JaishnaCodz's picture
Update app.py
210d41a verified
raw
history blame
9.57 kB
import gradio as gr
import requests
from bs4 import BeautifulSoup
from nltk import download, sent_tokenize
import google.generativeai as genai
import os
import re
import tempfile
import asyncio
import time
# Download NLTK data
download('punkt')
download('punkt_tab')
# Configure Gemini API using environment variable
api_key = os.environ.get("GEMINI_API_KEY")
if not api_key:
raise ValueError("GEMINI_API_KEY not found in environment variables. Please set it in your environment.")
genai.configure(api_key=api_key)
# Use gemini-1.5-flash for faster and more accessible text analysis
try:
model = genai.GenerativeModel('gemini-1.5-flash')
except Exception as e:
print(f"Error initializing model: {str(e)}")
print("Available models:")
for m in genai.list_models():
print(m.name)
raise ValueError("Failed to initialize gemini-1.5-flash. Check available models above and update the model name.")
# Prompt for Gemini to analyze text with specified output format
PROMPT = """
You are an AI content reviewer. Analyze the provided text for the following:
1. Grammar Issues: Identify and suggest corrections for grammatical errors.
2. Legal Policy Violations: Flag content that may violate common legal policies (e.g., copyright infringement, defamation, incitement to violence).
3. Crude/Abusive Language: Detect crude, offensive, or abusive language.
4. Sensitive Topics: Identify content related to sensitive topics such as racism, gender bias, or other forms of discrimination.
Return the results in the following markdown format:
# Blog Review Report
## Grammar Corrections
1. [Heading of issue]
- CONTENT: [Exact line or part of text with the issue]
- SUGGESTION: [Suggested correction]
- ISSUE: [Description of the issue]
2. [Heading of next issue]
- CONTENT: [Exact line or part of text with the issue]
- SUGGESTION: [Suggested correction]
- ISSUE: [Description of the issue]
[Continue numbering for additional issues or state "None detected"]
## Legal Policy Violations
- CONTENT: [Exact line or part of text with the issue]
SUGGESTION: [Suggested action or correction]
ISSUE: [Description of the legal violation]
[Or state "None detected"]
## Crude/Abusive Language
- [List instances of crude or abusive language or "None detected"]
## Sensitive Topics
- [List instances of sensitive topics or "None detected"]
For each issue, provide the exact text, a suggested correction or action, and a concise explanation. Be precise and ensure the output strictly follows the specified format.
"""
async def fetch_url_content(url):
try:
response = requests.get(url, timeout=10)
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')
content = ' '.join([p.get_text(strip=True) for p in soup.find_all(['p', 'article', 'div'])])
return content if content else "No readable content found on the page."
except Exception as e:
return f"Error fetching URL: {str(e)}"
async def review_blog(text_input, url_input, progress=gr.Progress()):
if text_input and not url_input:
input_type = "Text"
input_text = text_input
elif url_input and not text_input:
input_type = "URL"
input_text = url_input
else:
return "Review Blog", "Error: Please provide input in either the Text or URL tab, but not both.", gr.update(visible=False)
if not input_text:
return "Review Blog", "Error: No input provided.", gr.update(visible=False)
if input_type == "URL":
progress(0, desc="Fetching content...")
input_text = await fetch_url_content(input_text)
if input_text.startswith("Error"):
return "Review Blog", input_text, gr.update(visible=False)
sentences = sent_tokenize(input_text)
analysis_text = "\n".join(sentences)
progress(0, desc="Generating report...")
start_time = time.time()
for i in range(1, 10):
await asyncio.sleep(1)
progress(i / 10, desc=f"Generating report... ({int(i * 10)}%)")
if time.time() - start_time > 30:
return "Review Blog", "Error: API request timed out after 30 seconds.", gr.update(visible=False)
try:
response = await asyncio.to_thread(model.generate_content, PROMPT + "\n\nText to analyze:\n" + analysis_text)
report = response.text.strip()
report = re.sub(r'^markdown\n|$', '', report, flags=re.MULTILINE)
except Exception as e:
report = f"Error analyzing content with Gemini: {str(e)}"
print("Available models:")
for m in genai.list_models():
print(m.name)
return "Review Blog", report, gr.update(visible=False)
try:
with tempfile.NamedTemporaryFile(mode='w', suffix='.md', delete=False, encoding='utf-8') as temp_file:
temp_file.write(report)
temp_file_path = temp_file.name
progress(1.0, desc="Report generated!")
return "Review Blog", report, gr.update(visible=True, value=temp_file_path)
except Exception as e:
return "Review Blog", f"Error creating temporary file: {str(e)}", gr.update(visible=False)
# Enhanced custom CSS for a more attractive and user-friendly UI
custom_css = """
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@400;500;600;700&display=swap');
.gradio-container {
font-family: 'Inter', sans-serif !important;
background: linear-gradient(135deg, #f0f4f8 0%, #d9e2ec 100%);
padding: 30px;
border-radius: 15px;
box-shadow: 0 6px 25px rgba(0, 0, 0, 0.15);
color: #2d3748;
}
h1, h3 {
color: #2b6cb0;
text-align: center;
font-weight: 700;
margin-bottom: 15px;
text-shadow: 1px 1px 3px rgba(0, 0, 0, 0.1);
}
.review-btn {
background: linear-gradient(45deg, #4a90e2, #63b3ed);
color: white;
font-weight: 600;
border: none;
border-radius: 12px;
padding: 14px 28px;
transition: all 0.3s ease;
box-shadow: 0 4px 12px rgba(74, 144, 226, 0.3);
cursor: pointer;
}
.review-btn:hover {
background: linear-gradient(45deg, #63b3ed, #4a90e2);
transform: translateY(-3px);
box-shadow: 0 6px 15px rgba(74, 144, 226, 0.4);
}
.review-btn:disabled {
opacity: 0.7;
cursor: not-allowed;
transform: none;
box-shadow: none;
}
.review-btn:disabled::after {
content: ' ⏳';
}
.tab-nav button {
font-family: 'Inter', sans-serif;
font-weight: 600;
background: #edf2f7;
color: #2d3748;
border-radius: 10px 10px 0 0;
padding: 12px 24px;
transition: all 0.2s ease;
border: 1px solid #e2e8f0;
}
.tab-nav button:hover {
background: #4a90e2;
color: white;
border-color: #4a90e2;
}
input, textarea {
font-family: 'Inter', sans-serif;
border: 2px solid #e2e8f0;
border-radius: 10px;
padding: 12px;
background: #ffffff;
box-shadow: 0 2px 6px rgba(0, 0, 0, 0.05);
color: #2d3748;
font-size: 16px;
}
.gr-textbox textarea {
resize: vertical;
min-height: 150px;
}
.gr-progress {
background: #edf2f7;
border-radius: 12px;
overflow: hidden;
height: 30px;
}
.gr-progress > div {
background: linear-gradient(90deg, #48bb78, #38a169);
height: 100%;
transition: width 0.5s ease;
}
.markdown-container {
background: #ffffff;
border-radius: 12px;
padding: 25px;
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.1);
margin-top: 20px;
color: #2d3748;
}
.download-btn {
background: #48bb78;
color: white;
border-radius: 10px;
padding: 12px 24px;
font-weight: 600;
transition: all 0.3s ease;
cursor: pointer;
}
.download-btn:hover {
background: #38a169;
transform: translateY(-3px);
}
"""
# Gradio UI with enhanced layout
with gr.Blocks(theme=gr.themes.Monochrome(), css=custom_css) as demo:
gr.Markdown(
"""
# πŸ“ AI Blog Reviewer
Easily analyze your blog for grammar, legal issues, crude language, and sensitive topics.
"""
)
with gr.Row():
with gr.Column(scale=2):
with gr.Tabs():
with gr.TabItem("Text Input"):
text_input = gr.Textbox(
lines=10,
label="Paste Your Blog Content",
placeholder="Enter your blog text here...",
elem_classes=["input-text"]
)
with gr.TabItem("URL Input"):
url_input = gr.Textbox(
lines=1,
label="Enter Blog URL",
placeholder="https://example.com/blog",
elem_classes=["input-url"]
)
with gr.Column(scale=1):
gr.Markdown(
"""
### How It Works
1. **Input**: Paste text or provide a URL.
2. **Analysis**: AI checks grammar, legal issues, and more.
3. **Report**: Download a detailed markdown report.
"""
)
status_button = gr.Button("Review Blog", elem_classes=["review-btn"])
gr.Markdown("### πŸ“„ Review Report")
with gr.Row():
with gr.Column():
report_output = gr.Markdown(elem_classes=["markdown-container"])
download_btn = gr.File(label="Download Report", visible=False, elem_classes=["download-btn"])
status_button.click(
fn=review_blog,
inputs=[text_input, url_input],
outputs=[status_button, report_output, download_btn]
)
demo.launch()