function implementation."""
        return str(text).strip()
    
    def _sumif(self, range_arg, criteria, sum_range=None) -> float:
        """SUMIF function implementation."""
        # This is a simplified implementation
        # In a full implementation, you'd need to handle the range and criteria properly
        if sum_range is None:
            sum_range = range_arg
        
        if isinstance(range_arg, list) and isinstance(sum_range, list):
            total = 0
            for i, value in enumerate(range_arg):
                if i < len(sum_range) and self._meets_criteria(value, criteria):
                    if self._is_number(sum_range[i]):
                        total += self._to_number(sum_range[i])
            return total
        
        return 0
    
    def _countif(self, range_arg, criteria) -> int:
        """COUNTIF function implementation."""
        if isinstance(range_arg, list):
            return sum(1 for value in range_arg if self._meets_criteria(value, criteria))
        return 0
    
    def _averageif(self, range_arg, criteria, average_range=None) -> float:
        """AVERAGEIF function implementation."""
        if average_range is None:
            average_range = range_arg
        
        if isinstance(range_arg, list) and isinstance(average_range, list):
            values = []
            for i, value in enumerate(range_arg):
                if i < len(average_range) and self._meets_criteria(value, criteria):
                    if self._is_number(average_range[i]):
                        values.append(self._to_number(average_range[i]))
            
            return sum(values) / len(values) if values else 0
        
        return 0
    
    def _meets_criteria(self, value, criteria) -> bool:
        """Check if value meets the given criteria."""
        criteria_str = str(criteria)
        value_str = str(value)
        
        # Handle comparison operators
        if criteria_str.startswith('>='):
            return self._to_number(value) >= self._to_number(criteria_str[2:])
        elif criteria_str.startswith('<='):
            return self._to_number(value) <= self._to_number(criteria_str[2:])
        elif criteria_str.startswith('<>'):
            return value_str != criteria_str[2:]
        elif criteria_str.startswith('>'):
            return self._to_number(value) > self._to_number(criteria_str[1:])
        elif criteria_str.startswith('<'):
            return self._to_number(value) < self._to_number(criteria_str[1:])
        elif criteria_str.startswith('='):
            return value_str == criteria_str[1:]
        else:
            # Exact match or wildcard
            if '*' in criteria_str or '?' in criteria_str:
                # Simple wildcard matching
                pattern = criteria_str.replace('*', '.*').replace('?', '.')
                return re.match(pattern, value_str, re.IGNORECASE) is not None
            else:
                return value_str == criteria_str
    
    def _is_number(self, value) -> bool:
        """Check if value is a number."""
        try:
            float(value)
            return True
        except (ValueError, TypeError):
            return False
    
    def _to_number(self, value) -> float:
        """Convert value to number."""
        if isinstance(value, (int, float)):
            return float(value)
        try:
            return float(value)
        except (ValueError, TypeError):
            return 0
    
    def _to_boolean(self, value) -> bool:
        """Convert value to boolean."""
        if isinstance(value, bool):
            return value
        if isinstance(value, (int, float)):
            return value != 0
        if isinstance(value, str):
            return value.lower() in ['true', '1', 'yes']
        return bool(value)


def get_formula_evaluator_tools() -> List[Any]:
    """Get formula evaluator tools for AGNO integration."""
    from .base_tool import BaseTool
    
    class FormulaEvaluatorTool(BaseTool):
        """Formula evaluator tool for GAIA agent."""
        
        def __init__(self):
            super().__init__(
                name="formula_evaluator",
                description="Evaluate Excel formulas and mathematical expressions"
            )
            self.evaluator = FormulaEvaluator()
        
        def execute(self, formula: str, data: pd.DataFrame = None, 
                   cell_references: Dict[str, Any] = None) -> Dict[str, Any]:
            """Execute formula evaluation."""
            try:
                result = self.evaluator.evaluate_formula(formula, data, cell_references)
                
                return {
                    "formula": formula,
                    "result": result,
                    "success": True
                }
                
            except Exception as e:
                return {
                    "formula": formula,
                    "error": f"Formula evaluation failed: {str(e)}",
                    "success": False
                }
    
    return [FormulaEvaluatorTool()]