Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,36 +1,26 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
import torch
|
4 |
|
5 |
-
# Model name
|
6 |
-
|
7 |
|
8 |
-
# Load
|
9 |
-
|
10 |
-
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.float16, device_map="auto")
|
11 |
|
12 |
-
def respond(message, history
|
13 |
-
|
14 |
-
|
15 |
-
# Add chat history to messages
|
16 |
for user_msg, assistant_msg in history:
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
messages.append({"role": "assistant", "content": assistant_msg})
|
21 |
-
|
22 |
-
messages.append({"role": "user", "content": message})
|
23 |
-
|
24 |
-
# Tokenize input
|
25 |
-
inputs = tokenizer(message, return_tensors="pt").to("cpu")
|
26 |
-
|
27 |
# Generate response
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
return response
|
35 |
|
36 |
# Define Gradio interface
|
|
|
1 |
import gradio as gr
|
2 |
+
from ctransformers import AutoModelForCausalLM
|
|
|
3 |
|
4 |
+
# Model path or name
|
5 |
+
MODEL_PATH = "Qwen/Qwen2.5-0.5B-Instruct-GGUF"
|
6 |
|
7 |
+
# Load the model
|
8 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, model_type="qwen", device="cpu")
|
|
|
9 |
|
10 |
+
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
11 |
+
# Prepare the prompt with system message and history
|
12 |
+
prompt = system_message + "\n"
|
|
|
13 |
for user_msg, assistant_msg in history:
|
14 |
+
prompt += f"User: {user_msg}\nAssistant: {assistant_msg}\n"
|
15 |
+
prompt += f"User: {message}\nAssistant:"
|
16 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
# Generate response
|
18 |
+
response = model(
|
19 |
+
prompt,
|
20 |
+
max_new_tokens=max_tokens,
|
21 |
+
temperature=temperature,
|
22 |
+
top_p=top_p,
|
23 |
+
)
|
24 |
return response
|
25 |
|
26 |
# Define Gradio interface
|