import gradio as gr from openai import OpenAI from app.deepseek.instructions import create_apply_editing_messages_deepseek def run_deepseek_llm_inference(llm_model, messages): response = llm_model.chat.completions.create( model="deepseek-chat", messages=messages ) response_str = response.choices[0].message.content return response_str from openai import AuthenticationError, APIConnectionError, RateLimitError, BadRequestError, APIError def llm_response_prompt_after_apply_instruction(image_caption, editing_prompt): try: messages = create_apply_editing_messages_deepseek(image_caption, editing_prompt) response_str = run_deepseek_llm_inference(llm_model, messages) return response_str except AuthenticationError as e: raise gr.Error(f"认证失败: 请检查API密钥是否正确 (错误详情: {e.message})") except APIConnectionError as e: raise gr.Error(f"连接异常: 请检查网络连接后重试 (错误详情: {e.message})") except RateLimitError as e: raise gr.Error(f"请求超限: 请稍后重试 (错误详情: {e.message})") except BadRequestError as e: if "model" in e.message.lower(): raise gr.Error(f"模型错误: 请检查模型名称是否正确 (错误详情: {e.message})") raise gr.Error(f"无效请求: 请检查输入参数 (错误详情: {e.message})") except APIError as e: raise gr.Error(f"API异常: 服务端返回错误 (错误详情: {e.message})") except Exception as e: raise gr.Error(f"未预期错误: {str(e)},请检查控制台日志获取详细信息")