Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -8,11 +8,26 @@ import nltk
|
|
8 |
from nltk.tokenize import sent_tokenize
|
9 |
from autogen import AssistantAgent, UserProxyAgent
|
10 |
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
# Initialize Hugging Face models
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
# Define AutoGen Agents (for modularity, but we'll call functions directly)
|
18 |
user_proxy = UserProxyAgent(
|
@@ -49,19 +64,23 @@ coordinator_agent = AssistantAgent(
|
|
49 |
|
50 |
# Task functions
|
51 |
def extract_text(input_type, text_input, url_input):
|
52 |
-
|
53 |
-
|
54 |
article = Article(url_input)
|
55 |
article.download()
|
56 |
article.parse()
|
|
|
57 |
return article.text
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
|
|
61 |
|
62 |
def check_grammar(text):
|
63 |
try:
|
64 |
grammar_tool = language_tool_python.LanguageToolPublicAPI('en-US')
|
|
|
65 |
matches = grammar_tool.check(text)
|
66 |
return [
|
67 |
{
|
@@ -73,103 +92,123 @@ def check_grammar(text):
|
|
73 |
} for match in matches
|
74 |
]
|
75 |
except Exception as e:
|
|
|
76 |
return [{"text": "", "error": f"Grammar check failed: {str(e)}", "suggestions": [], "offset": 0, "length": 0}]
|
77 |
|
78 |
def detect_sensitive_content(text):
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
def generate_suggestions(text, grammar_issues, sensitive_issues):
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
summary = summarizer(issue['sentence'], max_length=50, min_length=10, do_sample=False)[0]['summary_text']
|
99 |
suggestions.append(f"Rephrase sensitive content '{issue['sentence']}' to: '{summary}' (Toxicity score: {issue['score']:.2f})")
|
100 |
-
|
101 |
-
|
102 |
-
|
|
|
|
|
103 |
|
104 |
def highlight_text(text, grammar_issues, sensitive_issues):
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
|
|
|
|
|
|
|
|
123 |
|
124 |
# Main function to process input
|
125 |
def review_blog(input_type, text_input, url_input):
|
126 |
-
|
127 |
-
|
|
|
128 |
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
|
135 |
-
|
136 |
-
|
137 |
|
138 |
-
|
139 |
-
|
140 |
|
141 |
-
|
142 |
-
|
143 |
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
|
148 |
-
|
|
|
|
|
|
|
149 |
|
150 |
def apply_changes(text, suggestions, approved_indices):
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
|
|
|
|
|
|
|
|
173 |
|
174 |
# Gradio interface
|
175 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
|
8 |
from nltk.tokenize import sent_tokenize
|
9 |
from autogen import AssistantAgent, UserProxyAgent
|
10 |
|
11 |
+
# Download required NLTK data at startup
|
12 |
+
try:
|
13 |
+
nltk.download('punkt')
|
14 |
+
nltk.download('punkt_tab') # Ensure language-specific data is downloaded
|
15 |
+
print("NLTK data (punkt and punkt_tab) downloaded successfully.")
|
16 |
+
except Exception as e:
|
17 |
+
print(f"Error downloading NLTK data: {str(e)}")
|
18 |
|
19 |
# Initialize Hugging Face models
|
20 |
+
try:
|
21 |
+
toxicity_classifier = pipeline("text-classification", model="unitary/toxic-bert")
|
22 |
+
print("Toxicity classifier loaded successfully.")
|
23 |
+
except Exception as e:
|
24 |
+
print(f"Error loading toxicity classifier: {str(e)}")
|
25 |
+
|
26 |
+
try:
|
27 |
+
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-6-6")
|
28 |
+
print("Summarizer loaded successfully.")
|
29 |
+
except Exception as e:
|
30 |
+
print(f"Error loading summarizer: {str(e)}")
|
31 |
|
32 |
# Define AutoGen Agents (for modularity, but we'll call functions directly)
|
33 |
user_proxy = UserProxyAgent(
|
|
|
64 |
|
65 |
# Task functions
|
66 |
def extract_text(input_type, text_input, url_input):
|
67 |
+
try:
|
68 |
+
if input_type == "URL" and url_input:
|
69 |
article = Article(url_input)
|
70 |
article.download()
|
71 |
article.parse()
|
72 |
+
print(f"Extracted text from URL: {url_input[:50]}...") # Debug
|
73 |
return article.text
|
74 |
+
print(f"Using input text: {text_input[:50]}...") # Debug
|
75 |
+
return text_input
|
76 |
+
except Exception as e:
|
77 |
+
print(f"Error in extract_text: {str(e)}")
|
78 |
+
return f"Error fetching URL or processing text: {str(e)}"
|
79 |
|
80 |
def check_grammar(text):
|
81 |
try:
|
82 |
grammar_tool = language_tool_python.LanguageToolPublicAPI('en-US')
|
83 |
+
print("Checking grammar...") # Debug
|
84 |
matches = grammar_tool.check(text)
|
85 |
return [
|
86 |
{
|
|
|
92 |
} for match in matches
|
93 |
]
|
94 |
except Exception as e:
|
95 |
+
print(f"Grammar check failed: {str(e)}")
|
96 |
return [{"text": "", "error": f"Grammar check failed: {str(e)}", "suggestions": [], "offset": 0, "length": 0}]
|
97 |
|
98 |
def detect_sensitive_content(text):
|
99 |
+
try:
|
100 |
+
sentences = sent_tokenize(text)
|
101 |
+
sensitive_issues = []
|
102 |
+
for i, sentence in enumerate(sentences):
|
103 |
+
result = toxicity_classifier(sentence)
|
104 |
+
if result[0]['label'] == 'toxic' and result[0]['score'] > 0.7:
|
105 |
+
sensitive_issues.append({
|
106 |
+
"sentence": sentence,
|
107 |
+
"score": result[0]['score'],
|
108 |
+
"index": i
|
109 |
+
})
|
110 |
+
print(f"Detected {len(sensitive_issues)} sensitive issues.") # Debug
|
111 |
+
return sensitive_issues
|
112 |
+
except Exception as e:
|
113 |
+
print(f"Error in detect_sensitive_content: {str(e)}")
|
114 |
+
return []
|
115 |
|
116 |
def generate_suggestions(text, grammar_issues, sensitive_issues):
|
117 |
+
try:
|
118 |
+
suggestions = []
|
119 |
+
for issue in grammar_issues:
|
120 |
+
if issue['suggestions']:
|
121 |
+
suggestions.append(f"Replace '{issue['text']}' with '{issue['suggestions'][0]}' ({issue['error']})")
|
122 |
+
for issue in sensitive_issues:
|
123 |
summary = summarizer(issue['sentence'], max_length=50, min_length=10, do_sample=False)[0]['summary_text']
|
124 |
suggestions.append(f"Rephrase sensitive content '{issue['sentence']}' to: '{summary}' (Toxicity score: {issue['score']:.2f})")
|
125 |
+
print(f"Generated {len(suggestions)} suggestions.") # Debug
|
126 |
+
return suggestions
|
127 |
+
except Exception as e:
|
128 |
+
print(f"Error in generate_suggestions: {str(e)}")
|
129 |
+
return []
|
130 |
|
131 |
def highlight_text(text, grammar_issues, sensitive_issues):
|
132 |
+
try:
|
133 |
+
highlighted = text
|
134 |
+
offset_adjust = 0
|
135 |
+
for issue in grammar_issues:
|
136 |
+
start = issue['offset'] + offset_adjust
|
137 |
+
end = start + issue['length']
|
138 |
+
error_text = highlighted[start:end]
|
139 |
+
highlighted = highlighted[:start] + f"<span style='background-color: yellow'>{error_text}</span>" + highlighted[end:]
|
140 |
+
offset_adjust += len("<span style='background-color: yellow'>") + len("</span>")
|
141 |
+
sentences = sent_tokenize(text)
|
142 |
+
offset_adjust = 0
|
143 |
+
for issue in sensitive_issues:
|
144 |
+
sentence = issue['sentence']
|
145 |
+
start = highlighted.find(sentence, offset_adjust)
|
146 |
+
if start != -1:
|
147 |
+
end = start + len(sentence)
|
148 |
+
highlighted = highlighted[:start] + f"<span style='background-color: red'>{sentence}</span>" + highlighted[end:]
|
149 |
+
offset_adjust = end
|
150 |
+
return highlighted
|
151 |
+
except Exception as e:
|
152 |
+
print(f"Error in highlight_text: {str(e)}")
|
153 |
+
return text
|
154 |
|
155 |
# Main function to process input
|
156 |
def review_blog(input_type, text_input, url_input):
|
157 |
+
try:
|
158 |
+
if not text_input and not url_input:
|
159 |
+
return "Please provide text or a URL.", "", []
|
160 |
|
161 |
+
# Step 1: Text Extraction
|
162 |
+
text = extract_text(input_type, text_input, url_input)
|
163 |
+
print(f"Processed text: {text[:50]}...") # Debug
|
164 |
+
if text.startswith("Error"):
|
165 |
+
return text, "", []
|
166 |
|
167 |
+
# Step 2: Grammar Check
|
168 |
+
grammar_issues = check_grammar(text)
|
169 |
|
170 |
+
# Step 3: Sensitive Content Detection
|
171 |
+
sensitive_issues = detect_sensitive_content(text)
|
172 |
|
173 |
+
# Step 4: Generate Suggestions
|
174 |
+
suggestions = generate_suggestions(text, grammar_issues, sensitive_issues)
|
175 |
|
176 |
+
# Step 5: Coordinate Output
|
177 |
+
highlighted_text = highlight_text(text, grammar_issues, sensitive_issues)
|
178 |
+
suggestions_text = "\n".join([f"{i+1}. {sug}" for i, sug in enumerate(suggestions)])
|
179 |
|
180 |
+
return highlighted_text, suggestions_text, suggestions
|
181 |
+
except Exception as e:
|
182 |
+
print(f"Error in review_blog: {str(e)}")
|
183 |
+
return f"Error processing input: {str(e)}", "", []
|
184 |
|
185 |
def apply_changes(text, suggestions, approved_indices):
|
186 |
+
try:
|
187 |
+
sentences = sent_tokenize(text)
|
188 |
+
for idx in approved_indices.split(','):
|
189 |
+
try:
|
190 |
+
idx = int(idx.strip()) - 1
|
191 |
+
if idx < len(suggestions):
|
192 |
+
suggestion = suggestions[idx]
|
193 |
+
match = re.search(r"'([^']+)'$", suggestion)
|
194 |
+
if match:
|
195 |
+
new_text = match.group(1)
|
196 |
+
if "Rephrase sensitive content" in suggestion:
|
197 |
+
orig_match = re.search(r"'([^']+)'\s+to:", suggestion)
|
198 |
+
if orig_match:
|
199 |
+
orig_sentence = orig_match.group(1)
|
200 |
+
text = text.replace(orig_sentence, new_text)
|
201 |
+
else:
|
202 |
+
orig_match = re.search(r"Replace '([^']+)'\s+with\s+'([^']+)'", suggestion)
|
203 |
+
if orig_match:
|
204 |
+
orig_text = orig_match.group(1)
|
205 |
+
text = text.replace(orig_text, new_text)
|
206 |
+
except ValueError:
|
207 |
+
continue # Skip invalid indices
|
208 |
+
return text
|
209 |
+
except Exception as e:
|
210 |
+
print(f"Error in apply_changes: {str(e)}")
|
211 |
+
return text
|
212 |
|
213 |
# Gradio interface
|
214 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|