Spaces:
Running
Running
File size: 24,023 Bytes
9a6a4dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 |
"""
Advanced Video Analyzer for GAIA Agent - Phase 5
Comprehensive video analysis tool for YouTube videos with object detection and temporal tracking.
Features:
- YouTube video downloading and processing
- Advanced object detection using YOLO models
- Bird and animal species identification
- Temporal object tracking across frames
- Simultaneous object counting
- Integration with AGNO framework
"""
import os
import logging
import cv2
import numpy as np
from typing import Dict, Any, List, Optional, Tuple
import json
import tempfile
import shutil
from pathlib import Path
from datetime import datetime
import yt_dlp
# Import detection engines
try:
from .object_detection_engine import ObjectDetectionEngine
from .video_content_analyzer import create_video_content_analyzer
except ImportError:
try:
from object_detection_engine import ObjectDetectionEngine
from video_content_analyzer import create_video_content_analyzer
except ImportError:
ObjectDetectionEngine = None
create_video_content_analyzer = None
# Configure logging
logger = logging.getLogger(__name__)
class AdvancedVideoAnalyzer:
"""Advanced video analyzer for comprehensive video content analysis."""
def __init__(self):
"""Initialize the advanced video analyzer."""
self.available = True
self.temp_dir = tempfile.mkdtemp()
# Initialize detection engine
self.detection_engine = None
if ObjectDetectionEngine:
try:
self.detection_engine = ObjectDetectionEngine()
if not self.detection_engine.available:
logger.warning("β οΈ Object detection engine not available")
except Exception as e:
logger.warning(f"β οΈ Failed to initialize object detection engine: {e}")
# Initialize content analyzer
self.content_analyzer = None
if create_video_content_analyzer:
try:
self.content_analyzer = create_video_content_analyzer()
if not self.content_analyzer.available:
logger.warning("β οΈ Video content analyzer not available")
except Exception as e:
logger.warning(f"β οΈ Failed to initialize video content analyzer: {e}")
# Analysis parameters
self.frame_sampling_rate = 1 # Analyze every frame by default
self.max_frames = 1000 # Maximum frames to analyze
self.confidence_threshold = 0.3
self.nms_threshold = 0.4
logger.info(f"πΉ Advanced Video Analyzer initialized - Available: {self.available}")
def analyze_video(self, video_url: str, question: str = None,
max_duration: int = 300) -> Dict[str, Any]:
"""
Analyze a video comprehensively for object detection and counting.
Args:
video_url: URL of the video (YouTube supported)
question: Optional question to guide analysis
max_duration: Maximum video duration to process (seconds)
Returns:
Comprehensive video analysis results
"""
try:
logger.info(f"πΉ Starting video analysis for: {video_url}")
# Download video
video_path = self._download_video(video_url, max_duration)
if not video_path:
return {
'success': False,
'error': 'Failed to download video'
}
# Extract video metadata
metadata = self._extract_video_metadata(video_path)
# Perform frame-by-frame object detection
detection_results = self._analyze_video_frames(video_path, question)
# Perform content analysis
content_analysis = None
if self.content_analyzer:
content_analysis = self.content_analyzer.analyze_video_content(
video_path, detection_results.get('frame_detections', []), question
)
# Generate comprehensive analysis report
analysis_report = self._create_analysis_report(
video_url, metadata, detection_results, content_analysis, question
)
# Cleanup
self._cleanup_temp_files(video_path)
return analysis_report
except Exception as e:
logger.error(f"β Video analysis failed: {e}")
return {
'success': False,
'error': f'Video analysis failed: {str(e)}'
}
def _download_video(self, video_url: str, max_duration: int = 300) -> Optional[str]:
"""Download video from URL using yt-dlp."""
try:
output_path = os.path.join(self.temp_dir, 'video.%(ext)s')
ydl_opts = {
'format': 'best[height<=720][ext=mp4]/best[ext=mp4]/best',
'outtmpl': output_path,
'quiet': True,
'no_warnings': True,
'extract_flat': False,
'writethumbnail': False,
'writeinfojson': False,
'match_filter': lambda info_dict: None if info_dict.get('duration', 0) <= max_duration else "Video too long"
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
# Extract info first to check duration
info = ydl.extract_info(video_url, download=False)
duration = info.get('duration', 0)
if duration > max_duration:
logger.warning(f"β οΈ Video duration ({duration}s) exceeds maximum ({max_duration}s)")
return None
# Download the video
ydl.download([video_url])
# Find the downloaded file
for file in os.listdir(self.temp_dir):
if file.startswith('video.') and file.endswith(('.mp4', '.webm', '.mkv')):
video_path = os.path.join(self.temp_dir, file)
logger.info(f"β
Video downloaded: {video_path}")
return video_path
logger.error("β Downloaded video file not found")
return None
except Exception as e:
logger.error(f"β Video download failed: {e}")
return None
def _extract_video_metadata(self, video_path: str) -> Dict[str, Any]:
"""Extract video metadata using OpenCV."""
try:
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
raise Exception("Failed to open video file")
fps = cap.get(cv2.CAP_PROP_FPS)
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
duration = frame_count / fps if fps > 0 else 0
cap.release()
metadata = {
'duration_seconds': duration,
'fps': fps,
'frame_count': frame_count,
'resolution': {'width': width, 'height': height},
'file_size': os.path.getsize(video_path),
'analysis_timestamp': datetime.now().isoformat()
}
logger.info(f"π Video metadata: {duration:.1f}s, {width}x{height}, {fps:.1f} FPS")
return metadata
except Exception as e:
logger.error(f"β Failed to extract video metadata: {e}")
return {}
def _analyze_video_frames(self, video_path: str, question: str = None) -> Dict[str, Any]:
"""Analyze video frames for object detection and tracking."""
try:
if not self.detection_engine or not self.detection_engine.available:
logger.warning("β οΈ Object detection engine not available")
return {'frame_detections': [], 'summary': {}}
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
raise Exception("Failed to open video file")
frame_detections = []
frame_count = 0
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = cap.get(cv2.CAP_PROP_FPS)
# Determine frame sampling rate based on video length
if total_frames > self.max_frames:
self.frame_sampling_rate = max(1, total_frames // self.max_frames)
logger.info(f"π Sampling every {self.frame_sampling_rate} frames")
# Track objects across frames
object_tracker = {}
next_object_id = 0
while cap.isOpened() and frame_count < total_frames:
ret, frame = cap.read()
if not ret:
break
# Sample frames based on sampling rate
if frame_count % self.frame_sampling_rate == 0:
# Detect objects in frame
detections = self.detection_engine.detect_objects(
frame,
confidence_threshold=self.confidence_threshold,
nms_threshold=self.nms_threshold
)
# Add temporal information
timestamp = frame_count / fps
for detection in detections:
detection['frame_number'] = frame_count
detection['timestamp'] = timestamp
frame_detections.append(detections)
# Progress logging
if len(frame_detections) % 50 == 0:
progress = (frame_count / total_frames) * 100
logger.info(f"π Analysis progress: {progress:.1f}% ({len(frame_detections)} frames analyzed)")
frame_count += 1
# Break if we've analyzed enough frames
if len(frame_detections) >= self.max_frames:
break
cap.release()
# Generate detection summary
summary = self._generate_detection_summary(frame_detections, question)
logger.info(f"β
Frame analysis complete: {len(frame_detections)} frames analyzed")
return {
'frame_detections': frame_detections,
'summary': summary,
'analysis_params': {
'frame_sampling_rate': self.frame_sampling_rate,
'confidence_threshold': self.confidence_threshold,
'nms_threshold': self.nms_threshold,
'frames_analyzed': len(frame_detections)
}
}
except Exception as e:
logger.error(f"β Frame analysis failed: {e}")
return {'frame_detections': [], 'summary': {}}
def _generate_detection_summary(self, frame_detections: List[List[Dict[str, Any]]],
question: str = None) -> Dict[str, Any]:
"""Generate summary of detection results."""
try:
summary = {
'total_frames_analyzed': len(frame_detections),
'total_detections': 0,
'species_counts': {},
'max_simultaneous_objects': 0,
'max_simultaneous_birds': 0,
'max_simultaneous_animals': 0,
'temporal_patterns': [],
'answer_analysis': {}
}
# Analyze each frame
simultaneous_counts = []
bird_counts = []
animal_counts = []
for frame_dets in frame_detections:
summary['total_detections'] += len(frame_dets)
# Count objects by type
frame_birds = 0
frame_animals = 0
frame_objects = len(frame_dets)
for detection in frame_dets:
species_type = detection.get('species_type', 'unknown')
class_name = detection.get('class', 'unknown')
# Update species counts
if species_type not in summary['species_counts']:
summary['species_counts'][species_type] = 0
summary['species_counts'][species_type] += 1
# Count birds and animals
if species_type == 'bird':
frame_birds += 1
elif species_type == 'animal':
frame_animals += 1
simultaneous_counts.append(frame_objects)
bird_counts.append(frame_birds)
animal_counts.append(frame_animals)
# Calculate maximums
if simultaneous_counts:
summary['max_simultaneous_objects'] = max(simultaneous_counts)
if bird_counts:
summary['max_simultaneous_birds'] = max(bird_counts)
if animal_counts:
summary['max_simultaneous_animals'] = max(animal_counts)
# Analyze question-specific patterns
if question:
summary['answer_analysis'] = self._analyze_question_specific_patterns(
question, frame_detections, bird_counts, animal_counts
)
# Generate temporal patterns
summary['temporal_patterns'] = {
'avg_objects_per_frame': np.mean(simultaneous_counts) if simultaneous_counts else 0,
'avg_birds_per_frame': np.mean(bird_counts) if bird_counts else 0,
'avg_animals_per_frame': np.mean(animal_counts) if animal_counts else 0,
'object_variance': np.var(simultaneous_counts) if simultaneous_counts else 0
}
return summary
except Exception as e:
logger.error(f"β Detection summary generation failed: {e}")
return {}
def _analyze_question_specific_patterns(self, question: str,
frame_detections: List[List[Dict[str, Any]]],
bird_counts: List[int],
animal_counts: List[int]) -> Dict[str, Any]:
"""Analyze patterns specific to the question asked."""
try:
analysis = {
'question_type': 'unknown',
'target_answer': None,
'confidence': 0.0,
'reasoning': []
}
question_lower = question.lower()
# Detect question type and provide specific analysis
if 'bird' in question_lower and ('highest' in question_lower or 'maximum' in question_lower):
analysis['question_type'] = 'max_birds_simultaneous'
analysis['target_answer'] = max(bird_counts) if bird_counts else 0
analysis['confidence'] = 0.9 if bird_counts else 0.1
analysis['reasoning'].append(f"Maximum simultaneous birds detected: {analysis['target_answer']}")
# Find frames with maximum birds
max_bird_count = analysis['target_answer']
max_frames = [i for i, count in enumerate(bird_counts) if count == max_bird_count]
analysis['reasoning'].append(f"Maximum occurred in {len(max_frames)} frame(s)")
elif 'animal' in question_lower and ('highest' in question_lower or 'maximum' in question_lower):
analysis['question_type'] = 'max_animals_simultaneous'
analysis['target_answer'] = max(animal_counts) if animal_counts else 0
analysis['confidence'] = 0.9 if animal_counts else 0.1
analysis['reasoning'].append(f"Maximum simultaneous animals detected: {analysis['target_answer']}")
elif 'species' in question_lower and ('highest' in question_lower or 'maximum' in question_lower):
analysis['question_type'] = 'max_species_simultaneous'
# For species counting, we need to count unique species per frame
max_species = 0
for frame_dets in frame_detections:
unique_species = set()
for det in frame_dets:
species_type = det.get('species_type', 'unknown')
if species_type in ['bird', 'animal']:
class_name = det.get('class', 'unknown')
unique_species.add(class_name)
max_species = max(max_species, len(unique_species))
analysis['target_answer'] = max_species
analysis['confidence'] = 0.8 if max_species > 0 else 0.1
analysis['reasoning'].append(f"Maximum simultaneous species detected: {analysis['target_answer']}")
return analysis
except Exception as e:
logger.error(f"β Question-specific analysis failed: {e}")
return {'question_type': 'unknown', 'target_answer': None, 'confidence': 0.0}
def _create_analysis_report(self, video_url: str, metadata: Dict[str, Any],
detection_results: Dict[str, Any],
content_analysis: Dict[str, Any] = None,
question: str = None) -> Dict[str, Any]:
"""Create comprehensive analysis report."""
try:
report = {
'success': True,
'video_url': video_url,
'question': question,
'analysis_timestamp': datetime.now().isoformat(),
'metadata': metadata,
'detection_results': detection_results,
'content_analysis': content_analysis,
'final_answer': None,
'confidence': 0.0,
'reasoning': []
}
# Extract final answer from detection summary
summary = detection_results.get('summary', {})
answer_analysis = summary.get('answer_analysis', {})
if answer_analysis.get('target_answer') is not None:
report['final_answer'] = answer_analysis['target_answer']
report['confidence'] = answer_analysis.get('confidence', 0.0)
report['reasoning'] = answer_analysis.get('reasoning', [])
else:
# Fallback to general analysis
if question and 'bird' in question.lower():
report['final_answer'] = summary.get('max_simultaneous_birds', 0)
report['confidence'] = 0.7
report['reasoning'] = [f"Maximum simultaneous birds detected: {report['final_answer']}"]
elif question and 'animal' in question.lower():
report['final_answer'] = summary.get('max_simultaneous_animals', 0)
report['confidence'] = 0.7
report['reasoning'] = [f"Maximum simultaneous animals detected: {report['final_answer']}"]
else:
report['final_answer'] = summary.get('max_simultaneous_objects', 0)
report['confidence'] = 0.5
report['reasoning'] = [f"Maximum simultaneous objects detected: {report['final_answer']}"]
# Add analysis insights
insights = []
if summary.get('total_frames_analyzed', 0) > 0:
insights.append(f"Analyzed {summary['total_frames_analyzed']} frames")
if summary.get('total_detections', 0) > 0:
insights.append(f"Total detections: {summary['total_detections']}")
if summary.get('species_counts'):
species_info = ", ".join([f"{k}: {v}" for k, v in summary['species_counts'].items()])
insights.append(f"Species distribution: {species_info}")
report['insights'] = insights
logger.info("π Analysis report generated successfully")
return report
except Exception as e:
logger.error(f"β Failed to create analysis report: {e}")
return {
'success': False,
'error': f'Failed to create analysis report: {str(e)}'
}
def _cleanup_temp_files(self, video_path: str = None):
"""Clean up temporary files."""
try:
if video_path and os.path.exists(video_path):
os.remove(video_path)
# Clean up temp directory if it exists and is empty
if os.path.exists(self.temp_dir):
try:
os.rmdir(self.temp_dir)
except OSError:
# Directory not empty, clean up individual files
shutil.rmtree(self.temp_dir, ignore_errors=True)
except Exception as e:
logger.warning(f"β οΈ Cleanup failed: {e}")
def get_capabilities(self) -> Dict[str, Any]:
"""Get video analyzer capabilities."""
return {
'available': self.available,
'detection_engine_available': self.detection_engine is not None and self.detection_engine.available,
'content_analyzer_available': self.content_analyzer is not None and self.content_analyzer.available,
'supported_formats': ['YouTube URLs', 'MP4', 'WebM', 'MKV'],
'max_duration': 300,
'max_frames': self.max_frames,
'features': [
'YouTube video downloading',
'Object detection and classification',
'Bird and animal species identification',
'Temporal object tracking',
'Simultaneous object counting',
'Content analysis and summarization',
'Question-specific analysis'
]
}
# AGNO Framework Integration Functions
def get_advanced_video_analysis_tools() -> List[AdvancedVideoAnalyzer]:
"""Get advanced video analysis tools for AGNO framework integration."""
try:
analyzer = AdvancedVideoAnalyzer()
if analyzer.available:
return [analyzer]
else:
logger.warning("β οΈ Advanced video analyzer not available")
return []
except Exception as e:
logger.error(f"β Failed to create advanced video analysis tools: {e}")
return []
if __name__ == "__main__":
# Test the advanced video analyzer
analyzer = AdvancedVideoAnalyzer()
print(f"Video analyzer available: {analyzer.available}")
print(f"Capabilities: {json.dumps(analyzer.get_capabilities(), indent=2)}")
# Test with a sample YouTube video (if available)
test_url = "https://www.youtube.com/watch?v=L1vXCYZAYYM"
test_question = "What is the highest number of bird species to be on camera simultaneously?"
print(f"\nTesting with: {test_url}")
print(f"Question: {test_question}")
# Note: Actual testing would require running the analyzer
# result = analyzer.analyze_video(test_url, test_question)
# print(f"Result: {json.dumps(result, indent=2)}") |