File size: 13,472 Bytes
9a6dac6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
import os
import numpy as np
from sklearn.cluster import KMeans
from scipy.stats import norm
from matplotlib import pyplot as plt
import pickle as pkl


class NDB:
    def __init__(
        self,
        training_data=None,
        number_of_bins=100,
        significance_level=0.05,
        z_threshold=None,
        whitening=False,
        max_dims=None,
        cache_folder=None,
    ):
        """
        NDB Evaluation Class
        :param training_data: Optional - the training samples - array of m x d floats (m samples of dimension d)
        :param number_of_bins: Number of bins (clusters) default=100
        :param significance_level: The statistical significance level for the two-sample test
        :param z_threshold: Allow defining a threshold in terms of difference/SE for defining a bin as statistically different
        :param whitening: Perform data whitening - subtract mean and divide by per-dimension std
        :param max_dims: Max dimensions to use in K-means. By default derived automatically from d
        :param bins_file: Optional - file to write / read-from the clusters (to avoid re-calculation)
        """
        self.number_of_bins = number_of_bins
        self.significance_level = significance_level
        self.z_threshold = z_threshold
        self.whitening = whitening
        self.ndb_eps = 1e-6
        self.training_mean = 0.0
        self.training_std = 1.0
        self.max_dims = max_dims
        self.cache_folder = cache_folder
        self.bin_centers = None
        self.bin_proportions = None
        self.ref_sample_size = None
        self.used_d_indices = None
        self.results_file = None
        self.test_name = "ndb_{}_bins_{}".format(
            self.number_of_bins, "whiten" if self.whitening else "orig"
        )
        self.cached_results = {}
        if self.cache_folder:
            self.results_file = os.path.join(
                cache_folder, self.test_name + "_results.pkl"
            )
            if os.path.isfile(self.results_file):
                # print('Loading previous results from', self.results_file, ':')
                self.cached_results = pkl.load(open(self.results_file, "rb"))
                # print(self.cached_results.keys())
        if training_data is not None or cache_folder is not None:
            bins_file = None
            if cache_folder:
                os.makedirs(cache_folder, exist_ok=True)
                bins_file = os.path.join(cache_folder, self.test_name + ".pkl")
            self.construct_bins(training_data, bins_file)

    def construct_bins(self, training_samples, bins_file):
        """
        Performs K-means clustering of the training samples
        :param training_samples: An array of m x d floats (m samples of dimension d)
        """

        # if self.__read_from_bins_file(bins_file):
        # return
        n, d = training_samples.shape
        k = self.number_of_bins
        # print("k is",k)
        if self.whitening:
            self.training_mean = np.mean(training_samples, axis=0)
            self.training_std = np.std(training_samples, axis=0) + self.ndb_eps

        if self.max_dims is None and d > 1000:
            # To ran faster, perform binning on sampled data dimension (i.e. don't use all channels of all pixels)
            self.max_dims = d // 6

        whitened_samples = (training_samples - self.training_mean) / self.training_std
        d_used = d if self.max_dims is None else min(d, self.max_dims)
        self.used_d_indices = np.random.choice(d, d_used, replace=False)

        # print('Performing K-Means clustering of {} samples in dimension {} / {} to {} clusters ...'.format(n, d_used, d, k))
        # print('Can take a couple of minutes...')
        if n // k > 1000:
            print(
                "Training data size should be ~500 times the number of bins (for reasonable speed and accuracy)"
            )

        clusters = KMeans(n_clusters=k, max_iter=100).fit(
            whitened_samples[:, self.used_d_indices]
        )

        bin_centers = np.zeros([k, d])
        for i in range(k):
            bin_centers[i, :] = np.mean(
                whitened_samples[clusters.labels_ == i, :], axis=0
            )

        # Organize bins by size
        label_vals, label_counts = np.unique(clusters.labels_, return_counts=True)
        bin_order = np.argsort(-label_counts)
        self.bin_proportions = label_counts[bin_order] / np.sum(label_counts)
        self.bin_centers = bin_centers[bin_order, :]
        self.ref_sample_size = n
        self.__write_to_bins_file(bins_file)
        # print('Done.')

    def evaluate(self, query_samples, model_label=None):
        """
        Assign each sample to the nearest bin center (in L2). Pre-whiten if required. and calculate the NDB
        (Number of statistically Different Bins) and JS divergence scores.
        :param query_samples: An array of m x d floats (m samples of dimension d)
        :param model_label: optional label string for the evaluated model, allows plotting results of multiple models
        :return: results dictionary containing NDB and JS scores and array of labels (assigned bin for each query sample)
        """
        n = query_samples.shape[0]
        query_bin_proportions, query_bin_assignments = self.__calculate_bin_proportions(
            query_samples
        )
        # print("query",query_bin_proportions)
        # print(query_bin_proportions)
        # print("self",self.bin_proportions)
        different_bins = NDB.two_proportions_z_test(
            self.bin_proportions,
            self.ref_sample_size,
            query_bin_proportions,
            n,
            significance_level=self.significance_level,
            z_threshold=self.z_threshold,
        )
        # print("different",different_bins)
        ndb = np.count_nonzero(different_bins)
        print("ndb", ndb)
        js = NDB.jensen_shannon_divergence(self.bin_proportions, query_bin_proportions)
        results = {
            "NDB": ndb,
            "JS": js,
            "Proportions": query_bin_proportions,
            "N": n,
            "Bin-Assignment": query_bin_assignments,
            "Different-Bins": different_bins,
        }

        if model_label:
            print("Results for {} samples from {}: ".format(n, model_label), end="")
            self.cached_results[model_label] = results
            if self.results_file:
                # print('Storing result to', self.results_file)
                pkl.dump(self.cached_results, open(self.results_file, "wb"))

        print("NDB =", ndb, "NDB/K =", ndb / self.number_of_bins, ", JS =", js)
        return results

    def print_results(self):
        print(
            "NSB results (K={}{}):".format(
                self.number_of_bins, ", data whitening" if self.whitening else ""
            )
        )
        for model in sorted(list(self.cached_results.keys())):
            res = self.cached_results[model]
            print(
                "%s: NDB = %d, NDB/K = %.3f, JS = %.4f"
                % (model, res["NDB"], res["NDB"] / self.number_of_bins, res["JS"])
            )

    def plot_results(self, models_to_plot=None):
        """
        Plot the binning proportions of different methods
        :param models_to_plot: optional list of model labels to plot
        """
        K = self.number_of_bins
        w = 1.0 / (len(self.cached_results) + 1)
        assert K == self.bin_proportions.size
        assert self.cached_results

        # Used for plotting only
        def calc_se(p1, n1, p2, n2):
            p = (p1 * n1 + p2 * n2) / (n1 + n2)
            return np.sqrt(p * (1 - p) * (1 / n1 + 1 / n2))

        if not models_to_plot:
            models_to_plot = sorted(list(self.cached_results.keys()))

        # Visualize the standard errors using the train proportions and size and query sample size
        train_se = calc_se(
            self.bin_proportions,
            self.ref_sample_size,
            self.bin_proportions,
            self.cached_results[models_to_plot[0]]["N"],
        )
        plt.bar(
            np.arange(0, K) + 0.5,
            height=train_se * 2.0,
            bottom=self.bin_proportions - train_se,
            width=1.0,
            label="Train$\pm$SE",
            color="gray",
        )

        ymax = 0.0
        for i, model in enumerate(models_to_plot):
            results = self.cached_results[model]
            label = "%s (%i : %.4f)" % (model, results["NDB"], results["JS"])
            ymax = max(ymax, np.max(results["Proportions"]))
            if K <= 70:
                plt.bar(
                    np.arange(0, K) + (i + 1.0) * w,
                    results["Proportions"],
                    width=w,
                    label=label,
                )
            else:
                plt.plot(
                    np.arange(0, K) + 0.5, results["Proportions"], "--*", label=label
                )
        plt.legend(loc="best")
        plt.ylim((0.0, min(ymax, np.max(self.bin_proportions) * 4.0)))
        plt.grid(True)
        plt.title(
            "Binning Proportions Evaluation Results for {} bins (NDB : JS)".format(K)
        )
        plt.show()

    def __calculate_bin_proportions(self, samples):
        if self.bin_centers is None:
            print(
                "First run construct_bins on samples from the reference training data"
            )
        # print("as1",samples.shape[1])
        # print("as2",self.bin_centers.shape[1])
        assert samples.shape[1] == self.bin_centers.shape[1]
        n, d = samples.shape
        k = self.bin_centers.shape[0]
        D = np.zeros([n, k], dtype=samples.dtype)

        # print('Calculating bin assignments for {} samples...'.format(n))
        whitened_samples = (samples - self.training_mean) / self.training_std
        for i in range(k):
            print(".", end="", flush=True)
            D[:, i] = np.linalg.norm(
                whitened_samples[:, self.used_d_indices]
                - self.bin_centers[i, self.used_d_indices],
                ord=2,
                axis=1,
            )
        print()
        labels = np.argmin(D, axis=1)
        probs = np.zeros([k])
        label_vals, label_counts = np.unique(labels, return_counts=True)
        probs[label_vals] = label_counts / n
        return probs, labels

    def __read_from_bins_file(self, bins_file):
        if bins_file and os.path.isfile(bins_file):
            print("Loading binning results from", bins_file)
            bins_data = pkl.load(open(bins_file, "rb"))
            self.bin_proportions = bins_data["proportions"]
            self.bin_centers = bins_data["centers"]
            self.ref_sample_size = bins_data["n"]
            self.training_mean = bins_data["mean"]
            self.training_std = bins_data["std"]
            self.used_d_indices = bins_data["d_indices"]
            return True
        return False

    def __write_to_bins_file(self, bins_file):
        if bins_file:
            print("Caching binning results to", bins_file)
            bins_data = {
                "proportions": self.bin_proportions,
                "centers": self.bin_centers,
                "n": self.ref_sample_size,
                "mean": self.training_mean,
                "std": self.training_std,
                "d_indices": self.used_d_indices,
            }
            pkl.dump(bins_data, open(bins_file, "wb"))

    @staticmethod
    def two_proportions_z_test(p1, n1, p2, n2, significance_level, z_threshold=None):
        # Per http://stattrek.com/hypothesis-test/difference-in-proportions.aspx
        # See also http://www.itl.nist.gov/div898/software/dataplot/refman1/auxillar/binotest.htm
        p = (p1 * n1 + p2 * n2) / (n1 + n2)
        se = np.sqrt(p * (1 - p) * (1 / n1 + 1 / n2))
        z = (p1 - p2) / se
        # print("z",abs(z))
        # Allow defining a threshold in terms as Z (difference relative to the SE) rather than in p-values.
        if z_threshold is not None:
            return abs(z) > z_threshold
        p_values = 2.0 * norm.cdf(-1.0 * np.abs(z))  # Two-tailed test
        return p_values < significance_level

    @staticmethod
    def jensen_shannon_divergence(p, q):
        """
        Calculates the symmetric Jensen–Shannon divergence between the two PDFs
        """
        m = (p + q) * 0.5
        return 0.5 * (NDB.kl_divergence(p, m) + NDB.kl_divergence(q, m))

    @staticmethod
    def kl_divergence(p, q):
        """
        The Kullback–Leibler divergence.
        Defined only if q != 0 whenever p != 0.
        """
        assert np.all(np.isfinite(p))
        assert np.all(np.isfinite(q))
        assert not np.any(np.logical_and(p != 0, q == 0))

        p_pos = p > 0
        return np.sum(p[p_pos] * np.log(p[p_pos] / q[p_pos]))


if __name__ == "__main__":
    dim = 100
    k = 100
    n_train = k * 100
    n_test = k * 10

    train_samples = np.random.uniform(size=[n_train, dim])
    ndb = NDB(training_data=train_samples, number_of_bins=k, whitening=True)

    test_samples = np.random.uniform(high=1.0, size=[n_test, dim])
    ndb.evaluate(test_samples, model_label="Test")

    test_samples = np.random.uniform(high=0.9, size=[n_test, dim])
    ndb.evaluate(test_samples, model_label="Good")

    test_samples = np.random.uniform(high=0.75, size=[n_test, dim])
    ndb.evaluate(test_samples, model_label="Bad")

    ndb.plot_results(models_to_plot=["Test", "Good", "Bad"])