JaishnaCodz's picture
Update app.py
ffcdfc0 verified
raw
history blame
6.49 kB
import gradio as gr
from transformers import pipeline
from newspaper import Article
import language_tool_python
import nltk
import re
from nltk.tokenize import sent_tokenize
# Download punkt tokenizer
nltk.download("punkt")
# Connect to the local LanguageTool server started via setup.sh
grammar_tool = language_tool_python.LanguageToolPublicAPI(language='en-US', endpoint='http://localhost:8081/')
# Load transformers pipelines
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-6-6")
toxicity_classifier = pipeline("text-classification", model="Hate-speech-CNERG/bert-base-uncased-hatexplain")
def extract_text(input_type, text_input, url_input):
if input_type == "URL" and url_input:
try:
article = Article(url_input)
article.download()
article.parse()
return article.text
except Exception as e:
return f"Error fetching URL: {e}"
return text_input
def check_grammar(text):
try:
matches = grammar_tool.check(text)
return [
{
"text": match.context,
"error": match.message,
"suggestions": match.replacements,
"offset": match.offset,
"length": match.errorLength
} for match in matches
]
except Exception as e:
return [{"text": "", "error": f"Grammar check failed: {str(e)}", "suggestions": [], "offset": 0, "length": 0}]
def detect_sensitive_content(text):
sentences = sent_tokenize(text)
sensitive_issues = []
for i, sentence in enumerate(sentences):
result = toxicity_classifier(sentence)
label = result[0]['label'].lower()
if any(term in label for term in ['toxic', 'hate', 'offensive']):
sensitive_issues.append({
"sentence": sentence,
"score": result[0]['score'],
"label": label,
"index": i
})
return sensitive_issues
def generate_suggestions(text, grammar_issues, sensitive_issues):
suggestions = []
for issue in grammar_issues:
if issue['suggestions']:
suggestions.append(f"Replace '{issue['text']}' with '{issue['suggestions'][0]}' ({issue['error']})")
for issue in sensitive_issues:
summary = summarizer(issue['sentence'], max_length=50, min_length=10, do_sample=False)[0]['summary_text']
suggestions.append(f"Rephrase sensitive content '{issue['sentence']}' to: '{summary}' (Toxicity score: {issue['score']:.2f})")
return suggestions
def highlight_text(text, grammar_issues, sensitive_issues):
highlighted = text
offset_adjust = 0
for issue in grammar_issues:
start = issue['offset'] + offset_adjust
end = start + issue['length']
error_text = highlighted[start:end]
span = f"<span style='background-color: yellow'>{error_text}</span>"
highlighted = highlighted[:start] + span + highlighted[end:]
offset_adjust += len(span) - len(error_text)
for issue in sensitive_issues:
sentence = issue['sentence']
highlighted = highlighted.replace(sentence, f"<span style='background-color: red'>{sentence}</span>")
return highlighted
def review_blog(input_type, text_input, url_input):
if not text_input and not url_input:
return "Please provide text or a URL.", "", []
text = extract_text(input_type, text_input, url_input)
if text.startswith("Error"):
return text, "", []
grammar_issues = check_grammar(text)
sensitive_issues = detect_sensitive_content(text)
suggestions = generate_suggestions(text, grammar_issues, sensitive_issues)
highlighted_text = highlight_text(text, grammar_issues, sensitive_issues)
suggestions_text = "\n".join([f"{i+1}. {sug}" for i, sug in enumerate(suggestions)])
return highlighted_text, suggestions_text, suggestions
def apply_changes(text, suggestions, approved_indices):
sentences = sent_tokenize(text)
for idx in approved_indices.split(','):
try:
idx = int(idx.strip()) - 1
if idx < len(suggestions):
suggestion = suggestions[idx]
match = re.search(r"'([^']+)'$", suggestion)
if match:
new_text = match.group(1)
if "Rephrase sensitive content" in suggestion:
orig_match = re.search(r"'([^']+)'\s+to:", suggestion)
if orig_match:
orig_sentence = orig_match.group(1)
text = text.replace(orig_sentence, new_text)
else:
orig_match = re.search(r"Replace '([^']+)'\s+with\s+'([^']+)'", suggestion)
if orig_match:
orig_text = orig_match.group(1)
text = text.replace(orig_text, new_text)
except ValueError:
continue
return text
# Gradio UI
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("## 🧠 AI Blog Reviewer with Grammar & Bias Detection")
gr.Markdown("Enter blog content or a URL. Detect grammar issues and sensitive (toxic, biased) content.")
input_type = gr.Radio(["Text", "URL"], label="Input Type", value="Text")
text_input = gr.Textbox(label="Blog Text", lines=10, visible=True)
url_input = gr.Textbox(label="Blog URL", visible=False)
def toggle_input(type):
return {
text_input: gr.update(visible=type == "Text"),
url_input: gr.update(visible=type == "URL")
}
input_type.change(fn=toggle_input, inputs=input_type, outputs=[text_input, url_input])
review_btn = gr.Button("🔍 Review Blog")
highlighted_output = gr.HTML(label="Highlighted Output")
suggestions_output = gr.Textbox(label="Suggestions", lines=8)
approve_indices = gr.Textbox(label="Approve Suggestions (e.g., 1,2)")
apply_btn = gr.Button("✅ Apply Suggestions")
final_output = gr.Textbox(label="Updated Text", lines=10)
suggestions_state = gr.State()
review_btn.click(fn=review_blog,
inputs=[input_type, text_input, url_input],
outputs=[highlighted_output, suggestions_output, suggestions_state])
apply_btn.click(fn=apply_changes,
inputs=[text_input, suggestions_state, approve_indices],
outputs=final_output)
demo.launch()