Jesus02 commited on
Commit
5185395
·
verified ·
1 Parent(s): c878245

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -52
app.py DELETED
@@ -1,52 +0,0 @@
1
- # Import the necessary libraries
2
- import gradio as gr # Gradio is a library to quickly build and share demos for ML models
3
- import joblib # joblib is used here to load the trained model from a file
4
- import numpy as np # NumPy for numerical operations (if needed for array manipulation)
5
-
6
- # Load the pre-trained Decision Tree classifier from the joblib file
7
- pipeline = joblib.load("./models/iris_dt.joblib")
8
-
9
- # Define a function that takes the four iris measurements as input
10
- # and returns the predicted iris species label.
11
- def predict_iris(sepal_length, sepal_width, petal_length, petal_width):
12
- # Convert the input parameters into a 2D list/array because
13
- # scikit-learn's predict() expects a 2D array of shape (n_samples, n_features)
14
- input = np.array([[sepal_length, sepal_width, petal_length, petal_width]])
15
- prediction = pipeline.predict(input)
16
-
17
- # Convert the prediction to the string label
18
- if prediction == 0:
19
- return 'iris-setosa'
20
- elif prediction == 1:
21
- return 'Iris-versicolor'
22
- elif prediction == 2:
23
- return 'Iris-virginica'
24
- else:
25
- return "Invalid prediction"
26
-
27
- # Create a Gradio Interface:
28
- # - fn: the function to call for inference
29
- # - inputs: a list of component types to collect user input (in this case, four numeric values)
30
- # - outputs: how the prediction is displayed (in this case, as text)
31
- # - live: whether to update the output in real-time as the user types
32
- interface = gr.Interface(
33
- fn=predict_iris,
34
- inputs=["number", "number", "number", "number"],
35
- outputs="text",
36
- live=True,
37
- title="Iris Species Identifier",
38
- description="Enter the four measurements to predict the Iris species."
39
- )
40
-
41
- # Run the interface when this script is executed directly.
42
- # This will launch a local Gradio server and open a user interface in the browser.
43
- if __name__ == "__main__":
44
- # To create a public link, set the parameter share=True
45
- interface.launch()
46
-
47
- '''
48
- # The Flag button allows users (or testers) to mark or “flag”
49
- # a particular input-output interaction for later review.
50
- # When someone clicks Flag, Gradio saves the input values (and often the output) to a log.csv file
51
- # letting you keep track of interesting or potentially problematic cases for debugging or analysis later on
52
- '''