Spaces:
Sleeping
Sleeping
File size: 5,936 Bytes
c76bbac 348d961 ae5207e 348d961 ae5207e 348d961 ae5207e 348d961 ae5207e 348d961 c76bbac 6d6ad89 c76bbac 348d961 ae5207e c76bbac 6d6ad89 c76bbac 6d6ad89 c76bbac 7cd6dbd c76bbac 5effcd8 c76bbac 7cd6dbd c76bbac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
import time
import os
import joblib
import streamlit as st
import google.generativeai as genai
from dotenv import load_dotenv
# Función para cargar CSS personalizado
def load_css(file_path):
with open(file_path) as f:
st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True)
# Intentar cargar el CSS personalizado con ruta absoluta para mayor seguridad
try:
css_path = os.path.join(os.path.dirname(__file__), 'static', 'css', 'style.css')
load_css(css_path)
except Exception as e:
print(f"Error al cargar CSS: {e}")
# Si el archivo no existe, crear un estilo básico en línea
st.markdown("""
<style>
.robocopy-title {
color: #4ECDC4 !important;
font-weight: bold;
font-size: 2em;
}
</style>
""", unsafe_allow_html=True)
load_dotenv()
GOOGLE_API_KEY=os.environ.get('GOOGLE_API_KEY')
genai.configure(api_key=GOOGLE_API_KEY)
new_chat_id = f'{time.time()}'
MODEL_ROLE = 'ai'
AI_AVATAR_ICON = '🤖' # Cambia el emoji por uno de robot para coincidir con tu logo
USER_AVATAR_ICON = '👤' # Añade un avatar para el usuario
# Create a data/ folder if it doesn't already exist
try:
os.mkdir('data/')
except:
# data/ folder already exists
pass
# Load past chats (if available)
try:
past_chats: dict = joblib.load('data/past_chats_list')
except:
past_chats = {}
# Sidebar allows a list of past chats
with st.sidebar:
# Usar HTML para aplicar la clase al título RoboCopy
st.image("assets/robocopy_logo.png", width=200)
st.markdown('<h1 class="robocopy-title">RoboCopy</h1>', unsafe_allow_html=True)
# No uses st.write para el título, ya que podría sobrescribir los estilos
st.write('# Past Chats')
if st.session_state.get('chat_id') is None:
st.session_state.chat_id = st.selectbox(
label='Pick a past chat',
options=[new_chat_id] + list(past_chats.keys()),
format_func=lambda x: past_chats.get(x, 'New Chat'),
placeholder='_',
)
else:
# This will happen the first time AI response comes in
st.session_state.chat_id = st.selectbox(
label='Pick a past chat',
options=[new_chat_id, st.session_state.chat_id] + list(past_chats.keys()),
index=1,
format_func=lambda x: past_chats.get(x, 'New Chat' if x != st.session_state.chat_id else st.session_state.chat_title),
placeholder='_',
)
# Save new chats after a message has been sent to AI
# TODO: Give user a chance to name chat
st.session_state.chat_title = f'ChatSession-{st.session_state.chat_id}'
st.write('# Chat with Gemini')
# Chat history (allows to ask multiple questions)
try:
st.session_state.messages = joblib.load(
f'data/{st.session_state.chat_id}-st_messages'
)
st.session_state.gemini_history = joblib.load(
f'data/{st.session_state.chat_id}-gemini_messages'
)
print('old cache')
except:
st.session_state.messages = []
st.session_state.gemini_history = []
print('new_cache made')
st.session_state.model = genai.GenerativeModel('gemini-2.0-flash')
st.session_state.chat = st.session_state.model.start_chat(
history=st.session_state.gemini_history,
)
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(
name=message['role'],
avatar=message.get('avatar'),
):
st.markdown(message['content'])
# React to user input
if prompt := st.chat_input('¿En qué puedo ayudarte hoy?'): # Mensaje más amigable
# Save this as a chat for later
if st.session_state.chat_id not in past_chats.keys():
past_chats[st.session_state.chat_id] = st.session_state.chat_title
joblib.dump(past_chats, 'data/past_chats_list')
# Display user message in chat message container
with st.chat_message('user', avatar=USER_AVATAR_ICON): # Añade el avatar del usuario
st.markdown(prompt)
# Add user message to chat history
st.session_state.messages.append(
dict(
role='user',
content=prompt,
)
)
## Send message to AI
response = st.session_state.chat.send_message(
prompt,
stream=True,
)
# Display assistant response in chat message container
with st.chat_message(
name=MODEL_ROLE,
avatar=AI_AVATAR_ICON,
):
message_placeholder = st.empty()
full_response = ''
assistant_response = response
# Añade un indicador de "escribiendo..."
typing_indicator = st.empty()
typing_indicator.markdown("*RoboCopy está escribiendo...*")
# Streams in a chunk at a time
for chunk in response:
# Simulate stream of chunk
# TODO: Chunk missing `text` if API stops mid-stream ("safety"?)
for ch in chunk.text.split(' '):
full_response += ch + ' '
time.sleep(0.1) # Aumentado de 0.05 a 0.1 segundos para una velocidad más lenta
# Rewrites with a cursor at end
message_placeholder.write(full_response + '▌')
# Elimina el indicador de escritura
typing_indicator.empty()
# Write full message with placeholder
message_placeholder.write(full_response)
# Add assistant response to chat history
st.session_state.messages.append(
dict(
role=MODEL_ROLE,
content=st.session_state.chat.history[-1].parts[0].text,
avatar=AI_AVATAR_ICON,
)
)
st.session_state.gemini_history = st.session_state.chat.history
# Save to file
joblib.dump(
st.session_state.messages,
f'data/{st.session_state.chat_id}-st_messages',
)
joblib.dump(
st.session_state.gemini_history,
f'data/{st.session_state.chat_id}-gemini_messages',
) |