import gradio as gr from llama_cpp import Llama import os os.system("pip install -U huggingface_hub") os.system("huggingface-cli download Qwen/Qwen2.5-0.5B-Instruct-GGUF qwen2.5-0.5b-instruct-q2_k.gguf --local-dir . --local-dir-use-symlinks False") # Load the Qwen GGUF model MODEL_PATH = "./qwen2.5-0.5b-instruct-q2_k.gguf" # Ensure the file exists in this path model = Llama(model_path=MODEL_PATH) # Define the chat function def respond(message, history, system_message, max_tokens, temperature, top_p): # Prepare the full prompt prompt = f"{system_message}\n" for user_msg, assistant_msg in history: prompt += f"User: {user_msg}\nAssistant: {assistant_msg}\n" prompt += f"User: {message}\nAssistant:" # Generate response using llama-cpp response = model( prompt, max_tokens=max_tokens, # temperature=temperature, # top_p=top_p ) # Extract text response return response["choices"][0]["text"].strip() # Define Gradio chat interface demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a helpful AI assistant.", label="System message"), gr.Slider(minimum=10, maximum=1024, value=256, step=10, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=1.5, value=0.7, step=0.1, label="Temperature no effect"), gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-p (nucleus sampling) no effect"), ], ) # Launch Gradio app if __name__ == "__main__": demo.launch()