File size: 8,152 Bytes
faf90bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
#!/usr/bin/env python
# coding: utf-8

# # Visualize data

# In[1]:


import os
import numpy as np
import matplotlib.pyplot as plt
import cv2
from pathlib import Path
from collections import defaultdict


# In[2]:


data_dir = "malaria_data/cell_images"
parasitized_dir = os.path.join(data_dir, 'Parasitized')
uninfected_dir = os.path.join(data_dir, 'Uninfected')

parasitized_files = list(Path(parasitized_dir).glob('*.png'))
uninfected_files = list(Path(uninfected_dir).glob('*.png'))

print(f"Parasitized Images: {len(parasitized_files)}")
print(f"Uninfected Images: {len(uninfected_files)}")


# In[3]:


labels = ['Parasitized', 'Uninfected']
counts = [len(parasitized_files), len(uninfected_files)]

plt.figure(figsize=(6, 4))
plt.bar(labels, counts, color=['#ff7f0e', '#1f77b4'])
plt.title("Class Distribution")
plt.ylabel("Number of Images")
plt.show()


# In[4]:


def plot_samples(image_files, title, num_samples=5):
    plt.figure(figsize=(15, 3))
    for i in range(num_samples):
        img = cv2.imread(str(image_files[i]))
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        plt.subplot(1, num_samples, i+1)
        plt.imshow(img)
        plt.axis("off")
    plt.suptitle(title)
    plt.show()

plot_samples(parasitized_files, "Parasitized Cells")
plot_samples(uninfected_files, "Uninfected Cells")


# In[5]:


def get_image_sizes(file_list):
    sizes = []
    for f in file_list:
        img = cv2.imread(str(f))
        sizes.append(img.shape[:2])  # height, width
    return sizes

parasitized_sizes = get_image_sizes(parasitized_files)
uninfected_sizes = get_image_sizes(uninfected_files)

all_sizes = parasitized_sizes + uninfected_sizes
unique_sizes = set(all_sizes)

print("Unique image sizes found:")
print(unique_sizes)


# In[6]:


total_images = len(parasitized_files) + len(uninfected_files)
avg_height = np.mean([size[0] for size in all_sizes])
avg_width = np.mean([size[1] for size in all_sizes])

print(f"\nTotal Images: {total_images}")
print(f"Average Image Size: {avg_width:.0f}x{avg_height:.0f}")
print(f"Min/Max Height: {min(s[0] for s in all_sizes)} / {max(s[0] for s in all_sizes)}")
print(f"Min/Max Width: {min(s[1] for s in all_sizes)} / {max(s[1] for s in all_sizes)}")


# In[7]:


sample_img = cv2.imread(str(parasitized_files[5]))
print("Image shape:", sample_img.shape)


# # Data preprocessing

# In[8]:


import matplotlib.pyplot as plt
import numpy as np

# Assuming you have your image data in a numpy array called 'image_data'
# For a single image:
plt.figure(figsize=(10, 6))
plt.hist(sample_img.ravel(), bins=256, range=(0, 256), color='blue', alpha=0.7)
plt.title('Pixel Value Distribution')
plt.xlabel('Pixel Intensity')
plt.ylabel('Frequency')
plt.grid(True, linestyle='--', alpha=0.5)
plt.show()


# # Data Splitting

# In[20]:


import os
import shutil
from pathlib import Path
import random
from sklearn.model_selection import train_test_split
import numpy as np
import matplotlib.pyplot as plt
import cv2
import torch
from torchvision import datasets, transforms
from torch.utils.data import DataLoader


# In[21]:


RAW_DATA_DIR = 'malaria_data/cell_images'
OUTPUT_DIR = 'malaria_ds/split_dataset'

PARASITIZED_DIR = os.path.join(RAW_DATA_DIR, 'Parasitized')
UNINFECTED_DIR = os.path.join(RAW_DATA_DIR, 'Uninfected')

# Output directories
TRAIN_DIR = os.path.join(OUTPUT_DIR, 'train')
VAL_DIR = os.path.join(OUTPUT_DIR, 'validation')
TEST_DIR = os.path.join(OUTPUT_DIR, 'test')

# Ensure output directories exist
os.makedirs(PARASITIZED_DIR, exist_ok=True)
os.makedirs(UNINFECTED_DIR, exist_ok=True)

print("Paths defined.")


# In[22]:


def split_class_files(class_dir, train_dir, val_dir, test_dir):
    all_files = list(Path(class_dir).glob('*.*'))
    train_files, test_files = train_test_split(all_files, test_size=0.1, random_state=42)
    train_files, val_files = train_test_split(train_files, test_size=0.1 / (1 - 0.1), random_state=42)

    for f in train_files:
        shutil.copy(f, train_dir)
    for f in val_files:
        shutil.copy(f, val_dir)
    for f in test_files:
        shutil.copy(f, test_dir)

    return len(all_files)

def create_split_folders():
    class_names = ['Parasitized', 'Uninfected']
    for folder in ['train', 'validation', 'test']:
        for cls in class_names:
            os.makedirs(os.path.join(OUTPUT_DIR, folder, cls), exist_ok=True)

    print("Splitting Parasitized Images:")
    total_parasitized = split_class_files(
        os.path.join(RAW_DATA_DIR, 'Parasitized'),
        os.path.join(OUTPUT_DIR, 'train', 'Parasitized'),
        os.path.join(OUTPUT_DIR, 'validation', 'Parasitized'),
        os.path.join(OUTPUT_DIR, 'test', 'Parasitized')
    )

    print("\nSplitting Uninfected Images:")
    total_uninfected = split_class_files(
        os.path.join(RAW_DATA_DIR, 'Uninfected'),
        os.path.join(OUTPUT_DIR, 'train', 'Uninfected'),
        os.path.join(OUTPUT_DIR, 'validation', 'Uninfected'),
        os.path.join(OUTPUT_DIR, 'test', 'Uninfected')
    )

    print(f"\nTotal Parasitized: {total_parasitized}, Uninfected: {total_uninfected}")
    print("Dataset split completed.")


# ## Data Aug and transforms

# In[23]:


IMG_SIZE = (128, 128)
BATCH_SIZE = 32

# Custom class_to_idx mapping to fix label order
class_to_idx = {'Uninfected': 0, 'Parasitized': 1}
idx_to_class = {v: k for k, v in class_to_idx.items()}

# Define transforms
train_transforms = transforms.Compose([
    transforms.Resize(IMG_SIZE),
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
    transforms.RandomRotation(20),
    transforms.RandomHorizontalFlip(),
])

val_test_transforms = transforms.Compose([
    transforms.Resize(IMG_SIZE),
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])

# Custom Dataset Class to enforce class_to_idx
class CustomImageFolder(datasets.ImageFolder):
    def __init__(self, root, transform, class_to_idx_override=None):
        super().__init__(root=root, transform=transform)
        if class_to_idx_override:
            self.class_to_idx = class_to_idx_override
            self.samples = [
                (path, class_to_idx[cls]) 
                for path, cls_idx in self.samples 
                for cls in [self.classes[cls_idx]] 
                if cls in class_to_idx_override
            ]
            self.classes = list(class_to_idx_override.keys())



# In[24]:


def get_dataloaders():
    # Create datasets
    train_dataset = CustomImageFolder(root=os.path.join(OUTPUT_DIR, 'train'), transform=train_transforms, class_to_idx_override=class_to_idx)
    val_dataset = CustomImageFolder(root=os.path.join(OUTPUT_DIR, 'validation'), transform=val_test_transforms, class_to_idx_override=class_to_idx)
    test_dataset = CustomImageFolder(root=os.path.join(OUTPUT_DIR, 'test'), transform=val_test_transforms, class_to_idx_override=class_to_idx)

    # Create data loaders
    train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
    val_loader = DataLoader(val_dataset, batch_size=BATCH_SIZE, shuffle=False)
    test_loader = DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=False)

    print(f"Train: {len(train_dataset)}, Val: {len(val_dataset)}, Test: {len(test_dataset)}")
    print("Class Mapping:", train_dataset.class_to_idx)

    return train_loader, val_loader, test_loader, train_dataset, val_dataset, test_dataset


# In[26]:


def show_batch_sample(loader, dataset):
    images, labels = next(iter(loader))
    plt.figure(figsize=(12, 6))
    for i in range(min(6, BATCH_SIZE)):
        img = images[i].numpy().transpose((1, 2, 0))
        img = np.clip(img * np.array([0.229, 0.224, 0.225]) + np.array([0.485, 0.456, 0.406]), 0, 1)
        plt.subplot(2, 3, i+1)
        plt.imshow(img)
        plt.title(idx_to_class[labels[i].item()])
        plt.axis("off")
    plt.suptitle("Sample Batch from DataLoader")
    plt.show()


# In[32]:


create_split_folders()
train_loader, val_loader, test_loader, train_dataset, val_dataset, test_dataset = get_dataloaders()
show_batch_sample(train_loader, train_dataset)


# In[34]:


print(train_dataset)