File size: 6,012 Bytes
6af176b
c873d13
b2d2b3c
 
5c898fe
b2d2b3c
 
 
 
 
6af176b
b2d2b3c
6af176b
b2d2b3c
 
 
 
5ef657b
b2d2b3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c873d13
b2d2b3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c873d13
 
 
b2d2b3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import gradio as gr
import requests
from PIL import Image
import pytesseract
import difflib
from io import BytesIO
from transformers import pipeline
import trafilatura
from nltk.tokenize import sent_tokenize
import nltk

nltk.download("punkt")

# === Load AI model ===
reviewer = pipeline("text-generation", model="HuggingFaceH4/zephyr-7b-beta", max_new_tokens=200)
device = "cpu"
print(f"Device set to use {device}")

# === Utility: Highlight diffs ===
def highlight_diff(original, suggestion):
    diff = difflib.ndiff(original.split(), suggestion.split())
    result = ""
    for word in diff:
        if word.startswith("- "):
            result += f"<span style='color:red;text-decoration:line-through'>{word[2:]}</span> "
        elif word.startswith("+ "):
            result += f"<span style='color:green;font-weight:bold'>{word[2:]}</span> "
        elif word.startswith("  "):
            result += word[2:] + " "
    return result.strip()

# === Extract blog content from URL ===
def extract_text_from_url(url):
    try:
        headers = {"User-Agent": "Mozilla/5.0"}
        response = requests.get(url, headers=headers, timeout=10)
        if response.status_code == 200:
            return trafilatura.extract(response.text)
        else:
            return f"❌ Blog Error: HTTP {response.status_code} on URL {url}"
    except Exception as e:
        return f"❌ Blog Error: {e}"

# === Extract text from image URL (OCR) ===
def extract_text_from_image(image_url):
    try:
        img_data = requests.get(image_url).content
        image = Image.open(BytesIO(img_data)).convert("L")
        text = pytesseract.image_to_string(image)
        return text if text.strip() else "❌ OCR Error: No readable text found."
    except Exception as e:
        return f"❌ OCR Error: {e}"

# === Suggestion generator ===
def generate_suggestions(text):
    sentences = sent_tokenize(text)
    suggestions = []
    for sent in sentences:
        prompt = f"Improve the tone, grammar, clarity and flag any sensitive content:\n\n{sent}"
        output = reviewer(prompt, max_new_tokens=200)[0]["generated_text"]
        cleaned = output.replace(prompt, "").strip()
        suggestions.append(cleaned if cleaned else sent)
    return sentences, suggestions

# === Final approval handler ===
def collect_decisions(originals, suggestions, *choices):
    results = []
    for orig, sugg, choice in zip(originals, suggestions, choices):
        results.append(sugg if choice == "Accept" else orig)
    return "\n".join(results)

# === Gradio UI ===
with gr.Blocks() as demo:
    gr.Markdown("# ✨ Blog Reviewer AI")
    gr.Markdown("Detect tone issues, errors, and sensitive content β€” and clean them interactively!")

    with gr.Tab("πŸ”— From Blog URL"):
        blog_url = gr.Textbox(label="Enter blog URL")
        fetch_btn = gr.Button("Fetch & Review")

    with gr.Tab("πŸ–ΌοΈ From Image URL (OCR)"):
        image_url = gr.Textbox(label="Enter Image URL")
        image_btn = gr.Button("Extract & Review")

    with gr.Tab("πŸ“ Paste Text"):
        pasted_text = gr.Textbox(label="Paste blog content here", lines=10)
        paste_btn = gr.Button("Review Text")

    output_section = gr.Column(visible=False)
    originals = gr.State([])
    suggestions = gr.State([])
    decision_radios = []

    view_mode = gr.Radio(["Original", "Suggestion", "Side-by-Side"], value="Side-by-Side", label="Choose View")
    final_output = gr.Textbox(label="βœ… Final Output", lines=12)
    finalize_btn = gr.Button("Generate Clean Version")

    sentence_blocks = []

    # === Show suggestions UI ===
    def show_review(text):
        origs, suggs = generate_suggestions(text)
        originals.value = origs
        suggestions.value = suggs
        return origs, suggs, True

    # === Populate sentence review rows dynamically ===
    def populate_review_ui(origs, suggs):
        global decision_radios, sentence_blocks
        decision_radios = []
        sentence_blocks = []

        ui_blocks = []
        for i, (orig, sugg) in enumerate(zip(origs, suggs)):
            orig_md = gr.Markdown(f"<b>{orig}</b>", visible=False)
            sugg_md = gr.Markdown(f"<b>{sugg}</b>", visible=False)
            diff_md = gr.Markdown(highlight_diff(orig, sugg), visible=True)

            radio = gr.Radio(["Accept", "Reject"], value="Accept", label=f"Suggestion {i+1}")
            decision_radios.append(radio)
            sentence_blocks.append((orig_md, sugg_md, diff_md))

            ui_blocks.extend([orig_md, sugg_md, diff_md, radio])
        return ui_blocks

    # === Toggle view mode ===
    def toggle_view(view):
        updates = []
        for orig_md, sugg_md, diff_md in sentence_blocks:
            if view == "Original":
                updates.extend([gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)])
            elif view == "Suggestion":
                updates.extend([gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)])
            else:  # Side-by-side
                updates.extend([gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)])
        return updates

    # === Final output handler ===
    def finalize_output(origs, suggs, *choices):
        return collect_decisions(origs, suggs, *choices)

    # Button click handlers
    fetch_btn.click(fn=extract_text_from_url, inputs=blog_url, outputs=pasted_text)
    image_btn.click(fn=extract_text_from_image, inputs=image_url, outputs=pasted_text)

    paste_btn.click(fn=show_review, inputs=pasted_text, outputs=[originals, suggestions, output_section])

    # Dynamic render trigger
    originals.change(fn=populate_review_ui, inputs=[originals, suggestions], outputs=[])

    view_mode.change(fn=toggle_view, inputs=view_mode,
                     outputs=[item for block in sentence_blocks for item in block])

    finalize_btn.click(fn=finalize_output, inputs=[originals, suggestions] + decision_radios, outputs=final_output)

demo.launch()