JoBeer commited on
Commit
9833bc4
·
1 Parent(s): 3dcb268

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -2
app.py CHANGED
@@ -26,14 +26,13 @@ def predict(name, description):
26
  definition2 = corpus.iloc[output[0][1].get('corpus_id'),1]
27
  IRDI2 = corpus.iloc[output[0][1].get('corpus_id'),4]
28
  score2 = output[0][1].get('score')
29
-
30
 
31
  return preferedName1, definition1, IRDI1, score1, preferedName2, definition2, IRDI1, score2
32
 
33
  interface = gr.Interface(fn = predict,
34
  inputs = [gr.Textbox(label="Name:", placeholder="z.B. GTIN", lines=1), gr.Textbox(label="Description:", placeholder="z.B. Globel Trade Item Number", lines=1)],
35
  #outputs = [gr.Textbox(label = 'preferedName'),gr.Textbox(label = 'definition'), gr.Textbox(label = 'IDRI'),gr.Textbox(label = 'score')],
36
- outputs = [gr.Dataframe(headers=['preferedName', 'definition', 'IRDI', 'score'])],
37
  examples = [['GTIN', 'Globel Trade Item Number'], ['Global Trade Item Number', 'the identification number from the GS1 system with which the trading units can be uniquely identified worldwide'],
38
  ['Device type', 'describing a set of common specific characteristics in products or goods'], ['Item type','the type of product, an item can be assigned to'],
39
  ['Nominal power','power being consumed by or dissipated within an electric component as a variable'], ['Power consumption', 'power that is typically taken from the auxiliary power supply when the device is operating normally']], theme = 'huggingface',
 
26
  definition2 = corpus.iloc[output[0][1].get('corpus_id'),1]
27
  IRDI2 = corpus.iloc[output[0][1].get('corpus_id'),4]
28
  score2 = output[0][1].get('score')
 
29
 
30
  return preferedName1, definition1, IRDI1, score1, preferedName2, definition2, IRDI1, score2
31
 
32
  interface = gr.Interface(fn = predict,
33
  inputs = [gr.Textbox(label="Name:", placeholder="z.B. GTIN", lines=1), gr.Textbox(label="Description:", placeholder="z.B. Globel Trade Item Number", lines=1)],
34
  #outputs = [gr.Textbox(label = 'preferedName'),gr.Textbox(label = 'definition'), gr.Textbox(label = 'IDRI'),gr.Textbox(label = 'score')],
35
+ outputs = [row_count = (2, "fixed"), col_count=(4, "fixed"), label="Predictions", gr.Dataframe(headers=['preferedName', 'definition', 'IRDI', 'score'])],
36
  examples = [['GTIN', 'Globel Trade Item Number'], ['Global Trade Item Number', 'the identification number from the GS1 system with which the trading units can be uniquely identified worldwide'],
37
  ['Device type', 'describing a set of common specific characteristics in products or goods'], ['Item type','the type of product, an item can be assigned to'],
38
  ['Nominal power','power being consumed by or dissipated within an electric component as a variable'], ['Power consumption', 'power that is typically taken from the auxiliary power supply when the device is operating normally']], theme = 'huggingface',