BlogReviewer / app.py
JaishnaCodz's picture
Update app.py
6af176b verified
raw
history blame
1.74 kB
import gradio as gr
from newspaper import Article
from transformers import pipeline
# Load small LLM
reviewer = pipeline("text2text-generation", model="google/flan-t5-base")
# Step 1: Extract blog content
def extract_text_from_url(url):
try:
article = Article(url)
article.download()
article.parse()
return article.text
except Exception as e:
return f"Error: {e}"
# Step 2: Review content
def review_blog(text):
prompt = f"""Please review the following blog content. Fix grammar, crude/offensive language, or policy-violating parts. Suggest replacements:
{text}"""
result = reviewer(prompt, max_new_tokens=300)[0]['generated_text']
return result
# Step 3: Finalize after approval
def finalize_text(original_text, reviewed_suggestions):
# For simplicity, we'll just return reviewed version for now
# Later you can implement side-by-side diff + selective replacement
return reviewed_suggestions
# Gradio UI
with gr.Blocks() as app:
gr.Markdown("## 🧠 BlogChecker AI")
url = gr.Textbox(label="Enter Blog URL")
blog_content = gr.Textbox(label="Extracted Blog Text", lines=10)
reviewed = gr.Textbox(label="Suggested Revisions", lines=10)
final_output = gr.Textbox(label="Final Clean Blog", lines=10)
extract_btn = gr.Button("1️⃣ Extract Blog Text")
review_btn = gr.Button("2️⃣ Review Content")
approve_btn = gr.Button("3️⃣ Approve and Finalize")
extract_btn.click(fn=extract_text_from_url, inputs=url, outputs=blog_content)
review_btn.click(fn=review_blog, inputs=blog_content, outputs=reviewed)
approve_btn.click(fn=finalize_text, inputs=[blog_content, reviewed], outputs=final_output)
app.launch()