Spaces:
Running
Running
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
# Model name | |
MODEL_NAME = "Qwen/Qwen2.5-0.5B-Instruct-GGUF" | |
# Load tokenizer and model | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.float16, device_map="auto") | |
def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p): | |
messages = [{"role": "system", "content": system_message}] | |
# Add chat history to messages | |
for user_msg, assistant_msg in history: | |
if user_msg: | |
messages.append({"role": "user", "content": user_msg}) | |
if assistant_msg: | |
messages.append({"role": "assistant", "content": assistant_msg}) | |
messages.append({"role": "user", "content": message}) | |
# Tokenize input | |
inputs = tokenizer(message, return_tensors="pt").to("cpu") | |
# Generate response | |
with torch.no_grad(): | |
outputs = model.generate( | |
**inputs, max_length=max_tokens, temperature=temperature, top_p=top_p | |
) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return response | |
# Define Gradio interface | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=512, value=64, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=1.5, value=0.3, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=0.8, value=0.75, step=0.05, label="Top-p (nucleus sampling)"), | |
], | |
) | |
# Launch Gradio app | |
if __name__ == "__main__": | |
demo.launch() | |