File size: 13,858 Bytes
18faf97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
# ----------------------------------------------------------------------
# IMPORTS
# ----------------------------------------------------------------------
import torch
import logging
import time
import spaces
import sys
import traceback
from PIL import Image
from typing import List, Optional, Any
from collections import defaultdict
from src.utils import LOG_LEVEL_MAP, EMOJI_MAP

# ----------------------------------------------------------------------
# RT-DETR CONSTANTS
# ----------------------------------------------------------------------
RTDETR_CONF = 0.4
RTDETR_ARTIFACT_CONF = 0.35

# ----------------------------------------------------------------------
# MODEL LABEL CONFIGURATION
# ----------------------------------------------------------------------
MODEL_LABEL_CONFIG = {
    "rtdetr_model": {
        "person_list": {
            "person": ["person"]
        },
        "product_type_list": {},
        "head_list": {},
        "shoes_list": {},
        "clothing_features_list": {
            "collar": ["tie"]
        },
        "artifacts_list": {
            "bag": ["backpack", "handbag", "suitcase"],
            "cup": ["bottle", "wine glass", "cup"],
            "umbrella": ["umbrella"],
            "book": ["book"],
            "phone": ["cell phone"],
            "camera": [],
            "other": ["fork", "knife", "spoon", "bowl", "frisbee", "sports ball", "kite",
                     "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket",
                     "chair", "couch", "potted plant", "bed", "dining table", "toilet", "tv",
                     "laptop", "mouse", "remote", "keyboard", "microwave", "oven", "toaster",
                     "sink", "refrigerator", "clock", "vase", "scissors", "teddy bear",
                     "hair drier", "toothbrush"]
        }
    }
}

# ----------------------------------------------------------------------
# RT-DETR HELPER FUNCTIONS
# ----------------------------------------------------------------------
def get_rtdetr_clothing_labels():
    clothing_labels = set()
    rtdetr_config = MODEL_LABEL_CONFIG.get("rtdetr_model", {})
    
    for keyword, labels in rtdetr_config.get("person_list", {}).items():
        clothing_labels.update(labels)
    
    for keyword, labels in rtdetr_config.get("product_type_list", {}).items():
        clothing_labels.update(labels)
    
    clothing_labels.update(["coat", "dress", "jacket", "shirt", "skirt", "pants", "shorts"])
    
    return clothing_labels

def get_rtdetr_person_and_product_labels():
    labels = set()
    rtdetr_config = MODEL_LABEL_CONFIG.get("rtdetr_model", {})
    
    for keyword, label_list in rtdetr_config.get("person_list", {}).items():
        labels.update(label_list)
    
    for keyword, label_list in rtdetr_config.get("product_type_list", {}).items():
        labels.update(label_list)
    
    labels.update(["person", "coat", "dress", "jacket", "shirt", "skirt", "pants", "shorts"])
    
    return labels

def get_rtdetr_artifact_labels():
    artifact_labels = set()
    rtdetr_config = MODEL_LABEL_CONFIG.get("rtdetr_model", {})
    
    for keyword, labels in rtdetr_config.get("artifacts_list", {}).items():
        if keyword != "other":
            artifact_labels.update(labels)
    
    return artifact_labels

def get_label_name_from_model(model, label_id):
    if hasattr(model, 'config') and hasattr(model.config, 'id2label'):
        return model.config.id2label.get(label_id, f"unknown_{label_id}").lower()
    if hasattr(model, 'model_labels') and isinstance(model.model_labels, dict):
        return model.model_labels.get(label_id, f"unknown_{label_id}").lower()
    return f"unknown_{label_id}"

def map_label_to_keyword(label_name: str, valid_kws: List[str], model_name: str) -> Optional[str]:
    ln = label_name.strip().lower()
    
    model_config = MODEL_LABEL_CONFIG.get(model_name, {})
    
    for list_type in ["person_list", "product_type_list", "head_list", 
                      "shoes_list", "clothing_features_list", "artifacts_list"]:
        category_config = model_config.get(list_type, {})
        
        for keyword, labels in category_config.items():
            if keyword in valid_kws:
                for label in labels:
                    if ln == label.lower() or ln in label.lower():
                        return keyword
    
    return None

def process_rtdetr_results(results, model, label_set, threshold, fallback_box=None):
    try:
        if isinstance(results, list):
            if len(results) > 0:
                result = results[0]
            else:
                return None, 0.0, None
        else:
            result = results
        
        found_box = None
        found_score = 0.0
        found_label = None
        
        for score, label, box in zip(result["scores"], result["labels"], result["boxes"]):
            score_val = score.item()
            if score_val < threshold:
                continue
                
            label_id = label.item()
            label_name = get_label_name_from_model(model, label_id)
            
            if label_name in label_set:
                x1, y1, x2, y2 = [int(val) for val in box.tolist()]
                found_box = [x1, y1, x2, y2]
                found_score = score_val
                found_label = label_name
                break
        
        return found_box, found_score, found_label
    except Exception as e:
        logging.log(LOG_LEVEL_MAP["WARNING"], f"{EMOJI_MAP['WARNING']} Error processing RTDETR results: {e}")
        return fallback_box, 0.0, None

# ----------------------------------------------------------------------
# RT-DETR DETECTION FUNCTIONS
# ----------------------------------------------------------------------
def detect_rtdetr_in_roi(roi_rgb, RTDETR_PROCESSOR, RTDETR_MODEL, DEVICE, log_item):
    boxes = []
    labels = []
    scores = []
    raw_labels = []
    
    try:
        rtdetr_inputs = RTDETR_PROCESSOR(images=roi_rgb, return_tensors="pt")
        rtdetr_inputs = {k: v.to(DEVICE) for k, v in rtdetr_inputs.items()}
        
        with torch.no_grad():
            rtdetr_outputs = RTDETR_MODEL(**rtdetr_inputs)
        
        rtdetr_results = RTDETR_PROCESSOR.post_process_object_detection(
            rtdetr_outputs,
            target_sizes=torch.tensor([[roi_rgb.height, roi_rgb.width]]).to(DEVICE),
            threshold=RTDETR_CONF
        )
        
        if isinstance(rtdetr_results, list) and len(rtdetr_results) > 0:
            result = rtdetr_results[0]
        else:
            result = rtdetr_results
            
        for score, label, box in zip(result["scores"], result["labels"], result["boxes"]):
            label_id = label.item()
            score_val = score.item()
            x1, y1, x2, y2 = [int(val) for val in box.tolist()]
            label_name = get_label_name_from_model(RTDETR_MODEL, label_id)
            
            boxes.append([x1, y1, x2, y2])
            labels.append(label_id)
            scores.append(score_val)
            raw_labels.append(label_name)
            
            logging.log(LOG_LEVEL_MAP["INFO"], f"rtdetr_model: {EMOJI_MAP['INFO']} RT-DETR detected: {label_name} at score {score_val:.3f}")
            
    except Exception as e:
        error_msg = f"RTDETR detection error: {str(e)}"
        error_trace = traceback.format_exc()
        
        logging.log(LOG_LEVEL_MAP["WARNING"], f"{EMOJI_MAP['WARNING']} {error_msg}")
        logging.error(f"Traceback:\n{error_trace}")
        
        log_item["warnings"] = log_item.get("warnings", []) + [error_msg]
        log_item["traceback"] = error_trace
        
        if "CUDA must not be initialized" in str(e):
            logging.critical("CUDA initialization error in Spaces Zero GPU environment")
            sys.exit(1)
    
    return boxes, labels, scores, raw_labels

def detect_rtdetr_artifacts_in_roi(roi_rgb, keywords, RTDETR_PROCESSOR, RTDETR_MODEL, DEVICE, log_item):
    boxes = []
    labels = []
    scores = []
    raw_labels = []
    
    try:
        rtdetr_inputs = RTDETR_PROCESSOR(images=roi_rgb, return_tensors="pt")
        rtdetr_inputs = {k: v.to(DEVICE) for k, v in rtdetr_inputs.items()}
        
        with torch.no_grad():
            rtdetr_outputs = RTDETR_MODEL(**rtdetr_inputs)
        
        rtdetr_results = RTDETR_PROCESSOR.post_process_object_detection(
            rtdetr_outputs,
            target_sizes=torch.tensor([[roi_rgb.height, roi_rgb.width]]).to(DEVICE),
            threshold=RTDETR_ARTIFACT_CONF
        )
        
        rtdetr_artifact_labels = get_rtdetr_artifact_labels()
        
        if isinstance(rtdetr_results, list) and len(rtdetr_results) > 0:
            result = rtdetr_results[0]
        else:
            result = rtdetr_results
            
        for score, label, box in zip(result["scores"], result["labels"], result["boxes"]):
            label_id = label.item()
            score_val = score.item()
            
            if score_val < RTDETR_ARTIFACT_CONF:
                continue
                
            label_name = get_label_name_from_model(RTDETR_MODEL, label_id)
            
            if label_name in rtdetr_artifact_labels:
                x1, y1, x2, y2 = [int(val) for val in box.tolist()]
                
                artifact_keyword = map_label_to_keyword(label_name, keywords, "rtdetr_model")
                if not artifact_keyword:
                    continue
                    
                boxes.append([x1, y1, x2, y2])
                labels.append(label_id)
                scores.append(score_val)
                raw_labels.append(label_name)
                
                logging.log(LOG_LEVEL_MAP["INFO"], f"rtdetr_model: {EMOJI_MAP['INFO']} Artifact detected: {label_name} at score {score_val:.3f}")
                
    except Exception as e:
        error_msg = f"RTDETR artifact detection error: {str(e)}"
        error_trace = traceback.format_exc()
        
        logging.log(LOG_LEVEL_MAP["WARNING"], f"{EMOJI_MAP['WARNING']} {error_msg}")
        logging.error(f"Traceback:\n{error_trace}")
        
        log_item["warnings"] = log_item.get("warnings", []) + [error_msg]
        log_item["traceback"] = error_trace
        
        if "CUDA must not be initialized" in str(e):
            logging.critical("CUDA initialization error in Spaces Zero GPU environment")
            sys.exit(1)
    
    return boxes, labels, scores, raw_labels

def update_fallback_detection(ctx, pi_rgba, fallback_box, RTDETR_PROCESSOR, RTDETR_MODEL, DEVICE, RTDETR_CONF, final_boxes, final_labels, final_scores, final_kws, final_raws, final_mods, dd_log):
    try:
        if not (fallback_box and isinstance(fallback_box, list) and len(fallback_box) == 4):
            return final_boxes, final_labels, final_scores, final_kws, final_raws, final_mods, dd_log
            
        sub_ = pi_rgba.crop((
            fallback_box[0],
            fallback_box[1],
            fallback_box[2],
            fallback_box[3]
        ))
        sub_ = sub_.convert("RGB")
        subW = sub_.width
        subH = sub_.height
        
        rtdetr_inputs = RTDETR_PROCESSOR(images=sub_, return_tensors="pt").to(DEVICE)
        
        with torch.no_grad():
            rtdetr_outputs = RTDETR_MODEL(**rtdetr_inputs)
        
        rtdetr_results = RTDETR_PROCESSOR.post_process_object_detection(
            rtdetr_outputs,
            target_sizes=torch.tensor([[subH, subW]]).to(DEVICE),
            threshold=RTDETR_CONF
        )
        
        rtdetr_clothing_labels = get_rtdetr_clothing_labels()
        found_fb_box, found_fb_score, _ = process_rtdetr_results(
            rtdetr_results, RTDETR_MODEL, rtdetr_clothing_labels, RTDETR_CONF
        )
        
        if found_fb_box:
            fx1 = fallback_box[0] + found_fb_box[0]
            fy1 = fallback_box[1] + found_fb_box[1]
            fx2 = fallback_box[0] + found_fb_box[2]
            fy2 = fallback_box[1] + found_fb_box[3]
            
            found_fb_box = [fx1, fy1, fx2, fy2]
            final_boxes.append(found_fb_box)
            final_labels.append(90001)
            final_scores.append(round(found_fb_score, 2))
            final_kws.append(ctx.product_type)
            final_raws.append("fallback_label")
            final_mods.append("rtdetr_model")
            dd_log[ctx.product_type].append({
                "box": found_fb_box,
                "score": found_fb_score,
                "raw_label": "fallback_label",
                "model": "rtdetr_model"
            })
        else:
            final_boxes.append(fallback_box)
            final_labels.append(90000)
            final_scores.append(0.0)
            final_kws.append(ctx.product_type)
            final_raws.append("fallback_label")
            final_mods.append("fallback")
            dd_log[ctx.product_type].append({
                "box": fallback_box,
                "score": 0.0,
                "raw_label": "fallback_label",
                "model": "fallback"
            })
        
        return final_boxes, final_labels, final_scores, final_kws, final_raws, final_mods, dd_log
    except Exception as e:
        logging.log(LOG_LEVEL_MAP["WARNING"], f"{EMOJI_MAP['WARNING']} Fallback detection error: {e}")
        final_boxes.append(fallback_box)
        final_labels.append(90000)
        final_scores.append(0.0)
        final_kws.append(ctx.product_type)
        final_raws.append("fallback_label")
        final_mods.append("fallback_error")
        dd_log[ctx.product_type].append({
            "box": fallback_box,
            "score": 0.0,
            "raw_label": "fallback_label",
            "model": "fallback_error"
        })
        return final_boxes, final_labels, final_scores, final_kws, final_raws, final_mods, dd_log