Spaces:
Runtime error
Runtime error
File size: 1,406 Bytes
48d28d5 6a00324 745b80e 48d28d5 9e0ab0f 48d28d5 10520fd 9e0ab0f 745b80e 96664a2 116839d 745b80e 10520fd 6a00324 85fa740 0741fde d85a37a 41c8dfe dc2b889 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
import gradio as gr
import sentence_transformers
from sentence_transformers import SentenceTransformer
import torch
from sentence_transformers.util import semantic_search
import pandas as pd
model = SentenceTransformer('JoBeer/all-mpnet-base-v2-eclass')
corpus = pd.read_excel('corpus.xlsx')
def predict(name, description):
text = 'Description: '+ description + '; Name: ' + name
query_embedding = model.encode(text, convert_to_tensor=True)
corpus_embeddings = torch.Tensor(corpus["embeddings"])
output = sentence_transformers.util.semantic_search(query_embedding, corpus_embeddings, top_k = 5)
preferedName1 = corpus.iloc[output[0][0].get('corpus_id'),2]
definition1 = corpus.iloc[output[0][0].get('corpus_id'),1]
IRDI1 = corpus.iloc[output[0][0].get('corpus_id'),4]
score1 = output[0][0].get('score')
return preferedName1, definition1, IRDI1, score1
interface = gr.Interface(fn = predict, inputs = [gr.Textbox(label="Name:", placeholder="z.B. GTIN", lines=1), gr.Textbox(label="Description:", placeholder="z.B. Globel Trade Item Number", lines=1)],
outputs = [gr.Textbox(label = 'preferedName'),gr.Textbox(label = 'definition'), gr.Textbox(label = 'IDRI'),gr.Textbox(label = 'score')],
#examples=[['GTIN', 'Globel Trade Item Number']], theme = 'huggingface',
title = 'ECLASS-Property-Search')
interface.launch() |