import pandas as pd import logging from typing import Optional, Tuple from dataclasses import dataclass logger = logging.getLogger(__name__) @dataclass class GeneratedQuestion: question: str choices: dict correct_answer: str explanation: str class SimilarQuestionGenerator: def __init__(self, misconception_csv_path: str): self._load_data(misconception_csv_path) def _load_data(self, misconception_csv_path: str): self.misconception_df = pd.read_csv(misconception_csv_path) def get_misconception_text(self, misconception_id: float) -> Optional[str]: if pd.isna(misconception_id): return "No misconception provided." row = self.misconception_df[self.misconception_df['MisconceptionId'] == int(misconception_id)] return row.iloc[0]['MisconceptionName'] if not row.empty else "Misconception not found." def generate_similar_question_with_text(self, construct_name, subject_name, question_text, correct_answer_text, wrong_answer_text, misconception_id) -> Tuple[Optional[GeneratedQuestion], Optional[str]]: prompt = f"Generate a similar question for: {question_text}" # Mock API call for demonstration return GeneratedQuestion(question="Sample Question", choices={"A": "Option A", "B": "Option B"}, correct_answer="A", explanation="Sample Explanation"), None def generate_similar_question(wrong_q, misconception_id, generator): if not isinstance(wrong_q, dict): return None misconception_text = generator.get_misconception_text(misconception_id) return {"question": f"Generated Question targeting {misconception_text}"}