import gradio as gr import sentence_transformers from sentence_transformers import SentenceTransformer import torch from sentence_transformers.util import semantic_search import pandas as pd model = SentenceTransformer('JoBeer/all-mpnet-base-v2-eclass') corpus = pd.read_json('corpus.jsonl', lines = True, encoding = 'utf-8') def predict(name, description): text = 'Description: '+ description + '; Name: ' + name query_embedding = model.encode(text, convert_to_tensor=True) corpus_embeddings = torch.Tensor(corpus["embeddings"]) output = sentence_transformers.util.semantic_search(query_embedding, corpus_embeddings, top_k = 5) preferedName1 = corpus.iloc[output[0][0].get('corpus_id'),2] definition1 = corpus.iloc[output[0][0].get('corpus_id'),1] IRDI1 = corpus.iloc[output[0][0].get('corpus_id'),4] score1 = output[0][0].get('score') preferedName2 = corpus.iloc[output[0][1].get('corpus_id'),2] definition2 = corpus.iloc[output[0][1].get('corpus_id'),1] IRDI2 = corpus.iloc[output[0][1].get('corpus_id'),4] score2 = output[0][1].get('score') df = [[preferedName1, definition1, IRDI1, score1], [preferedName2, definition2, IRDI1, score2]] return pd.Dataframe(df) interface = gr.Interface(fn = predict, inputs = [gr.Textbox(label="Name:", placeholder="z.B. GTIN", lines=1), gr.Textbox(label="Description:", placeholder="z.B. Globel Trade Item Number", lines=1)], #outputs = [gr.Textbox(label = 'preferedName'),gr.Textbox(label = 'definition'), gr.Textbox(label = 'IDRI'),gr.Textbox(label = 'score')], outputs = [gr.Dataframe(row_count = (2, "fixed"), col_count=(4, "fixed"), label="Predictions", headers=['preferedName', 'definition', 'IRDI', 'score'])], examples = [['GTIN', 'Globel Trade Item Number'], ['Global Trade Item Number', 'the identification number from the GS1 system with which the trading units can be uniquely identified worldwide'], ['Device type', 'describing a set of common specific characteristics in products or goods'], ['Item type','the type of product, an item can be assigned to'], ['Nominal power','power being consumed by or dissipated within an electric component as a variable'], ['Power consumption', 'power that is typically taken from the auxiliary power supply when the device is operating normally']], theme = 'huggingface', title = 'ECLASS-Property-Search') interface.launch()