--- title: Malaria Classification emoji: ๐Ÿงฌ colorFrom: green colorTo: red sdk: streamlit sdk_version: "1.45.1" app_file: app/app.py pinned: false --- # ๐Ÿงฌ Malaria Cell Classifier with Grad-CAM & Streamlit UI A deep learning-based malaria detection system using ResNet50 and Grad-CAM explainability. ## ๐Ÿš€ Features - โœ… Binary classification of blood smear images (`Infected` / `Uninfected`) - ๐Ÿ” Grad-CAM visualizations to highlight infected regions - ๐ŸŒ Interactive Streamlit web interface - ๐Ÿ“ฆ Easy-to-deploy structure ## ๐Ÿ› ๏ธ Built With - [PyTorch](https://pytorch.org/) - [Streamlit](https://streamlit.io/) - [Grad-CAM](https://arxiv.org/abs/1610.02391) - [ResNet50](https://pytorch.org/vision/stable/models.html) ## ๐Ÿ“ฆ Dataset Uses the [Malaria Cell Images Dataset](https://www.kaggle.com/iarunava/cell-images-for-detecting-malaria) ## ๐Ÿ“ Folder Structure Place raw images in: data/cell_images/ โ”œโ”€โ”€ Parasitized/ โ””โ”€โ”€ Uninfected/ ## Here's a quick preview of the app in action: ![Malaria Classifier Demo](demo.gif) ## ๐Ÿงช Usage ## ๐Ÿ› ๏ธ Requirements Install dependencies: ```bash pip install torch torchvision streamlit opencv-python matplotlib scikit-learn ```