Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -3,72 +3,79 @@ from transformers import pipeline
|
|
3 |
from newspaper import Article
|
4 |
import nltk
|
5 |
from nltk.tokenize import sent_tokenize
|
|
|
6 |
|
7 |
-
nltk.download(
|
8 |
|
9 |
-
# Load models
|
10 |
grammar_corrector = pipeline("text2text-generation", model="vennify/t5-base-grammar-correction")
|
11 |
toxicity_classifier = pipeline("text-classification", model="unitary/toxic-bert")
|
12 |
|
13 |
-
#
|
|
|
14 |
def extract_text(input_type, text_input, url_input):
|
15 |
-
if input_type == "
|
16 |
-
return text_input
|
17 |
-
try:
|
18 |
article = Article(url_input)
|
19 |
article.download()
|
20 |
article.parse()
|
21 |
return article.text
|
22 |
-
|
23 |
-
return f"Error fetching URL: {str(e)}"
|
24 |
-
|
25 |
-
# Highlight grammar and toxic issues
|
26 |
-
def review_blog(input_type, text_input, url_input):
|
27 |
-
text = extract_text(input_type, text_input, url_input)
|
28 |
-
if text.startswith("Error"):
|
29 |
-
return text, "", []
|
30 |
|
31 |
-
|
32 |
-
|
|
|
33 |
|
34 |
-
|
35 |
sentences = sent_tokenize(text)
|
36 |
-
|
37 |
-
for
|
38 |
-
result = toxicity_classifier(
|
39 |
-
if result[
|
40 |
-
|
|
|
41 |
|
42 |
-
|
43 |
-
highlighted =
|
44 |
-
for
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
# Gradio UI
|
50 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
51 |
-
gr.Markdown("
|
52 |
-
gr.Markdown("
|
|
|
|
|
53 |
|
54 |
-
input_type = gr.Radio(["Text", "URL"],
|
55 |
-
text_input = gr.Textbox(label="
|
56 |
-
url_input = gr.Textbox(label="
|
57 |
|
58 |
-
def toggle_input(
|
59 |
-
return {
|
|
|
|
|
|
|
60 |
|
61 |
-
input_type.change(toggle_input, input_type, [text_input, url_input])
|
62 |
|
63 |
-
review_btn = gr.Button("Review")
|
64 |
-
|
65 |
-
|
66 |
-
toxic_list = gr.Textbox(label="Toxic Sentences Detected", lines=5)
|
67 |
|
68 |
-
review_btn.click(
|
69 |
-
review_blog,
|
70 |
-
inputs=[input_type, text_input, url_input],
|
71 |
-
outputs=[highlight_output, corrected_text, toxic_list]
|
72 |
-
)
|
73 |
|
74 |
demo.launch()
|
|
|
3 |
from newspaper import Article
|
4 |
import nltk
|
5 |
from nltk.tokenize import sent_tokenize
|
6 |
+
import re
|
7 |
|
8 |
+
nltk.download('punkt')
|
9 |
|
10 |
+
# Load grammar correction and toxicity detection models
|
11 |
grammar_corrector = pipeline("text2text-generation", model="vennify/t5-base-grammar-correction")
|
12 |
toxicity_classifier = pipeline("text-classification", model="unitary/toxic-bert")
|
13 |
|
14 |
+
# Functions
|
15 |
+
|
16 |
def extract_text(input_type, text_input, url_input):
|
17 |
+
if input_type == "URL" and url_input:
|
|
|
|
|
18 |
article = Article(url_input)
|
19 |
article.download()
|
20 |
article.parse()
|
21 |
return article.text
|
22 |
+
return text_input
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
def check_grammar(text):
|
25 |
+
result = grammar_corrector(text, max_length=512, do_sample=False)
|
26 |
+
return result[0]['generated_text']
|
27 |
|
28 |
+
def detect_sensitive_content(text):
|
29 |
sentences = sent_tokenize(text)
|
30 |
+
sensitive = []
|
31 |
+
for i, sentence in enumerate(sentences):
|
32 |
+
result = toxicity_classifier(sentence)
|
33 |
+
if result[0]['label'] == 'toxic' and result[0]['score'] > 0.7:
|
34 |
+
sensitive.append({"sentence": sentence, "score": result[0]['score'], "index": i})
|
35 |
+
return sensitive
|
36 |
|
37 |
+
def highlight_text(original, corrected, sensitive_issues):
|
38 |
+
highlighted = corrected
|
39 |
+
for issue in sensitive_issues:
|
40 |
+
sent = issue['sentence']
|
41 |
+
highlighted = highlighted.replace(sent, f"<span style='background-color: red'>{sent}</span>")
|
42 |
+
diff_words = [(o, c) for o, c in zip(original.split(), corrected.split()) if o != c]
|
43 |
+
for o, c in diff_words:
|
44 |
+
highlighted = highlighted.replace(c, f"<span style='background-color: yellow'>{c}</span>")
|
45 |
+
return highlighted
|
46 |
|
47 |
+
def review_blog(input_type, text_input, url_input):
|
48 |
+
if not text_input and not url_input:
|
49 |
+
return "Please provide input text or a URL.", ""
|
50 |
+
raw_text = extract_text(input_type, text_input, url_input)
|
51 |
+
corrected = check_grammar(raw_text)
|
52 |
+
sensitive = detect_sensitive_content(corrected)
|
53 |
+
highlighted = highlight_text(raw_text, corrected, sensitive)
|
54 |
+
return highlighted, corrected
|
55 |
|
56 |
# Gradio UI
|
57 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
58 |
+
gr.Markdown("# 🖊️ AI Blog Reviewer")
|
59 |
+
gr.Markdown("""Highlights:
|
60 |
+
- <span style='background-color: yellow'>**Yellow:** Grammar corrections</span><br>
|
61 |
+
- <span style='background-color: red'>**Red:** Sensitive or toxic content</span>""", elem_id="legend")
|
62 |
|
63 |
+
input_type = gr.Radio(["Text", "URL"], label="Input Type", value="Text")
|
64 |
+
text_input = gr.Textbox(label="Blog Text", lines=10, visible=True)
|
65 |
+
url_input = gr.Textbox(label="Blog URL", visible=False)
|
66 |
|
67 |
+
def toggle_input(choice):
|
68 |
+
return {
|
69 |
+
text_input: gr.update(visible=choice == "Text"),
|
70 |
+
url_input: gr.update(visible=choice == "URL")
|
71 |
+
}
|
72 |
|
73 |
+
input_type.change(fn=toggle_input, inputs=input_type, outputs=[text_input, url_input])
|
74 |
|
75 |
+
review_btn = gr.Button("Review Blog")
|
76 |
+
html_output = gr.HTML(label="Highlighted Output")
|
77 |
+
final_output = gr.Textbox(label="Corrected Blog", lines=10)
|
|
|
78 |
|
79 |
+
review_btn.click(fn=review_blog, inputs=[input_type, text_input, url_input], outputs=[html_output, final_output])
|
|
|
|
|
|
|
|
|
80 |
|
81 |
demo.launch()
|