Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,472 Bytes
9a6dac6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
import os
import numpy as np
from sklearn.cluster import KMeans
from scipy.stats import norm
from matplotlib import pyplot as plt
import pickle as pkl
class NDB:
def __init__(
self,
training_data=None,
number_of_bins=100,
significance_level=0.05,
z_threshold=None,
whitening=False,
max_dims=None,
cache_folder=None,
):
"""
NDB Evaluation Class
:param training_data: Optional - the training samples - array of m x d floats (m samples of dimension d)
:param number_of_bins: Number of bins (clusters) default=100
:param significance_level: The statistical significance level for the two-sample test
:param z_threshold: Allow defining a threshold in terms of difference/SE for defining a bin as statistically different
:param whitening: Perform data whitening - subtract mean and divide by per-dimension std
:param max_dims: Max dimensions to use in K-means. By default derived automatically from d
:param bins_file: Optional - file to write / read-from the clusters (to avoid re-calculation)
"""
self.number_of_bins = number_of_bins
self.significance_level = significance_level
self.z_threshold = z_threshold
self.whitening = whitening
self.ndb_eps = 1e-6
self.training_mean = 0.0
self.training_std = 1.0
self.max_dims = max_dims
self.cache_folder = cache_folder
self.bin_centers = None
self.bin_proportions = None
self.ref_sample_size = None
self.used_d_indices = None
self.results_file = None
self.test_name = "ndb_{}_bins_{}".format(
self.number_of_bins, "whiten" if self.whitening else "orig"
)
self.cached_results = {}
if self.cache_folder:
self.results_file = os.path.join(
cache_folder, self.test_name + "_results.pkl"
)
if os.path.isfile(self.results_file):
# print('Loading previous results from', self.results_file, ':')
self.cached_results = pkl.load(open(self.results_file, "rb"))
# print(self.cached_results.keys())
if training_data is not None or cache_folder is not None:
bins_file = None
if cache_folder:
os.makedirs(cache_folder, exist_ok=True)
bins_file = os.path.join(cache_folder, self.test_name + ".pkl")
self.construct_bins(training_data, bins_file)
def construct_bins(self, training_samples, bins_file):
"""
Performs K-means clustering of the training samples
:param training_samples: An array of m x d floats (m samples of dimension d)
"""
# if self.__read_from_bins_file(bins_file):
# return
n, d = training_samples.shape
k = self.number_of_bins
# print("k is",k)
if self.whitening:
self.training_mean = np.mean(training_samples, axis=0)
self.training_std = np.std(training_samples, axis=0) + self.ndb_eps
if self.max_dims is None and d > 1000:
# To ran faster, perform binning on sampled data dimension (i.e. don't use all channels of all pixels)
self.max_dims = d // 6
whitened_samples = (training_samples - self.training_mean) / self.training_std
d_used = d if self.max_dims is None else min(d, self.max_dims)
self.used_d_indices = np.random.choice(d, d_used, replace=False)
# print('Performing K-Means clustering of {} samples in dimension {} / {} to {} clusters ...'.format(n, d_used, d, k))
# print('Can take a couple of minutes...')
if n // k > 1000:
print(
"Training data size should be ~500 times the number of bins (for reasonable speed and accuracy)"
)
clusters = KMeans(n_clusters=k, max_iter=100).fit(
whitened_samples[:, self.used_d_indices]
)
bin_centers = np.zeros([k, d])
for i in range(k):
bin_centers[i, :] = np.mean(
whitened_samples[clusters.labels_ == i, :], axis=0
)
# Organize bins by size
label_vals, label_counts = np.unique(clusters.labels_, return_counts=True)
bin_order = np.argsort(-label_counts)
self.bin_proportions = label_counts[bin_order] / np.sum(label_counts)
self.bin_centers = bin_centers[bin_order, :]
self.ref_sample_size = n
self.__write_to_bins_file(bins_file)
# print('Done.')
def evaluate(self, query_samples, model_label=None):
"""
Assign each sample to the nearest bin center (in L2). Pre-whiten if required. and calculate the NDB
(Number of statistically Different Bins) and JS divergence scores.
:param query_samples: An array of m x d floats (m samples of dimension d)
:param model_label: optional label string for the evaluated model, allows plotting results of multiple models
:return: results dictionary containing NDB and JS scores and array of labels (assigned bin for each query sample)
"""
n = query_samples.shape[0]
query_bin_proportions, query_bin_assignments = self.__calculate_bin_proportions(
query_samples
)
# print("query",query_bin_proportions)
# print(query_bin_proportions)
# print("self",self.bin_proportions)
different_bins = NDB.two_proportions_z_test(
self.bin_proportions,
self.ref_sample_size,
query_bin_proportions,
n,
significance_level=self.significance_level,
z_threshold=self.z_threshold,
)
# print("different",different_bins)
ndb = np.count_nonzero(different_bins)
print("ndb", ndb)
js = NDB.jensen_shannon_divergence(self.bin_proportions, query_bin_proportions)
results = {
"NDB": ndb,
"JS": js,
"Proportions": query_bin_proportions,
"N": n,
"Bin-Assignment": query_bin_assignments,
"Different-Bins": different_bins,
}
if model_label:
print("Results for {} samples from {}: ".format(n, model_label), end="")
self.cached_results[model_label] = results
if self.results_file:
# print('Storing result to', self.results_file)
pkl.dump(self.cached_results, open(self.results_file, "wb"))
print("NDB =", ndb, "NDB/K =", ndb / self.number_of_bins, ", JS =", js)
return results
def print_results(self):
print(
"NSB results (K={}{}):".format(
self.number_of_bins, ", data whitening" if self.whitening else ""
)
)
for model in sorted(list(self.cached_results.keys())):
res = self.cached_results[model]
print(
"%s: NDB = %d, NDB/K = %.3f, JS = %.4f"
% (model, res["NDB"], res["NDB"] / self.number_of_bins, res["JS"])
)
def plot_results(self, models_to_plot=None):
"""
Plot the binning proportions of different methods
:param models_to_plot: optional list of model labels to plot
"""
K = self.number_of_bins
w = 1.0 / (len(self.cached_results) + 1)
assert K == self.bin_proportions.size
assert self.cached_results
# Used for plotting only
def calc_se(p1, n1, p2, n2):
p = (p1 * n1 + p2 * n2) / (n1 + n2)
return np.sqrt(p * (1 - p) * (1 / n1 + 1 / n2))
if not models_to_plot:
models_to_plot = sorted(list(self.cached_results.keys()))
# Visualize the standard errors using the train proportions and size and query sample size
train_se = calc_se(
self.bin_proportions,
self.ref_sample_size,
self.bin_proportions,
self.cached_results[models_to_plot[0]]["N"],
)
plt.bar(
np.arange(0, K) + 0.5,
height=train_se * 2.0,
bottom=self.bin_proportions - train_se,
width=1.0,
label="Train$\pm$SE",
color="gray",
)
ymax = 0.0
for i, model in enumerate(models_to_plot):
results = self.cached_results[model]
label = "%s (%i : %.4f)" % (model, results["NDB"], results["JS"])
ymax = max(ymax, np.max(results["Proportions"]))
if K <= 70:
plt.bar(
np.arange(0, K) + (i + 1.0) * w,
results["Proportions"],
width=w,
label=label,
)
else:
plt.plot(
np.arange(0, K) + 0.5, results["Proportions"], "--*", label=label
)
plt.legend(loc="best")
plt.ylim((0.0, min(ymax, np.max(self.bin_proportions) * 4.0)))
plt.grid(True)
plt.title(
"Binning Proportions Evaluation Results for {} bins (NDB : JS)".format(K)
)
plt.show()
def __calculate_bin_proportions(self, samples):
if self.bin_centers is None:
print(
"First run construct_bins on samples from the reference training data"
)
# print("as1",samples.shape[1])
# print("as2",self.bin_centers.shape[1])
assert samples.shape[1] == self.bin_centers.shape[1]
n, d = samples.shape
k = self.bin_centers.shape[0]
D = np.zeros([n, k], dtype=samples.dtype)
# print('Calculating bin assignments for {} samples...'.format(n))
whitened_samples = (samples - self.training_mean) / self.training_std
for i in range(k):
print(".", end="", flush=True)
D[:, i] = np.linalg.norm(
whitened_samples[:, self.used_d_indices]
- self.bin_centers[i, self.used_d_indices],
ord=2,
axis=1,
)
print()
labels = np.argmin(D, axis=1)
probs = np.zeros([k])
label_vals, label_counts = np.unique(labels, return_counts=True)
probs[label_vals] = label_counts / n
return probs, labels
def __read_from_bins_file(self, bins_file):
if bins_file and os.path.isfile(bins_file):
print("Loading binning results from", bins_file)
bins_data = pkl.load(open(bins_file, "rb"))
self.bin_proportions = bins_data["proportions"]
self.bin_centers = bins_data["centers"]
self.ref_sample_size = bins_data["n"]
self.training_mean = bins_data["mean"]
self.training_std = bins_data["std"]
self.used_d_indices = bins_data["d_indices"]
return True
return False
def __write_to_bins_file(self, bins_file):
if bins_file:
print("Caching binning results to", bins_file)
bins_data = {
"proportions": self.bin_proportions,
"centers": self.bin_centers,
"n": self.ref_sample_size,
"mean": self.training_mean,
"std": self.training_std,
"d_indices": self.used_d_indices,
}
pkl.dump(bins_data, open(bins_file, "wb"))
@staticmethod
def two_proportions_z_test(p1, n1, p2, n2, significance_level, z_threshold=None):
# Per http://stattrek.com/hypothesis-test/difference-in-proportions.aspx
# See also http://www.itl.nist.gov/div898/software/dataplot/refman1/auxillar/binotest.htm
p = (p1 * n1 + p2 * n2) / (n1 + n2)
se = np.sqrt(p * (1 - p) * (1 / n1 + 1 / n2))
z = (p1 - p2) / se
# print("z",abs(z))
# Allow defining a threshold in terms as Z (difference relative to the SE) rather than in p-values.
if z_threshold is not None:
return abs(z) > z_threshold
p_values = 2.0 * norm.cdf(-1.0 * np.abs(z)) # Two-tailed test
return p_values < significance_level
@staticmethod
def jensen_shannon_divergence(p, q):
"""
Calculates the symmetric Jensen–Shannon divergence between the two PDFs
"""
m = (p + q) * 0.5
return 0.5 * (NDB.kl_divergence(p, m) + NDB.kl_divergence(q, m))
@staticmethod
def kl_divergence(p, q):
"""
The Kullback–Leibler divergence.
Defined only if q != 0 whenever p != 0.
"""
assert np.all(np.isfinite(p))
assert np.all(np.isfinite(q))
assert not np.any(np.logical_and(p != 0, q == 0))
p_pos = p > 0
return np.sum(p[p_pos] * np.log(p[p_pos] / q[p_pos]))
if __name__ == "__main__":
dim = 100
k = 100
n_train = k * 100
n_test = k * 10
train_samples = np.random.uniform(size=[n_train, dim])
ndb = NDB(training_data=train_samples, number_of_bins=k, whitening=True)
test_samples = np.random.uniform(high=1.0, size=[n_test, dim])
ndb.evaluate(test_samples, model_label="Test")
test_samples = np.random.uniform(high=0.9, size=[n_test, dim])
ndb.evaluate(test_samples, model_label="Good")
test_samples = np.random.uniform(high=0.75, size=[n_test, dim])
ndb.evaluate(test_samples, model_label="Bad")
ndb.plot_results(models_to_plot=["Test", "Good", "Bad"])
|