diff --git a/One-2-3-45-master 2/.DS_Store b/One-2-3-45-master 2/.DS_Store deleted file mode 100644 index 1019af909bdbff683b29ebae009377520534c494..0000000000000000000000000000000000000000 Binary files a/One-2-3-45-master 2/.DS_Store and /dev/null differ diff --git a/One-2-3-45-master 2/.gitattributes b/One-2-3-45-master 2/.gitattributes deleted file mode 100644 index a6344aac8c09253b3b630fb776ae94478aa0275b..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/.gitattributes +++ /dev/null @@ -1,35 +0,0 @@ -*.7z filter=lfs diff=lfs merge=lfs -text -*.arrow filter=lfs diff=lfs merge=lfs -text -*.bin filter=lfs diff=lfs merge=lfs -text -*.bz2 filter=lfs diff=lfs merge=lfs -text -*.ckpt filter=lfs diff=lfs merge=lfs -text -*.ftz filter=lfs diff=lfs merge=lfs -text -*.gz filter=lfs diff=lfs merge=lfs -text -*.h5 filter=lfs diff=lfs merge=lfs -text -*.joblib filter=lfs diff=lfs merge=lfs -text -*.lfs.* filter=lfs diff=lfs merge=lfs -text -*.mlmodel filter=lfs diff=lfs merge=lfs -text -*.model filter=lfs diff=lfs merge=lfs -text -*.msgpack filter=lfs diff=lfs merge=lfs -text -*.npy filter=lfs diff=lfs merge=lfs -text -*.npz filter=lfs diff=lfs merge=lfs -text -*.onnx filter=lfs diff=lfs merge=lfs -text -*.ot filter=lfs diff=lfs merge=lfs -text -*.parquet filter=lfs diff=lfs merge=lfs -text -*.pb filter=lfs diff=lfs merge=lfs -text -*.pickle filter=lfs diff=lfs merge=lfs -text -*.pkl filter=lfs diff=lfs merge=lfs -text -*.pt filter=lfs diff=lfs merge=lfs -text -*.pth filter=lfs diff=lfs merge=lfs -text -*.rar filter=lfs diff=lfs merge=lfs -text -*.safetensors filter=lfs diff=lfs merge=lfs -text -saved_model/**/* filter=lfs diff=lfs merge=lfs -text -*.tar.* filter=lfs diff=lfs merge=lfs -text -*.tar filter=lfs diff=lfs merge=lfs -text -*.tflite filter=lfs diff=lfs merge=lfs -text -*.tgz filter=lfs diff=lfs merge=lfs -text -*.wasm filter=lfs diff=lfs merge=lfs -text -*.xz filter=lfs diff=lfs merge=lfs -text -*.zip filter=lfs diff=lfs merge=lfs -text -*.zst filter=lfs diff=lfs merge=lfs -text -*tfevents* filter=lfs diff=lfs merge=lfs -text diff --git a/One-2-3-45-master 2/.gitignore b/One-2-3-45-master 2/.gitignore deleted file mode 100644 index 9e1006878b0d1f287bbda4a9cf4b352b2e41f1ab..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/.gitignore +++ /dev/null @@ -1,11 +0,0 @@ -__pycache__/ -exp/ -src/ -*.DS_Store -*.ipynb -*.egg-info/ -*.ckpt -*.pth - -!example.ipynb -!reconstruction/exp \ No newline at end of file diff --git a/One-2-3-45-master 2/LICENSE b/One-2-3-45-master 2/LICENSE deleted file mode 100644 index 261eeb9e9f8b2b4b0d119366dda99c6fd7d35c64..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/LICENSE +++ /dev/null @@ -1,201 +0,0 @@ - Apache License - Version 2.0, January 2004 - http://www.apache.org/licenses/ - - TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION - - 1. Definitions. - - "License" shall mean the terms and conditions for use, reproduction, - and distribution as defined by Sections 1 through 9 of this document. - - "Licensor" shall mean the copyright owner or entity authorized by - the copyright owner that is granting the License. - - "Legal Entity" shall mean the union of the acting entity and all - other entities that control, are controlled by, or are under common - control with that entity. For the purposes of this definition, - "control" means (i) the power, direct or indirect, to cause the - direction or management of such entity, whether by contract or - otherwise, or (ii) ownership of fifty percent (50%) or more of the - outstanding shares, or (iii) beneficial ownership of such entity. - - "You" (or "Your") shall mean an individual or Legal Entity - exercising permissions granted by this License. - - "Source" form shall mean the preferred form for making modifications, - including but not limited to software source code, documentation - source, and configuration files. - - "Object" form shall mean any form resulting from mechanical - transformation or translation of a Source form, including but - not limited to compiled object code, generated documentation, - and conversions to other media types. - - "Work" shall mean the work of authorship, whether in Source or - Object form, made available under the License, as indicated by a - copyright notice that is included in or attached to the work - (an example is provided in the Appendix below). - - "Derivative Works" shall mean any work, whether in Source or Object - form, that is based on (or derived from) the Work and for which the - editorial revisions, annotations, elaborations, or other modifications - represent, as a whole, an original work of authorship. For the purposes - of this License, Derivative Works shall not include works that remain - separable from, or merely link (or bind by name) to the interfaces of, - the Work and Derivative Works thereof. - - "Contribution" shall mean any work of authorship, including - the original version of the Work and any modifications or additions - to that Work or Derivative Works thereof, that is intentionally - submitted to Licensor for inclusion in the Work by the copyright owner - or by an individual or Legal Entity authorized to submit on behalf of - the copyright owner. For the purposes of this definition, "submitted" - means any form of electronic, verbal, or written communication sent - to the Licensor or its representatives, including but not limited to - communication on electronic mailing lists, source code control systems, - and issue tracking systems that are managed by, or on behalf of, the - Licensor for the purpose of discussing and improving the Work, but - excluding communication that is conspicuously marked or otherwise - designated in writing by the copyright owner as "Not a Contribution." - - "Contributor" shall mean Licensor and any individual or Legal Entity - on behalf of whom a Contribution has been received by Licensor and - subsequently incorporated within the Work. - - 2. Grant of Copyright License. Subject to the terms and conditions of - this License, each Contributor hereby grants to You a perpetual, - worldwide, non-exclusive, no-charge, royalty-free, irrevocable - copyright license to reproduce, prepare Derivative Works of, - publicly display, publicly perform, sublicense, and distribute the - Work and such Derivative Works in Source or Object form. - - 3. Grant of Patent License. Subject to the terms and conditions of - this License, each Contributor hereby grants to You a perpetual, - worldwide, non-exclusive, no-charge, royalty-free, irrevocable - (except as stated in this section) patent license to make, have made, - use, offer to sell, sell, import, and otherwise transfer the Work, - where such license applies only to those patent claims licensable - by such Contributor that are necessarily infringed by their - Contribution(s) alone or by combination of their Contribution(s) - with the Work to which such Contribution(s) was submitted. If You - institute patent litigation against any entity (including a - cross-claim or counterclaim in a lawsuit) alleging that the Work - or a Contribution incorporated within the Work constitutes direct - or contributory patent infringement, then any patent licenses - granted to You under this License for that Work shall terminate - as of the date such litigation is filed. - - 4. Redistribution. You may reproduce and distribute copies of the - Work or Derivative Works thereof in any medium, with or without - modifications, and in Source or Object form, provided that You - meet the following conditions: - - (a) You must give any other recipients of the Work or - Derivative Works a copy of this License; and - - (b) You must cause any modified files to carry prominent notices - stating that You changed the files; and - - (c) You must retain, in the Source form of any Derivative Works - that You distribute, all copyright, patent, trademark, and - attribution notices from the Source form of the Work, - excluding those notices that do not pertain to any part of - the Derivative Works; and - - (d) If the Work includes a "NOTICE" text file as part of its - distribution, then any Derivative Works that You distribute must - include a readable copy of the attribution notices contained - within such NOTICE file, excluding those notices that do not - pertain to any part of the Derivative Works, in at least one - of the following places: within a NOTICE text file distributed - as part of the Derivative Works; within the Source form or - documentation, if provided along with the Derivative Works; or, - within a display generated by the Derivative Works, if and - wherever such third-party notices normally appear. The contents - of the NOTICE file are for informational purposes only and - do not modify the License. You may add Your own attribution - notices within Derivative Works that You distribute, alongside - or as an addendum to the NOTICE text from the Work, provided - that such additional attribution notices cannot be construed - as modifying the License. - - You may add Your own copyright statement to Your modifications and - may provide additional or different license terms and conditions - for use, reproduction, or distribution of Your modifications, or - for any such Derivative Works as a whole, provided Your use, - reproduction, and distribution of the Work otherwise complies with - the conditions stated in this License. - - 5. Submission of Contributions. Unless You explicitly state otherwise, - any Contribution intentionally submitted for inclusion in the Work - by You to the Licensor shall be under the terms and conditions of - this License, without any additional terms or conditions. - Notwithstanding the above, nothing herein shall supersede or modify - the terms of any separate license agreement you may have executed - with Licensor regarding such Contributions. - - 6. Trademarks. This License does not grant permission to use the trade - names, trademarks, service marks, or product names of the Licensor, - except as required for reasonable and customary use in describing the - origin of the Work and reproducing the content of the NOTICE file. - - 7. Disclaimer of Warranty. Unless required by applicable law or - agreed to in writing, Licensor provides the Work (and each - Contributor provides its Contributions) on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or - implied, including, without limitation, any warranties or conditions - of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A - PARTICULAR PURPOSE. You are solely responsible for determining the - appropriateness of using or redistributing the Work and assume any - risks associated with Your exercise of permissions under this License. - - 8. Limitation of Liability. In no event and under no legal theory, - whether in tort (including negligence), contract, or otherwise, - unless required by applicable law (such as deliberate and grossly - negligent acts) or agreed to in writing, shall any Contributor be - liable to You for damages, including any direct, indirect, special, - incidental, or consequential damages of any character arising as a - result of this License or out of the use or inability to use the - Work (including but not limited to damages for loss of goodwill, - work stoppage, computer failure or malfunction, or any and all - other commercial damages or losses), even if such Contributor - has been advised of the possibility of such damages. - - 9. Accepting Warranty or Additional Liability. While redistributing - the Work or Derivative Works thereof, You may choose to offer, - and charge a fee for, acceptance of support, warranty, indemnity, - or other liability obligations and/or rights consistent with this - License. However, in accepting such obligations, You may act only - on Your own behalf and on Your sole responsibility, not on behalf - of any other Contributor, and only if You agree to indemnify, - defend, and hold each Contributor harmless for any liability - incurred by, or claims asserted against, such Contributor by reason - of your accepting any such warranty or additional liability. - - END OF TERMS AND CONDITIONS - - APPENDIX: How to apply the Apache License to your work. - - To apply the Apache License to your work, attach the following - boilerplate notice, with the fields enclosed by brackets "[]" - replaced with your own identifying information. (Don't include - the brackets!) The text should be enclosed in the appropriate - comment syntax for the file format. We also recommend that a - file or class name and description of purpose be included on the - same "printed page" as the copyright notice for easier - identification within third-party archives. - - Copyright [yyyy] [name of copyright owner] - - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. diff --git a/One-2-3-45-master 2/README.md b/One-2-3-45-master 2/README.md deleted file mode 100644 index 4974e7ecc6bc6858a81bb3b7dfc950d88b770e41..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/README.md +++ /dev/null @@ -1,221 +0,0 @@ -

- -

- - -

- [Paper] - [Project] - [Demo] - [BibTeX] -

- -

- - Hugging Face Spaces - -

- -One-2-3-45 rethinks how to leverage 2D diffusion models for 3D AIGC and introduces a novel forward-only paradigm that avoids the time-consuming optimization. - -https://github.com/One-2-3-45/One-2-3-45/assets/16759292/a81d6e32-8d29-43a5-b044-b5112b9f9664 - - - -https://github.com/One-2-3-45/One-2-3-45/assets/16759292/5ecd45ef-8fd3-4643-af4c-fac3050a0428 - - -## News -**[09/21/2023]** -One-2-3-45 is accepted by NeurIPS 2023. See you in New Orleans! - -**[09/11/2023]** -Training code released. - -**[08/18/2023]** -Inference code released. - -**[07/24/2023]** -Our demo reached the HuggingFace top 4 trending and was featured in 🤗 Spaces of the Week 🔥! Special thanks to HuggingFace 🤗 for sponsoring this demo!! - -**[07/11/2023]** -[Online interactive demo](https://huggingface.co/spaces/One-2-3-45/One-2-3-45) released! Explore it and create your own 3D models in just 45 seconds! - -**[06/29/2023]** -Check out our [paper](https://arxiv.org/pdf/2306.16928.pdf). [[X](https://twitter.com/_akhaliq/status/1674617785119305728)] - -## Installation -Hardware requirement: an NVIDIA GPU with memory >=18GB (_e.g._, RTX 3090 or A10). Tested on Ubuntu. - -We offer two ways to setup the environment: - -### Traditional Installation -
-Step 1: Install Debian packages. - -```bash -sudo apt update && sudo apt install git-lfs libsparsehash-dev build-essential -``` -
- -
-Step 2: Create and activate a conda environment. - -```bash -conda create -n One2345 python=3.10 -conda activate One2345 -``` -
- -
-Step 3: Clone the repository to the local machine. - -```bash -# Make sure you have git-lfs installed. -git lfs install -git clone https://github.com/One-2-3-45/One-2-3-45 -cd One-2-3-45 -``` -
- -
-Step 4: Install project dependencies using pip. - -```bash -# Ensure that the installed CUDA version matches the torch's cuda version. -# Example: CUDA 11.8 installation -wget https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run -sudo sh cuda_11.8.0_520.61.05_linux.run -export PATH="/usr/local/cuda-11.8/bin:$PATH" -export LD_LIBRARY_PATH="/usr/local/cuda-11.8/lib64:$LD_LIBRARY_PATH" -# Install PyTorch 2.0 -pip install --no-cache-dir torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 -# Install dependencies -pip install -r requirements.txt -# Install inplace_abn and torchsparse -export TORCH_CUDA_ARCH_LIST="7.0;7.2;8.0;8.6+PTX" # CUDA architectures. Modify according to your hardware. -export IABN_FORCE_CUDA=1 -pip install inplace_abn -FORCE_CUDA=1 pip install --no-cache-dir git+https://github.com/mit-han-lab/torchsparse.git@v1.4.0 -``` -
- -
-Step 5: Download model checkpoints. - -```bash -python download_ckpt.py -``` -
- - -### Installation by Docker Images -
-Option 1: Pull and Play (environment and checkpoints). (~22.3G) - -```bash -# Pull the Docker image that contains the full repository. -docker pull chaoxu98/one2345:demo_1.0 -# An interactive demo will be launched automatically upon running the container. -# This will provide a public URL like XXXXXXX.gradio.live -docker run --name One-2-3-45_demo --gpus all -it chaoxu98/one2345:demo_1.0 -``` -
- -
-Option 2: Environment Only. (~7.3G) - -```bash -# Pull the Docker image that installed all project dependencies. -docker pull chaoxu98/one2345:1.0 -# Start a Docker container named One2345. -docker run --name One-2-3-45 --gpus all -it chaoxu98/one2345:1.0 -# Get a bash shell in the container. -docker exec -it One-2-3-45 /bin/bash -# Clone the repository to the local machine. -git clone https://github.com/One-2-3-45/One-2-3-45 -cd One-2-3-45 -# Download model checkpoints. -python download_ckpt.py -# Refer to getting started for inference. -``` -
- -## Getting Started (Inference) - -First-time running will take longer time to compile the models. - -Expected time cost per image: 40s on an NVIDIA A6000. -```bash -# 1. Script -python run.py --img_path PATH_TO_INPUT_IMG --half_precision - -# 2. Interactive demo (Gradio) with a friendly web interface -# An URL will be provided in the output -# (Local: 127.0.0.1:7860; Public: XXXXXXX.gradio.live) -cd demo/ -python app.py - -# 3. Jupyter Notebook -example.ipynb -``` - -## Training Your Own Model - -### Data Preparation -We use Objaverse-LVIS dataset for training and render the selected shapes (with CC-BY license) into 2D images with Blender. -#### Download the training images. -Download all One2345.zip.part-* files (5 files in total) from here and then cat them into a single .zip file using the following command: -```bash -cat One2345.zip.part-* > One2345.zip -``` - -#### Unzip the training images zip file. -Unzip the zip file into a folder specified by yourself (`YOUR_BASE_FOLDER`) with the following command: - -```bash -unzip One2345.zip -d YOUR_BASE_FOLDER -``` - -#### Download meta files. - -Download `One2345_training_pose.json` and `lvis_split_cc_by.json` from here and put them into the same folder as the training images (`YOUR_BASE_FOLDER`). - -Your file structure should look like this: -``` -# One2345 is your base folder used in the previous steps - -One2345 -├── One2345_training_pose.json -├── lvis_split_cc_by.json -└── zero12345_narrow - ├── 000-000 - ├── 000-001 - ├── 000-002 - ... - └── 000-159 - -``` - -### Training -Specify the `trainpath`, `valpath`, and `testpath` in the config file `./reconstruction/confs/one2345_lod_train.conf` to be `YOUR_BASE_FOLDER` used in data preparation steps and run the following command: -```bash -cd reconstruction -python exp_runner_generic_blender_train.py --mode train --conf confs/one2345_lod_train.conf -``` -Experiment logs and checkpoints will be saved in `./reconstruction/exp/`. - -## Citation - -If you find our code helpful, please cite our paper: - -``` -@misc{liu2023one2345, - title={One-2-3-45: Any Single Image to 3D Mesh in 45 Seconds without Per-Shape Optimization}, - author={Minghua Liu and Chao Xu and Haian Jin and Linghao Chen and Mukund Varma T and Zexiang Xu and Hao Su}, - year={2023}, - eprint={2306.16928}, - archivePrefix={arXiv}, - primaryClass={cs.CV} -} -``` diff --git a/One-2-3-45-master 2/configs/sd-objaverse-finetune-c_concat-256.yaml b/One-2-3-45-master 2/configs/sd-objaverse-finetune-c_concat-256.yaml deleted file mode 100644 index 488dafa27fcd632215ab869f9ab15c8ed452b66a..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/configs/sd-objaverse-finetune-c_concat-256.yaml +++ /dev/null @@ -1,117 +0,0 @@ -model: - base_learning_rate: 1.0e-04 - target: ldm.models.diffusion.ddpm.LatentDiffusion - params: - linear_start: 0.00085 - linear_end: 0.0120 - num_timesteps_cond: 1 - log_every_t: 200 - timesteps: 1000 - first_stage_key: "image_target" - cond_stage_key: "image_cond" - image_size: 32 - channels: 4 - cond_stage_trainable: false # Note: different from the one we trained before - conditioning_key: hybrid - monitor: val/loss_simple_ema - scale_factor: 0.18215 - - scheduler_config: # 10000 warmup steps - target: ldm.lr_scheduler.LambdaLinearScheduler - params: - warm_up_steps: [ 100 ] - cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases - f_start: [ 1.e-6 ] - f_max: [ 1. ] - f_min: [ 1. ] - - unet_config: - target: ldm.modules.diffusionmodules.openaimodel.UNetModel - params: - image_size: 32 # unused - in_channels: 8 - out_channels: 4 - model_channels: 320 - attention_resolutions: [ 4, 2, 1 ] - num_res_blocks: 2 - channel_mult: [ 1, 2, 4, 4 ] - num_heads: 8 - use_spatial_transformer: True - transformer_depth: 1 - context_dim: 768 - use_checkpoint: True - legacy: False - - first_stage_config: - target: ldm.models.autoencoder.AutoencoderKL - params: - embed_dim: 4 - monitor: val/rec_loss - ddconfig: - double_z: true - z_channels: 4 - resolution: 256 - in_channels: 3 - out_ch: 3 - ch: 128 - ch_mult: - - 1 - - 2 - - 4 - - 4 - num_res_blocks: 2 - attn_resolutions: [] - dropout: 0.0 - lossconfig: - target: torch.nn.Identity - - cond_stage_config: - target: ldm.modules.encoders.modules.FrozenCLIPImageEmbedder - - -data: - target: ldm.data.simple.ObjaverseDataModuleFromConfig - params: - root_dir: 'views_whole_sphere' - batch_size: 192 - num_workers: 16 - total_view: 4 - train: - validation: False - image_transforms: - size: 256 - - validation: - validation: True - image_transforms: - size: 256 - - -lightning: - find_unused_parameters: false - metrics_over_trainsteps_checkpoint: True - modelcheckpoint: - params: - every_n_train_steps: 5000 - callbacks: - image_logger: - target: main.ImageLogger - params: - batch_frequency: 500 - max_images: 32 - increase_log_steps: False - log_first_step: True - log_images_kwargs: - use_ema_scope: False - inpaint: False - plot_progressive_rows: False - plot_diffusion_rows: False - N: 32 - unconditional_guidance_scale: 3.0 - unconditional_guidance_label: [""] - - trainer: - benchmark: True - val_check_interval: 5000000 # really sorry - num_sanity_val_steps: 0 - accumulate_grad_batches: 1 diff --git a/One-2-3-45-master 2/download_ckpt.py b/One-2-3-45-master 2/download_ckpt.py deleted file mode 100644 index e11ddb2484ef1b96a7f5566b5ee757dfe8865012..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/download_ckpt.py +++ /dev/null @@ -1,30 +0,0 @@ -import urllib.request -from tqdm import tqdm - -def download_checkpoint(url, save_path): - try: - with urllib.request.urlopen(url) as response, open(save_path, 'wb') as file: - file_size = int(response.info().get('Content-Length', -1)) - chunk_size = 8192 - num_chunks = file_size // chunk_size if file_size > chunk_size else 1 - - with tqdm(total=file_size, unit='B', unit_scale=True, desc='Downloading', ncols=100) as pbar: - for chunk in iter(lambda: response.read(chunk_size), b''): - file.write(chunk) - pbar.update(len(chunk)) - - print(f"Checkpoint downloaded and saved to: {save_path}") - except Exception as e: - print(f"Error downloading checkpoint: {e}") - -if __name__ == "__main__": - ckpts = { - "sam_vit_h_4b8939.pth": "https://huggingface.co/One-2-3-45/code/resolve/main/sam_vit_h_4b8939.pth", - "zero123-xl.ckpt": "https://huggingface.co/One-2-3-45/code/resolve/main/zero123-xl.ckpt", - "elevation_estimate/utils/weights/indoor_ds_new.ckpt" : "https://huggingface.co/One-2-3-45/code/resolve/main/one2345_elev_est/tools/weights/indoor_ds_new.ckpt", - "reconstruction/exp/lod0/checkpoints/ckpt_215000.pth": "https://huggingface.co/One-2-3-45/code/resolve/main/SparseNeuS_demo_v1/exp/lod0/checkpoints/ckpt_215000.pth" - } - for ckpt_name, ckpt_url in ckpts.items(): - print(f"Downloading checkpoint: {ckpt_name}") - download_checkpoint(ckpt_url, ckpt_name) - diff --git a/One-2-3-45-master 2/elevation_estimate/.gitignore b/One-2-3-45-master 2/elevation_estimate/.gitignore deleted file mode 100644 index 0fe207cdc4cb61b3622443c8f5c739097174306c..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/elevation_estimate/.gitignore +++ /dev/null @@ -1,3 +0,0 @@ -build/ -.idea/ -*.egg-info/ diff --git a/One-2-3-45-master 2/elevation_estimate/__init__.py b/One-2-3-45-master 2/elevation_estimate/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/One-2-3-45-master 2/elevation_estimate/estimate_wild_imgs.py b/One-2-3-45-master 2/elevation_estimate/estimate_wild_imgs.py deleted file mode 100644 index 6e894bfeb936d4595ca5dd967ea3316376cce042..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/elevation_estimate/estimate_wild_imgs.py +++ /dev/null @@ -1,10 +0,0 @@ -import os.path as osp -from .utils.elev_est_api import elev_est_api - -def estimate_elev(root_dir): - img_dir = osp.join(root_dir, "stage2_8") - img_paths = [] - for i in range(4): - img_paths.append(f"{img_dir}/0_{i}.png") - elev = elev_est_api(img_paths) - return elev diff --git a/One-2-3-45-master 2/elevation_estimate/loftr/__init__.py b/One-2-3-45-master 2/elevation_estimate/loftr/__init__.py deleted file mode 100644 index 0d69b9c131cf41e95c5c6ee7d389b375267b22fa..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/elevation_estimate/loftr/__init__.py +++ /dev/null @@ -1,2 +0,0 @@ -from .loftr import LoFTR -from .utils.cvpr_ds_config import default_cfg diff --git a/One-2-3-45-master 2/elevation_estimate/loftr/backbone/__init__.py b/One-2-3-45-master 2/elevation_estimate/loftr/backbone/__init__.py deleted file mode 100644 index b6e731b3f53ab367c89ef0ea8e1cbffb0d990775..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/elevation_estimate/loftr/backbone/__init__.py +++ /dev/null @@ -1,11 +0,0 @@ -from .resnet_fpn import ResNetFPN_8_2, ResNetFPN_16_4 - - -def build_backbone(config): - if config['backbone_type'] == 'ResNetFPN': - if config['resolution'] == (8, 2): - return ResNetFPN_8_2(config['resnetfpn']) - elif config['resolution'] == (16, 4): - return ResNetFPN_16_4(config['resnetfpn']) - else: - raise ValueError(f"LOFTR.BACKBONE_TYPE {config['backbone_type']} not supported.") diff --git a/One-2-3-45-master 2/elevation_estimate/loftr/backbone/resnet_fpn.py b/One-2-3-45-master 2/elevation_estimate/loftr/backbone/resnet_fpn.py deleted file mode 100644 index 985e5b3f273a51e51447a8025ca3aadbe46752eb..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/elevation_estimate/loftr/backbone/resnet_fpn.py +++ /dev/null @@ -1,199 +0,0 @@ -import torch.nn as nn -import torch.nn.functional as F - - -def conv1x1(in_planes, out_planes, stride=1): - """1x1 convolution without padding""" - return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, padding=0, bias=False) - - -def conv3x3(in_planes, out_planes, stride=1): - """3x3 convolution with padding""" - return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) - - -class BasicBlock(nn.Module): - def __init__(self, in_planes, planes, stride=1): - super().__init__() - self.conv1 = conv3x3(in_planes, planes, stride) - self.conv2 = conv3x3(planes, planes) - self.bn1 = nn.BatchNorm2d(planes) - self.bn2 = nn.BatchNorm2d(planes) - self.relu = nn.ReLU(inplace=True) - - if stride == 1: - self.downsample = None - else: - self.downsample = nn.Sequential( - conv1x1(in_planes, planes, stride=stride), - nn.BatchNorm2d(planes) - ) - - def forward(self, x): - y = x - y = self.relu(self.bn1(self.conv1(y))) - y = self.bn2(self.conv2(y)) - - if self.downsample is not None: - x = self.downsample(x) - - return self.relu(x+y) - - -class ResNetFPN_8_2(nn.Module): - """ - ResNet+FPN, output resolution are 1/8 and 1/2. - Each block has 2 layers. - """ - - def __init__(self, config): - super().__init__() - # Config - block = BasicBlock - initial_dim = config['initial_dim'] - block_dims = config['block_dims'] - - # Class Variable - self.in_planes = initial_dim - - # Networks - self.conv1 = nn.Conv2d(1, initial_dim, kernel_size=7, stride=2, padding=3, bias=False) - self.bn1 = nn.BatchNorm2d(initial_dim) - self.relu = nn.ReLU(inplace=True) - - self.layer1 = self._make_layer(block, block_dims[0], stride=1) # 1/2 - self.layer2 = self._make_layer(block, block_dims[1], stride=2) # 1/4 - self.layer3 = self._make_layer(block, block_dims[2], stride=2) # 1/8 - - # 3. FPN upsample - self.layer3_outconv = conv1x1(block_dims[2], block_dims[2]) - self.layer2_outconv = conv1x1(block_dims[1], block_dims[2]) - self.layer2_outconv2 = nn.Sequential( - conv3x3(block_dims[2], block_dims[2]), - nn.BatchNorm2d(block_dims[2]), - nn.LeakyReLU(), - conv3x3(block_dims[2], block_dims[1]), - ) - self.layer1_outconv = conv1x1(block_dims[0], block_dims[1]) - self.layer1_outconv2 = nn.Sequential( - conv3x3(block_dims[1], block_dims[1]), - nn.BatchNorm2d(block_dims[1]), - nn.LeakyReLU(), - conv3x3(block_dims[1], block_dims[0]), - ) - - for m in self.modules(): - if isinstance(m, nn.Conv2d): - nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') - elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): - nn.init.constant_(m.weight, 1) - nn.init.constant_(m.bias, 0) - - def _make_layer(self, block, dim, stride=1): - layer1 = block(self.in_planes, dim, stride=stride) - layer2 = block(dim, dim, stride=1) - layers = (layer1, layer2) - - self.in_planes = dim - return nn.Sequential(*layers) - - def forward(self, x): - # ResNet Backbone - x0 = self.relu(self.bn1(self.conv1(x))) - x1 = self.layer1(x0) # 1/2 - x2 = self.layer2(x1) # 1/4 - x3 = self.layer3(x2) # 1/8 - - # FPN - x3_out = self.layer3_outconv(x3) - - x3_out_2x = F.interpolate(x3_out, scale_factor=2., mode='bilinear', align_corners=True) - x2_out = self.layer2_outconv(x2) - x2_out = self.layer2_outconv2(x2_out+x3_out_2x) - - x2_out_2x = F.interpolate(x2_out, scale_factor=2., mode='bilinear', align_corners=True) - x1_out = self.layer1_outconv(x1) - x1_out = self.layer1_outconv2(x1_out+x2_out_2x) - - return [x3_out, x1_out] - - -class ResNetFPN_16_4(nn.Module): - """ - ResNet+FPN, output resolution are 1/16 and 1/4. - Each block has 2 layers. - """ - - def __init__(self, config): - super().__init__() - # Config - block = BasicBlock - initial_dim = config['initial_dim'] - block_dims = config['block_dims'] - - # Class Variable - self.in_planes = initial_dim - - # Networks - self.conv1 = nn.Conv2d(1, initial_dim, kernel_size=7, stride=2, padding=3, bias=False) - self.bn1 = nn.BatchNorm2d(initial_dim) - self.relu = nn.ReLU(inplace=True) - - self.layer1 = self._make_layer(block, block_dims[0], stride=1) # 1/2 - self.layer2 = self._make_layer(block, block_dims[1], stride=2) # 1/4 - self.layer3 = self._make_layer(block, block_dims[2], stride=2) # 1/8 - self.layer4 = self._make_layer(block, block_dims[3], stride=2) # 1/16 - - # 3. FPN upsample - self.layer4_outconv = conv1x1(block_dims[3], block_dims[3]) - self.layer3_outconv = conv1x1(block_dims[2], block_dims[3]) - self.layer3_outconv2 = nn.Sequential( - conv3x3(block_dims[3], block_dims[3]), - nn.BatchNorm2d(block_dims[3]), - nn.LeakyReLU(), - conv3x3(block_dims[3], block_dims[2]), - ) - - self.layer2_outconv = conv1x1(block_dims[1], block_dims[2]) - self.layer2_outconv2 = nn.Sequential( - conv3x3(block_dims[2], block_dims[2]), - nn.BatchNorm2d(block_dims[2]), - nn.LeakyReLU(), - conv3x3(block_dims[2], block_dims[1]), - ) - - for m in self.modules(): - if isinstance(m, nn.Conv2d): - nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') - elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): - nn.init.constant_(m.weight, 1) - nn.init.constant_(m.bias, 0) - - def _make_layer(self, block, dim, stride=1): - layer1 = block(self.in_planes, dim, stride=stride) - layer2 = block(dim, dim, stride=1) - layers = (layer1, layer2) - - self.in_planes = dim - return nn.Sequential(*layers) - - def forward(self, x): - # ResNet Backbone - x0 = self.relu(self.bn1(self.conv1(x))) - x1 = self.layer1(x0) # 1/2 - x2 = self.layer2(x1) # 1/4 - x3 = self.layer3(x2) # 1/8 - x4 = self.layer4(x3) # 1/16 - - # FPN - x4_out = self.layer4_outconv(x4) - - x4_out_2x = F.interpolate(x4_out, scale_factor=2., mode='bilinear', align_corners=True) - x3_out = self.layer3_outconv(x3) - x3_out = self.layer3_outconv2(x3_out+x4_out_2x) - - x3_out_2x = F.interpolate(x3_out, scale_factor=2., mode='bilinear', align_corners=True) - x2_out = self.layer2_outconv(x2) - x2_out = self.layer2_outconv2(x2_out+x3_out_2x) - - return [x4_out, x2_out] diff --git a/One-2-3-45-master 2/elevation_estimate/loftr/loftr.py b/One-2-3-45-master 2/elevation_estimate/loftr/loftr.py deleted file mode 100644 index 79c491ee47a4d67cb8b3fe493397349e0867accd..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/elevation_estimate/loftr/loftr.py +++ /dev/null @@ -1,81 +0,0 @@ -import torch -import torch.nn as nn -from einops.einops import rearrange - -from .backbone import build_backbone -from .utils.position_encoding import PositionEncodingSine -from .loftr_module import LocalFeatureTransformer, FinePreprocess -from .utils.coarse_matching import CoarseMatching -from .utils.fine_matching import FineMatching - - -class LoFTR(nn.Module): - def __init__(self, config): - super().__init__() - # Misc - self.config = config - - # Modules - self.backbone = build_backbone(config) - self.pos_encoding = PositionEncodingSine( - config['coarse']['d_model'], - temp_bug_fix=config['coarse']['temp_bug_fix']) - self.loftr_coarse = LocalFeatureTransformer(config['coarse']) - self.coarse_matching = CoarseMatching(config['match_coarse']) - self.fine_preprocess = FinePreprocess(config) - self.loftr_fine = LocalFeatureTransformer(config["fine"]) - self.fine_matching = FineMatching() - - def forward(self, data): - """ - Update: - data (dict): { - 'image0': (torch.Tensor): (N, 1, H, W) - 'image1': (torch.Tensor): (N, 1, H, W) - 'mask0'(optional) : (torch.Tensor): (N, H, W) '0' indicates a padded position - 'mask1'(optional) : (torch.Tensor): (N, H, W) - } - """ - # 1. Local Feature CNN - data.update({ - 'bs': data['image0'].size(0), - 'hw0_i': data['image0'].shape[2:], 'hw1_i': data['image1'].shape[2:] - }) - - if data['hw0_i'] == data['hw1_i']: # faster & better BN convergence - feats_c, feats_f = self.backbone(torch.cat([data['image0'], data['image1']], dim=0)) - (feat_c0, feat_c1), (feat_f0, feat_f1) = feats_c.split(data['bs']), feats_f.split(data['bs']) - else: # handle different input shapes - (feat_c0, feat_f0), (feat_c1, feat_f1) = self.backbone(data['image0']), self.backbone(data['image1']) - - data.update({ - 'hw0_c': feat_c0.shape[2:], 'hw1_c': feat_c1.shape[2:], - 'hw0_f': feat_f0.shape[2:], 'hw1_f': feat_f1.shape[2:] - }) - - # 2. coarse-level loftr module - # add featmap with positional encoding, then flatten it to sequence [N, HW, C] - feat_c0 = rearrange(self.pos_encoding(feat_c0), 'n c h w -> n (h w) c') - feat_c1 = rearrange(self.pos_encoding(feat_c1), 'n c h w -> n (h w) c') - - mask_c0 = mask_c1 = None # mask is useful in training - if 'mask0' in data: - mask_c0, mask_c1 = data['mask0'].flatten(-2), data['mask1'].flatten(-2) - feat_c0, feat_c1 = self.loftr_coarse(feat_c0, feat_c1, mask_c0, mask_c1) - - # 3. match coarse-level - self.coarse_matching(feat_c0, feat_c1, data, mask_c0=mask_c0, mask_c1=mask_c1) - - # 4. fine-level refinement - feat_f0_unfold, feat_f1_unfold = self.fine_preprocess(feat_f0, feat_f1, feat_c0, feat_c1, data) - if feat_f0_unfold.size(0) != 0: # at least one coarse level predicted - feat_f0_unfold, feat_f1_unfold = self.loftr_fine(feat_f0_unfold, feat_f1_unfold) - - # 5. match fine-level - self.fine_matching(feat_f0_unfold, feat_f1_unfold, data) - - def load_state_dict(self, state_dict, *args, **kwargs): - for k in list(state_dict.keys()): - if k.startswith('matcher.'): - state_dict[k.replace('matcher.', '', 1)] = state_dict.pop(k) - return super().load_state_dict(state_dict, *args, **kwargs) diff --git a/One-2-3-45-master 2/elevation_estimate/loftr/loftr_module/__init__.py b/One-2-3-45-master 2/elevation_estimate/loftr/loftr_module/__init__.py deleted file mode 100644 index ca51db4f50a0c4f3dcd795e74b83e633ab2e990a..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/elevation_estimate/loftr/loftr_module/__init__.py +++ /dev/null @@ -1,2 +0,0 @@ -from .transformer import LocalFeatureTransformer -from .fine_preprocess import FinePreprocess diff --git a/One-2-3-45-master 2/elevation_estimate/loftr/loftr_module/fine_preprocess.py b/One-2-3-45-master 2/elevation_estimate/loftr/loftr_module/fine_preprocess.py deleted file mode 100644 index 5bb8eefd362240a9901a335f0e6e07770ff04567..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/elevation_estimate/loftr/loftr_module/fine_preprocess.py +++ /dev/null @@ -1,59 +0,0 @@ -import torch -import torch.nn as nn -import torch.nn.functional as F -from einops.einops import rearrange, repeat - - -class FinePreprocess(nn.Module): - def __init__(self, config): - super().__init__() - - self.config = config - self.cat_c_feat = config['fine_concat_coarse_feat'] - self.W = self.config['fine_window_size'] - - d_model_c = self.config['coarse']['d_model'] - d_model_f = self.config['fine']['d_model'] - self.d_model_f = d_model_f - if self.cat_c_feat: - self.down_proj = nn.Linear(d_model_c, d_model_f, bias=True) - self.merge_feat = nn.Linear(2*d_model_f, d_model_f, bias=True) - - self._reset_parameters() - - def _reset_parameters(self): - for p in self.parameters(): - if p.dim() > 1: - nn.init.kaiming_normal_(p, mode="fan_out", nonlinearity="relu") - - def forward(self, feat_f0, feat_f1, feat_c0, feat_c1, data): - W = self.W - stride = data['hw0_f'][0] // data['hw0_c'][0] - - data.update({'W': W}) - if data['b_ids'].shape[0] == 0: - feat0 = torch.empty(0, self.W**2, self.d_model_f, device=feat_f0.device) - feat1 = torch.empty(0, self.W**2, self.d_model_f, device=feat_f0.device) - return feat0, feat1 - - # 1. unfold(crop) all local windows - feat_f0_unfold = F.unfold(feat_f0, kernel_size=(W, W), stride=stride, padding=W//2) - feat_f0_unfold = rearrange(feat_f0_unfold, 'n (c ww) l -> n l ww c', ww=W**2) - feat_f1_unfold = F.unfold(feat_f1, kernel_size=(W, W), stride=stride, padding=W//2) - feat_f1_unfold = rearrange(feat_f1_unfold, 'n (c ww) l -> n l ww c', ww=W**2) - - # 2. select only the predicted matches - feat_f0_unfold = feat_f0_unfold[data['b_ids'], data['i_ids']] # [n, ww, cf] - feat_f1_unfold = feat_f1_unfold[data['b_ids'], data['j_ids']] - - # option: use coarse-level loftr feature as context: concat and linear - if self.cat_c_feat: - feat_c_win = self.down_proj(torch.cat([feat_c0[data['b_ids'], data['i_ids']], - feat_c1[data['b_ids'], data['j_ids']]], 0)) # [2n, c] - feat_cf_win = self.merge_feat(torch.cat([ - torch.cat([feat_f0_unfold, feat_f1_unfold], 0), # [2n, ww, cf] - repeat(feat_c_win, 'n c -> n ww c', ww=W**2), # [2n, ww, cf] - ], -1)) - feat_f0_unfold, feat_f1_unfold = torch.chunk(feat_cf_win, 2, dim=0) - - return feat_f0_unfold, feat_f1_unfold diff --git a/One-2-3-45-master 2/elevation_estimate/loftr/loftr_module/linear_attention.py b/One-2-3-45-master 2/elevation_estimate/loftr/loftr_module/linear_attention.py deleted file mode 100644 index b73c5a6a6a722a44c0b68f70cb77c0988b8a5fb3..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/elevation_estimate/loftr/loftr_module/linear_attention.py +++ /dev/null @@ -1,81 +0,0 @@ -""" -Linear Transformer proposed in "Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention" -Modified from: https://github.com/idiap/fast-transformers/blob/master/fast_transformers/attention/linear_attention.py -""" - -import torch -from torch.nn import Module, Dropout - - -def elu_feature_map(x): - return torch.nn.functional.elu(x) + 1 - - -class LinearAttention(Module): - def __init__(self, eps=1e-6): - super().__init__() - self.feature_map = elu_feature_map - self.eps = eps - - def forward(self, queries, keys, values, q_mask=None, kv_mask=None): - """ Multi-Head linear attention proposed in "Transformers are RNNs" - Args: - queries: [N, L, H, D] - keys: [N, S, H, D] - values: [N, S, H, D] - q_mask: [N, L] - kv_mask: [N, S] - Returns: - queried_values: (N, L, H, D) - """ - Q = self.feature_map(queries) - K = self.feature_map(keys) - - # set padded position to zero - if q_mask is not None: - Q = Q * q_mask[:, :, None, None] - if kv_mask is not None: - K = K * kv_mask[:, :, None, None] - values = values * kv_mask[:, :, None, None] - - v_length = values.size(1) - values = values / v_length # prevent fp16 overflow - KV = torch.einsum("nshd,nshv->nhdv", K, values) # (S,D)' @ S,V - Z = 1 / (torch.einsum("nlhd,nhd->nlh", Q, K.sum(dim=1)) + self.eps) - queried_values = torch.einsum("nlhd,nhdv,nlh->nlhv", Q, KV, Z) * v_length - - return queried_values.contiguous() - - -class FullAttention(Module): - def __init__(self, use_dropout=False, attention_dropout=0.1): - super().__init__() - self.use_dropout = use_dropout - self.dropout = Dropout(attention_dropout) - - def forward(self, queries, keys, values, q_mask=None, kv_mask=None): - """ Multi-head scaled dot-product attention, a.k.a full attention. - Args: - queries: [N, L, H, D] - keys: [N, S, H, D] - values: [N, S, H, D] - q_mask: [N, L] - kv_mask: [N, S] - Returns: - queried_values: (N, L, H, D) - """ - - # Compute the unnormalized attention and apply the masks - QK = torch.einsum("nlhd,nshd->nlsh", queries, keys) - if kv_mask is not None: - QK.masked_fill_(~(q_mask[:, :, None, None] * kv_mask[:, None, :, None]), float('-inf')) - - # Compute the attention and the weighted average - softmax_temp = 1. / queries.size(3)**.5 # sqrt(D) - A = torch.softmax(softmax_temp * QK, dim=2) - if self.use_dropout: - A = self.dropout(A) - - queried_values = torch.einsum("nlsh,nshd->nlhd", A, values) - - return queried_values.contiguous() diff --git a/One-2-3-45-master 2/elevation_estimate/loftr/loftr_module/transformer.py b/One-2-3-45-master 2/elevation_estimate/loftr/loftr_module/transformer.py deleted file mode 100644 index d79390ca08953bbef44e98149e662a681a16e42e..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/elevation_estimate/loftr/loftr_module/transformer.py +++ /dev/null @@ -1,101 +0,0 @@ -import copy -import torch -import torch.nn as nn -from .linear_attention import LinearAttention, FullAttention - - -class LoFTREncoderLayer(nn.Module): - def __init__(self, - d_model, - nhead, - attention='linear'): - super(LoFTREncoderLayer, self).__init__() - - self.dim = d_model // nhead - self.nhead = nhead - - # multi-head attention - self.q_proj = nn.Linear(d_model, d_model, bias=False) - self.k_proj = nn.Linear(d_model, d_model, bias=False) - self.v_proj = nn.Linear(d_model, d_model, bias=False) - self.attention = LinearAttention() if attention == 'linear' else FullAttention() - self.merge = nn.Linear(d_model, d_model, bias=False) - - # feed-forward network - self.mlp = nn.Sequential( - nn.Linear(d_model*2, d_model*2, bias=False), - nn.ReLU(True), - nn.Linear(d_model*2, d_model, bias=False), - ) - - # norm and dropout - self.norm1 = nn.LayerNorm(d_model) - self.norm2 = nn.LayerNorm(d_model) - - def forward(self, x, source, x_mask=None, source_mask=None): - """ - Args: - x (torch.Tensor): [N, L, C] - source (torch.Tensor): [N, S, C] - x_mask (torch.Tensor): [N, L] (optional) - source_mask (torch.Tensor): [N, S] (optional) - """ - bs = x.size(0) - query, key, value = x, source, source - - # multi-head attention - query = self.q_proj(query).view(bs, -1, self.nhead, self.dim) # [N, L, (H, D)] - key = self.k_proj(key).view(bs, -1, self.nhead, self.dim) # [N, S, (H, D)] - value = self.v_proj(value).view(bs, -1, self.nhead, self.dim) - message = self.attention(query, key, value, q_mask=x_mask, kv_mask=source_mask) # [N, L, (H, D)] - message = self.merge(message.view(bs, -1, self.nhead*self.dim)) # [N, L, C] - message = self.norm1(message) - - # feed-forward network - message = self.mlp(torch.cat([x, message], dim=2)) - message = self.norm2(message) - - return x + message - - -class LocalFeatureTransformer(nn.Module): - """A Local Feature Transformer (LoFTR) module.""" - - def __init__(self, config): - super(LocalFeatureTransformer, self).__init__() - - self.config = config - self.d_model = config['d_model'] - self.nhead = config['nhead'] - self.layer_names = config['layer_names'] - encoder_layer = LoFTREncoderLayer(config['d_model'], config['nhead'], config['attention']) - self.layers = nn.ModuleList([copy.deepcopy(encoder_layer) for _ in range(len(self.layer_names))]) - self._reset_parameters() - - def _reset_parameters(self): - for p in self.parameters(): - if p.dim() > 1: - nn.init.xavier_uniform_(p) - - def forward(self, feat0, feat1, mask0=None, mask1=None): - """ - Args: - feat0 (torch.Tensor): [N, L, C] - feat1 (torch.Tensor): [N, S, C] - mask0 (torch.Tensor): [N, L] (optional) - mask1 (torch.Tensor): [N, S] (optional) - """ - - assert self.d_model == feat0.size(2), "the feature number of src and transformer must be equal" - - for layer, name in zip(self.layers, self.layer_names): - if name == 'self': - feat0 = layer(feat0, feat0, mask0, mask0) - feat1 = layer(feat1, feat1, mask1, mask1) - elif name == 'cross': - feat0 = layer(feat0, feat1, mask0, mask1) - feat1 = layer(feat1, feat0, mask1, mask0) - else: - raise KeyError - - return feat0, feat1 diff --git a/One-2-3-45-master 2/elevation_estimate/loftr/utils/coarse_matching.py b/One-2-3-45-master 2/elevation_estimate/loftr/utils/coarse_matching.py deleted file mode 100644 index a97263339462dec3af9705d33d6ee634e2f46914..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/elevation_estimate/loftr/utils/coarse_matching.py +++ /dev/null @@ -1,261 +0,0 @@ -import torch -import torch.nn as nn -import torch.nn.functional as F -from einops.einops import rearrange - -INF = 1e9 - -def mask_border(m, b: int, v): - """ Mask borders with value - Args: - m (torch.Tensor): [N, H0, W0, H1, W1] - b (int) - v (m.dtype) - """ - if b <= 0: - return - - m[:, :b] = v - m[:, :, :b] = v - m[:, :, :, :b] = v - m[:, :, :, :, :b] = v - m[:, -b:] = v - m[:, :, -b:] = v - m[:, :, :, -b:] = v - m[:, :, :, :, -b:] = v - - -def mask_border_with_padding(m, bd, v, p_m0, p_m1): - if bd <= 0: - return - - m[:, :bd] = v - m[:, :, :bd] = v - m[:, :, :, :bd] = v - m[:, :, :, :, :bd] = v - - h0s, w0s = p_m0.sum(1).max(-1)[0].int(), p_m0.sum(-1).max(-1)[0].int() - h1s, w1s = p_m1.sum(1).max(-1)[0].int(), p_m1.sum(-1).max(-1)[0].int() - for b_idx, (h0, w0, h1, w1) in enumerate(zip(h0s, w0s, h1s, w1s)): - m[b_idx, h0 - bd:] = v - m[b_idx, :, w0 - bd:] = v - m[b_idx, :, :, h1 - bd:] = v - m[b_idx, :, :, :, w1 - bd:] = v - - -def compute_max_candidates(p_m0, p_m1): - """Compute the max candidates of all pairs within a batch - - Args: - p_m0, p_m1 (torch.Tensor): padded masks - """ - h0s, w0s = p_m0.sum(1).max(-1)[0], p_m0.sum(-1).max(-1)[0] - h1s, w1s = p_m1.sum(1).max(-1)[0], p_m1.sum(-1).max(-1)[0] - max_cand = torch.sum( - torch.min(torch.stack([h0s * w0s, h1s * w1s], -1), -1)[0]) - return max_cand - - -class CoarseMatching(nn.Module): - def __init__(self, config): - super().__init__() - self.config = config - # general config - self.thr = config['thr'] - self.border_rm = config['border_rm'] - # -- # for trainig fine-level LoFTR - self.train_coarse_percent = config['train_coarse_percent'] - self.train_pad_num_gt_min = config['train_pad_num_gt_min'] - - # we provide 2 options for differentiable matching - self.match_type = config['match_type'] - if self.match_type == 'dual_softmax': - self.temperature = config['dsmax_temperature'] - elif self.match_type == 'sinkhorn': - try: - from .superglue import log_optimal_transport - except ImportError: - raise ImportError("download superglue.py first!") - self.log_optimal_transport = log_optimal_transport - self.bin_score = nn.Parameter( - torch.tensor(config['skh_init_bin_score'], requires_grad=True)) - self.skh_iters = config['skh_iters'] - self.skh_prefilter = config['skh_prefilter'] - else: - raise NotImplementedError() - - def forward(self, feat_c0, feat_c1, data, mask_c0=None, mask_c1=None): - """ - Args: - feat0 (torch.Tensor): [N, L, C] - feat1 (torch.Tensor): [N, S, C] - data (dict) - mask_c0 (torch.Tensor): [N, L] (optional) - mask_c1 (torch.Tensor): [N, S] (optional) - Update: - data (dict): { - 'b_ids' (torch.Tensor): [M'], - 'i_ids' (torch.Tensor): [M'], - 'j_ids' (torch.Tensor): [M'], - 'gt_mask' (torch.Tensor): [M'], - 'mkpts0_c' (torch.Tensor): [M, 2], - 'mkpts1_c' (torch.Tensor): [M, 2], - 'mconf' (torch.Tensor): [M]} - NOTE: M' != M during training. - """ - N, L, S, C = feat_c0.size(0), feat_c0.size(1), feat_c1.size(1), feat_c0.size(2) - - # normalize - feat_c0, feat_c1 = map(lambda feat: feat / feat.shape[-1]**.5, - [feat_c0, feat_c1]) - - if self.match_type == 'dual_softmax': - sim_matrix = torch.einsum("nlc,nsc->nls", feat_c0, - feat_c1) / self.temperature - if mask_c0 is not None: - sim_matrix.masked_fill_( - ~(mask_c0[..., None] * mask_c1[:, None]).bool(), - -INF) - conf_matrix = F.softmax(sim_matrix, 1) * F.softmax(sim_matrix, 2) - - elif self.match_type == 'sinkhorn': - # sinkhorn, dustbin included - sim_matrix = torch.einsum("nlc,nsc->nls", feat_c0, feat_c1) - if mask_c0 is not None: - sim_matrix[:, :L, :S].masked_fill_( - ~(mask_c0[..., None] * mask_c1[:, None]).bool(), - -INF) - - # build uniform prior & use sinkhorn - log_assign_matrix = self.log_optimal_transport( - sim_matrix, self.bin_score, self.skh_iters) - assign_matrix = log_assign_matrix.exp() - conf_matrix = assign_matrix[:, :-1, :-1] - - # filter prediction with dustbin score (only in evaluation mode) - if not self.training and self.skh_prefilter: - filter0 = (assign_matrix.max(dim=2)[1] == S)[:, :-1] # [N, L] - filter1 = (assign_matrix.max(dim=1)[1] == L)[:, :-1] # [N, S] - conf_matrix[filter0[..., None].repeat(1, 1, S)] = 0 - conf_matrix[filter1[:, None].repeat(1, L, 1)] = 0 - - if self.config['sparse_spvs']: - data.update({'conf_matrix_with_bin': assign_matrix.clone()}) - - data.update({'conf_matrix': conf_matrix}) - - # predict coarse matches from conf_matrix - data.update(**self.get_coarse_match(conf_matrix, data)) - - @torch.no_grad() - def get_coarse_match(self, conf_matrix, data): - """ - Args: - conf_matrix (torch.Tensor): [N, L, S] - data (dict): with keys ['hw0_i', 'hw1_i', 'hw0_c', 'hw1_c'] - Returns: - coarse_matches (dict): { - 'b_ids' (torch.Tensor): [M'], - 'i_ids' (torch.Tensor): [M'], - 'j_ids' (torch.Tensor): [M'], - 'gt_mask' (torch.Tensor): [M'], - 'm_bids' (torch.Tensor): [M], - 'mkpts0_c' (torch.Tensor): [M, 2], - 'mkpts1_c' (torch.Tensor): [M, 2], - 'mconf' (torch.Tensor): [M]} - """ - axes_lengths = { - 'h0c': data['hw0_c'][0], - 'w0c': data['hw0_c'][1], - 'h1c': data['hw1_c'][0], - 'w1c': data['hw1_c'][1] - } - _device = conf_matrix.device - # 1. confidence thresholding - mask = conf_matrix > self.thr - mask = rearrange(mask, 'b (h0c w0c) (h1c w1c) -> b h0c w0c h1c w1c', - **axes_lengths) - if 'mask0' not in data: - mask_border(mask, self.border_rm, False) - else: - mask_border_with_padding(mask, self.border_rm, False, - data['mask0'], data['mask1']) - mask = rearrange(mask, 'b h0c w0c h1c w1c -> b (h0c w0c) (h1c w1c)', - **axes_lengths) - - # 2. mutual nearest - mask = mask \ - * (conf_matrix == conf_matrix.max(dim=2, keepdim=True)[0]) \ - * (conf_matrix == conf_matrix.max(dim=1, keepdim=True)[0]) - - # 3. find all valid coarse matches - # this only works when at most one `True` in each row - mask_v, all_j_ids = mask.max(dim=2) - b_ids, i_ids = torch.where(mask_v) - j_ids = all_j_ids[b_ids, i_ids] - mconf = conf_matrix[b_ids, i_ids, j_ids] - - # 4. Random sampling of training samples for fine-level LoFTR - # (optional) pad samples with gt coarse-level matches - if self.training: - # NOTE: - # The sampling is performed across all pairs in a batch without manually balancing - # #samples for fine-level increases w.r.t. batch_size - if 'mask0' not in data: - num_candidates_max = mask.size(0) * max( - mask.size(1), mask.size(2)) - else: - num_candidates_max = compute_max_candidates( - data['mask0'], data['mask1']) - num_matches_train = int(num_candidates_max * - self.train_coarse_percent) - num_matches_pred = len(b_ids) - assert self.train_pad_num_gt_min < num_matches_train, "min-num-gt-pad should be less than num-train-matches" - - # pred_indices is to select from prediction - if num_matches_pred <= num_matches_train - self.train_pad_num_gt_min: - pred_indices = torch.arange(num_matches_pred, device=_device) - else: - pred_indices = torch.randint( - num_matches_pred, - (num_matches_train - self.train_pad_num_gt_min, ), - device=_device) - - # gt_pad_indices is to select from gt padding. e.g. max(3787-4800, 200) - gt_pad_indices = torch.randint( - len(data['spv_b_ids']), - (max(num_matches_train - num_matches_pred, - self.train_pad_num_gt_min), ), - device=_device) - mconf_gt = torch.zeros(len(data['spv_b_ids']), device=_device) # set conf of gt paddings to all zero - - b_ids, i_ids, j_ids, mconf = map( - lambda x, y: torch.cat([x[pred_indices], y[gt_pad_indices]], - dim=0), - *zip([b_ids, data['spv_b_ids']], [i_ids, data['spv_i_ids']], - [j_ids, data['spv_j_ids']], [mconf, mconf_gt])) - - # These matches select patches that feed into fine-level network - coarse_matches = {'b_ids': b_ids, 'i_ids': i_ids, 'j_ids': j_ids} - - # 4. Update with matches in original image resolution - scale = data['hw0_i'][0] / data['hw0_c'][0] - scale0 = scale * data['scale0'][b_ids] if 'scale0' in data else scale - scale1 = scale * data['scale1'][b_ids] if 'scale1' in data else scale - mkpts0_c = torch.stack( - [i_ids % data['hw0_c'][1], i_ids // data['hw0_c'][1]], - dim=1) * scale0 - mkpts1_c = torch.stack( - [j_ids % data['hw1_c'][1], j_ids // data['hw1_c'][1]], - dim=1) * scale1 - - # These matches is the current prediction (for visualization) - coarse_matches.update({ - 'gt_mask': mconf == 0, - 'm_bids': b_ids[mconf != 0], # mconf == 0 => gt matches - 'mkpts0_c': mkpts0_c[mconf != 0], - 'mkpts1_c': mkpts1_c[mconf != 0], - 'mconf': mconf[mconf != 0] - }) - - return coarse_matches diff --git a/One-2-3-45-master 2/elevation_estimate/loftr/utils/cvpr_ds_config.py b/One-2-3-45-master 2/elevation_estimate/loftr/utils/cvpr_ds_config.py deleted file mode 100644 index 1c9ce70154d3a1b961d3b4f08897415720f451f8..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/elevation_estimate/loftr/utils/cvpr_ds_config.py +++ /dev/null @@ -1,50 +0,0 @@ -from yacs.config import CfgNode as CN - - -def lower_config(yacs_cfg): - if not isinstance(yacs_cfg, CN): - return yacs_cfg - return {k.lower(): lower_config(v) for k, v in yacs_cfg.items()} - - -_CN = CN() -_CN.BACKBONE_TYPE = 'ResNetFPN' -_CN.RESOLUTION = (8, 2) # options: [(8, 2), (16, 4)] -_CN.FINE_WINDOW_SIZE = 5 # window_size in fine_level, must be odd -_CN.FINE_CONCAT_COARSE_FEAT = True - -# 1. LoFTR-backbone (local feature CNN) config -_CN.RESNETFPN = CN() -_CN.RESNETFPN.INITIAL_DIM = 128 -_CN.RESNETFPN.BLOCK_DIMS = [128, 196, 256] # s1, s2, s3 - -# 2. LoFTR-coarse module config -_CN.COARSE = CN() -_CN.COARSE.D_MODEL = 256 -_CN.COARSE.D_FFN = 256 -_CN.COARSE.NHEAD = 8 -_CN.COARSE.LAYER_NAMES = ['self', 'cross'] * 4 -_CN.COARSE.ATTENTION = 'linear' # options: ['linear', 'full'] -_CN.COARSE.TEMP_BUG_FIX = False - -# 3. Coarse-Matching config -_CN.MATCH_COARSE = CN() -_CN.MATCH_COARSE.THR = 0.2 -_CN.MATCH_COARSE.BORDER_RM = 2 -_CN.MATCH_COARSE.MATCH_TYPE = 'dual_softmax' # options: ['dual_softmax, 'sinkhorn'] -_CN.MATCH_COARSE.DSMAX_TEMPERATURE = 0.1 -_CN.MATCH_COARSE.SKH_ITERS = 3 -_CN.MATCH_COARSE.SKH_INIT_BIN_SCORE = 1.0 -_CN.MATCH_COARSE.SKH_PREFILTER = True -_CN.MATCH_COARSE.TRAIN_COARSE_PERCENT = 0.4 # training tricks: save GPU memory -_CN.MATCH_COARSE.TRAIN_PAD_NUM_GT_MIN = 200 # training tricks: avoid DDP deadlock - -# 4. LoFTR-fine module config -_CN.FINE = CN() -_CN.FINE.D_MODEL = 128 -_CN.FINE.D_FFN = 128 -_CN.FINE.NHEAD = 8 -_CN.FINE.LAYER_NAMES = ['self', 'cross'] * 1 -_CN.FINE.ATTENTION = 'linear' - -default_cfg = lower_config(_CN) diff --git a/One-2-3-45-master 2/elevation_estimate/loftr/utils/fine_matching.py b/One-2-3-45-master 2/elevation_estimate/loftr/utils/fine_matching.py deleted file mode 100644 index 6e77aded52e1eb5c01e22c2738104f3b09d6922a..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/elevation_estimate/loftr/utils/fine_matching.py +++ /dev/null @@ -1,74 +0,0 @@ -import math -import torch -import torch.nn as nn - -from kornia.geometry.subpix import dsnt -from kornia.utils.grid import create_meshgrid - - -class FineMatching(nn.Module): - """FineMatching with s2d paradigm""" - - def __init__(self): - super().__init__() - - def forward(self, feat_f0, feat_f1, data): - """ - Args: - feat0 (torch.Tensor): [M, WW, C] - feat1 (torch.Tensor): [M, WW, C] - data (dict) - Update: - data (dict):{ - 'expec_f' (torch.Tensor): [M, 3], - 'mkpts0_f' (torch.Tensor): [M, 2], - 'mkpts1_f' (torch.Tensor): [M, 2]} - """ - M, WW, C = feat_f0.shape - W = int(math.sqrt(WW)) - scale = data['hw0_i'][0] / data['hw0_f'][0] - self.M, self.W, self.WW, self.C, self.scale = M, W, WW, C, scale - - # corner case: if no coarse matches found - if M == 0: - assert self.training == False, "M is always >0, when training, see coarse_matching.py" - # logger.warning('No matches found in coarse-level.') - data.update({ - 'expec_f': torch.empty(0, 3, device=feat_f0.device), - 'mkpts0_f': data['mkpts0_c'], - 'mkpts1_f': data['mkpts1_c'], - }) - return - - feat_f0_picked = feat_f0_picked = feat_f0[:, WW//2, :] - sim_matrix = torch.einsum('mc,mrc->mr', feat_f0_picked, feat_f1) - softmax_temp = 1. / C**.5 - heatmap = torch.softmax(softmax_temp * sim_matrix, dim=1).view(-1, W, W) - - # compute coordinates from heatmap - coords_normalized = dsnt.spatial_expectation2d(heatmap[None], True)[0] # [M, 2] - grid_normalized = create_meshgrid(W, W, True, heatmap.device).reshape(1, -1, 2) # [1, WW, 2] - - # compute std over - var = torch.sum(grid_normalized**2 * heatmap.view(-1, WW, 1), dim=1) - coords_normalized**2 # [M, 2] - std = torch.sum(torch.sqrt(torch.clamp(var, min=1e-10)), -1) # [M] clamp needed for numerical stability - - # for fine-level supervision - data.update({'expec_f': torch.cat([coords_normalized, std.unsqueeze(1)], -1)}) - - # compute absolute kpt coords - self.get_fine_match(coords_normalized, data) - - @torch.no_grad() - def get_fine_match(self, coords_normed, data): - W, WW, C, scale = self.W, self.WW, self.C, self.scale - - # mkpts0_f and mkpts1_f - mkpts0_f = data['mkpts0_c'] - scale1 = scale * data['scale1'][data['b_ids']] if 'scale0' in data else scale - mkpts1_f = data['mkpts1_c'] + (coords_normed * (W // 2) * scale1)[:len(data['mconf'])] - - data.update({ - "mkpts0_f": mkpts0_f, - "mkpts1_f": mkpts1_f - }) diff --git a/One-2-3-45-master 2/elevation_estimate/loftr/utils/geometry.py b/One-2-3-45-master 2/elevation_estimate/loftr/utils/geometry.py deleted file mode 100644 index f95cdb65b48324c4f4ceb20231b1bed992b41116..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/elevation_estimate/loftr/utils/geometry.py +++ /dev/null @@ -1,54 +0,0 @@ -import torch - - -@torch.no_grad() -def warp_kpts(kpts0, depth0, depth1, T_0to1, K0, K1): - """ Warp kpts0 from I0 to I1 with depth, K and Rt - Also check covisibility and depth consistency. - Depth is consistent if relative error < 0.2 (hard-coded). - - Args: - kpts0 (torch.Tensor): [N, L, 2] - , - depth0 (torch.Tensor): [N, H, W], - depth1 (torch.Tensor): [N, H, W], - T_0to1 (torch.Tensor): [N, 3, 4], - K0 (torch.Tensor): [N, 3, 3], - K1 (torch.Tensor): [N, 3, 3], - Returns: - calculable_mask (torch.Tensor): [N, L] - warped_keypoints0 (torch.Tensor): [N, L, 2] - """ - kpts0_long = kpts0.round().long() - - # Sample depth, get calculable_mask on depth != 0 - kpts0_depth = torch.stack( - [depth0[i, kpts0_long[i, :, 1], kpts0_long[i, :, 0]] for i in range(kpts0.shape[0])], dim=0 - ) # (N, L) - nonzero_mask = kpts0_depth != 0 - - # Unproject - kpts0_h = torch.cat([kpts0, torch.ones_like(kpts0[:, :, [0]])], dim=-1) * kpts0_depth[..., None] # (N, L, 3) - kpts0_cam = K0.inverse() @ kpts0_h.transpose(2, 1) # (N, 3, L) - - # Rigid Transform - w_kpts0_cam = T_0to1[:, :3, :3] @ kpts0_cam + T_0to1[:, :3, [3]] # (N, 3, L) - w_kpts0_depth_computed = w_kpts0_cam[:, 2, :] - - # Project - w_kpts0_h = (K1 @ w_kpts0_cam).transpose(2, 1) # (N, L, 3) - w_kpts0 = w_kpts0_h[:, :, :2] / (w_kpts0_h[:, :, [2]] + 1e-4) # (N, L, 2), +1e-4 to avoid zero depth - - # Covisible Check - h, w = depth1.shape[1:3] - covisible_mask = (w_kpts0[:, :, 0] > 0) * (w_kpts0[:, :, 0] < w-1) * \ - (w_kpts0[:, :, 1] > 0) * (w_kpts0[:, :, 1] < h-1) - w_kpts0_long = w_kpts0.long() - w_kpts0_long[~covisible_mask, :] = 0 - - w_kpts0_depth = torch.stack( - [depth1[i, w_kpts0_long[i, :, 1], w_kpts0_long[i, :, 0]] for i in range(w_kpts0_long.shape[0])], dim=0 - ) # (N, L) - consistent_mask = ((w_kpts0_depth - w_kpts0_depth_computed) / w_kpts0_depth).abs() < 0.2 - valid_mask = nonzero_mask * covisible_mask * consistent_mask - - return valid_mask, w_kpts0 diff --git a/One-2-3-45-master 2/elevation_estimate/loftr/utils/position_encoding.py b/One-2-3-45-master 2/elevation_estimate/loftr/utils/position_encoding.py deleted file mode 100644 index 732d28c814ef93bf48d338ba7554f6dcfc3b880e..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/elevation_estimate/loftr/utils/position_encoding.py +++ /dev/null @@ -1,42 +0,0 @@ -import math -import torch -from torch import nn - - -class PositionEncodingSine(nn.Module): - """ - This is a sinusoidal position encoding that generalized to 2-dimensional images - """ - - def __init__(self, d_model, max_shape=(256, 256), temp_bug_fix=True): - """ - Args: - max_shape (tuple): for 1/8 featmap, the max length of 256 corresponds to 2048 pixels - temp_bug_fix (bool): As noted in this [issue](https://github.com/zju3dv/LoFTR/issues/41), - the original implementation of LoFTR includes a bug in the pos-enc impl, which has little impact - on the final performance. For now, we keep both impls for backward compatability. - We will remove the buggy impl after re-training all variants of our released models. - """ - super().__init__() - - pe = torch.zeros((d_model, *max_shape)) - y_position = torch.ones(max_shape).cumsum(0).float().unsqueeze(0) - x_position = torch.ones(max_shape).cumsum(1).float().unsqueeze(0) - if temp_bug_fix: - div_term = torch.exp(torch.arange(0, d_model//2, 2).float() * (-math.log(10000.0) / (d_model//2))) - else: # a buggy implementation (for backward compatability only) - div_term = torch.exp(torch.arange(0, d_model//2, 2).float() * (-math.log(10000.0) / d_model//2)) - div_term = div_term[:, None, None] # [C//4, 1, 1] - pe[0::4, :, :] = torch.sin(x_position * div_term) - pe[1::4, :, :] = torch.cos(x_position * div_term) - pe[2::4, :, :] = torch.sin(y_position * div_term) - pe[3::4, :, :] = torch.cos(y_position * div_term) - - self.register_buffer('pe', pe.unsqueeze(0), persistent=False) # [1, C, H, W] - - def forward(self, x): - """ - Args: - x: [N, C, H, W] - """ - return x + self.pe[:, :, :x.size(2), :x.size(3)] diff --git a/One-2-3-45-master 2/elevation_estimate/loftr/utils/supervision.py b/One-2-3-45-master 2/elevation_estimate/loftr/utils/supervision.py deleted file mode 100644 index 8ce6e79ec72b45fcb6b187e33bda93a47b168acd..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/elevation_estimate/loftr/utils/supervision.py +++ /dev/null @@ -1,151 +0,0 @@ -from math import log -from loguru import logger - -import torch -from einops import repeat -from kornia.utils import create_meshgrid - -from .geometry import warp_kpts - -############## ↓ Coarse-Level supervision ↓ ############## - - -@torch.no_grad() -def mask_pts_at_padded_regions(grid_pt, mask): - """For megadepth dataset, zero-padding exists in images""" - mask = repeat(mask, 'n h w -> n (h w) c', c=2) - grid_pt[~mask.bool()] = 0 - return grid_pt - - -@torch.no_grad() -def spvs_coarse(data, config): - """ - Update: - data (dict): { - "conf_matrix_gt": [N, hw0, hw1], - 'spv_b_ids': [M] - 'spv_i_ids': [M] - 'spv_j_ids': [M] - 'spv_w_pt0_i': [N, hw0, 2], in original image resolution - 'spv_pt1_i': [N, hw1, 2], in original image resolution - } - - NOTE: - - for scannet dataset, there're 3 kinds of resolution {i, c, f} - - for megadepth dataset, there're 4 kinds of resolution {i, i_resize, c, f} - """ - # 1. misc - device = data['image0'].device - N, _, H0, W0 = data['image0'].shape - _, _, H1, W1 = data['image1'].shape - scale = config['LOFTR']['RESOLUTION'][0] - scale0 = scale * data['scale0'][:, None] if 'scale0' in data else scale - scale1 = scale * data['scale1'][:, None] if 'scale0' in data else scale - h0, w0, h1, w1 = map(lambda x: x // scale, [H0, W0, H1, W1]) - - # 2. warp grids - # create kpts in meshgrid and resize them to image resolution - grid_pt0_c = create_meshgrid(h0, w0, False, device).reshape(1, h0*w0, 2).repeat(N, 1, 1) # [N, hw, 2] - grid_pt0_i = scale0 * grid_pt0_c - grid_pt1_c = create_meshgrid(h1, w1, False, device).reshape(1, h1*w1, 2).repeat(N, 1, 1) - grid_pt1_i = scale1 * grid_pt1_c - - # mask padded region to (0, 0), so no need to manually mask conf_matrix_gt - if 'mask0' in data: - grid_pt0_i = mask_pts_at_padded_regions(grid_pt0_i, data['mask0']) - grid_pt1_i = mask_pts_at_padded_regions(grid_pt1_i, data['mask1']) - - # warp kpts bi-directionally and resize them to coarse-level resolution - # (no depth consistency check, since it leads to worse results experimentally) - # (unhandled edge case: points with 0-depth will be warped to the left-up corner) - _, w_pt0_i = warp_kpts(grid_pt0_i, data['depth0'], data['depth1'], data['T_0to1'], data['K0'], data['K1']) - _, w_pt1_i = warp_kpts(grid_pt1_i, data['depth1'], data['depth0'], data['T_1to0'], data['K1'], data['K0']) - w_pt0_c = w_pt0_i / scale1 - w_pt1_c = w_pt1_i / scale0 - - # 3. check if mutual nearest neighbor - w_pt0_c_round = w_pt0_c[:, :, :].round().long() - nearest_index1 = w_pt0_c_round[..., 0] + w_pt0_c_round[..., 1] * w1 - w_pt1_c_round = w_pt1_c[:, :, :].round().long() - nearest_index0 = w_pt1_c_round[..., 0] + w_pt1_c_round[..., 1] * w0 - - # corner case: out of boundary - def out_bound_mask(pt, w, h): - return (pt[..., 0] < 0) + (pt[..., 0] >= w) + (pt[..., 1] < 0) + (pt[..., 1] >= h) - nearest_index1[out_bound_mask(w_pt0_c_round, w1, h1)] = 0 - nearest_index0[out_bound_mask(w_pt1_c_round, w0, h0)] = 0 - - loop_back = torch.stack([nearest_index0[_b][_i] for _b, _i in enumerate(nearest_index1)], dim=0) - correct_0to1 = loop_back == torch.arange(h0*w0, device=device)[None].repeat(N, 1) - correct_0to1[:, 0] = False # ignore the top-left corner - - # 4. construct a gt conf_matrix - conf_matrix_gt = torch.zeros(N, h0*w0, h1*w1, device=device) - b_ids, i_ids = torch.where(correct_0to1 != 0) - j_ids = nearest_index1[b_ids, i_ids] - - conf_matrix_gt[b_ids, i_ids, j_ids] = 1 - data.update({'conf_matrix_gt': conf_matrix_gt}) - - # 5. save coarse matches(gt) for training fine level - if len(b_ids) == 0: - logger.warning(f"No groundtruth coarse match found for: {data['pair_names']}") - # this won't affect fine-level loss calculation - b_ids = torch.tensor([0], device=device) - i_ids = torch.tensor([0], device=device) - j_ids = torch.tensor([0], device=device) - - data.update({ - 'spv_b_ids': b_ids, - 'spv_i_ids': i_ids, - 'spv_j_ids': j_ids - }) - - # 6. save intermediate results (for fast fine-level computation) - data.update({ - 'spv_w_pt0_i': w_pt0_i, - 'spv_pt1_i': grid_pt1_i - }) - - -def compute_supervision_coarse(data, config): - assert len(set(data['dataset_name'])) == 1, "Do not support mixed datasets training!" - data_source = data['dataset_name'][0] - if data_source.lower() in ['scannet', 'megadepth']: - spvs_coarse(data, config) - else: - raise ValueError(f'Unknown data source: {data_source}') - - -############## ↓ Fine-Level supervision ↓ ############## - -@torch.no_grad() -def spvs_fine(data, config): - """ - Update: - data (dict):{ - "expec_f_gt": [M, 2]} - """ - # 1. misc - # w_pt0_i, pt1_i = data.pop('spv_w_pt0_i'), data.pop('spv_pt1_i') - w_pt0_i, pt1_i = data['spv_w_pt0_i'], data['spv_pt1_i'] - scale = config['LOFTR']['RESOLUTION'][1] - radius = config['LOFTR']['FINE_WINDOW_SIZE'] // 2 - - # 2. get coarse prediction - b_ids, i_ids, j_ids = data['b_ids'], data['i_ids'], data['j_ids'] - - # 3. compute gt - scale = scale * data['scale1'][b_ids] if 'scale0' in data else scale - # `expec_f_gt` might exceed the window, i.e. abs(*) > 1, which would be filtered later - expec_f_gt = (w_pt0_i[b_ids, i_ids] - pt1_i[b_ids, j_ids]) / scale / radius # [M, 2] - data.update({"expec_f_gt": expec_f_gt}) - - -def compute_supervision_fine(data, config): - data_source = data['dataset_name'][0] - if data_source.lower() in ['scannet', 'megadepth']: - spvs_fine(data, config) - else: - raise NotImplementedError diff --git a/One-2-3-45-master 2/elevation_estimate/pyproject.toml b/One-2-3-45-master 2/elevation_estimate/pyproject.toml deleted file mode 100644 index c54f1206ba6bf53530400613847e41b75ec1625e..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/elevation_estimate/pyproject.toml +++ /dev/null @@ -1,7 +0,0 @@ -[project] -name = "elevation_estimate" -version = "0.1" - -[tool.setuptools.packages.find] -exclude = ["configs", "tests"] # empty by default -namespaces = false # true by default \ No newline at end of file diff --git a/One-2-3-45-master 2/elevation_estimate/utils/__init__.py b/One-2-3-45-master 2/elevation_estimate/utils/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/One-2-3-45-master 2/elevation_estimate/utils/elev_est_api.py b/One-2-3-45-master 2/elevation_estimate/utils/elev_est_api.py deleted file mode 100644 index e4f788f2cfc43b300d233d9d3519887080bed062..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/elevation_estimate/utils/elev_est_api.py +++ /dev/null @@ -1,205 +0,0 @@ -import os -import cv2 -import numpy as np -import os.path as osp -import imageio -from copy import deepcopy - -import loguru -import torch -import matplotlib.cm as cm -import matplotlib.pyplot as plt - -from ..loftr import LoFTR, default_cfg -from . import plt_utils -from .plotting import make_matching_figure -from .utils3d import rect_to_img, canonical_to_camera, calc_pose - - -class ElevEstHelper: - _feature_matcher = None - - @classmethod - def get_feature_matcher(cls): - if cls._feature_matcher is None: - loguru.logger.info("Loading feature matcher...") - _default_cfg = deepcopy(default_cfg) - _default_cfg['coarse']['temp_bug_fix'] = True # set to False when using the old ckpt - matcher = LoFTR(config=_default_cfg) - current_dir = os.path.dirname(os.path.abspath(__file__)) - ckpt_path = os.path.join(current_dir, "weights/indoor_ds_new.ckpt") - if not osp.exists(ckpt_path): - loguru.logger.info("Downloading feature matcher...") - os.makedirs("weights", exist_ok=True) - import gdown - gdown.cached_download(url="https://drive.google.com/uc?id=19s3QvcCWQ6g-N1PrYlDCg-2mOJZ3kkgS", - path=ckpt_path) - matcher.load_state_dict(torch.load(ckpt_path)['state_dict']) - matcher = matcher.eval().cuda() - cls._feature_matcher = matcher - return cls._feature_matcher - - -def mask_out_bkgd(img_path, dbg=False): - img = imageio.imread_v2(img_path) - if img.shape[-1] == 4: - fg_mask = img[:, :, :3] - else: - loguru.logger.info("Image has no alpha channel, using thresholding to mask out background") - fg_mask = ~(img > 245).all(axis=-1) - if dbg: - plt.imshow(plt_utils.vis_mask(img, fg_mask.astype(np.uint8), color=[0, 255, 0])) - plt.show() - return fg_mask - - -def get_feature_matching(img_paths, dbg=False): - assert len(img_paths) == 4 - matcher = ElevEstHelper.get_feature_matcher() - feature_matching = {} - masks = [] - for i in range(4): - mask = mask_out_bkgd(img_paths[i], dbg=dbg) - masks.append(mask) - for i in range(0, 4): - for j in range(i + 1, 4): - img0_pth = img_paths[i] - img1_pth = img_paths[j] - mask0 = masks[i] - mask1 = masks[j] - img0_raw = cv2.imread(img0_pth, cv2.IMREAD_GRAYSCALE) - img1_raw = cv2.imread(img1_pth, cv2.IMREAD_GRAYSCALE) - original_shape = img0_raw.shape - img0_raw_resized = cv2.resize(img0_raw, (480, 480)) - img1_raw_resized = cv2.resize(img1_raw, (480, 480)) - - img0 = torch.from_numpy(img0_raw_resized)[None][None].cuda() / 255. - img1 = torch.from_numpy(img1_raw_resized)[None][None].cuda() / 255. - batch = {'image0': img0, 'image1': img1} - - # Inference with LoFTR and get prediction - with torch.no_grad(): - matcher(batch) - mkpts0 = batch['mkpts0_f'].cpu().numpy() - mkpts1 = batch['mkpts1_f'].cpu().numpy() - mconf = batch['mconf'].cpu().numpy() - mkpts0[:, 0] = mkpts0[:, 0] * original_shape[1] / 480 - mkpts0[:, 1] = mkpts0[:, 1] * original_shape[0] / 480 - mkpts1[:, 0] = mkpts1[:, 0] * original_shape[1] / 480 - mkpts1[:, 1] = mkpts1[:, 1] * original_shape[0] / 480 - keep0 = mask0[mkpts0[:, 1].astype(int), mkpts1[:, 0].astype(int)] - keep1 = mask1[mkpts1[:, 1].astype(int), mkpts1[:, 0].astype(int)] - keep = np.logical_and(keep0, keep1) - mkpts0 = mkpts0[keep] - mkpts1 = mkpts1[keep] - mconf = mconf[keep] - if dbg: - # Draw visualization - color = cm.jet(mconf) - text = [ - 'LoFTR', - 'Matches: {}'.format(len(mkpts0)), - ] - fig = make_matching_figure(img0_raw, img1_raw, mkpts0, mkpts1, color, text=text) - fig.show() - feature_matching[f"{i}_{j}"] = np.concatenate([mkpts0, mkpts1, mconf[:, None]], axis=1) - - return feature_matching - - -def gen_pose_hypothesis(center_elevation): - elevations = np.radians( - [center_elevation, center_elevation - 10, center_elevation + 10, center_elevation, center_elevation]) # 45~120 - azimuths = np.radians([30, 30, 30, 20, 40]) - input_poses = calc_pose(elevations, azimuths, len(azimuths)) - input_poses = input_poses[1:] - input_poses[..., 1] *= -1 - input_poses[..., 2] *= -1 - return input_poses - - -def ba_error_general(K, matches, poses): - projmat0 = K @ poses[0].inverse()[:3, :4] - projmat1 = K @ poses[1].inverse()[:3, :4] - match_01 = matches[0] - pts0 = match_01[:, :2] - pts1 = match_01[:, 2:4] - Xref = cv2.triangulatePoints(projmat0.cpu().numpy(), projmat1.cpu().numpy(), - pts0.cpu().numpy().T, pts1.cpu().numpy().T) - Xref = Xref[:3] / Xref[3:] - Xref = Xref.T - Xref = torch.from_numpy(Xref).cuda().float() - reproj_error = 0 - for match, cp in zip(matches[1:], poses[2:]): - dist = (torch.norm(match_01[:, :2][:, None, :] - match[:, :2][None, :, :], dim=-1)) - if dist.numel() > 0: - # print("dist.shape", dist.shape) - m0to2_index = dist.argmin(1) - keep = dist[torch.arange(match_01.shape[0]), m0to2_index] < 1 - if keep.sum() > 0: - xref_in2 = rect_to_img(K, canonical_to_camera(Xref, cp.inverse())) - reproj_error2 = torch.norm(match[m0to2_index][keep][:, 2:4] - xref_in2[keep], dim=-1) - conf02 = match[m0to2_index][keep][:, -1] - reproj_error += (reproj_error2 * conf02).sum() / (conf02.sum()) - - return reproj_error - - -def find_optim_elev(elevs, nimgs, matches, K, dbg=False): - errs = [] - for elev in elevs: - err = 0 - cam_poses = gen_pose_hypothesis(elev) - for start in range(nimgs - 1): - batch_matches, batch_poses = [], [] - for i in range(start, nimgs + start): - ci = i % nimgs - batch_poses.append(cam_poses[ci]) - for j in range(nimgs - 1): - key = f"{start}_{(start + j + 1) % nimgs}" - match = matches[key] - batch_matches.append(match) - err += ba_error_general(K, batch_matches, batch_poses) - errs.append(err) - errs = torch.tensor(errs) - if dbg: - plt.plot(elevs, errs) - plt.show() - optim_elev = elevs[torch.argmin(errs)].item() - return optim_elev - - -def get_elev_est(feature_matching, min_elev=30, max_elev=150, K=None, dbg=False): - flag = True - matches = {} - for i in range(4): - for j in range(i + 1, 4): - match_ij = feature_matching[f"{i}_{j}"] - if len(match_ij) == 0: - flag = False - match_ji = np.concatenate([match_ij[:, 2:4], match_ij[:, 0:2], match_ij[:, 4:5]], axis=1) - matches[f"{i}_{j}"] = torch.from_numpy(match_ij).float().cuda() - matches[f"{j}_{i}"] = torch.from_numpy(match_ji).float().cuda() - if not flag: - loguru.logger.info("0 matches, could not estimate elevation") - return None - interval = 10 - elevs = np.arange(min_elev, max_elev, interval) - optim_elev1 = find_optim_elev(elevs, 4, matches, K) - - elevs = np.arange(optim_elev1 - 10, optim_elev1 + 10, 1) - optim_elev2 = find_optim_elev(elevs, 4, matches, K) - - return optim_elev2 - - -def elev_est_api(img_paths, min_elev=30, max_elev=150, K=None, dbg=False): - feature_matching = get_feature_matching(img_paths, dbg=dbg) - if K is None: - loguru.logger.warning("K is not provided, using default K") - K = np.array([[280.0, 0, 128.0], - [0, 280.0, 128.0], - [0, 0, 1]]) - K = torch.from_numpy(K).cuda().float() - elev = get_elev_est(feature_matching, min_elev, max_elev, K, dbg=dbg) - return elev diff --git a/One-2-3-45-master 2/elevation_estimate/utils/plotting.py b/One-2-3-45-master 2/elevation_estimate/utils/plotting.py deleted file mode 100644 index 9e7ac1de4b1fb6d0cbeda2f61eca81c68a9ba423..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/elevation_estimate/utils/plotting.py +++ /dev/null @@ -1,154 +0,0 @@ -import bisect -import numpy as np -import matplotlib.pyplot as plt -import matplotlib - - -def _compute_conf_thresh(data): - dataset_name = data['dataset_name'][0].lower() - if dataset_name == 'scannet': - thr = 5e-4 - elif dataset_name == 'megadepth': - thr = 1e-4 - else: - raise ValueError(f'Unknown dataset: {dataset_name}') - return thr - - -# --- VISUALIZATION --- # - -def make_matching_figure( - img0, img1, mkpts0, mkpts1, color, - kpts0=None, kpts1=None, text=[], dpi=75, path=None): - # draw image pair - assert mkpts0.shape[0] == mkpts1.shape[0], f'mkpts0: {mkpts0.shape[0]} v.s. mkpts1: {mkpts1.shape[0]}' - fig, axes = plt.subplots(1, 2, figsize=(10, 6), dpi=dpi) - axes[0].imshow(img0, cmap='gray') - axes[1].imshow(img1, cmap='gray') - for i in range(2): # clear all frames - axes[i].get_yaxis().set_ticks([]) - axes[i].get_xaxis().set_ticks([]) - for spine in axes[i].spines.values(): - spine.set_visible(False) - plt.tight_layout(pad=1) - - if kpts0 is not None: - assert kpts1 is not None - axes[0].scatter(kpts0[:, 0], kpts0[:, 1], c='w', s=2) - axes[1].scatter(kpts1[:, 0], kpts1[:, 1], c='w', s=2) - - # draw matches - if mkpts0.shape[0] != 0 and mkpts1.shape[0] != 0: - fig.canvas.draw() - transFigure = fig.transFigure.inverted() - fkpts0 = transFigure.transform(axes[0].transData.transform(mkpts0)) - fkpts1 = transFigure.transform(axes[1].transData.transform(mkpts1)) - fig.lines = [matplotlib.lines.Line2D((fkpts0[i, 0], fkpts1[i, 0]), - (fkpts0[i, 1], fkpts1[i, 1]), - transform=fig.transFigure, c=color[i], linewidth=1) - for i in range(len(mkpts0))] - - axes[0].scatter(mkpts0[:, 0], mkpts0[:, 1], c=color, s=4) - axes[1].scatter(mkpts1[:, 0], mkpts1[:, 1], c=color, s=4) - - # put txts - txt_color = 'k' if img0[:100, :200].mean() > 200 else 'w' - fig.text( - 0.01, 0.99, '\n'.join(text), transform=fig.axes[0].transAxes, - fontsize=15, va='top', ha='left', color=txt_color) - - # save or return figure - if path: - plt.savefig(str(path), bbox_inches='tight', pad_inches=0) - plt.close() - else: - return fig - - -def _make_evaluation_figure(data, b_id, alpha='dynamic'): - b_mask = data['m_bids'] == b_id - conf_thr = _compute_conf_thresh(data) - - img0 = (data['image0'][b_id][0].cpu().numpy() * 255).round().astype(np.int32) - img1 = (data['image1'][b_id][0].cpu().numpy() * 255).round().astype(np.int32) - kpts0 = data['mkpts0_f'][b_mask].cpu().numpy() - kpts1 = data['mkpts1_f'][b_mask].cpu().numpy() - - # for megadepth, we visualize matches on the resized image - if 'scale0' in data: - kpts0 = kpts0 / data['scale0'][b_id].cpu().numpy()[[1, 0]] - kpts1 = kpts1 / data['scale1'][b_id].cpu().numpy()[[1, 0]] - - epi_errs = data['epi_errs'][b_mask].cpu().numpy() - correct_mask = epi_errs < conf_thr - precision = np.mean(correct_mask) if len(correct_mask) > 0 else 0 - n_correct = np.sum(correct_mask) - n_gt_matches = int(data['conf_matrix_gt'][b_id].sum().cpu()) - recall = 0 if n_gt_matches == 0 else n_correct / (n_gt_matches) - # recall might be larger than 1, since the calculation of conf_matrix_gt - # uses groundtruth depths and camera poses, but epipolar distance is used here. - - # matching info - if alpha == 'dynamic': - alpha = dynamic_alpha(len(correct_mask)) - color = error_colormap(epi_errs, conf_thr, alpha=alpha) - - text = [ - f'#Matches {len(kpts0)}', - f'Precision({conf_thr:.2e}) ({100 * precision:.1f}%): {n_correct}/{len(kpts0)}', - f'Recall({conf_thr:.2e}) ({100 * recall:.1f}%): {n_correct}/{n_gt_matches}' - ] - - # make the figure - figure = make_matching_figure(img0, img1, kpts0, kpts1, - color, text=text) - return figure - -def _make_confidence_figure(data, b_id): - # TODO: Implement confidence figure - raise NotImplementedError() - - -def make_matching_figures(data, config, mode='evaluation'): - """ Make matching figures for a batch. - - Args: - data (Dict): a batch updated by PL_LoFTR. - config (Dict): matcher config - Returns: - figures (Dict[str, List[plt.figure]] - """ - assert mode in ['evaluation', 'confidence'] # 'confidence' - figures = {mode: []} - for b_id in range(data['image0'].size(0)): - if mode == 'evaluation': - fig = _make_evaluation_figure( - data, b_id, - alpha=config.TRAINER.PLOT_MATCHES_ALPHA) - elif mode == 'confidence': - fig = _make_confidence_figure(data, b_id) - else: - raise ValueError(f'Unknown plot mode: {mode}') - figures[mode].append(fig) - return figures - - -def dynamic_alpha(n_matches, - milestones=[0, 300, 1000, 2000], - alphas=[1.0, 0.8, 0.4, 0.2]): - if n_matches == 0: - return 1.0 - ranges = list(zip(alphas, alphas[1:] + [None])) - loc = bisect.bisect_right(milestones, n_matches) - 1 - _range = ranges[loc] - if _range[1] is None: - return _range[0] - return _range[1] + (milestones[loc + 1] - n_matches) / ( - milestones[loc + 1] - milestones[loc]) * (_range[0] - _range[1]) - - -def error_colormap(err, thr, alpha=1.0): - assert alpha <= 1.0 and alpha > 0, f"Invaid alpha value: {alpha}" - x = 1 - np.clip(err / (thr * 2), 0, 1) - return np.clip( - np.stack([2-x*2, x*2, np.zeros_like(x), np.ones_like(x)*alpha], -1), 0, 1) diff --git a/One-2-3-45-master 2/elevation_estimate/utils/plt_utils.py b/One-2-3-45-master 2/elevation_estimate/utils/plt_utils.py deleted file mode 100644 index 92353edab179de9f702633a01e123e94403bd83f..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/elevation_estimate/utils/plt_utils.py +++ /dev/null @@ -1,318 +0,0 @@ -import os.path as osp -import os -import matplotlib.pyplot as plt -import torch -import cv2 -import math - -import numpy as np -import tqdm -from cv2 import findContours -from dl_ext.primitive import safe_zip -from dl_ext.timer import EvalTime - - -def plot_confidence(confidence): - n = len(confidence) - plt.plot(np.arange(n), confidence) - plt.show() - - -def image_grid( - images, - rows=None, - cols=None, - fill: bool = True, - show_axes: bool = False, - rgb=None, - show=True, - label=None, - **kwargs -): - """ - A util function for plotting a grid of images. - Args: - images: (N, H, W, 4) array of RGBA images - rows: number of rows in the grid - cols: number of columns in the grid - fill: boolean indicating if the space between images should be filled - show_axes: boolean indicating if the axes of the plots should be visible - rgb: boolean, If True, only RGB channels are plotted. - If False, only the alpha channel is plotted. - Returns: - None - """ - evaltime = EvalTime(disable=True) - evaltime('') - if isinstance(images, torch.Tensor): - images = images.detach().cpu() - if len(images[0].shape) == 2: - rgb = False - if images[0].shape[-1] == 2: - # flow - images = [flow_to_image(im) for im in images] - if (rows is None) != (cols is None): - raise ValueError("Specify either both rows and cols or neither.") - - if rows is None: - rows = int(len(images) ** 0.5) - cols = math.ceil(len(images) / rows) - - gridspec_kw = {"wspace": 0.0, "hspace": 0.0} if fill else {} - if len(images) < 50: - figsize = (10, 10) - else: - figsize = (15, 15) - evaltime('0.5') - plt.figure(figsize=figsize) - # fig, axarr = plt.subplots(rows, cols, gridspec_kw=gridspec_kw, figsize=figsize) - if label: - # fig.suptitle(label, fontsize=30) - plt.suptitle(label, fontsize=30) - # bleed = 0 - # fig.subplots_adjust(left=bleed, bottom=bleed, right=(1 - bleed), top=(1 - bleed)) - evaltime('subplots') - - # for i, (ax, im) in enumerate(tqdm.tqdm(zip(axarr.ravel(), images), leave=True, total=len(images))): - for i in range(len(images)): - # evaltime(f'{i} begin') - plt.subplot(rows, cols, i + 1) - if rgb: - # only render RGB channels - plt.imshow(images[i][..., :3], **kwargs) - # ax.imshow(im[..., :3], **kwargs) - else: - # only render Alpha channel - plt.imshow(images[i], **kwargs) - # ax.imshow(im, **kwargs) - if not show_axes: - plt.axis('off') - # ax.set_axis_off() - # ax.set_title(f'{i}') - plt.title(f'{i}') - # evaltime(f'{i} end') - evaltime('2') - if show: - plt.show() - # return fig - - -def depth_grid( - depths, - rows=None, - cols=None, - fill: bool = True, - show_axes: bool = False, -): - """ - A util function for plotting a grid of images. - Args: - images: (N, H, W, 4) array of RGBA images - rows: number of rows in the grid - cols: number of columns in the grid - fill: boolean indicating if the space between images should be filled - show_axes: boolean indicating if the axes of the plots should be visible - rgb: boolean, If True, only RGB channels are plotted. - If False, only the alpha channel is plotted. - Returns: - None - """ - if (rows is None) != (cols is None): - raise ValueError("Specify either both rows and cols or neither.") - - if rows is None: - rows = len(depths) - cols = 1 - - gridspec_kw = {"wspace": 0.0, "hspace": 0.0} if fill else {} - fig, axarr = plt.subplots(rows, cols, gridspec_kw=gridspec_kw, figsize=(15, 9)) - bleed = 0 - fig.subplots_adjust(left=bleed, bottom=bleed, right=(1 - bleed), top=(1 - bleed)) - - for ax, im in zip(axarr.ravel(), depths): - ax.imshow(im) - if not show_axes: - ax.set_axis_off() - plt.show() - - -def hover_masks_on_imgs(images, masks): - masks = np.array(masks) - new_imgs = [] - tids = list(range(1, masks.max() + 1)) - colors = colormap(rgb=True, lighten=True) - for im, mask in tqdm.tqdm(safe_zip(images, masks), total=len(images)): - for tid in tids: - im = vis_mask( - im, - (mask == tid).astype(np.uint8), - color=colors[tid], - alpha=0.5, - border_alpha=0.5, - border_color=[255, 255, 255], - border_thick=3) - new_imgs.append(im) - return new_imgs - - -def vis_mask(img, - mask, - color=[255, 255, 255], - alpha=0.4, - show_border=True, - border_alpha=0.5, - border_thick=1, - border_color=None): - """Visualizes a single binary mask.""" - if isinstance(mask, torch.Tensor): - from anypose.utils.pn_utils import to_array - mask = to_array(mask > 0).astype(np.uint8) - img = img.astype(np.float32) - idx = np.nonzero(mask) - - img[idx[0], idx[1], :] *= 1.0 - alpha - img[idx[0], idx[1], :] += [alpha * x for x in color] - - if show_border: - contours, _ = findContours( - mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) - # contours = [c for c in contours if c.shape[0] > 10] - if border_color is None: - border_color = color - if not isinstance(border_color, list): - border_color = border_color.tolist() - if border_alpha < 1: - with_border = img.copy() - cv2.drawContours(with_border, contours, -1, border_color, - border_thick, cv2.LINE_AA) - img = (1 - border_alpha) * img + border_alpha * with_border - else: - cv2.drawContours(img, contours, -1, border_color, border_thick, - cv2.LINE_AA) - - return img.astype(np.uint8) - - -def colormap(rgb=False, lighten=True): - """Copied from Detectron codebase.""" - color_list = np.array( - [ - 0.000, 0.447, 0.741, - 0.850, 0.325, 0.098, - 0.929, 0.694, 0.125, - 0.494, 0.184, 0.556, - 0.466, 0.674, 0.188, - 0.301, 0.745, 0.933, - 0.635, 0.078, 0.184, - 0.300, 0.300, 0.300, - 0.600, 0.600, 0.600, - 1.000, 0.000, 0.000, - 1.000, 0.500, 0.000, - 0.749, 0.749, 0.000, - 0.000, 1.000, 0.000, - 0.000, 0.000, 1.000, - 0.667, 0.000, 1.000, - 0.333, 0.333, 0.000, - 0.333, 0.667, 0.000, - 0.333, 1.000, 0.000, - 0.667, 0.333, 0.000, - 0.667, 0.667, 0.000, - 0.667, 1.000, 0.000, - 1.000, 0.333, 0.000, - 1.000, 0.667, 0.000, - 1.000, 1.000, 0.000, - 0.000, 0.333, 0.500, - 0.000, 0.667, 0.500, - 0.000, 1.000, 0.500, - 0.333, 0.000, 0.500, - 0.333, 0.333, 0.500, - 0.333, 0.667, 0.500, - 0.333, 1.000, 0.500, - 0.667, 0.000, 0.500, - 0.667, 0.333, 0.500, - 0.667, 0.667, 0.500, - 0.667, 1.000, 0.500, - 1.000, 0.000, 0.500, - 1.000, 0.333, 0.500, - 1.000, 0.667, 0.500, - 1.000, 1.000, 0.500, - 0.000, 0.333, 1.000, - 0.000, 0.667, 1.000, - 0.000, 1.000, 1.000, - 0.333, 0.000, 1.000, - 0.333, 0.333, 1.000, - 0.333, 0.667, 1.000, - 0.333, 1.000, 1.000, - 0.667, 0.000, 1.000, - 0.667, 0.333, 1.000, - 0.667, 0.667, 1.000, - 0.667, 1.000, 1.000, - 1.000, 0.000, 1.000, - 1.000, 0.333, 1.000, - 1.000, 0.667, 1.000, - 0.167, 0.000, 0.000, - 0.333, 0.000, 0.000, - 0.500, 0.000, 0.000, - 0.667, 0.000, 0.000, - 0.833, 0.000, 0.000, - 1.000, 0.000, 0.000, - 0.000, 0.167, 0.000, - 0.000, 0.333, 0.000, - 0.000, 0.500, 0.000, - 0.000, 0.667, 0.000, - 0.000, 0.833, 0.000, - 0.000, 1.000, 0.000, - 0.000, 0.000, 0.167, - 0.000, 0.000, 0.333, - 0.000, 0.000, 0.500, - 0.000, 0.000, 0.667, - 0.000, 0.000, 0.833, - 0.000, 0.000, 1.000, - 0.000, 0.000, 0.000, - 0.143, 0.143, 0.143, - 0.286, 0.286, 0.286, - 0.429, 0.429, 0.429, - 0.571, 0.571, 0.571, - 0.714, 0.714, 0.714, - 0.857, 0.857, 0.857, - 1.000, 1.000, 1.000 - ] - ).astype(np.float32) - color_list = color_list.reshape((-1, 3)) - if not rgb: - color_list = color_list[:, ::-1] - - if lighten: - # Make all the colors a little lighter / whiter. This is copied - # from the detectron visualization code (search for 'w_ratio'). - w_ratio = 0.4 - color_list = (color_list * (1 - w_ratio) + w_ratio) - return color_list * 255 - - -def vis_layer_mask(masks, save_path=None): - masks = torch.as_tensor(masks) - tids = masks.unique().tolist() - tids.remove(0) - for tid in tqdm.tqdm(tids): - show = save_path is None - image_grid(masks == tid, label=f'{tid}', show=show) - if save_path: - os.makedirs(osp.dirname(save_path), exist_ok=True) - plt.savefig(save_path % tid) - plt.close('all') - - -def show(x, **kwargs): - if isinstance(x, torch.Tensor): - x = x.detach().cpu() - plt.imshow(x, **kwargs) - plt.show() - - -def vis_title(rgb, text, shift_y=30): - tmp = rgb.copy() - shift_x = rgb.shape[1] // 2 - cv2.putText(tmp, text, - (shift_x, shift_y), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), thickness=2, lineType=cv2.LINE_AA) - return tmp diff --git a/One-2-3-45-master 2/elevation_estimate/utils/utils3d.py b/One-2-3-45-master 2/elevation_estimate/utils/utils3d.py deleted file mode 100644 index 9cc92fbde4143a4ed5187c989e3f98a896e7caab..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/elevation_estimate/utils/utils3d.py +++ /dev/null @@ -1,62 +0,0 @@ -import numpy as np -import torch - - -def cart_to_hom(pts): - """ - :param pts: (N, 3 or 2) - :return pts_hom: (N, 4 or 3) - """ - if isinstance(pts, np.ndarray): - pts_hom = np.concatenate((pts, np.ones([*pts.shape[:-1], 1], dtype=np.float32)), -1) - else: - ones = torch.ones([*pts.shape[:-1], 1], dtype=torch.float32, device=pts.device) - pts_hom = torch.cat((pts, ones), dim=-1) - return pts_hom - - -def hom_to_cart(pts): - return pts[..., :-1] / pts[..., -1:] - - -def canonical_to_camera(pts, pose): - pts = cart_to_hom(pts) - pts = pts @ pose.transpose(-1, -2) - pts = hom_to_cart(pts) - return pts - - -def rect_to_img(K, pts_rect): - from dl_ext.vision_ext.datasets.kitti.structures import Calibration - pts_2d_hom = pts_rect @ K.t() - pts_img = Calibration.hom_to_cart(pts_2d_hom) - return pts_img - - -def calc_pose(phis, thetas, size, radius=1.2): - import torch - def normalize(vectors): - return vectors / (torch.norm(vectors, dim=-1, keepdim=True) + 1e-10) - - device = torch.device('cuda') - thetas = torch.FloatTensor(thetas).to(device) - phis = torch.FloatTensor(phis).to(device) - - centers = torch.stack([ - radius * torch.sin(thetas) * torch.sin(phis), - -radius * torch.cos(thetas) * torch.sin(phis), - radius * torch.cos(phis), - ], dim=-1) # [B, 3] - - # lookat - forward_vector = normalize(centers).squeeze(0) - up_vector = torch.FloatTensor([0, 0, 1]).to(device).unsqueeze(0).repeat(size, 1) - right_vector = normalize(torch.cross(up_vector, forward_vector, dim=-1)) - if right_vector.pow(2).sum() < 0.01: - right_vector = torch.FloatTensor([0, 1, 0]).to(device).unsqueeze(0).repeat(size, 1) - up_vector = normalize(torch.cross(forward_vector, right_vector, dim=-1)) - - poses = torch.eye(4, dtype=torch.float, device=device).unsqueeze(0).repeat(size, 1, 1) - poses[:, :3, :3] = torch.stack((right_vector, up_vector, forward_vector), dim=-1) - poses[:, :3, 3] = centers - return poses diff --git a/One-2-3-45-master 2/elevation_estimate/utils/weights/.gitkeep b/One-2-3-45-master 2/elevation_estimate/utils/weights/.gitkeep deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/One-2-3-45-master 2/example.ipynb b/One-2-3-45-master 2/example.ipynb deleted file mode 100644 index 8100c4b4309870d799a93b7e930243cd56cc3d40..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/example.ipynb +++ /dev/null @@ -1,765 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "The cache for model files in Transformers v4.22.0 has been updated. Migrating your old cache. This is a one-time only operation. You can interrupt this and resume the migration later on by calling `transformers.utils.move_cache()`.\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "c59dab96c2f0475f85425eb03f2b71df", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "0it [00:00, ?it/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import os\n", - "import torch\n", - "from PIL import Image\n", - "from utils.zero123_utils import init_model, predict_stage1_gradio, zero123_infer\n", - "from utils.sam_utils import sam_init, sam_out_nosave\n", - "from utils.utils import pred_bbox, image_preprocess_nosave, gen_poses, image_grid, convert_mesh_format\n", - "from elevation_estimate.estimate_wild_imgs import estimate_elev\n", - "\n", - "_GPU_INDEX = 0\n", - "_HALF_PRECISION = True\n", - "_MESH_RESOLUTION = 256\n", - "# NOTE: Uncomment the following line in the docker container\n", - "# os.chdir(\"./One-2-3-45/\")\n" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "def preprocess(predictor, raw_im, lower_contrast=False):\n", - " raw_im.thumbnail([512, 512], Image.Resampling.LANCZOS)\n", - " image_sam = sam_out_nosave(predictor, raw_im.convert(\"RGB\"), pred_bbox(raw_im))\n", - " input_256 = image_preprocess_nosave(image_sam, lower_contrast=lower_contrast, rescale=True)\n", - " torch.cuda.empty_cache()\n", - " return input_256" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "def stage1_run(model, device, exp_dir,\n", - " input_im, scale, ddim_steps):\n", - " # folder to save the stage 1 images\n", - " stage1_dir = os.path.join(exp_dir, \"stage1_8\")\n", - " os.makedirs(stage1_dir, exist_ok=True)\n", - "\n", - " # stage 1: generate 4 views at the same elevation as the input\n", - " output_ims = predict_stage1_gradio(model, input_im, save_path=stage1_dir, adjust_set=list(range(4)), device=device, ddim_steps=ddim_steps, scale=scale)\n", - " \n", - " # stage 2 for the first image\n", - " # infer 4 nearby views for an image to estimate the polar angle of the input\n", - " stage2_steps = 50 # ddim_steps\n", - " zero123_infer(model, exp_dir, indices=[0], device=device, ddim_steps=stage2_steps, scale=scale)\n", - " # estimate the camera pose (elevation) of the input image.\n", - " try:\n", - " polar_angle = estimate_elev(exp_dir)\n", - " except:\n", - " print(\"Failed to estimate polar angle\")\n", - " polar_angle = 90\n", - " print(\"Estimated polar angle:\", polar_angle)\n", - " gen_poses(exp_dir, polar_angle)\n", - "\n", - " # stage 1: generate another 4 views at a different elevation\n", - " if polar_angle <= 75:\n", - " output_ims_2 = predict_stage1_gradio(model, input_im, save_path=stage1_dir, adjust_set=list(range(4,8)), device=device, ddim_steps=ddim_steps, scale=scale)\n", - " else:\n", - " output_ims_2 = predict_stage1_gradio(model, input_im, save_path=stage1_dir, adjust_set=list(range(8,12)), device=device, ddim_steps=ddim_steps, scale=scale)\n", - " torch.cuda.empty_cache()\n", - " return 90-polar_angle, output_ims+output_ims_2\n", - " \n", - "def stage2_run(model, device, exp_dir,\n", - " elev, scale, stage2_steps=50):\n", - " # stage 2 for the remaining 7 images, generate 7*4=28 views\n", - " if 90-elev <= 75:\n", - " zero123_infer(model, exp_dir, indices=list(range(1,8)), device=device, ddim_steps=stage2_steps, scale=scale)\n", - " else:\n", - " zero123_infer(model, exp_dir, indices=list(range(1,4))+list(range(8,12)), device=device, ddim_steps=stage2_steps, scale=scale)\n", - "\n", - "def reconstruct(exp_dir, output_format=\".ply\", device_idx=0):\n", - " exp_dir = os.path.abspath(exp_dir)\n", - " main_dir_path = os.path.abspath(os.path.dirname(\"./\"))\n", - " os.chdir('reconstruction/')\n", - "\n", - " bash_script = f'CUDA_VISIBLE_DEVICES={device_idx} python exp_runner_generic_blender_val.py \\\n", - " --specific_dataset_name {exp_dir} \\\n", - " --mode export_mesh \\\n", - " --conf confs/one2345_lod0_val_demo.conf \\\n", - " --resolution {_MESH_RESOLUTION}'\n", - " print(bash_script)\n", - " os.system(bash_script)\n", - " os.chdir(main_dir_path)\n", - "\n", - " ply_path = os.path.join(exp_dir, f\"mesh.ply\")\n", - " if output_format == \".ply\":\n", - " return ply_path\n", - " if output_format not in [\".obj\", \".glb\"]:\n", - " print(\"Invalid output format, must be one of .ply, .obj, .glb\")\n", - " return ply_path\n", - " return convert_mesh_format(exp_dir, output_format=output_format)" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
Instantiating LatentDiffusion...\n",
-       "
\n" - ], - "text/plain": [ - "Instantiating LatentDiffusion\u001b[33m...\u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
Loading model from zero123-xl.ckpt\n",
-       "
\n" - ], - "text/plain": [ - "Loading model from zero123-xl.ckpt\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
Global Step: 122000\n",
-       "
\n" - ], - "text/plain": [ - "Global Step: \u001b[1;36m122000\u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "LatentDiffusion: Running in eps-prediction mode\n", - "DiffusionWrapper has 859.53 M params.\n", - "Keeping EMAs of 688.\n", - "making attention of type 'vanilla' with 512 in_channels\n", - "Working with z of shape (1, 4, 32, 32) = 4096 dimensions.\n", - "making attention of type 'vanilla' with 512 in_channels\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "100%|███████████████████████████████████████| 890M/890M [00:09<00:00, 94.1MiB/s]\n" - ] - }, - { - "data": { - "text/html": [ - "
Instantiating StableDiffusionSafetyChecker...\n",
-       "
\n" - ], - "text/plain": [ - "Instantiating StableDiffusionSafetyChecker\u001b[33m...\u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "997efc0ee5c34aa988ee133a6657075b", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Downloading (…)lve/main/config.json: 0%| | 0.00/4.55k [00:00" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "shape_id = \"01_wild_hydrant\"\n", - "example_input_path = f\"./demo/demo_examples/{shape_id}.png\"\n", - "example_dir = f\"./exp/{shape_id}\"\n", - "os.makedirs(example_dir, exist_ok=True)\n", - "input_raw = Image.open(example_input_path)\n", - "# show the input image\n", - "input_raw_copy = input_raw.copy()\n", - "input_raw_copy.thumbnail((256, 256))\n", - "input_raw_copy" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Downloading data from 'https://github.com/danielgatis/rembg/releases/download/v0.0.0/u2net.onnx' to file '/root/.u2net/u2net.onnx'.\n", - "100%|████████████████████████████████████████| 176M/176M [00:00<00:00, 134GB/s]\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "SAM Time: 1.887s\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQAAAAEACAIAAADTED8xAAB2SElEQVR4nOz9aaymWXLfif0j4pxnebe7Zd7Mysyqrr1X9iLuFCWKpGSLlDQjmRIwhgXByxg2DA0w9hcb9kfP2ALksQ3YHmD0xdbCkWxI4mgZjcSdFHeyt+rq7tqXrNzv+q7Pck5E+MNzu7mI3dXNrp4aZr6/QqEKVVlZ933e839OnDgR/yB3x5Ytjyr8fv8AW7a8n2wFsOWRZiuALY80WwFseaTZCmDLI81WAFseabYC2PJIsxXAlkearQC2PNJsBbDlkWYrgC2PNFsBbHmk2QpgyyPNVgBbHmm2AtjySLMVwJZHmq0AtjzSbAWw5ZFmK4AtjzRbAWx5pNkKYMsjzVYAWx5ptgLY8kizFcCWR5qtALY80mwFsOWRZiuALY80WwFseaTZCmDLI014v3+ARwZ3M/t3/zEzmxuz/Lf/E20BQFt79G8P7g4i/yPvsV/9XojovfuptvxBtgJ473FVkos3et/3QgBBU/e5X/6pKGAGETF5IFJ3B5dlvffEJ/avPOFwd3IAoBgjAMDMjEi2Mvg2sRXAe4y7EomqNcsjsvz5f/tPZtHKghk6HhWAwZWYAQEpQ9ydhfouk0Q3V+c+0zLJR7//L6lRtXNl+G3NMvM2Xn3v2QrgvefO659PiztVug9r+q51MzW4ucHdnQUMsBQguBmzSOAABnkZxdWyp1FZV1VpVG6qx0fTvYb2ZgfX3u+P9XCyFcB7hsEYfPTab+H8Zc/tcr0id4Ol1EGtrEdVXeeUAQi7O6rxRLNq7gEXljKGGGS93mhORVmFEEHYmdUo4/H9ZZw9Pnrqh2JRAQAc2EZE7w1bAbw3uKp6Pnv7czj70nqT3DSIa2pT32fNUQKHYrVp3LCzO2WiEEKIgQACUk5VWQqT5iQsQqZqxMIsDsByIV6MCqPp/bR/9cM/vD0PvIdsBfBe4A6idvGgef1f332wGI/iZFyt1+vNep66xhTOMp7Mcs7TyWTvYK/dtHBXzQCCBIkCB9wIJg4SNzPh4MyuKuQACCRM4WDnbLVbP/59VV3BebsNfOtsBfCt4u5EpKl/+Tf++RQP2PtXX3mt6+mDH32+KEZd32xWy7IeB9hqfno+T8f37+9f2nnquadGoymzmJsIEwBCIDBA5A5nCIfgRK7qpsIEAnkOu/Uqfs/k8OltIPSesE0svDd0fX/rlV+lrnnl5Td/9Rc+//0/8PFPfOrD5+cnb7760tXHHqvL4P1mcfet3/zNV05PVz/85/5kWY3MCWZMMLMQAtwBc3KYswiF0pmYyBHAGeRMLLHO8we4bMDFtvN+f+4/9mwF8N7gjtu3br7z6tuvvHT/3//L3/+DP/KD87OzzdnJ1SuXLx1eNlOqxk9/9FPPf+q7SUpQwaEAHDBhBsjNmQGAwCBAIjET4AZzI6Ig0R3QLLHStIHZdvW/J2wF8N7AjGWTP/6JJ6rZzr/8lS//1gtvfuTDT//ln/gLD04WN2+fXb8yi0VpLBZrUCR3AkBOTmARJiKHO7MwCwwgwM0BwPniZsxgmlKKEXH++W7vmbIebzeBb52tAN4b1KBcLzfnP/crr/ziF+48tV//xb/4IzHoT/2T//q//jcv/Knvffo//J//xM7uQUou4iCAmMAkRMRM4sgMI5DDmcgcw5WZMJm7w61PXNdeMqjJ9kwZS8BA21rGb5WtAL5l3M01xGKxSUW3/qs/+oFJifNEt+/d/bv/25/97Rdvrxv6zc+9+Tf6xIHJwcJEbO5MAoIaACXPDpA5E4yJJAqJA+ZOTFJVGZSwCf0CRTe78ixCALbZi/eArQC+JSxnDoHA7fzW9Sv7t155c7fyv/ADV6/deEzG4aU3Tu6f2biWG49fK4titWmZS2IQvAiBhXPKRRSCMTkzqzoYDmfKzNynBFew9+sz7891c16Pq7wKy2KzN9omgd4btgL4FnDnEDar8/bkjU//4j/dq8FPPnl28mDRN1etu1K1//FPPPvpF995+unrTz733PHJyahLEksQFzHO5/Nms3jsyj5IynrEDhFEgbsLo+vm49GOpjZ1J+qdd6tZicIpLU+P7Sm/XO4BaiayLaL+VtneA3xLfPYX/7/Nydvcz3/jd14A6RPX9mMpzXLeLI/3KpkEEtZyPMVoXykWEigImKt6/OnPvHp0fP7DP/zJm8dtWc8QiiLQQQXAZyNK69OiiONaCmqjr0hTu160Pe9cupGmH9Qbf+XS1ScAwBTbRoJvja0AvlkuIo++Xb3wS/+4P3ntnXfuPDg9PTtfTsfygccvSaBRwea6XCyb89PUbvZ3xvu7s/G4LAoJjIYiqBTVs01qvPJqh+PYmUIoAnSzaQ8n/XW8LWzBc59tsdxko3K8d+nKtcnsMFlc6+jUDp/5vr8qoQBs29b3rbAVwDeHu+WUXvn8vz1587fu33lnvVw1TRsi90lzWj5xba+sIjzHGGKMrrZYLZrFwlLHbgyuAzriGOO1ib9+f3WWR/VszylmVTfpm/bsbFlg8/GrfdN4qMazvWoyGl17bH//YK8INWTaNMlMpweXz/Ol6VN/UmaPA2bm256yPxrbM8A3BxGr5qM3fuvu3fupTeooqqqqy1qtabJbZhImgsOScgiX9i9j/yCn1KWu2XTrRhfrtjtPJ+e4f8bn643ELifrO1W1yFTEUOxObm3K2bR44qnp45d4py5ijG7qDpEowa235cnJqO5k9evt6evVk3+Gt3vAH5XtDvDN4e6/9q//3tm9Nzbrde4awEBEbqrKSJHW47FEiUEETEOmMjCFgChGLAZxp2ScEtzJHGZuzuTMgQNTUYSyoAKrvXEzoSQiLEUMMcYScRdhxw2uapZNGeWknE0xuXaeDncf/7hpZgkATPV3bwiGPuSLwjneXpz9AbY7wDeKqjLTL/3rn+TulGMxmsDrSnOfcnZNEoJ7pDDutRFJDhViBjucCG6q5hn4yo0vV4GMWE0IHsRABhA7iBPnvoyt930WYQkhFgQyJ5YIiVSWbE59x+4Z3je5kPu7dHb6juw//lHTHg4Oxe/+3H8gMjLDdr/4PWwF8I1C7kQSRZITE8VQqKgEkZRTFjNlpiKWQjtqa/KV5z6KMwewM7GBCcMR2gBzsFtmNxFnKDtDhAFmqjgFMQKRCLPACUQepl4cUDkmCp5b0uG6QJgltx6km+BLr7zYPP+x7wKwPHq7jmZOmvqzZZtUD2bjIFZd/hCYzYy3GvgKWwF8Q6gqM7/12hfb1SmbBSKCETGF4LEMOfapFxCxhxhFLpHvQDc5rdk6IfKhmBkgdndiZmaDOQvIYQATmJwJzMaUmUyCkLATUZjI5DEaXUU1cwbapZu5JiPismYpwUFVi4DR0adf+Zf/DaVVf/ylZ568Vj32cVx5qvJNm1LtO3DY8XKdJtPHPgxgmz4a2J4BviE0JYnxM7/2rzdHX0q9EzKB3Q1EDoZbyklTIgDwsggShAiaM6xlGEPhydAKMgFEznBmEwKBCRc1bUQeyGNAWYS6LKt6VteX4+Syl1OSwpmReqQNUpv7zkGhHEEKokBEWTVwWr/zOy//2r9arNOk7mIxPnj6u2988sfBRTY2o2Knbk7OO0z84Dv2rjyxbbTHdgf4Rhgsfrq2ye0ydUM5Q0GAw81NWODixODCLDtcAVcjQGLBMiFXJjgcmk17R3YYVAEtYEIUAgmhjBRjjEUsi7osR1U1jrEmCR4juVu7gWcyU8tw4liDmSg4GEROJCF2TTt+5gf2lvrOL/8bD1VhefHCL60WJ09//18vpvuW8/poEZhGfnr0yj8d13+tmF3fHgm2O8C7425E/PorL37hl/5hCDyqRkVVDY1bBhpK1tTgDlOTEOBKngTgIEQIzEUkcwsSmSW7uRmIxFnIglARKSCVBQkLgKocVVUZYgEnh4GIicnVNfngLcdCzMSBiN0BFhCD0Ldr8S5UxWtf+MxrL3yebF3avMJm+uR3Pf8j/2EsRqnZWNu4pUBNStpc/tP7V550Aj3CVaXbHeDdcTUKXBaFu4VQOg2SEBDB4EwXRf2AsTExiJliFAQBuRM0MIQLESKiigJLYObIAvIYOAizuwgxU2RiEWJRBdOFuZzmTEQhVmZKYGIBkbupJVBgIiLk1MENYE/67Ce/T2X01iuvLBf3hE9XNz9770u/8Pj3/LXAnIC8tk5DXrzzzp1/vf/n/1eWk4StALZ8DVSzhHB2cvTL//LvTSuBu4gM5RBB2IM4kZqbgZkiiZoLUxAO7AEAaWBheBQmYhAxUQgiEpgkFlGCMFHgQARmMOCAgxgGUjNlAocI4qF5BiKmChoaCSoz09RLEGEzbSzWBPemefK5Dy7Olzc3+Wi9eXySz778M/vPfd/48AlYPnr7JenvXZlsnrl2GcDQkPzI8uhK/xvB3UXC8YN7P/NP/vP9WYxFLMsqEAuJiLAIMwJRYCoiB2ERqaqiLEIUiFMIHIWDSFkUQUIQqaqyrOuyKIuyKKoqhMAszMxMBHZnkICIGCyBpQyhEimIAxPDAQ4gIgpmMBcKlYO8qBEL7Rber8Jo6nFkfVdGeeKpxy33583oaBPz+v7Zy78AJSHfnzQ1Fpt1F8v4fj/g95+tAP4Q3N1sMOWk4wd3f/vnfvJgIkUIo3pUlkVZlkVZxBiJiAFhDlGKGIooMYQoHIQikwhJiEVRF7FiZgrMIsISWCSEIDFG4YuEPIMuDCEMYA5EbObmIBZwcIc7HOwUHIEkSjHmcuwx0u4+wXV1F+25W09SSqyKqvSUDh974vD6BxaNnXWjTov1W7/Wnb0jHEazvfnZ+vjWiUj1fj/p959tCPQHGWxOBvOp9fL0td/6qd0KwKgoIos4WJidyAFxOCyECCJzg4OYGO5OQQITOQsLMYFBRBAJLOJuDly0AQNEAnI3cxpe8tCLOzMw6CI9igA4EZOUYHZTiFgsSTtbH/H6AbozUg9SgQQiq6aDe1VUz37oqRc+/XnVsLEpHR1P3/idax/9/s2yZaanPvWUbhtqtgL4A7hmYjbzzfzBZ37pH3t3Ro6yHk9nU7hndeYgIRDIyIerLRCE2N3Vzc0J5ORMDuKLznYnYxY4u7kBRHA3J3catARAXQlsAECkSoGZyYmc5KJ4x53YTXui6EEoxnZxivO3Kz1165iiu7oX7uCysmKyefvn+Hwz5kuTirRb0Sx2iY/f/sJjTz8TyY4frJ96al+zbitItwL4vRhJAPDpn/svF+98JuccQgRx02yWy/nBweFsZ+YGYiFQVuMggBORMBORmavmrOYwNwOcHJrNCK5gQg9nODHHogzoRQIURBRDZAqm/aApVwdHgAFzMxYhzzl1rr3pUnPjAIU6d6s6nxMp0cU1M0AE9b6d7l2tzmpd3nKparHGs1NBRGl1kjfzUixynzd9sbtd/1sBfAXVLBJefeGX0/kby1u/c36+3Nk7kCKMRuP93Uur9ebu3bvL1fLxGzdiEQ0c/aIpfXCvYgCB1MTcc+pyMrdsbu46XKRl0MX7nymkHETKsjQ3mIcQAhMzaVYiuCbuESQSiMhcG1hj/bxvFzAtAoSk6Xw8Hsc6qCIwOxMZEQypNcskJUbXfX2zoHS4V97vYWbq5Ck1y/ko2mOPTVKzvvfO7RvPvL9P/f1nKwAA0NRLLG6++DPHX/zHnlO/Wdcx56ZbL8NyXrvmG48/ee3646+9/uZLL730/PPPT6azbGAQDzE80VB1LIFg2QK38NQrXHNauWUzGF2URxMoE2WmrmMhySm5NUWQopyoWdu2go7yUvsVcwhRgiBwjpzEMgOSKecsMqrjmDQx3IffeQiV0prB3sypm7PmKmJnGjfLwGREcvPm2ZUPn1jdPbjzIDz/4YNP/XXAQI/0PrAVAACTWLz5wk/f+sw/6LqOHFGchWC9cOu6Xpz0rzTrJ558/pMf/9hbb7315S9+4Zlnnz+8es1UASYGg0kwuBeaw81R1gRYds/QnD33sDSY3Do8EwmxgZQAB7PnRH23UrOU0wiLiFa7Td/3GiKqOpbi5MQe2Nku8k5E6mlBXFCYgAYHLYd1Obt3a4bAg7qXBYpoZGZqTeN9u9BoLy2uPf+Df6ssq+HE/34///eTR10AQ23wa1/4+duf/v8szs7rumZmdwNYYhE8w52k77vj11/Nfds8+9xzVVV+6UtfikU4vHzVzAkAEzmYQO7OYlCKkQldT+ZKIPes6mr9EBGByEmMiIkIZEQpJwI5MVlL2BRVrOrLZma589xDndgBKDFJYIi7wTNCJAqDnZaZQwDV3G5S13ifSw5wDcjebVTArutNvytnXfVdP/43/9dlWQ4lHu/3N/A+86gLYHj9vfrb/78iNWUktpyzOQXlUUV1GVpNjZsGdLDF/dtvE/iDH/ogE1566UtVWe7vHbiDiOBGTkbG7hAiZkJwLwEA4kxwtT6bpWFWDAmCRMuqriCQgZjdtEAbo4CjuefU574PbBcmuczETDB3F8/sShJ9OGJTFGJ1mPZEFgMzl8gCIvO8Wsyn0zo5P/fUjMrDK9/1v5SidPft6scjLgDXTBJe+Lf/aBbX8/kGmkI1Kke7od7LGrqu8zwuY7C0NrfA2X1z5847IRTPPv+cu335iy9+13d/73Q8tWROMDJSdjhdrGhI4IjC3YmHs/Jp3/TqBIf2naYuhOhuwDBHj4I4A3CYJtPsqkIQFncDAHNiMIuaxxiYjcxA4aLPjJyIQM6m7jmGkEAcQtu0ZgqYhOKZD1w6Dc/vV/uae/m9XWOPMI/0O2AohG3O3tTNWdds2rZpKYTRdGd3Z1RLFSnn7nzZJS1ckVLLnknb27ffuX/v7lMf/sjlg0svf+lFNyUhJuaLvzAzsTOJSIjDJBiJRRHHsd4tqimLMFMIQYQBFyaGDz6IMCXAVS33Qbgoy1gUQcRBF/sMeVYHCcHg6p4BN3cfinqHX2eJcquph4ibrtcrkRAlXtktm8s/+OyP/m/cbbv6v8ojLQA1dfcY5OzouFuvWounm+6dm18+uvnpOqwnk3JnVhVRluvU5chSdG0yTbnbvPLyq/Pj449/z3dlTW++9XqMAnImF2JiIhALB2JyZ+EyFFWIXISinlbjS2U1IWEAQszkBDB5ISDq4cmdhyZiEIPC8O7nIDRcn8ElxL5Pd+4dZ1UaBmu4EoiYiYjMxDqy1vulu7Q9NeuWXHenlT/z733w3/tPsI37fz+PYgg01PkAiEUJYFoX5WR3XY5kfIlJtN/cXc43zUtXrl4fja+AItOqTymZMAVwILKzs5M3Xn/zk9+19x1/4ju/+NnPXb362Hg8NVUiEKDmxMBwQWZqguACFAq2aoeJCNZ3azcHyAlwu7iUFTZ3cxGBqjMrM4Mc5kQgcnaGGUu5szsSgptTEHC8KBYiJ0+wTvsFrFGT5Sa/dWt9+QPf8dRf/89G1z4C+0qVxZav8GgJwEwBZw5DEdqbb739+d/++Z/6h3//aEPXrl/9yLP5xpXdyd7jZTXR5uj+2Zd3upuT2XXZO+j6tu2s67UCYiCx9vbbb1y9cuWxZ5+5fv3a7Xfe/uCHP0bkTo6sRExODDgTg1Pfwy0O1UEC4RHhwE1zasxBfnG1TFAARG5cKCnTReRPZJDhppeY2YnKqg4CgMARRIDjoqHSkDfWn3F/0mctdg5SP/0r/6df2LnyRFFUGMqctvU/v59HqCPsq1m/5XL9wm//2/n8/P/6t//23bvH523uTSXGUYXv/87HvuNDT33oqQ/sHFx1qtPRb477m7tXPuFhv9O6z2b9ouDcbNbn54uDq49/5/f/6ViUL3/2d649/tTuzkyzOtwMBriZuztZ7js1E2b37JZUs2rumvPl2f2UOyJydyYnMgLgxuQMAkPIyRPDikABieEhlhyKnHU8qkbVaEinOgWm6E5mhHTiy7e6zXkYV/HyB/m5/xjjJwC4KYak65bfzyMkAAA3v/TLFa3uvfPmvTe+NK58MqmDiLndOZo/OFnfPmpefP3BJi2vXt797o8/+9iNp2Z7V5av/StuHlx68vtG+88Sx3Z5pM1Z27Rd1yfPTz3/J5795Pfcee3l85PTD3/oo9kyEZupmakPKJmru0PJsmo2y3BV7ZvNcnV+lPOGL+6IHW7kTuSBaWi5DJIZJkSRjcmFQ4yFuzNhNpkOOw1JSRTc2RRobnWnr4h367Cz84P/N9l9btv5/vV5FB6NudrxvTdvfe6/Orn3xuHBRFP/2JV6f382GVWTcRDBd/DjYIfZ8YPl0fH8dL7c2xkfHORbD748ubJb5dOiejCZPHV6ehZso9oG6h2L4H58+8uH1x+/cuPGvdu35svz2WxnqOchd4abO4ENmWHuNtzWCpM5GOJlRdPd5TKZdQDBfAiiaGhIcGdiOLP4ELcLSxAmIAT+ynAkgpmTUSA4Q/uua2HtrWV95cf+H7L7FL7iFbfla/GQP53huoeEf+tf/Gd7kwJuR8fnMDW3o9PT0Wiyv793aW9Shixuxj7bmVw6mAIJmuHoFqdv3Xz76mEd69HebtUsjhfrNSwB6t1KoLrSm69+9qPf+6OHh5fv3765O/tE9gSQA25GF2E3AIMbACEayoFAiMyoa6fdzeIkpd6yckAQGX4Nk5O7mxKTsMvgpgKIiIBYQMxEAhCGedqEnHrqz5Z+cOXP/18ml5+CZ2xX/7vxkGfEhgDvrS/8XB113bRMEDJhDwLXfrM6Pzk5u3e8TFZwHLNM+lwt23rdTtpcJ40HV5+pJpfevpXPF0Xb9ZcOL4sQIcPMSaxvvF3Mj94+vnv70o3rm/V8tTpjIZgNHe6DDoawnhhMRgQa5t6RcxDmUJX1eDxhplgGOFQVDNUEt0CIAkDdlBzsOtS8SeAgwd1BARLBPJReB/ZFV1bf959ODp9zzaDt6n93HnIBDKe+Nz7zL4sQiUBQQJmUYASYpuXy7OTk7MHJWafuVIFLUAEZedizeEDx0mPXn8se5udHy/PzIGF/f1+IyFIoCneHdrQ5P7/zGhMmuztH9+/CDWRwZShIhVQowzN5R57JM5G5mwBwD0KBMarLUV1ZzkKIgaHJcm8pqfYMYwBw8gxTUnNV10Qw0myWBsMhd0Ok855Gf/I/mV37GPyisWHLu/IwC8A1E/Fv/9xPFpL7lGCda0fWsrcRvbAOaZammc8X68Vylc1ICuLoTE6iHtWroty/8tgHTk+Oju6/1XTdzv7lqh4RnFgghat63rSLe83Zg+m4Wq3mbbMiz/BEngkJnt0TLJEpPAEZlkmTae/amK4JGfAihshgckYW6KgIMbCQwo2I4CAfAjcTZnJVTRAZUhjE5CAI3d/MpofPXlyibfnGeJif1BB9U14FdJpb8h7aE5S8J11Ha4VyYHPrzs9PTs5X89XGISFGYSFzuLGEWI73Dw7ryezB/Vvz81MOo539yxKEASlGZrC+XS8e5LSsCum65WY9J8+ek3smNzN1S+zmpmZmuU9po9p6bjxv0G8sra1fB0rTcRnEyIyZRTywhkBOMFNyIyCGEGIABkssOBGRE+kgD8AzVb5d/d8kD/XDGmzUyMkzSN2yWp+ykQRhC94GS+IaYZZXp6dHm3WjqQOULgoLMKTei2Kyf3DYt/3J/TtN104PHivqKQESAkmAqq7Pz4/fKQuMK1otzkDulH1Y+mhJO7UW3ntuXXvyXlOTmoXntWvjfeOp0dzFQiZ1HUUcaqqm2d1yVsuJQc5ERMTRSEAxFDXBYQ5nwAeDXUt5W+bwzfIwPy93U81qZk6q2ndN37d93/bqmQLFWEQTVkZmsr5Znp8dL5ZzzdlN/auD2t2KotrZvSzl9OTB7cXZMUuxu3/AwgBCWWVTazebs/tdt9rfGbebs6bbuGruNp7Xnjt4dkumPbxzbz13bL1QQt54t0BeCZmrD2WbzBC/uBTOycw1xMBMuOhcISFWzX2/oYuueQeBiBDic9//77+/D/yPIw+tAFSzxOK1V19aHL/VZ4qhiGVVlpUE6rpN26Xe4IGLgkXAZoAuFmdn56epbS7OnQA53D2EUJTT6d5jbdedHd1q+m482x+NJ0UZRSLMLadmMZ+fn+S8sfZkfX5EltwaTRtYgmdYdu0996QtWfK8odxAO4aSJpgCZGqpT25KRBc1dQDB2UxImWwwaxkSoyTxwjPFelgacqzjg2vv7zP/48hDKgD3odqn2rz02F4xHtWjUT0aj2NZFkUsYgFg0zSrpk/mVVlGYSbk3JyfHa3W82Eg10WhMYGZRGg2nVGoTu6/vVmdcqzK0TjEIhRVUY8I1m6W2q8mk1AUtJ7fz2kZkIMbtPfUUW7JE7TTfoNuhX6pufWsGHrqTU0zuUUYuRGcxMyNySNxEGIW5gAIO8GdEYJUMDgURE4GzzBDTu/zY/9jyEObLCOiz/z03ynbtzfNqgjOHLMhRoLGnHOSfkjHNx3JONbjol+uyblZz09Pj6bTSVlOzJxImRywyF6XNJ5O0/md1ck7VVFJLMuycrBpu97Mtdl06zlf2nGS9WaR2ql/ZQyLWSJXTR15oty76ZDodEMQIjJwJCNYdgyRjhLDTIOIMJux8dBsEEg4SIDrV6o/4VAYQIKhIWDLN8lDKgCinPvTW18E2LUjX+/OplU5ajtWATEVBZXRTfXkfH3rwerwYCJk6lkzn52f7+4tLu+XgLsrwYW9EIoiavzGrZPZzhu7+5fH01lu5u3ZYrM4Sin1Cav52Wq19xufufeR53YIWZOp9SLkBnJl7UwTweCZKWVzNwts7oB7ACuhVzDBTM2EKIiwDL3AxDz8jTkJhmpWhxGYmOFkULht1/8fgYdUAEAIRShG0L5LnLp03N8bj2fTnV0JYy5qUlutl03fEOWUN+fnq0qUyJxi03bz8/Od2SwIiSsIOafFYn52csyeP/IdH3/2g0/NDi5JHJ+enMznizRfdH2vVDWr9fly/tY7y2uXWJC7lAtx5EymBndTh7slaE+WxKBucDKwWwYKcyYowczhwDBnwMmiyLAviDM5AJi5Zw9V4W4YjsBm2zLnPxoPoQAGo4c3vvibAs2OpmnLYhaiHx3drwvbufHEyXnL1qhmUyO2Sc2mqdPMcA6SVVfrTd93oYxN32xWm7ZZu+crVx/78Mc+ESe7cF+fnx+/9cXNas3uKfXrJtV1ud4077ywPDltmq6a7O7EZVuIbuYPVLMjmDl7D+vIk3suyDOLOru7gxUwy+RmDnchIfPMxBcpnmEQBhkxuXuQSKEYbjlAILhd2Ipu+aZ5CAUwmJq89OmfPSikzzrd2XFzIoxnV+4dL7w6I1DOHQFBKCcDDORmrjlFihBZrddnp8c6LpumiyHuX7o6292XUG3W5ydvvHx8/879e3cOL10CsenKzPpOi0K7LpcVzdebz7+4/NBTL9++eZw259/9iasSatMebq6NkJl2qp5djOBM5pQN6pnI3YbKIQEogIfLCHMMCU9nAAQYsRDYoUQ8dAITDYNWt3zTPIQCGJjMdnWzgDsRO7m7xmLUdn27Od/b3W2NzBFEhAORuPXDra1qz1x0ff/mW28f7Iyfee5Dk9kBOZbnR/P7b53de+v47PyXfu3Vp5994sMf/ejp0XHf9b3KptOy1mB2dT+Mq2I+P0vt/cX6tDlfiu1al+GZLcEtu5FRdjKQwtzUMXSPUeoTs7iErs9FIS7sTk48DJAkOMGB7CYOgN1hcIAUEIAf1nzet5uHVgBC2YmGmmIRhsPNiqLIqbsY5+Ls7iQhsEDE3ETZcqagBuuz3b7/YDLdSZuzB7feWp/f034zXEaNJ2OpxpumdVBK3Ha5Sw5ycb40tf/RX3j6M59/6fAgfu6L+elr+1F8s1kJmTsG82gzSQ4zdSInqBqxG3HOWcogEkqmizlJICFnmHhiBALRkO0hIRanbOjpouAvwMUuKue2fBM8tALou6a6sOD3rlmzSAiROKoms0wggqtmgFLWxWI1nVQSQt/1nDsO4k6e2tuvfua8ZAZGVVXu7nTJQtPs7dU5p65XIY6BQKSGnMytt9R88rn9tNp57bWTaPbc45OUjZhStsEX1NWzK3lwc/VEUHNodmIOZWUUsroEoWEuN4MdwTMjC4XBb8Jd3RqzgsW+kvcRpggIl6PtEOxvlofwYYkIgD/xo3+j63uQi2CzXty7dzeEABY49+1GtUupTynl1G2aVd+1qoahAMiNkFl8NqkPdmZ7+/uH165P9w64qBWSwUURCd732XKnqet773pVNSZPPfreY7Q3bzc7Iy4L2my6nLKZ5+wpm4FMNeWkOQ3/uaWkgFKpwzse5Oru/pW0jjo5KCgEFFmCRECXsDWg5E4UEcYqAUwv/MJPMfNFCdSWb4yHcgcgADsH16qda2l5r+v73b39ycz61AuTJW/btiwjmRVCUNrf35/UxXrT8MVbFgSEEHZmO7s1BfZsru7qcBInZmED5ZSC66q1uydt17kaUq9kutl0p6vVptk8d2U3q3ZdjoGGDnm9mLzkWbPahaGiSkVSOwdygoPEidzUYFpEQgCInbnpw0QkFAyGax7q4DA6pHLfjKhfI+s03VrNzyc7u7bthPyGeQh3AACD7c/HfuhvzGZTBzuLSBj6dAf3NBGAAHIpCuYCHIVJs12M64KbZjd3x2DtMDTpqlFWymrM7q5tl/pkBk5qDrR9cujZ+XLR9EUVYlG0bVLzLmmTrOm9T94na7vc95r6nFKfJaCYmUSQYGgHBrkp7CtFbiBmEZFJLUVUt6QKCzWNrvnOh7D7YYu7abOiPlnTPnWgZ5//B83qmCXAFLbdCt6dh/M9Mbxci2pU7H9osvn0atPTV+YZMYu6hhDVte/VNcOMTbt12/TdbGcmwuzEjpQ1qzPc1HL2PlvXa99pzl7W7KpmKRQRxCmbucdYAHZ03r748vlygU8+edh01nQ2tICpmasTQVWzmkgI5ZjKPYQRAQYj8iCSU2JCVZbCQsLEQ202CxtxieqS04iqKWaHIPOzI2hXwmHqkGz++EFavfxPjuK1g4/9BWa+MH/cuqF8bR5aAahqUY3HVz+8vP+lKJpyIjgAEel6fevmvcm4LgK8789Pzt66+eCdO/Od3eLJUJZlxcxEYlk1ZXXOZpot9Tnn1HR91+Xd3chEZ6vu86+e3r23GkdrOnMCSf3lm/Nf//yinXc//r1XnrpRrptOyDGMghkmT4IkRi5GFPeA6KYkcuGhBfIoMRQcopNAQBIRS1STUO1yuZtR0HBAblYXzWWAU+USGEZMfWuT2E34Lf3yP7hH169+5EcBwAxEWxn8oTycAgAgElz18Wc+1q2O/dWf15XCspqTsJncfvvtnZ06JX/tjQd37i96RRkDBzRtUgvqEgkMTckcpOp9yqm3lNL5+bLrtSzEkf/hz7z+s7926wOX48efGDWJvng7PfZU+PnfuPPk1cmf+rNP7Exofr5JuR88C7MpAyIUYxmqKceRmpJmcoqBYxWz8SaRcQESAgkcDA01Jtek3skchgYHMgd7ZHEECmNyhal7zKROzkLqTkZCq6vTW+nWr2L2ZJxdBwAzbBNE/w4PrQAAkIi7PffJH/7pL/xSHaTtMxOR581q3rXpC7dPXn9ndTpvLu+NQ2B3EhEi6ZQYoYCTavKUdYj7ddP0i3Xz4HilRlUlx8fzF169bxyySZBYldXly5d+6wtvf+cz9Q//iX2gW602qsMIGAOc2YsYiqIO1Rg8bDIAk3patXrzbj7bFDeuHcL0+q7FURQupBxLnEBGXVaGiQxTaBgg88hRPCc1Z2Jn41AMfZfZVVWbpusfnD12+ZzOP4frP9DapergcZiCGduyod/DwywAXBig23f80H/whZ/9zwtCNjua9w9O2uOVLbs4GVXTSQ2g6/rpOO7MagkBTmaU1JRzzta3Zu590lXT3X2wunN/8eT1vSrGz3zp3nK5GdUyqqQeldNxSO3Z7bfPfux7Ls/ni7ZTIlfTrCbko5JjUVb1SGLFoeYQQTGBzfls0f/Ki2c0uvbcE/WkcnGvxxMPEWHkoQaJulrmMhRtn90RY2DmlDNrGmZUMmOzOV0s10W143AhiUVZVGMDjluZznar/CZvXtHqz8j4CgDAhgzA+/rN/HeFR8UasVnPmeCOLiXh8Nlf+Ecv/NzfbzJS1zZ9ajZpOiv2d8fj6Ww8ncZYRKS9IlvfdF2vRstNd++0feHl+1XEpz52fTYq/8G/fPG1O0uW8Mxh8annLzvjdL559ur40g6a3lIPJi0jykiTWsajqqzKEAuSIlN12o9Wm+7qfiiqwigen+vhbjGbkqNINi1Gs/GoZhIWKmJhEJYC7uYWQggyWKUb4FVZIK3ffvOLq027t//Y3sFhWU+lqJx6ak6tPzdbCwNehXrsYTK3KzvP/yWW7XCA3+XREMAfFv7+4j/9f97+7D9uErq+U1WROBqNytGkrCsCau+jrVO76ns9X+fXby1fffuk6fTjH378xpXxF75869e/+GA6Lusi7M/i4cF4sdb9kV/ZCaqq7gLbnYb9WdwZlbEQFolFDLGAFLfOaJPj/owv7cRRXRF7YHYqlUuEEckYHMsiVlVFwywNjjbYnjCJMBHMMhxVIev50Z13XhtN9w+vPjnbveSetTmh7h7ae5RXpi37mj07RTgjTuTwAxo/JNd/rJedop6+L1/Ff9d4NAQA/G63lANEQ8nAb/6r/+LBl/758XkzVEbEsi5H0xiYtUW7bNeL07PNnZPNC6+fvXNvdbg3+uBTh/W4+rUv3H1wtNyfxTLGyShMKxkVPq2ierbsB7M4G8toFHZGvDsuQhFYhIiKsoihMBJwWdblRYO7CAk7RY5TSKVeqqOq6lgURZQQC4CHuxrm4ACRM3EQIfTLs/uL1Wq2e3h45TpBPa9o9Sa3t9gapuxQKmcs2dZ3yRgQeNEnl2oUvvfPJ/6rcXwZro/4jFQ8SgL4fbi75j7E8gu//JPvfOafbJpWjevx2Cnkvr391jur+dKBddM7hdN5kxQfuDablLxcbV65027avFNRVXBd8CiQUC4jQohdprrgq5dDGbgsuC6LWARmFuaiLEOMg0e5S4RECWJcUByxlA52jxxLCRVz4FCEKASEWKecgwyz6EGgGILlzenJ7aoc7126VpQj1jVv3vLV26RNDImQXErE61p9gKsozRft6DPoV8SFh5lZpKoMh3/SP/q/Iylh2UkeZdv0R1QAuNBADjH+zi/9V6dv/Vp79PK94yXMm6Z7+9bZzijcOKzH46pPvkmklivuc9+1Td5suhiYibOmwCSEpB4DqpKiiAgXkeoiSOSyjGWU4SpXQpAQiUTBYJFYemQOY0d0MEsEFaGoYlkRF05BJBJBJAweEe5unuuq7tYn92+/sX/l8Z39S4WEIh/J8svUnwkaWEMiWjyO6imT/UwBIrGcBNy2+79OPKKwCy5dXSa+4E/EZ/+Dejy5mN79qPLoCmDgq5Oif+Of/e23v/Dzm8Xm0l61M4mtXN2/8cEeo3tvvtif35xvNtKfu+a+TV2ngc2NQGCiEHiYXxQDlYFi5CrGGIWYijIOng4hCIcIEgdBonNJsVCYuZSxYimcS46FhCLEiqQyEiEhYQZijMOEgVjEZnl0dPedy1ef3NnbjZzr9I6svih5TugpL3PY98nHvHzCuHJiCiWxMIdQzciyubIAQ+ZIM4/lbFHG3Y/Uh8+J0MNaFPOuPORp0HeFiMwywB/8vp+o119cnM+f/sH/xXgyKi99uJ5dBtAsT3/6J/+P/Z0vKiQ3qSy4KtiyqhoLO4gZzC4IIRAThEiiFEVkIpZAIsMYC4eARBFAwQzWdyARFgMA4RBFSuJCjZhAwgDBXd1z27HwqKqX53eP792+cuOZ0WQm6KvNa9K8EX2FvFZwHn1yLU8WcVfd+r4f12MiQZgQi/ZJypLYnImGcj+3tFruTR3168u335k+/efe56/h/eNRFwCAYYDKeOfKM3/+PwV8sn9j+OeW+5RzPd0vdp+KD76cN972CrdpFckd5AQrQmB2kBBRzlZWEcxqEBEwhRCImMLg6UDZSN3gCjd1ilXJEh3BWRysTlACu7CxmcEE4g4iK6vRcn58786ta9efqepx4fNp+zr3D8SX1i9ScbgKH6TySlHEbHr3wca5MMLONIBcQiQhNzJlyp61h2Yge0rNfC3Fanp5Ynd+hh77USJ+BNsJtgK4oKjGRTXG0FJs5sQcigg2MyYi4RBijNE1O4gDQy2KlIFpGFNN3CeVEEZ1YQ5jjsJE7ESqxEzO3GfLOVMIMZSxqoiDUQAVjEAs2dTJhAKyOysxmMjI62LcrJa3br55/cYHYj2qeTNLr0l/j32dPLSj71xjP5Qzcm07XTZ+et5ISa2uFuv2YKeWabZUqA7txb0Afbfp2vVkNC6KaKrnt+e7B42+87O4/iMiwTSz8KMTEW0F8LsMRdTMDPndYaLDoFImZsa4Dn1vKecyDFZtLsLDOJfAsdwpSYa4h0QCMRuRc1C1rDA10zy0IFMsnRgkoAJEiovQiYgcMFdXEDHcYqz6vnvrzdcuX34sVtNxWM/6l0J3jBAbu7oubqDYK8iYqe+TeuXFbHZpslrMm2bd9eVq3e9Nm/2dcVnW5gURmycWKooyqZVFZKJSbD3vx7O77c1fPPFLh09/8isf/ZE4HG8F8Lt8rd1/CJpBcHdhDhFRJKXMDDCRE4gxjDV1NrcokSgo3F3MGcRqam6BxYko1E4BCODSmQMLSLIxEwPuZkLEBFVnEcBfffkLl/YORpP9OnQ76dXQHaM6bOmwj7uRRdXMPHWdUkXlfillOZ6mdn18781qsqc2W3f96Xx1uD/amY7KekeVclIRFo6anYWZXATN+Vk97bh5ffnS7aZ++vADHx4OIQ99DelWAO8OE4iJiQ0IQTw7EZVRhBwgCkKgpFaW0cyZWULos5EQifc5k7MDxKLMJAVCNASmgjgwR1BwMyczImGGmxMnUgdVhNdffjEKT/cOSm539XVb332Qd2J5fbpzRdVAAnTzkwdcX4qTy2YI5Dk1xpGq/c3yqOhWWuwen/Wrttsdr6aTze50yixJHWRCcDOIczGS2U6Xnes8LY+rfJSXlculOJo+9BrYCuAbwJ05gCTGSG4GF0ag4O45Z4DLsjDLLCEWFGN0IoerqaqqszBIAjiCRSQSCXMEC4swBzOYKpGKiDuIvddkznU9unXzTU39tSeeDaL7eBvLm+ctvTXXuju/QvVoPEmb5dtf+NXy0jN7lx/LmmIQd7SZR9N9Libz00mzvGPtgxirvsOa08HuCK7mUXOnqR1PdsrZrkymKErte1+v+tUJtI8Fo/mNxWmm6//9MD18uGOhrQC+EYglXJxkXQkY3ospK4GzoQ5Sx6iqRKIOIQJ5n3IyEgGHAAkikSVQiEYBHACGiRO7EyQSRXOQGRxmJhLXy3nq2sPDGyJyEE9Dc/9s0b5zFrUqumT3jk6m58df/JV/s3P9I1c+8Kmu76IwMbfJQRLEy8B7+wej6Wx+fjQ/upM358/deKauRplqNzhoOr003r+SIevFKq3u9O3GcxP13JBbLuS0mhzs6OpXNPwZqXeHh/C+fgXfLrYCeHeEiZiGMfPEBGdmzmaxKKoinq+ars/jujRjZ3F3UldVzUYsJGSgyAUkOgAqiQTExAFgd3cKTgzHkKC3nAO6vjl/4817z37wOSnL/WpTbd44O9/cPacs41hUYCbLn/6Fn5HZY0997481TcMMp9h0bu7uamYSAwlLlKp8vCinBRqurmx0DCAE3rl0WMRyvWqb1UK1d21JXAKhbdU6p4216OcPZo8t0bTp+l+O5QiwhzI1tBXAN4ILc5CYU2sOYlK3TZ/2JiEIJuOq7zMTcWBzJ6Y+55wTM1jEiN0vCvFICoCJZZjva25wvhjDwW6q79y8efzgwRe/8CWG/Nhf/HNFUU+KNOpeW56dHJ22G9+RcuRgEbn50hes2P3ED/3Eer0uglRl3XRmDoYDRsRwZxpiLp49frWIpabePZdFXU+mmmyxnmfLwiGEAAtsDfKa2JmYQG4ZaOc3X997zq25i/KZ9/kb+LbxEGr6PYeZGFQURVWVQWIMMQSZjism6tXLIpRlOFq2TVIA2dAm7Q0hBGYGGMTmnlXVoO5OZI5Nl1N24mFcqhMBpkWUplGTvevPfPDy4SUR7Ifjfvng6HR1Mu8UBBTguDk7Xs7PP/h9P+YAwcqqbHrr1VQ159znrCmlvvWcmYhYTHWzWqjmejQt61Hfbpq2cVCMBTOg2S2bJ2gPB+wiEyUSQwzrm2+tvvSP3P1hXSrbHeDdITcQ2dD1XpRNsyRHESWb1iW5a1GFf/SLdx6cbv7mX32aKKoDijsP1rs7k3Ic3IdKToIZBGYAUQhRQuEGNwc7zC11ly5feua5D/9o6tp2oWqX47nN3zo7W8zX5uU+UYAw4IujO9c/9F3VzuXUNzuzuuut7XSo6XB3cyPgYn5wygEYxl2OprsxSt92AKQsmIg0qzuTAUZmcHM3chssdwkOdjVU3D3E5aIPp6zfW9wxtBP4hasQI3CIko1+/rNH5+usik88O5vMJp9//TyEIecpdVUVRUEUWMIQ4A+G5qaqbiwCgrsRD5OAFW4hFCnl49OzZtNNR1J2dxZnZyfn61USKkdcTojjen4yOnhievXZvttMJmXb22rTZ9U+9V1OXZ/6lPqkST2bGdDlpODpbIfh3WZNTKEoB4tFcyNX9wxXh7obczBX8swXmR92SMH64IV/CsBM39fv4dvCVgDfAHThMTV4thVFjBKyYlTFL922/+Z3TlLKH7pR/tAn9154qz1dNOzWtmkyqZxIjSBEMDiyap8z4ARyh5kZhhe1QZM7Qlk3XUtAVRVjPmvnx/P5ps1B6h3iSDLq+wZhvP/Ex4ikLsXV1k0yzVl7s+wOB5mRmquzIXTZk/F4MvHct+0qFKNQ1HCQm5sCmbwn68kSaUeuYGYJZu7D4AFiDMmvvABAD2Ph8FYA744wK8yZSAIJg4iYs/mqyX/1h65eu1QuN6lX15TM+Z//yv0XXj8ezsFD9ws7CA64u7sZDS9+V8/ZVV3NLalqLAo39F1bFGE6Fl7fWq0W81XXWCWxikVt7uZhsv84wDEwAefLLqu6Zfdh1BKGak9msHDK6iS7O3vsuW1WVTGmEFwzXN0VrqQKz4QM9GQ9wwkGihxKd3YiXHilmshDuPQHtgJ4d4iInM3ZSJxYRCRwWcb5Jl3ZLX7gI7vMlLNdv1z/8CfGhwejz7y+MUubpnvw4NxdJYg7yBGForC5kZm7ETvBhTHsD1VV566FWl1VtR6186P5YmNxGkY7xtE4as7V9DCU46ypjL5puy5lzUkH3zk1NzM43N08pSwSdnZ3Rbu+WY+m+7GsXROgBIc7mTkyyOBG2jOUCUTkTOrMLEQyuOkRAH0Ig5+BrQDeHbUsQViigwFICCLMjP1pMHWnIMxuKAPt1fjUU1VRVP/iN0/XTUchzHb24DAwmN3M3Mx0OGI63D1bzm7GgQAYPBShCh1t7i1W7bpTxHFRjyXWORlCFeuZEhUBmjZdMiZ4tr7vzYbdxd3UQA5y0Hg6jUiW1rPZXhFL0x5QuLoltpbQEXr2BO8Jyu4EY/jQgZaHw/QwowmAbwXwqGJmgzcnwYmFQyRihwjJqKoc7g43ZyaAUqZI/vGnppuemyzf8bHnJZRlVV++tF9VpeJitLtaMreLkaiaVXth7vuuazchIHa3mvnZcpO4vuSxAhdSVA7jahdSCZyRF2szc3cbXLfczLKaGZwcMPB4vBMF2m7G490YS9NhlRvM2HvyBE/kmaxnzwxjcnFjN4KRuTuIxd1ABEbS/H5/D98utmnQd4GZCYFBw2nV4cbMDiUzJnbKvd09ayP74R6mVTS3a7v5r/3pq08888HkBQeMa/bVfe8pUHTNIBBHyz1JAQI8Ax6Yu26Tu7aaOJbHy9Ume0AcSTkJsdKkKnVRTC2nKqaUclIhVgBuDnh2JRZGIGFzr+pJVYr3m3o0LuraNZFlAgjmSKDkDnZ17R2ZXdkUaoPbkA8X3YOxrhs7YKHPD+0ZYCuAr4mqSpBXX/ztBzdftL7LlgsexvhmFiYnJnInEhzsj5t1r8NkbfWqqq4/9fx4OnXisiyau1/29gxxH4CTELG7wUCcLWczlyCAdW1TlLHwZrVatH2muKdSihTEklPm0b6EEMXM+qYXDFsTAJCpOblAADc1DiEGtrQeV9W4rmDZLZNnEDC84N1NE3kjlgAPcCYo4OZMpBebGpEpYEzu8GX70K6TbQj0dXCAus0ikKoBzmoEDiAB0cXKcw8s+9PqYKdQp5Syux/eeKqaXQaXk9FI5m/E/jg7pWFS/MU8d3U3y73mPqWWQX3fa85Vwbq6324aFDNUk2K8E+Io99abjKe7QVgo98kdZLDBdNT1YviSuWnOBI8iSKs6cDWqzM21I+8ICleiTNa7NsE34j0TYiyCCFmSi88EHtoAhgytGZEnxOf/zP8UAD2MQze2AngXREJWFQ7MAhE1V4M5uQhYQMTMg/mtEDmIyroY74G5Go2luX/z7Xdun7SadbNuTBWurglucCOi9Wo9P9+URZlTLyFKXuv6rOnMilkxvcoyIomn52dS7sSyJk3DaDK7uKglH2J2zZazurNwVZVV1IK6yXhEcNKGrCMk8p6s9dyabmCtak6IXk3iaEemu6GsRNNQ5cqEwCTs5E5gZs4py8PrprgVwLtAQiIBjMHfapg8oKpwhFiIDIZtVJQlGEktY0REpuB0/oUvvfof/b+++F/8s5uere9TUnVTN5jBhz/NGApoSh2QvZtvVkuTMowOQFWI1fz8/PhkubN3oKkldF0yw1emODnMyOAGmDkBCKVZW+qDvZ2xsLFuGC2QyMwtu7WuG2jbde26S2AKBEvrvD41VxCQG1iCI1s2NxYoUJQFPf7j7/eX8G1kK4B3IefetCEHAUxg5qIsJQQH9ynnYbKFI4hko7bPdeF93zC6bnP2d/7Z68cr+45ndwzQnCwnJ/aLuhrT1NdVada88dqXUp/KgiOa9Xq1WSwsp1BVVVW+9OKXi/GuCCOtNHXZaLhPgw8qchhIgsTAIubG/Z3IXYjBc0Pe4WL6fCbPnjtou1xt1ps2snLacGrgQuUe7zwhl5+j8b6DzBWgPmk2EBHHor768eEHfj+/hm8bWwF8bRwAGEbauynxcMNKIQSWSExZzYycOQNgGk/Hy9bb9XJ9fvyPf+pX33jr3jNPXPpL33/jv/edB302EGBuDv9qZ4l7n/q6npTVmJkjabdZpKQ55fndN7w5e+O1l2/ePnr8Ax/ou4asy8lczSxhaE6hizJrIiECF6NZ2Rb6gDkylKyFJrcE62Gd5TV7d75ozs4XdaRus1gs5suOUnkVxc56tTqeb1wmiGW2rI5QFG5EcMTYbJbAw7r+t1mgrwMBQFUU4+nobL5kuGYrIrsrkQCI5Qg8jK6GOmIRb1zbb9fN0f37n/7sm9cO5Cd+9MkvfPnO6bKpi9oM6nRRDA0nuLozE5O4mwizte1mvWxzSuzStSdvvvrCW1dvPDEaj7pmEwpXF3UnGPzC7NrZfQh+yrEIvfHCr+fN/R/6s88xkmlz8RkYpD15Pl22D04W08qX50dZSUaXRtUl9PPl8t6yD1QemIdp2KU+5bQOKAUoRtTQ41ztAvawdgZvBfAumPXiDZD7PgVG06a6iAR3EhICYGSAwNxUJ3UxLmix6v7SjzxZj+vTed92SROKkfXrPgCFuSExE5wcRCxDlShRprzqu36+Nncva09tP6qKq898wM0IlpKawUzB0YXZjESIyOAKZgqLN3/16Obr3/un/8xktpPbDbkTjMg8ZYYuN/29oyXpct0mDiGMLu/sPlbRqlssVzoOox0QJy/OeRRCUfhN6MoohNFYL32irKewDH44l8rD+aneU8z7pSeWWATJcMmqRQgAIrF6VjVhciZ3J6YYpQgyiu2q619/e36y0M3GRveXu/tUmaoZg0wzEzEXOhRemgm75bbrtW3dCNm8adrLl/d3dnc9p0C5z+YAXMjNLDkxAz6UE4WaN8fV+vU//+M/eunxD+Z2zcjug8NQgqPL7a27x31qKTekqPeuT/ZvTMpek7W8F8uRk+deATZnLQ9QTorurTLdz+14lUelmYEe1lh5K4B3JSRjCjwZT5bnd2OMQdgvHDadWQxs7k6AuIA1J1WURZhUXocSWZPR7bkdbfL3HbqqKUEymKzrlkU163MiT26W29T1mtSd0PU5CI1mhzFETR17Z0pOgYYrCFMwqZmzZ6MCHvLx4TMf3736dLdZiCvI4Q7PZtk0v3PnaL6Y525TCkaTnWp6OKs09drxpViNcu4tKWgYzGek3qLoiw/uHt446fcPHv8ILPND+vrH9hD8rpiFZCH1zdnxLSJ1CDEPNdHE5LjoniIi5giiTdtKFJGQDfs71ZOPjQ7G9J3PjYjr2/fWQJ9yNk2W02oxt9xHttSttW/7vun71PUKB2BmJkXF7ORZLbsREYEuCqqHkaspmVFJecm63rnytPUdaQK+kmc1s5zO5/Ojk5NuvepWq+haTi6Px3WfrPE9UISbqiZV5shExMFZYlEyydmKl7nGQ3v6vWArgHfFJE48t+y9g4oiMIva0FBCwhxCEJEgUojAtChL5kBBQlmYY1THqipSyo9fDg+OVyfHZ5T7nHtiarv+7u07fbsyy0nbTdNkRVY/X3TLVefEFIObwxODnBie3dXNNGdzNfc+K5Npez6aHcYg0I3AyX2o+sy532xWp6fHuW2839ScQzWVavby20f31qPxdDdGEQl1Na5HU5ZCQsGhCLHM2Y7vvXx29MpOfvn87pcZ/FD2gg1sBfCu5BAo1ntGAe79ZpG6LmcNsRhqxyJLINaUVJMEGVUlAAPFULohBrl6abI3GeXUBabbd1dHJ2eunWuuy1JN264NHMgMCgI2TVpusjubM3E0zaadqsF1eKWbZTcfbLfcCWntaTOdjKL3MmwSUDfVnLq2WywW6/kyt621jZCjmh0f3bn1yud+57d+/Y233g5FoU6qADExO0Eksuvq6OXo8yJWu1US78H8uwOmHjoe2tjuvSIECLLIeKNtyu3ezk42LYUYuVWrqjJ3HQkPXv5BoplKCFBSU4lSEKkqvNif1aDUZTw4bTab/vBgnN0PL0/repL6xlWZKat12ZNSyuYwMMMze04QkLkZETsFEMzYXInZusXumHYq0BAkeTY3zdp23Wa13MznfdulphHrQ6yyeXf24Mn92HB/6/UXLbWHh4+PZzuGYZJ8yO08L96sec0SurY7OnHWz1X7T8dq/H5/D98utgJ4F6zP1i45TMfTva5bZUCY3NG2KQh7v0wZkcoQgqs6SGJBEDG13LLRpu1S6svI1w93Y1ieLNrxqOw6Ozpdq5nlLICacyzckbKlZH32pGoGdzNVh7m4G9wNDEOGE9jgbn2T89HO4WNRkA2uWgQ11b5PTbNu1+d9s4Tm1G2AxMVjYinmVmO9N4mZ8OD2K4vze9ee+PDuwaEavJ9L81bIawOn5IBEBhUVEfvQ1fkwXgVsBfAumGUj09TDUMQq9StQpqKEVNHX7XqhUteFbNpEJF1qRnVFBAdCUbOm5fm663OZaFrS4d6oCHLvtK0LG4+jZph7125AYhZg3icnosgkIOcyq0feEGUjg2cAQz87mE0BguV2FIpJVQBEMMBNkVLu2jZt1n2z6rs+92mzaSZ1PF/365O3Z2Ic6pTVSIsYPK9efvHXtLy6N5s+MVvuT0OoJ127TtbHcra3O5nPngvl2CzTQ5oIejg/1XsJVy7j/uSug2eXn/aMgN40tc2iKLTPns1HbuzebRYcCoq5S01RFH3CpksUisAh9S0zMeFgEqH5rXvrrDabxNT773zp7PGrk1kVXR1EVWQTsMj+k58c7+7Z6m6zWVsMFMqL1noDLBGh7VNZVLu7oxhFiN0TKKeU265vuyZ1Xe419X3XpaOzZIZi1qNrtYyFBCYCMksgjrOxvH3v1kG5e7h7EENxdP9ujDwZ7yDKvCszRoA9vEeA7SH43VAS83JShzqY6JLgphZiEYXaNrtaJCVwITwRmxZgz2ZqqYneDcaJl3bHV/d3QhAJQkSzcXj6sWlBWC67suBe5bWbi7ZtlaKIjCupCqYQUYzH00v13pNh53FH6LsOX+lVcc9uSRXCoWSvC3HtTVPKqeu7vuu0bzUnN9eMvvejc33x9fNacGWvKgJEiIiEIZ7gaponoXvicl3Ewkw3i/OyKIqqurQzOeovH9z4kKnxw9gJMLAVwLvALA7yYieWdV7f0+a8qMcUi3q6O9q9PN7Zj1H63DuyQft2k1LPzH3bsMj+ZDQtwlioZBMGEYfAMYTdcXj6Sj0OfOf+8pkbVdPbrQdzF+GiDEwxyqTk1Z0vHT+4Z6Gqdx+bXnpcymmfes3ZTd01qYIlBKujiWdY75py36bUa241dTmrOhTSZlT16IWb+ZW3TiJpiMI0JHXYAXbLKUWxuiSRECU889yzo/G0YDtaF4cf+lGYPsSrH9sQ6OtARDmlZnWu4ISqrEpfdf36bPfwcuBytdpwkGq6S/CUun6zycasfU6pPrgq3AvR4HoCdSISHhwWSJiJnAk3LpV1oNbt2euT1aZb9ymWtcjiwWm/aM4/HtmR281zs4Or43q2ezhuVyeb01vmORYjNSVoxQhkrtlNU9d0Xdv3nfZZM8zMHSwCknEdnrwye/vOZncSRpPJ/owBJ8AhZh5DrHemo6oQDiQMRWr7Moa9T/zPYr2Lh9EM6/eyFcAfjpkxy9G9229+/t9U3COQOlZNLiT064WZ5eSTnYmb9tmLogiziOlObpaWe8sZWUPNRiwE00wECQEgp4sohlRitKv7cd2aaz5ZyoPj1aWdqqpLEX/99uqNe6vv+URz/dp6M7++f3hlsnulml0J1bQ5fittTsA7IsGNI7ND+9Sm1OW+09ybg+BObnAzVkOI/OyN8ZOPjdTx+ZdPPlWNDi9fUQhIAGRLO9NqXNWu2ZFzmya7xe322tViCreHM/Xze9gK4OsRBBELa043fVFV1WjnsjXH7flpUVTJKJIu12svx33OwiFGFtkFASnBKhIZ5pA7MQ1DAODEmZlNDcSBY5Mz3K7MZFyWd07T8Xk/GlUHM7QZX7559lsvLv7K1UOcvbpq7/ebJ6q9G6Ec+ep4Mz+RS7s5ZSEKwqnvUupUs7uTs7uqqabBdsVV7WBW7k6Kx6+Wo6r45IcuTUbRo91bokkWCkk5xViTE6yF5/qSWPzA9U/8DRANUwve7y/h28tWAF8PZqojnZ63CLWEMoRgvId+aWZERVZ3yzDdtHm3TjkRlaMAkBA4OnF2hg+xj7kTYAIRMSFRmKmXQbgkdx+5Xt7lu6f9IvnOTtUpnrm+c++0PTpZf+jGrNus0snb5yf392bFrD9JmcRSRBZktyonyylryoM7nGbNWQeLq0ktT12fBPbZOFal7EykGlUhhBhoOsbNU181ObXr6egwjsP6dCPii/7G3of/hzZ4gD0CM4O3Avi6OPrsudmg4J0nnlidn7oWcXKIfoXVcr30QNatzylMbHOmNK7HO8en83HpVZDsUGJhYRI1Jjc4OzOZE8BEIFdXuPfJFq12vU5H4dXbK8t6bb/eS7FP+ZXX7z9xUFSR+txHT3mBJaU2cZFWdVms1nE54tkoXNybEZupO0KQ7AowURCxy/t1IVwIjUeFccwmcBbGp56p3jyrT3R6qpfuNgflcz+xf+35wpmFzexRWP3YCuDro2arVVcV0jWnaX7f+xRiQcw83p2UI7M+bc7S5rSYclGPNr2dHd3tNiu0VF46ZHLyLMxkYEBBQZjBLMGRyYgIQZiIll2ab7pstDOJz1wbzZcdyC7tjdT4/snyt7945/s+esiSSynMedH5qCqsXxbV3oMH97UrP/bcE2puTlB3x1eCduIQYyyqUE8qCCNGDrEAlyRBEeoyWLH/9J/9m89NHv+9H5kBwB+defFbAXxdiLtMMCrrcn3yTqime/vTs/nCKJZlzVaBSieGm5tIiKT62P7YpSKIMIFBrk7EhOxwOMDOw79xY+q9DyKzaXG0UnadFmEc6XAWV6tOIdnk1mn3+p1+XM73d2JVFvv709m4ys6WTVM/qWNdjtTYnM0AODGTgQhlKWVZpNRPxhwjIjsLZ0gUyUazcWhk7B/5j2RyQ3OPoTON5asf+3185P8t86gI/Y+Gm4VqJjtXNx6BkPumWZ+j28zGBcFAHIpqtHu9ml1tacShclDfqcRIMgz/GizGjUgju5A7k4MJABOJSCjUiYTBVAQuSw5CTLY7LXZG8th+gMQf+Pjh4X5VhOBmr712v1035BqJ2vV6Nqp2Z5Oc3SBDjhXOYIlFWY9HZVXGGMtqHMqxxLLtrc8cBHu79UInxSf/9+XODWiWUIiE37P6Hy22O8DXg4iEycOOlZSaO0y22rQB2RZ3Oq2K2VXTjmASoktgz+MJW986mAgOJhpmyrCTM/kwIoaY2EhBTh6Ek/lmnV01FCxBHB6J3b0QHK/zY3vlEwf02OF4d1JmzUfznf2dcdun5UY3Cas2l20figAncg5QIo4MibEqBeZ1XYUQhdWUSOL+rOiMmtF3xA//D4rZVWjGQ33J9Y3wqH/+d8PdXbOXUc7unk9H1USo77RrFhqmbm2IlWrPhGw9EVXVyKvK1ZgY5OZOF2NVxNyIjJj9Yng2YKqkVRGKEEd1ZBgDG5JSHKYEf+ZaLAJ6QxTcP0sn5+2Hnrv6/Ad2c9os1/7qzcVR22+y1Z2GyAKChBBcJJRl4Sm5e1EUTpTB2ezw0qzRInz0f1xf+67ho21XP7YCeBfcAQ7szHF0+HSNZW5WkAgRWHr9xRcuP3b98LHDgNS790bkLhycNTmDiJnMzbVnKEiGcUjEYk5DhCQCuDHTOER265rUdTaaxhBYs+5XeOz5ETF1ve4WJUvRJ2iaz0a8tzO6dGnyxVdP3z66P5GrdTWFe86J2auyJLPkHmMRiiKrjwvf36m7x37cdz5UX34alp3kIZ57902xFcDXhwruCSm7jPeupPNW+2U5HVPGg/P+pz+7+PhafmS/Oj07652Lncvr1ohsdxL73o5Pzvf3x1VZDs4/ueuLGMEOBzkAEwru6s5qZGYELqJMR9arSyFl5dmdjaPQdFoVjGsHXlTctf2oHsFpPB5/95/Y33nz/PWbx2bp8qX9UVkSUVlEdxfLl/bqKoazZc/jw9O977z87I8DcM0kYbv2v8pWAF8XYvce1lJxSXNGfZhyXQvBtSzi80/sPPOBazHEUI3bTVPl5fH9s4ZGV/YeJ09XL48YIEtOzsTD8ZaYSIeR6+xQG66bhCIx3BB8NuU2cRk4ErKbxFAXHAMKcUYeV1yUJYiZo5khVB/82PO7B5dee/Pu6vwkjGVvZxJjFuEHnfWzj6+Snlblh3/wfzJ8Gnd7KB2evxW2j+PrQfAQomnLugKVCCUH6XS9TvHqQXnjcrnq29XpiqtZWY/L8fjZp6uT+aZfn4GliAUZG2ywRIwxsMPdnGmYKGNO8MBwuGeGELG6u1clB6I6BiJycyErxIoiwgOTM4FD4SQUAois6688+YH15LtzdclT043rLCIi46eme899P4ArAGAwgJkeWnefPzpbAbwLvQmZWPsA1dWi3sndiuMs7hWtr2M5Hc8K8b5p21iGJuXRaLJ3MNmc3JIQ4ygQg02dCMRu7uQ+TM0mMYBI3MhcmZyFaEjim1l2CMASBDkbmEIIIgFmIJKiBgJIHEGIQOTuo4MPXP3oD//BH92yATBwCNt099diK4Cvh1kGl5abEIvezF05SNJcxhJGmzatN7moRJIK9xKr05PToox7ly6nvm81F1QQscMYg7Uawdl9sEVkctr0iV2nkwpqABEzXJk8RgnRyHsQOwWDCzNczYk5OphISKIaJICIu2ajml2zfCXCcQJzYGxvet6FrQC+HqPJDuBOQakOQYRdzXK2oqhAFAterdbz+4tJyNV4HHd2RtVetzxeL+dZNY52nS5s/N2IAztAzIARsWV391FZDJkhgoCIkAkWA4XIwi7miBQYzJyNhSIJA+7EEO66HIoKJMPNl0gwwlc7d7fH3G+QrQD+cIjIzH76p/7fmpzAsZyq5tzOgwTVHrxb1qN+c76zuzubTmEdCPOzs7KogtCDo7N6NC0nJcFBcIpGBMBhBCJQch9uw4QpK7fqMAMLs7TOjDwhMIOYC0gRmEKAiKcONlwtUG+essVS4ICLP+xtK98+tgL4wxkmwdx+68uXZmJdEoIwmvWiKKfC0jTLUaw0JzUugohUgIdQaW7UbHZwIxZF7xSYyOEMZzZ3vpCBw9xA7pwVTWd9NhIZlQUTWazYGocRa/ZKqRBfCWI2gloZxiQjdwphWo1rOFAXZqOrH/pTMGV6RMsZvhW2AviaENHubJZtQUTj0ciRmPbUQbnPm9Xd800sq+nOzmg0apuOSVgoFjsEJ3K1/NXlTnBxOJM7Eyk5kxDc3YI5h2ghkoQQWQjKRDHGIrQONJhU1BMcJBKrXmcUdyjWnvtABEvgCGYjCUUF04e9eevbwlYAXxv3LrV14Lbv+01blIWrhRBFIBVtij0HKyh1y9RrVddRQsoWggMQZsFgaE5+cQLmITAnUiIiIw/OziFGN4N7ESAOJp9EZVsq1xIngjkpAtsoJsmpbdZVFYTZkdwcFNgsA2EbAv1R2eYIviYOkBscVVEu5meLxelsb6+I4hS83J1MJk2nRpW75m5p7Rk8iRATCYFJaRg5SsQMYWd2Ys5eOKIQMYNIgogwiFlCYHYDRKgQZ44cajclp7qKgaGahJytM22ITNWdSiYBOKXtu/+PzlYAXxMChNncSEK9dwPEyOsQPFsyzWT58v7o5Hj+zpv3heGaL/pQ3MhtcIAwZIcNQRHBGMrkWUOXWN2J2AEzMpcgofAup46JCEquilBJX8Wu92KTR70FB8qqLoTbXh8siAYDOnXfLv5vgW0I9DVxNwKEmKmYL47rImpqm/Wqqi/t7O42i5MoxeHumKeBqVFNBGPKRD4M3HUQDIBdrFQCwQKZC4PIIXAy4+xwc2UlcSYPlJgMxAwP7ExMHMlcSE09WwAVIC7LyAwzMLCt7PlW2ArgD8HdCT4YoItI6tuiGmXCg5P7dXDp5tSxMHUZk0nF6qnPHsXcAg+Lf1jwDiLGMEwGREQOsBHZ8H9QRadOxBKEA5v3QVJgB4nHMhIZqLNiHIiQxHsjJhGXWIqUZYAZI4CZH2Ljwm8/2xDo32E4UBJ/+mf/blWQAW3bxgDhYPFA406oJ1272qzmzWY5m4yZgSHBT2TuZjAbBjiC+WLZ03Ajxhdj8QIoQB2e3ZhBIBYmKcoYmRgs4NKAAqmkxN5FQSDq+6xmBDJN8OwYmo2HjoX0Pj+0P7ZsBfAHMXdVzfNbOH/LVN1Qj8cET5pDNXWukterdQsKxHlxdruKFEWGuRUAAUrkGEIeALCLswExbDgGKEGZvBCtCoczwd0ZUrEEMGfUySu2Dduq5Ia8T92GoEldPSDPvbvr7oOobNNyP3/pt38OILP8Pj63P6ZsQ6Dfh5kyy5u//l9ep7fWiwfLTT+d1OTUNN26Swc3dnKXNfUudVmUozJaWlhvxCIimlMQsaH5nQwAOTGJE4h8mIYKy8P8OqbgTiAyMjYyyyTq3guBzNVYghG5uwAogsSYJAbXzvMJyZQ4wtw9G6Sc2OVhmoY+tIOMvn1sBfD7YJbP/fTfuWw3X5tvNk3HMhTwkGV1xNR3VaBV4vH0EqzLfdIuCzmVlYBT6oMqy4WXmhkNnS9EIAxXwiZDWzDc1JlcxJeNViyi3plWbGR9GcyJ3AMLGzOxMDKsH4cU+YwkEk1gpjZcs8n6fH44+kXMP8g7z9hDPdHx28E2BLrAcm6b1Wd/9u/V6zduH22Wm37TZiIDOZNMdi7xaPf07GRxftL1qYrCRIEJsUwohwQ+RHp1dblwvhLBxeuffGj9Igbx4JYSmIRNvJ2Nua65jig4W+5FJKFwKZjJiNWZKBAR+Qa6ZCQ4XN0NIHESFvaubW5/CS/+LVvdZg4P8UC7bwdbAQBATj2H8MJv/oI++NzRyfz07GyxXK43G1yYjSizF9o052dtslEpgs6zxbIajaexKJ0YYAZp6kHDHzzMUSViA5zYzMyGg3A0IhAVMVqX33zpnYqpjijEKzE3d6euVwCDiQrpmvIR2UbV4DYMDAZArgQV5ihk2XR+L//2/yHN32GWh3206XvJVgCDETQvz45l/upmtTqdrxbzs5Ojo8V87pp9mOWuujuJ1x5/cjTegWfNfduuJISd2R65MzwwC4vmJK7MTmRMRjB3dycnEokgN4cRMwcnMrBQVUpUdddkllmYSZm0kCToA2nwhvtjz6tsmhVdL+AJuDBTc3VXU3dPEmWxMcmn9vL/fXn/dTgeelvz94ptvAgiEIfN4oHO37x194HDN+tN6rpMwkQOBS4GYkehEDj3i8V8ThT6ZkUVx4L7ridBjKJFdFWi6O5DftOHE4A5EXzwiHMQMbNDvR6Pnv9gRcRqRn7hU8LeRNbADG0c2eBmCC4iQqE2VAQnQUq9I8YoDFPTURW6DY0Oz231RRw+bZZZ4vv9aP8Y8KgLwN2J+Oju2z/zk//n1dkDggKmal2XmrSZ7GVY7FWLEN3RqxaCqh5bEkZm0mb+wCWCycxFQICaCgUiHpxPABAwJEaHyzEACmf34SzQpp4oj8sYA9QyMQDLlih1zgXCuEiteDBHb7GqD0gKd4dlhxEHeCbSEAuYKai5vahv/EpafVecXoMbtk3A78Yj/4Dczexf/N2/1SxPj05X2VJvWLe56dPR8fLsfMnEOakBGK6oiAgSYyEh9ptVahtTcwcRzChnVXVVVdPBCtTdwETELMyDFw+BiJ2jSjRQLOJw8eYOc3diA8y9oxqxpv5cs5MUJLMc9pWiE8PJ1MghTOSGtHJTc+mUuqZD9yAff041bS+IvxEeeQEAzDwZlfWojJHO56vb3eVlQ6+9fZJdFmcrDhREzNwpEIk5G9gAZmEJ2Smpsbs7suYu9wZnIjdzBw1WDMOMDAiBiZmICexDFQ9FuoivDDAQNe26bxqnGIsK2kAqAxuFHA84lORG7u6J2QEyVUf2fq1ZN50yrIjQ49N68ctCDObtSeBdeaQFkHN2+M/+87+f1vfVsdx0HKonpuv16vhobqX4Gzdv930Kgc2HBI4QByMxREOUckb1jpO7GTPMtO8VAEkgJ5ARD+a4zCQgHsKir7qXEzFAgA9T5k1NVZkLqSYIhfdnmapcXY0heNiBg5GcoGYkYkZGlUjhedP3LTGEdVxaIdp3Cf3Jm7/1983Ut7vAu/FICwBuzFJj3TbNqqVPffLDbY87d05Oz2xW8a+9cOdXP/vO2zfvj0eFuyuJGpnDHeqUPHSokgchMmifFZDUZzMnYhLO2dwuQn8iEFyGDgE3hwJgUM65zykEiPbu4BBCDJBCdEO5B0fqzkwqKne9X0RhIRfvPHVm4DjiYN4dw7quaYO3XWqdPYQC7eoy3WWWbZ3ou/LoCsDMJIRXXv7y/Ttv3T1Nv/E7L53cvrkTda+m3RF9+qVb81YV/m9/84uqKkymyQBzgrmb+VDX4FAuwQXAKWXVFEJwN2Y2MzU1tyG8GWbjYZgNA1J1M89JWQrS7GkNhpAQga13bbzYFVLKGysvmVl2iUXF2ronpsxBikDd5qxdHJ2erF57e/n2ffn5Xz/7uV98u2nXsGJS5/m91+Fw394JfD0eaQEQ8Zdf+J2ze2+GUN47Xtjyli2PCj9ddF3mEsyI0TU9uH8Ug5DlC7t0Ag3lmwR1NpTZC3BIqSXyGMUdcIQYCXSxBB0EMiL7/7d3ZzGXZdddwNfa05nuufM31DdVdVW7B/fcNp6aYCeyO27HCW2CkmBbih2EeEAiAhQhhHghQrw4IARRHjCQSBZEJII4UnBiP9jgjrvdcWy5q7urq7uru8bvq2+84xn33mvxcMsOQenBxk7L3PN7ug/3ad/zv2efs/dei4iJBarKoiMRRaFRBlUADJIcMiOStBMWhnQI9ZRVBEJXxdyKVAkh2AkhQRpEAcBUTn1ZXdlzv/flo2dfHLW7aeY6V65TXnjoyPzGN0AIbhaGX9fyBmAxPTi12ksi3UmUCNIvPTu9WbmS7bCva4CrY5fEyTvuOTcZz7LZOApkUbr9kxzAaylsXTnvgaEoLQh0BPMsD4MAmRF48QgKQEIiABLxouWiUIpBegRGGk2LWV4uWvZKrpiJgLGaEntSLSAnyILQ0mfOkvegpJdaA0pEFNKQy112eP7CQZ7VUSv+/BNXnvr2rmq1nEwKK+2o6LQ13LrhNF7Tsq8DGC2CQAXGvu+B7QtX219+8cDVJZPv9Lu3d+KHz/V3tleB/fH+XrsVxUE7y2ty1kuplJKLTlrMCIKZru2O7zy7HoShtbUAiQCMwEQCBQggRIG3qhsCUyuWoUYmqGsrkUTUYQEKaiDvTVcoI92MUaJAa6sw7hjpAJAZPTlpUtTB4SvPPPnVF596NnvojmSl1XnskbOFVbFxK6tD7JyZ3py1zjb//W9s2QOweJvJ5M+sBpu97rvv6u0d5wgQKtbCGyXryvf68WR8dOPqK6fP3rU5TBRPnAcJLAQjSm2kEMhepO0Bi8ARC6EW51QAGIEEIgMsWmUgEAoAIvYQ6IBZlA7J+aL2gaZ5PhOI7HyqLLoMVSKptN6jRiEFUCWlFTIRQh7vvbJ7bffG2Ezr8syqvnD9JKbinnMbqPz1a9fEcfnQg/dpbd7q0f0RsLxToAUGQahDYxzRybSYj0drbdk2rh0KrdW89GVZIFGatkejfHRwheupDlrGoEAPiIggBErkUOE9d211ksg7jygYF33YBTB4ZmZadG5frAsTCEey9lB6FkIRkgNhK1dkeeVA6UCxY2KQBuoJVmN0c64zpDkKJaSYnhzOjnfjWG6cak9Jf/7pyVrfBCFMZxP0eUtlinIZGYhbAND8xK9v2UfHOj/PiqyqssKhNKB0Zal04EF6QiWlc9Y6G8chCDmbjmajm1VlA0Ua+dbCLuNis4MECONQKE0gAASxAqFYKGYBIDwzMRMjATCgJ/SMiOCcVVpHSWyUHwy77W5PSonVFEQAaFAojS7CnKoJO4dCVnlR17S+nq70zCDVj75z+MJJ69//4VFZyzBJrx77q6M4TPsiEUvb9+57suxTIOsJEMuaxvPSOZoX5Xq/Ix2VzhutBDtrXZZVrTSMQ+19XWbj6c1M9Hthq88oEAUzMQIKYCJmBBTOeikREYhocR5+8V6IBAhm79kCK6EUgmNGgVIITXPknDl0jhTWCBZMRK7UKpBcSrDeV0UhWefWqqgVh2mEjHffNpvn5Y8/0BsXvevzYHZTx+2Vs9vrG2sBsCPvl/3v7U1Y3gAs1qjq2mlthr04m0+y0vXS1BFobZJQ1I7q2hqjqsq207jd7bpilBcF+Fp4V9c2jFKhoyBMmZGQgT0QKiVBMQKI7077gXBRJYKQedGpQjKzJw8opZDMfnFr8ORULCIuJQgCoSULECA0ecvkSmdoVqsoDNsxRx1Zhx2/G8dz6/mn3rt2/13DSrTjuFVVbjYrgKW4dSqAmvv861jeACxUZVVVVTsMBt3WNB8djkuBdNtmJzQSijoOFQpkcCeTuTEmTeNS+rIssrJiMc6nI63C/sbpIIoYtRD+O50hERG88wL9oiAQSwQGZBIIxE4JAyg9AYP0ziMTArfQBUGAWkJekJTGBAqds6IsBNkMRBAm3TCOgnYskiHrPvAhIN1zttvrFP0+ILoQS1uSc6i1B6ms52Y/9Bta9gAUtZ3OimGnL5CH7Xg2n99x21qgXF25QEtiz0RG6/G8SFtSt1OtfRgFVZ6R99azkHZ2cp3CKEz7ygQgABZlsEAwWZAgUCCzBCYGKRHZA4AU4IlrFs4RIkVaRirUGTCAq3O0llXs87wqMu+8RidkXFAUaR23Akw7HA78dGTn09nxga/cud68lWaOQnIVEwQ6ClUN8mxlsQnAG1r2ABydTC9d399a6wQ6lKJ45MEtR95aENLXlSXyrSh0zscG2rESMlC6p3UWSO+qSiv27Mq8oDyvslkUhTqKTZKyjBlMEDBzjYtNm85LLYl8VTtjFBF4kMQiTSOBVoKFclpbD8hVNaGqEt6zrwTWWgVj2zqcmc0+DTqGoxjivkB1uLc7v3KF63GZlemmKWcjqC6q9CyGqx6UVBKS3nQ3a51pJkBvYHkDIITwzn3oJz8y3nu2qLJWu2PJT2Y5kQ9DRYRKSWO091ZK8CWPp9MkDbVpARjLAIC2rmztWDIDZNP50clJGpmklYJOUAUcaR0oBGQiRiAHRKS0dt7X1gZGusp96+VdBG/AnulMsR6zLJFqAqGh6kZyPBcXxu1egvdulFsrIQYJtNZAdmB6YicnBwcHd20D9qKkVSMYa+fgbvqw42bXYfO9RvXK+eytHuMfAUsdAEduZ2env7rtxs8l/f7xyWg8yYf9FJiD0CBDVVWL2s2ADgDLoqwq224nKugIRCAPwOzJAXoQNahJ4ZimKOdCSiwCqRSgAkSWQghUUgoUQF4A1nPICj7/zVcDtHfsxDmCgFxrkgLCuJeTfvL58bQKH75f3NMfpZGHoA/puggH873d8vBVjcVwddVx3gmzqhbOyyDQ3hcwvail5zCE6cyY5K0e4x8ByxuABWZ+7uKr62a6NhwOV4beeiGkUeyctUSewFoOUzHoJQJhd3+kBSSxkWEcGi0FwWxM5JlIBVEQhuyrQCMDHmV07TjrJ7LbNuxBCDBaSWQPjLcWiTF08NPvW5How8ALduxaF67nz13Oe31V2OLMevD4Xx1upeNZUdbBlkm3RWvNZ/nRS98oirozWI0G3dH4cHpwfdBxtYMgRO+MjozqbzsTQzGuKwQAJm7mQK9jqQOAKJn5Zx7/hSe+8Nnp7KTf6/P6cH//QMnFuRV/cDTVSnbSALytnR+2w8AoWxRlUSljWkEvDH1upwo9ShQoAqWMEkTU0j7SuHtUlZVb6UVFCdYRGxIIoQYlsPJyXNE8d2kCXRm8eLn86jOjl2/MV/vRoxvyg/frs6eCJCms7ISrd8jhbcJ0Rrt7o93rQWvFJFYKaTRirFjptKeEVORJK8Ui8O27oJjZKuqdfQ8QCdksh72epQ6AlJKI/tr7P/C7//k3Ntp1KwyCMArDsK4LIVEKtTqMA2OyrNQaEEii99Zbtta5OkfVToCUdYLZSetNgIHWUqIU2IpNFKiVtne2CgLMhXC+zknOMy+BitpPbcurFjHNpsda1IHi+87Gj7w9euC2eKVrQgmll4EahO0tjLrAJrt2fnbj6qiMAw3tJPD1LOZCQY1CZIVspVHlPJd1sH0H60SMro/g7HDrbmBqmmO/vqUOAAAAsHPOUnQ8OgoVt9IVrVSR+0hpaXTg60Uh27qqEHg+q+PYtE0adVbz2l++tttLMJDC1aiZgYkwUDpUWigJHnFlAEgJs+sjkguEYOhzUfvagRKodU2+FmQY6MzACAyPjkb5bLbv4czZM+3hFur2dF7HUIpqrorLdZkVpQ619vlE0YSprCswQcq+tqUFRzLqcXuDD68I4sxS33tsNkO/kWUPAKJQCv/tb3z2l/7GuzaHW7acrqz0wkDm+SyJA+/dfJ5LCcDiZDSNIuNIVs53k+4k3swPymf/9PkPP7KdFyV5kjrBsKVulZK2yEwERiKQRSClpRCMwNogokSw7K33AkAwQVXXswLGmU4DNVjbPJqGVpQ6wMmsWq2yEEYo2+FgbRM013NfOK1joZzRvXZ3LYD9vAaBtdp+GNyUK4dRmOdSSNkcB3tDyx6Ahclk8tQzu++8e7B9KpYShiuDyRhsVZZVbT0VtY0DHE/LQX/QXx1eevXq1B30t9fWOuJ5y51ePB+PD8dV5mVcKVGYVmy0SQKtAZ0VAtAZSSyIGVCid3VZuTSQWgdsHQoJIDEkr1xRwUpPXrk6PZyVabzf78WlxUR1DbyCPmt37lHJyv6xtrrfbgdKbxgpSARebShl5OA2jJhuPkccFBTuHs3ufqtH9UfCsk8QF/2Au93uP/vnv/bVb+2FgXGunmezTqenjYpDubHaHnYjJaAVq/3D4+l4rE3raP9g/9kvXnzp2mMfuDOicvfmbJRZRDr/ws1Xr4zms1mWl1lhJzmczCm3OueEdN/pnpV9rwY66mJrxYXrMt3iaNN0TrU6K76uoZo9/9LN4zlW+fQQNu9/9FNh1LpyM6fWGc9a2kM+/tZaxw8GQxaRMN0wSCVkvq5EfxuTgPYvoQNSepyJv/KTvwR/1qOg8ZqWPQALUsq77rrja9/ef+bi9XJ+IgTUtkg7/ZXV1TAMw1BpDdqYmuGrT1/WAs9tJsD8vgd3bF4d7h2fWm3Vzr9ybZJTcG47TGPJrirms7quydfO1llWTmdlXrisdCCUMqG10lpynqpiOj28Obr+4uz46t7h7HefzA5z+fK149XVXkZJ2l0Zn2RFcBsM3oVqqNIdFPGg3w9bvcphzRHqoTp1n0xif+O8zWbTUlnrplMbd1ff6kH90dBMgW7JsllZ029/4eIvfvTcXbcntqrGVg1XVsIoKcuilca9Wj3zzeunhyZ0x5JaSRR9+asvtDU98mD3839ywCjTVnrvnV1HPMtqlNp6AFe2W7H3LBXZupahQha+tloDClRKeFveeOWiKybe++MZ/6/zWZi0O4l4tgz+y+f++6vfenJjY63f73VXtvzE0zQT4ZYQElGFUTC19niS9zZ3giSy176B5US2NhVE7aC8VJ4jRyDo1pGFxmtrAgBCCOfcffc/8Klf/PjnPvfbv//E3vog0siFjWwapWm8sXHq5HD/zHbw0l5/Mjl6x53tCpNjvc1KDXT5ledH/ZW19z24maaRJ5jOK6OENIoqKsp6PCvS2EjGONACJXnvmVhrAKidq2qX9lf2btiZj/ayfC/PH7s3zrPswz9+b0koGVoRrq51THVjks2k6ggmVzNLixKGg0E50Ix1dfXbnB9h0J/lMBxkNnr7wz/1d4HpVjmixutqAnDrMWAwGOzsnIk0Xnhl+h8+f/Fnfmy71QokUjkbqSBMugNk9+h72//p98tf/8PpSs8WXG718WRc335u54E715FdXnsHgRLKe68Ut0N1DD4rKEliJRWCZUAlVRQqYvKOlFRGq/W1FW3Ck6klNdOXsqcvnvz8B9dOrbXWVyNP+urV4621BN3sODO9dhTISEqBQrGQk9lEwlzUx+DGMhqUPiqOXoakNUs+2mNmJoHNj/vGmjECAJBSeu/PnD3X7g9Go5OnX8oA9z75WOtg70YQRafWTeUrrfALT1wYnxQ/8ZH74yg6PJr1U316basdB54IUEaaa3JBiEYpJVEqOey2S8tJZEIjgG1ppWdWSigpEZhcbUK0dZm0WoUv22V979n2C5f56t7R6mp4+Sp0YlNlWT5T06zDImqliTaJMJGtpuXsuq2ropq3Q6+UtqARcXt7cG3S337kQ+RtUxv9TWoCAACglKqq6q8//vhv/uZ//OMnnmjH4TdfmpjwlUcf6sPJvJWYQYK7u0dPP7O3d1yfHgbrO2eOpvVmUkwz2sv1akIoRZFXSegXLayVUloZYIqJga2iCbqsqhMZdOI4DLQE8nWNziNIDiOMnXGH8zt3+oGSlw/zlb1paNRkOguEunEsWMPmqjHp0Ntyenwtm+0q8Azy6CQzQ+CwA/VEI4/HMZ77WWAW2Gx/eLOQmwLCAADAzN77ly+9/PhHPzodjxmgqP073t577N3bZ1aTQTew+TyfZePMrq0Pu5tnhIwTZXOHtTfe+tqHcwun2jLRPtDO26oVaIHAwMRo8xPNuYyHMuhrrRnZe1dVdtHzyFqqand4NK7rChAPT2YHJzMmmSbhudvWVtd3TvUDqEeCqny2W9XORAkwjMfjVqiSNI0jDd77ci4f/sftnXfDokt3481pAvBnFs13L168+GPvfY9WishJrR96YPOeTXPHqlzvx8JVUSCArAlCjPtBEoVRpFTAVEnZAxERCINOCQLy4K0x2hPb2iG7IG4LpRAFowbwRAwMRM4R2dp7ouPRBJiV1mEUBVESqEgbIQRQcTIf7dr8QEtAaVgoBpEVtTKtVqQMZkQsWL18wz706c8mcYJSNgF485op0J/jnDt16tQ73/Pub3z961LIsqjOP7+f5yuHU7h/y64mUHOoBaKoAju2k5nNYxMEWqBqaR1EQmpPitgLYXuDlaKsbFmGtCuQSK0QaKkkoFCIznsQUjArhCARjCLprmgttdJZXntXcDWejg6K+YnwhbU+CGXtlQGn0Il4ZVqnCiuNM0dU+8D59KG/9U9aacoEzdX/PWnuAH8OESHifD7/xMd/4amv/bFA6ZyTEne2ehtr7Y0O37Ot1zrQiU0QxkooAUDARgqhlZexjnpR0vnKV57/vT945oMffPDjP/d+YK+pYBAkY6kCQCAGKZR3zhFlWemJk9gobYyC3Rs3r125cm7D1MUEqCLvEYVWCGSNUp4dszgpdObCMIKtbj6f1Um7H6Yr7Xf8Smuw1fRE+j40Afi/fTcDP/uxjz13/hkhhLMO0ZkgWlsbdGM+PeA7t+K3bQVpGmsVAKD3AAIZiAGFkLNp9vyFybXd8U9/5D07ZzYIhBS6ripiEEoBSGAHVBM5YOut9XVGwJ0kvvLKtb3dmw/ee0oLAYgoJCIBk6+titL28NSNo/p/PnVxbRCuDtTxyN64ST/393/11G13mqjPzc7n70sTgL/AonGq935l2JcCtZKCkAC6vU5dO6VAIG305X3n0q3V9Oxmu99vC2lQSG/Luq6ctWU2V1J5pzdP9aWQQgjPwgPgYvIDjtkDeedISkCslRCSRaSlVqIua8ElUF2T8aA9RiKIhRS7+/n5F67cuH6ycfv9UXv1l3/13zHzd+rzNlf/96kJwF+Mmb13n/nMZ5568mt/8vRTSCAlxnE8ywtgEBKtZSLfivTGMH73Pb133bu20ksiI4wGT3Tx0v5s5qJQ75zq9tshEQMqQiD2jgjY1g5Gk5KZV7oi0FIpKQnrwnrrF/W0WmkEqns0cSigqLMn//TahVfGdeF6q6f/1ed+ZzAYwKI1X+P/TROA13SrgfZs9slPfuKprz0Rai2lcJ68c61W1Ou05nlR136a10rI9Z6++3SyOmilEQ9SIxDnOa32o3NbaTuWRkoSsnbeeZ+X7nBUdltBHJBQBIAalXOAIA7H/stP7959+6m737a5fzJ/+dLuPJ/uHZcXL43KioM4/Rf/5tfvuve+1fV1V9fKNMWffwCat0CvSQgxn8/TNH3o4Xdcvnx5d3cXrZXMcRQpqUzQ6gfJfHwigR3j7mF++cak1wm6/Yg8a1Ab620t5u3z+52W2RrGcWSSSHXbqqh4NPVaWk+aWBDoqmbnJaKfzN3z17OvP/dMOzp/PMlryw6lq1lLsbO9+Wuf/a0777kXAIioufp/UJo7wBv47vPApz79aSnwj77wB0ZrAUTEoQmMEtZaIghCnReVANAaPBGBsM7Pc8cMAkU7DZPQtEO4/2w3DGOtmVw1z0tHkFecTzIBKARfPywmBTGI2nqthFEKmT/02GMfePTDH/2bPw8AzjkhxGLe3/iBaALwxhYLZIvPX/zSF1968UVj9H/7nf/63LefEchCyVCrsrS1985arXTajifTvLK1llIZpYQQCKvdKG2nre7QVbkg8r6qdGotrK20Tp85ffPbT0/Gk/1xfTDOETFJ4kDJd77vkUfe/xOf+Nt/B76Tw7d0GP7/1ATgzbLWMrP5ztzj4ODgxvVrly5d+pV/9MsP3L1dF34+natAoxRbK+kLL90ovBhNZ+B9qxUN2uFKP9k5ezu2Bl6E+1ev9Da3ksF2rKSbXuv0+3vf+Mrlly+bODFhnBV1lPb+6b/81+fuuDNOkqqqtFJNdZMfkiYA3xvnHDMjglK3tlvO53Oj1D/8B39vcnS4s7OptHzpuQunz5515C9ceNFVxfTo+PS5c7fdf381vll6Ibs77Io4bQU6ivrbdTbJ9i6kcRQruXJqY7p/49GPfeLM2+42QQAAzlqlm32dP0RNAL5PzLyYlrzWoasv/dH/eP78M1EU+Hm+cuZsa7Bezg+KIisKDnuDQLp6MnKmn3bXfH7E5B//2MfU/zHJWazHNSe6ftiaAPxgkPf0nZEUiMSs1Pf8hu1WM+3muv9L1ATgh8U5B4seLQTwes+vYvE1uWir1PjL1QSgsdSaN2uNpdYEoLHUmgA0lloTgMZSawLQWGpNABpLrQlAY6k1AWgstSYAjaXWBKCx1JoANJZaE4DGUmsC0FhqTQAaS60JQGOpNQFoLLUmAI2l1gSgsdSaADSWWhOAxlJrAtBYak0AGkutCUBjqTUBaCy1JgCNpdYEoLHUmgA0lloTgMZS+99HY1i+CvH+jgAAAABJRU5ErkJggg==", - "text/plain": [ - "" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# preprocess the input image\n", - "input_256 = preprocess(predictor, input_raw)\n", - "input_256" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Data shape for DDIM sampling is (4, 4, 32, 32), eta 1.0\n", - "Running DDIM Sampling with 76 timesteps\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "DDIM Sampler: 100%|██████████| 76/76 [00:05<00:00, 13.14it/s]\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Data shape for DDIM sampling is (4, 4, 32, 32), eta 1.0\n", - "Running DDIM Sampling with 49 timesteps\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "DDIM Sampler: 100%|██████████| 49/49 [00:03<00:00, 13.45it/s]\n", - "\u001b[32m2023-09-10 15:29:28.140\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36melevation_estimate.utils.elev_est_api\u001b[0m:\u001b[36mget_feature_matcher\u001b[0m:\u001b[36m25\u001b[0m - \u001b[1mLoading feature matcher...\u001b[0m\n", - "\u001b[32m2023-09-10 15:29:28.959\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36melevation_estimate.utils.elev_est_api\u001b[0m:\u001b[36mmask_out_bkgd\u001b[0m:\u001b[36m48\u001b[0m - \u001b[1mImage has no alpha channel, using thresholding to mask out background\u001b[0m\n", - "\u001b[32m2023-09-10 15:29:28.962\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36melevation_estimate.utils.elev_est_api\u001b[0m:\u001b[36mmask_out_bkgd\u001b[0m:\u001b[36m48\u001b[0m - \u001b[1mImage has no alpha channel, using thresholding to mask out background\u001b[0m\n", - "\u001b[32m2023-09-10 15:29:28.965\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36melevation_estimate.utils.elev_est_api\u001b[0m:\u001b[36mmask_out_bkgd\u001b[0m:\u001b[36m48\u001b[0m - \u001b[1mImage has no alpha channel, using thresholding to mask out background\u001b[0m\n", - "\u001b[32m2023-09-10 15:29:28.968\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36melevation_estimate.utils.elev_est_api\u001b[0m:\u001b[36mmask_out_bkgd\u001b[0m:\u001b[36m48\u001b[0m - \u001b[1mImage has no alpha channel, using thresholding to mask out background\u001b[0m\n", - "\u001b[32m2023-09-10 15:29:29.384\u001b[0m | \u001b[33m\u001b[1mWARNING \u001b[0m | \u001b[36melevation_estimate.utils.elev_est_api\u001b[0m:\u001b[36melev_est_api\u001b[0m:\u001b[36m199\u001b[0m - \u001b[33m\u001b[1mK is not provided, using default K\u001b[0m\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Estimated polar angle: 62\n", - "Data shape for DDIM sampling is (4, 4, 32, 32), eta 1.0\n", - "Running DDIM Sampling with 76 timesteps\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "DDIM Sampler: 100%|██████████| 76/76 [00:05<00:00, 13.38it/s]\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Data shape for DDIM sampling is (4, 4, 32, 32), eta 1.0\n", - "Running DDIM Sampling with 49 timesteps\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "DDIM Sampler: 100%|██████████| 49/49 [00:03<00:00, 13.32it/s]\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Data shape for DDIM sampling is (4, 4, 32, 32), eta 1.0\n", - "Running DDIM Sampling with 49 timesteps\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "DDIM Sampler: 100%|██████████| 49/49 [00:03<00:00, 13.32it/s]\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Data shape for DDIM sampling is (4, 4, 32, 32), eta 1.0\n", - "Running DDIM Sampling with 49 timesteps\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "DDIM Sampler: 100%|██████████| 49/49 [00:03<00:00, 13.31it/s]\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Data shape for DDIM sampling is (4, 4, 32, 32), eta 1.0\n", - "Running DDIM Sampling with 49 timesteps\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "DDIM Sampler: 100%|██████████| 49/49 [00:03<00:00, 13.24it/s]\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Data shape for DDIM sampling is (4, 4, 32, 32), eta 1.0\n", - "Running DDIM Sampling with 49 timesteps\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "DDIM Sampler: 100%|██████████| 49/49 [00:03<00:00, 13.26it/s]\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Data shape for DDIM sampling is (4, 4, 32, 32), eta 1.0\n", - "Running DDIM Sampling with 49 timesteps\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "DDIM Sampler: 100%|██████████| 49/49 [00:03<00:00, 13.22it/s]\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Data shape for DDIM sampling is (4, 4, 32, 32), eta 1.0\n", - "Running DDIM Sampling with 49 timesteps\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "DDIM Sampler: 100%|██████████| 49/49 [00:03<00:00, 13.27it/s]\n" - ] - } - ], - "source": [ - "# generate multi-view images in two stages with Zero123.\n", - "# first stage: generate N=8 views cover 360 degree of the input shape.\n", - "elev, stage1_imgs = stage1_run(model_zero123, device, example_dir, input_256, scale=3, ddim_steps=75)\n", - "# second stage: 4 local views for each of the first-stage view, resulting in N*4=32 source view images.\n", - "stage2_run(model_zero123, device, example_dir, elev, scale=3, stage2_steps=50)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABAAAAAIACAIAAACTr4nuAAEAAElEQVR4nOz9Z5AlS5YeiJ1z3D0irkpVWbpePf36te6eFjM9mEH3YAewwUAMCAILLlf9pHFJGEkYuWZr+5NLM/7gD5qR+4MEjbs0AGvYBTAQM40BBjOD1q9199O6tMis1FdGhLufwx8RcW9cmTezMrOy3qvP3suKG+Hh4eL4UX7cHUUcewClEIaAACICAIiYXQAiAshwMpA8KeBIBvMC+3kM/y3yl6F0WXn6qQSK7wrIhNLN9UnYp+QzHkvpqQwVc79Mh98aSd/PVubIR0Z+4KDv5i7CQfoO8QDdfcC850W5rcstNdQfgohDhITYf541UUbRwiJEE+i/uChlMPh+/7OHLz9ITn75+Op/ec4cirfygmJ+87AjMc+2XOF9MfKpfDwWLVfKYXahRsbOcPb7Vycb/FPzlHIWGfc4KmBWLynTSonmipuYF0JmNsSgT7OmK5d6xivZUwEpDQLEgrwHvACH6Z9FCBEAhLlP/1IwECwqVab5KQUeUEz/u9lgKVeizCcn1maU8w9jwnic2SojXGEkn4nUMv7omLjXISEgwy2cYRo/PozsgLzj8x4cJBhkltPUFL47afzuU6QhuT+QX4N6jdROptCAjOZYtBWgQMEF+toDDvF/IIJSAYrrbCRBlgn0R3oxNsqkNUF1mRs4+GT+9fE6DjLvj6xSvcfH3cMIgVk43JCY3jSTlKV9FKiSsCjJlymDd7JWORlDPAbLt4fzHP/ESBlm0DkMp58BGfoHAIb6fUg/LMugUgYIKFDQf6EajtA/CjOggFBBeYL78tVJytZAET+A7joPBCAj7hGyHpcI86kso4XDqT32yLDPAJgvj/mbIieRMnXOpoBZugkWFCQDvWQObtSnOwHAebpjhOIGSt7wAJWiZpgpSH0lTAQQvWdNWWkx++yMuh8RZGi8TvjYgYaP9P8UBsD8FZiu8wwL/8kYF1ATH43cKb9yGMwgzBm392f+I3zvyLnYBODEwdEX5JJ3aGkwjak40/Tc6VJvGv3zgP5Hvjih+uN3x/Q1KczvY2/GE8KhaiAwoReGGveAeebDXXDQ2gcp13w6SJ8C+wr0jMQnh/lrWmrykjQCgGLQIYIIAjrvtaI+/58r6+l+xoOSSGmI7dfC08Z7LkkG/TVz3B6wZEcFGfkxl947iXOMk+9xYErxTp74Z1sbGcpasEy4X5Jrg/el8M0wMzIzgCDSw2g/M82GydU5WP4DA2CcGiaXJ7sYFYv9u4PLx1ww7YNRfW7SGJq3Z8bUgsGfaR8XACibF9MTFnbq6Lf6RZxdqhkvTlSFcMjmYACaXZUjx4wyHzirwtdbZgVHUheBTLfL8szk5LDEOnh+0zGHbnKY/HHwZIgUZHaZxslmlPLLdyeXRsbTZEJ6WCuZUpWZHTlZEuZvDT5WcsIP+QZRQDCnfxYuHJxYznx+SGlAjY/lfp6HUE4mSj04CiKfJl5PvzwQKYYh7stZD5t/3wQFGHe8nQBGtJHDMwURgIzQRQChZJf2R6GAABCMqkpzlrH4SFa8kptSYFTwDbjOQG8bGPmHxpDBVmT/GELmZhIy/u+k6JR93x/HqCV2elpyIK72V7syss7/7etf/asy/aMID882I4wOvMHjKT0zMnE3o1SHg8isia2RW5M6dxb/OIVs/2F0oPFMRrX+Mck32r8jwOEMDup1moQ+HQ4VcIS2p+nu48WDMS0N5ithbh7JCNWfJDUcAe3NY34fJtd+7iNFfARjZd9PzsP7h8dA6c35xc5sPjhOheP29kgExYSiDxVlanGmDVWACeF/hc4/gVciCDMg9mkIJ2Z+hH1+2rjtHHhIhjzeliPm/wGzK+JPjinOo5C2g5ASOAW9dsgCzBQGw/y/jwM1q5T/jL5YDP4hATrS/Q9vxQlAbq/h8ciCI0LfJMotoaF4lCHGM4P79X0cB9H4xzOA2WbAMcSFHInDYl7dZoTOZtA/iy+eD8z9gxb0mN0n0yTdoV8/aA6PNSbFPA/3Vnk0zTIFxnMZtiSGmVzJKzK7ePvPEBwTZJhvD6r+BEeKvsfhcI07/zszR/qI0lXQ5+FMx8FLZRk2s2Rj9uWE7+xrjYxbDjilCoVaMyRLJxn/MmD50q/UafSLPMETzIt5aVdkoHrmeAgFeg6Fq3g+iK16GF1mxEN2CgftNKZ4VEUdtaimOQzn8SLuf+9RYppUmOGKmsNQQBafTQVMJKJp0uVR4LSR9uOD3I2zrzMdxjp51F06SDV2Vf5exuFKz09bx/WVIwEYLIApY7Ye9gQHxzQv2QwctPkPYupP09endfyIcJ+hnh9A0BwlZU00HiZp/OUwyoz+EfK1kaPazxP6f4KPIkb4P06KIEEYXh03f7bzpT3Shbqnf5TuZxwd6VcOMTWAI/9+ZFHyuAqILhF+v+q5RTyu7j/SxjmSj5/+gXIMGNLCS5r9BIy1zz5DaXo+OJ5shlsTjrxfZvb0iAUztE8MDl98/MjlmIBjVDHnW0eKiUxt5ObEjp9T3T+Y6DkwOxrR8sefjvyFMck7Vq18j4hp3sgn9P8EHyGMjrhiHOXLV0BwZL3DQej/QGmPdGCd2lEqIz9w6M4MZ8rhkHfnvo7O6Tj9GuJDlXDU7KQZdugpb4dD4aNYp30xZBbvOwMwdmOaxj4hpxmkNNuZePT9Mk+OudJzeqMmP2KYSEwzEh8I83H8IemO45dzvFyoyhMthBn5TJBKR2APzZlF8fHR5IeVk0/wBI8jhkZp5gUthNPE8fEED4dRawsm8KGjbXOEw3K1x4QAHqqEo/RP+UTXEX7iCU41ZuvoUxLPQxACw0GOkP+XPyt7LWX4tUdGbpz/e1BPzxM8PPY1Rw/KxOfuwLKnf/+X+hxzPwV/3/L2a3wUSnd5Tq2PaTUbN74nTchPkNVPcJSQMk88Ijp4godA7iwGgMwPNOKfPoV4vKlmbPr1OOoy6NSDOpswf30eT+nJY3xK9+GzlHz3w4lusSf4iOFwHTtNQ5iWsLDyJ7DTGXFHM54eI2hM6XlC/MeJEeY6u9+PZwbgANnPUPpxIC0mlmLKe5KF2jw0kfUzmBF/1C/IDGGIg4cTnj8ZC0eK8mJTecJsTgNKmk/eN8d1ftZR4XGkmrzAmUogQyzpOOoyyHN+iVCSRHO4eh4ljtRfiohU5PpYktYTHBYHovEiWZn4xu3RfBDJ4Kf0b8yeYcJH5dc40kNhn2BflHnM+MXDZ36Eb82X24xNj2GUWedK31HQ+lBMX7k40wsykqDQQyfbYE8EwbFg0MxY8MfH26N7EjhO71Ap7Od090JJyI5v8nvaUdYQBPNzF46pFkO5TotomMneTnJEzqDtUbWq+ItHWTwByQyAJwz/I42pbo1JgQBTspisw8uYTjFZr5vhqQTJFyA+AjwJ/j8BjM2pln0sVEqIR+GFwOF85skNx67nL4NMeLucTYnSsbgpo6kPDCx5K8u1HRmO+9pYWdjDyLbPT4bEceG0u5dPJfJRcyxKWSns53R3zcAFd2zK6fFpvSOaQD9S4Di+OFXr2Ld/C945bXb1ODCftOnvVj701tF8H2n/VE/wUcYodU1NB5P0m+m0OJGpDn9rQpDCEQ66x81P8tHEaNRnbgqM6OgjlHRoM2DcPTInFRzUZii/Nfa1cilwYN1mG/ML5GcGHJUsH3Ejy/D9kZtTMvg44lE6UnNXaIk4Pq69MDeOTUGXQ2xNdrI4maj0Y22EAXPtOy1kTCocBQaMFyc9mKMd+17200YVxxOik4cAPW7s53Er72lERlCEQ3JoRuqCAOcMjihdy5CyM+qXxLG/R4LTNn4/hhhXRgWLOPjjApYU4rJn/JgwnPPI1/rRcIXeD0PUfzStMHHibdTumgIZS/XxGTWPyB2fNbkM/uvfHLp4gpMCnvqFv9D3KZymgh6mLAIiOTecPHP60MDiQ3MnnYDT0MxjcuKY2FUeAjTuOjvd+PjIqePHfJblfuQxMYvJ+T5WlPYEh8eIU/0QPvajK8ix5SyTom2GZzWwSAiFAnhU2mc51Ggk+Gduu/o45pafYBwzWvdJwz86nEJf7wgGA3s0Wu9RYqBqj881TpPwmPv+B0mOJ+J+qJWmsUAp/1OUScaenwIcj+8/w9Ai4Cd4gmkoKTM4SccYTjU5ZvN0ktjpLNVHBxNd1Mf6OZwUDHRs35tUoYFYxP5PFATAY3bo5F87CDLz5MkwOBlgTgsAB7bUnuA4cPqbXIauH/G6tVHmUrjz++yurEsOTQHncT+ch79JYXsdZ3VGmfNEf9T44rRSqo86qNxhMkpsT/DIMCvw79R1zLi6NRhTpTEo/dSzMaN+c1b9AC10QuFvp67PHglOIJa1jxNi4KVw//5FiZEWM/e5zDuWj5edmCNhV7M9bIV18oQ6Twj9mKsn2w+cFgz4v8ioMDgdw+J4gmUOCYQhd3nO2srcbhJXKkxdGXp2zJVBHBPuQ/Jnanc/8kaehHnZ9EHdPyKcuSVOZa0/vpCSWj3SNTLj9ObTgv7SqnKAwYmS2ROSfoLjxviEMQIAYH+rPkQUEBQUBJhw4uJxlQeHGQg8GQunAU9Y0imElM9nGH12ijqsGM8yZdLxpJEppJmSjaXZzmlCfqIqc6zIW6zQloZ/Sm6Ll3r/5Es4EyPtuD8t9kOrDiJm8l2ARpW1J3ikmCG2H2G01kHi9Upxi8W04JFQ1zQXsoxdzN1IJ0H1Tw4c+KhjKC6uH6pb2mgcjm/cThgOUvzZ/+UnlHlSODW6xRMMMFX7n3H/0aCsoJ6KaTucpI4ITlUUEKQAwNSggaMsHpSsJRxS8Esqf6m8p6nDh8oyT+P0N3M5iKJG5Q+dpup/rFGeHpsYxfb4YMI5YIcb6eW3cNgS6P8dN5rnwOPWok9wajDRPp8iS45dXI9Nq+9vdgicEnfiEzzBxwz987D2YwxlfvLITswZxyCcvuzjgKGzfienh9EN0coJjhHDHx0EJ+P+jPIRQgqZUjKappHMeCDovqBTYEhOwNGW6SQjj08Ap5NQpyAf64cgzT7GPQUzOvQg1u+hS3QYyOnw2jzBMWC0V3OROCRYjnHUTsi6dGufNQBPZgCe4AlOHGMibAIPkdITKb2QCZJHP26ltJpWEKapqENeOpywYPBRQY5/HcJDo2zyzcOqEXPJMydfp9PZBEdbpsNJ4KOi0nJ0yolR/nEcGD7/cJk4/PGAHTEtzmfi6zjpet8PyVypjgIytATilDDAxwintsWw5EsaGyAIwzssH1MtxofbSCGmPXoyA/AET/BIUMTz96cBho4jGJrN6++sUw6ceRiP2lFhyKkvkIm4vne/LPiLZIiAR7cJ8sOi1IanpERl5BENI5EPcyAPapsv8SmdAfgooayPngCdySmQ62VdH4crPn+xxl8Z0fLLyvQwn8mxL2XjXKkeCn1+/RGbhjoSzNMaM6y+U45xo/SYatHPvN9W46NAJn39BOj/CZ7gCcYhpSnC0TEog8iaTJzjWBIoxvvgoPFjK+pcyDc4KJkxxz7xeXQ4lYWcXKi5vchz1unRzwCcWvlzHO1y3BN3IgJy9DNbhyv0MRHWiCaNY3+PuwDjyOZbyp07KORQ20l5au7UUv5RYK7K7T9FU2zNdxpmvGdjhp2Phf59rEbgyBoAnDk0+q88cv7/scP4jPBIUOPQhM5pJ/snOASKfi6H9QgM5EjxnwxTRCmadjCoCwJ5dMO4xEVmsOr5CfnkSf70DbL+lrSj6gOOKxUPJVZoPKMTgxxHnMrsL57s58Yxe4OmScXbp8gjggNP1WGBx4MRf2cfE6TnCZWo+NikYVlcDDYjwEfPsk8Ah1F3C8mXc79hSYKn3AaYQX4jN6eR7sN8ekSTPJJsn+BYMNFEG1LocsXv5OXjxw2PqoHHAgUB+kN4UokQSlGGxa6bMtGyH9cajx193V+m8Lwi1dRilR1nw0JAZBJnPTqcvmmKXL+fGMlQasMhC2G6aNy31YZCgE6yHUY8uB9VDDa9mgPDTZH18D7Ns6+T70jwyPtovAXHVajxRtjfwfxQhRorAA5cOIPbgynaXPeb6PV7nDHM9AvGPdoSQ+knyQnJD4gsh40NzKb9jOdHjnGOPRxgUxZyo+bRlFCA/SFjjHREzp7qJvtYYOS4oWmDXga0gPlx0SVvzuPPJE4lHpWzTEZJYpIWP/xb+opxn1BkwguPZpsgKX8YBzUaMQqmAktXpaPSsfz0eCp2mgbWuLM/x/QG2Pfgun1b7ZGGAB12/M1LV8OvwMyqHi0lDKTy8I7gUsz05bZtrjKVlIOBwYAfjfV5R9Kw0+zhkQQHpYrRHB/i1f6xg0VnZh1eVu0wt+hwwuuPMwYerGwxW77UK7uZOyj6Q7Z8aGShDMnAXBDMx0ZfbxoMoMcNAlAS01im27IaOG4Kjhu3E29OtIGnOY+e4KRQ7tWMBGC4H2QsZfFbMsLvP+4Plo+CIDiVeFTjY78OHfKeTN5AblzXlylWwUkACx9Y7gYqOD0WP2HaQBjxB8nQ5jwI48PkiIt9ajDQFCda/ePOnjz17NmVfUD7JzkejEfKHvT1DLMrPlFZnJ3hkWBQPOmvjhlS9DPtvpjXw/IBGcUg2r9LHwvpfuRDbDzD8Un1h81xfgzr+/3cBipw/+6QPZC/81FAwZ9RiqpnKJPxwB/UN4BzGSFSkmQjOnJ/EvjQpt2JY9woHScumZSgXLuRV/b1gE30/U8r1RMcJ8rSuDyVBVDi/zlpyyD9ZDk12BrmsaD9J5gfZYfkiNk+2xsAALPO1HxEhNJfrCAlfpYx/SGZMGy19Cs+zAJxEAc09spHGX1hl+uLsK/tU3KmFc080dMwA4/MAMhwIHqdKDhhuJXGjUqYMpim+WEefggNRWQhAErZnSn9EE8QEWHhkYkckeyV/fFxGRljnTI+Y3o4OfmwvtJMN5Uis8E0RMEIy+e8jPg1Sp/fd9A+ErY+70dRyup/UWfs2ztDwZzZOZE43BBSso/G/Vx5YBVOWv506jDRwTU7cVkXgEmmzux8RiTqjJ9PcJwYZ0JSjIXy2s5CWA/M2vIO7yCA2RBhYEQcTiDjtPEED4dHND5w5KqsNE8vUl9eDAuO2QrM8RNMNus74P/5bRRAESy5fTIxAeX/oHw9qAiWdjJBKVvI+yrDjylGg8JmV6evcky8XVzPQ9yPeBvQIxl/4xPfMDywRjDEoY+iAKPZy9Apf33mj5Cz9v4oEM79n/2JAoBcPZq8R9hAbDzuBH8wzPD6l38eyZzS/Mi1+76PQ4rbmM33FPu3SemNsS+OK21HUrYDYQZ73Y/MhoSWlP/JG4By6SDZrBeC5P8hIzCiICCiZHHPCAPjOMurbwqLSDYuTvViYBy+mN1x42kmvjV/Vqe4YT5mKI2okpdgYCIXE8CIGVUX9J+zEQEUyl7PpUZmN49zlJOpxRMcMcouIBm5WfwYTCX12euIjl1+DUtJ9xUoR4m+W0eG2N/AbB24tsuqy6Aq+c/+VflxkR327eMsxyLfMfPho4DcFzYXJtiCB2oIfZDEjxiHUtHyFydaCDJp0uQhBkxpJGeKPeduy3xcigCBsIDKP4uULfPKCb/vNRVBACnWD5T6OM8Yh775sfTynYZ6I6CADLanQQDJ7pV42MAyGFOUS9cjcxEzqiZT6PnhUejegxnIfZKXL6SwWbNNKjKDNlsYgcDCQsI5s0ZCyAYHZsFvACAMSCBAJR0JpLQIBvtzlblG9Mh7fyKGC5YrepKTxYTE43/LnSvDbGrcJYAl+pmYw2yczjZ83DDWsaUbOXdHzN22wgNujiCC2VyhoCAIi/SFAOWT89nPIpIaUQZy4fjxhD6OFyIlodC/mY3gUnC3jPLkQssvs47yw8JgHF90dvRVAIAsaEdghMcJAA1Y9cBbVpwGPGSr9JXeQeJ87hcBM+ePZLPAOMTgBjrckJr0OKK/jBDgUOZMSQDM3waPkwEwj2I0/nP8lbK37IjMxsGIy4Zdvwsyfs85KSMJEOU6vrAAEiCIZxZhRtRIhLkjFAu3Ub+8iFkshEB/qCGeYmXoWDGPW/QkCjHq3y9+9wX/pP4p622HwLH5OnIxM7ADYGIRpWTMSP9VKfQTAUAUn5EvegQvPnVxG7pNn+zZzp4KVGodp6CUMqaidYRkgqUGBdWeD8NKjT2QptSLItSomAVFik8gyLR2ffQYlkJ9429G1O4oytUar18/3xH+JsP9caCGOZUN+Vig3BulmyVDLe8OwWJlOwOCCCMgeBRhQUWZFYACKB4ARLGgItAwEkGNmRCRfCzgiKX+pB8/EiiG9YheO7aLwIh3oA+RkwyXHJYChbOjKIkMbJBBcVEAGAUHtrAAIosgAYogIggi5jtK5Blk878CgIj93TayKeTcJBYYRLR/vMfBQRjBY2MAyAH5W3lUzB4I06Ts3AUry2MEECQSZieUxbEZAA3e+vbG2u1kZ2Przs1KoNp73SgKKaw2Vs8QhmL04sqlxpllIMNiBIWAADMDmjEjbBHMuX/ZFfixNQEGOHTlj8g/MsWWxPKjyV8ps+99y3F83dz33Be/B0wbhnl6kXxQ8GK2owhMRQDxTlIQtknTxbtpZ7u3u+naO6FPiZi0iolTl9oEFAOgins2TR0YnTjfWL2ytHJWOeyliY2Wrj7/6ViFSikljEJAJFKw+9O0R9Zo1zxEV427t8q5wjCdycz0+6JsyT3BYZGPgvJ0Vd+GRuAs0hPAs3hwPWRr4464WGKvxcfeEQOiUqh6jlNCcBgtLlQXllMdCSqPqJTRAAhMiDKQAn33bqYPDX3/CebFUXHVMS4544PFGJ6VHAvzb9zb3V9qW2YIg79lC0KG+MNRo+/3LAsyBBBgRAIRzpa0iIAgc6apIwMLsyMnyCxeQJEHEEUipClghMzKVYgAQMOzwsAD908xT5A3WNEkjzf1Y2EzPZT9VnijYb/mQBF+TJqscKaMElw+vT6jxUYM5ZLfFmcnm69Yg0HHgAiQegDy0mvG7fXW2s10b6O19SCJW6lLL5xb7qbJ5Stnd7dbCjBG1pXQdr3txq6XOO8uPvVc0Hhu+blPK7NERgN4J0oINAIKkHDmKcKSh3ZuzvN4Y6TfT0+F8809yrEeg/LNKvLEZzNob4S8j0hslXw4g28zDEyjcQ1zaLQVGjkAAAOy9+zbcetWe+22sm3yqVHUbe1Br628xUq9eu7M2p17oWIEhYTCAAze41azt9tNOx5IY6MCb//iZ9ev333p83/hP/m7/ycyNcFAGUIkFiGkvjfoKNrg6FH01OTInxkYYT7jND+e2zBbO0Xj4uOBwt/aV0aK2A0vyIDiWZGlpMNuJ928k+4+8Gmz2951mIpz7NPYu+5Op1JZaSfm3Zv3b127uXv9xq/+6ksrF65+8td+nbBeOXO+cvay1lXRCoIIAUkKNQGhHA9RSKJH6El4DCFH40rIrbHpTTvKQyce8lMe4Tj2ZvETcYgnwBTmcDIMgTM7hSGbnBVGIBAByx6JSADAE7BIT3otth0b78Q7293mrvGe0dskTcWZsOqcry4uKBdUFyoesLZ8QVdXxdStBGQMEWU6jwCTQBZcJPmG01IYB4XX6rTKhWnI3QU4qMbkvpwHJbKZpxkemxkAACgTM065OVFkjjTdNCEqw3fmLxWCAHgA9F6xF8T71177TuvGu5x2zp49XwuDpVWzuyuq0ogCHQamu7vn0g5GQaPeWFxa8EnabflQQu9VWOFecmf9w1Ylqi3Vq9Z2Wz1z7oXPWdNAQMJs6nfEbnnMyP304Gj4I+bu80lHX00dtf0R3f87Q8mb+PrDo1z9wX7NA8YxWpe+WyFb4VJwq2zokBNEnyKv795+u7Nxq6q1YVaKxIkJTNr1D9bXzjz1TL22RO5WLaQwCDxoEdx+sN3rJLvN7tpebBYW60GlGhlxyeXVhknu/+Sb//2F554///yv1xoroEhRACCnn8tnRFE06sGKOi31RMYFB5EO4xk+MRsOi74bNt+tE4GzP4xkGTT3XLyDyS74vaS5JbYraRd6bUy7NUhFs+dExAfWLyxEiQn/h3/7ymvvbtZ0+InVS0vLiz/57rd2k92d9Q57/+xLL126/OwLX/yqufAJZ3SACgTyIAmAgTc4Dwjdtz+f9PaxYXrTTlL2S5fjYqD4OWLh9z27fZRfhWEhcrw9XXxJmAUAUSFCz1tAZSDVvhfv7RpJnet0dx6k3U10lggRfNLsBAbROh1gPVBgaHtns729vRA8RRZ7HdvudXYxcI4AovNPv1g7fxFqKxDWPdWIlGSBP5zpQVlIRF9kHdTlciqAADJ7AcA0w2A8oyL9nJEhj5EBMNKxE7ySIxrV4M1hu3rfR/MLRQGQLM5fyAsBwMa1bz+4852VSOsgoXo1aEgQknR7qG2lury3x4GpGhNevHIhcZD0eONWKtJdaFSBIFisiQ5DCkm8pj1IdysStzcerO3eXHrha9HKMxaJCAGYhvr3YyHBj6OGR5TnQIvOPHGlZUuFb24MI46ekbE/MicwUs6jUtqGxkIpOxm+xJJRMMqjirUojpEEbOt2c/2XFO+sVtAJa20QTC921ZUqSmf77Z2lp6+mcVdpHyexVzqIgo21bSKiarQUqpXLZ5GUi3u+2dm6u/vsi+d/9Ssvkencv/7d195+d2H1pd/4xl/WAZFWxW4ph2iDkxgsw0zmAJ8rNy/OZFblZBMfzVnOg5Vvwscfqj0fZ86FxT9FsDIKC3mF1qWUbPi11yldt2mnok2gfLPXNtVAAXR6qVgAwXbHkYKV5XNho/r73/rl7//xDxbOvxTa9qeefc5cvpQs3Pn5hz1Fqhq4z5wLQe6/+sN/8fTnfvf8i19ihQoB+rFwWUmw+GdsRrhvt5fI6gkKHF1jzMWTSglGNXsojSfpd2h/zezU8vY5c1npnzEXcWRAEBECAEJGseCdhygwrfXrGx/8sHXrnWo1rC9V642asd0IEmHPTOK4YlAHxOL3droYVKO62bx3TYNAS4vXSHJ2eYmUbu/tit9p3rzVuheG9Stnrn6Wzr+cqgYpAgCdx1v07fDjd4QeQ5MOrLV5XIAzWPy4qJivsPqxZQc4cjGxcfZ1sspY4pHcZyBjrLnLRQgEdq//OLn1ynljezs9z7ptJQzQJhKlkHQTdg+IGheWL1puexcrH9SiUEId6YYiASTnwbJORbCiAYlRrEBlcSmIqnt3Xm9t3Vy4+jmsLjEQAKrHW3weGKe2sggDGhz4H/Jo3cle24k6PZRY+QztHw7r7p2IgdDKvfoAUKwhK42bkTizgbgqvI8Intu34o13q+BEVZNOMwXWgSADAbGNdze3Vs+dNUbZuBNVQsXae99Nup5cY2kRurK9vXXpfL2zs93auA1efvXzLz792adN6LrNDb/z4NJq/dbt177/J/Kbv/N7ClTRimPNsx+VjMyLHkf4nMzszdkYZWpjFyNlnW0eHAgHHF+ndjieLKTwxQODoPdodAy7b+3c+HEjXdeG6vWFtNMWI72kK2HDoKpWq5v3t3s+DeqV2nJjr9UOXe+D1355ZSXa3blPzv/KC7+1oBDj3g++872/8Xf+6osvXTh/6YxOEmm2f/69b34pPHvm6jOgskE54iAG6Nsig9+Pn0P0scSYyTUCKRy9Q6+UAoHKv/rOo3H9ZNzsHncWZO+ewPjMIvoBgUB0L033Hnzzn/7Dnfd/+umL8MxzF5gry9E5Sbtxt0WBqtQrItDbjZu7e4EOyGNF0faDe2ZPztRwZ2Nj+852NVquLS13W+1Op5f02rVacHZ1waVi9+5uvLURtbaqz33FqTMEKGUzKd97othB/dhqe4SQYeGb33qY7GDQIONuxGnQp5mVz2EIZbbTkFdjmiAca2fs35w4P7Bvo/RFMgI6FoXJz77zP1xpJNWzl4Aaa2sbVz/1nKqGWkW22+zE0ZmVehTVY97TBpTRoVKJTYRQArRWiDUZoxGMUkjIDpwjFvJBzQUm4KZ07jbfXz/39Bd54XmhzHLj+Ur6EcH8XfNoUOz5KsVWxuMm5TSDcxwTbVQ4eN1HhrdMKslw7v09m3OBJZBpFJmhC8V2DIBS7IMqrHC3ufWmoa4TIq2jxfNBSNb7tBf3mnsVl3gfL59brjTqTFhfWbW2CbFtPtja2Wqu3V9vx/6dN9771V/7vHDPQ3zu0kXTeKp2YWnrwYNuEj/91Grit89/5tnX3nmn1/o6Lp/RqEZCgHIlCIeqVvwaYg4P05jzYFjdnzwnPY1HTeusfb818eeBMN+7I/JqtqG6f0aPOXKiY8DsPB2jYrj/3c61Hy4QerQWGxi7XitG5ZYWl3o922r3qmZZVVfOXmhQxYj3vovi49/89KdXzErQWP3kJ56+sFJb27j1/NXlemh+9eWLrTj54I07T125UKksBWb3j/7wn/yn/8V/6cErUNlgHVoDN3aCZInSJkadP8ExYNxMn+a37z8omW8ja3z7F2W9f8QdMNHLIMNpHhrDHyk8J4SUeqds+9brP/5v/6//5+aNG7/6mYvmyrkO9qy40Nbi1LG1sdOJF0XKe144u9rp9LpJTxuKzlUlTlYaixdWVpvdrWYPO81mY0EbYlbU6/JWs5ewT+P0zKJOt38aRi58+tedWkKgbEWwZGy/2Djoo0DiZdfRnD6eEnEcSE061TMA83nORsu/r9mAxUAbMr6nZTclq/5GDygIyMz27rVXz69iNaz1Op1A+7R7K0qiC5c+0WVct3Tuykshonf21r37zQf3n/3UJ4R6yyvLgNp5r7UBME5QEJQAeBYGZjDGaNQihAyGVCidB2/9u9VP12HxsoDgoz7I+YTxkD7O40bJ54Illt1fFzx5NmBmhgCTOMCR6HkjTKb0EwvNdcRc6euyBZ9FASEAEXSuvRZCW0iiymLqMEkdUaCVCsJ6tVKXtBVVaotLq10hUaiV0lwPvU07fuPuNnu3u7Xn03h7e/v8lTMXn7myvPJ02Diz3l4T3IjjHtejjft3eKdz/0O498HNF796LhuAI4GOfUV7eMJiVmsdn7zoC/Sy8IZJrGZGGU4fax4jiqG/By7v6avgAZBpHn2lg9Gp7q3eze8tqASpbsH3etvsvRYrllUaKGuNi1FXa0shBGjT3u7alrHS7bafuXr2V77y1a29tFGFuLNz/sKiiei3vvbUnc2dCMNqfRkkYIDr79/6/mt3/urf/s9Xzq3mOyZi7scqNkPsu0AnMMsnq8UmYFhtOnQDzWI2OHgy6JUZtn4p/TTIMEsZyuDYleDczQUAgCgCYvln3/nj//p/919op1cqlSaq9dT11ncaS/Xm1o4HDANdbUQMziVxrVarRAGSrJxbSCV1FrSthaKNDk3VBB5rC6a3vbW1vbm8tHLm/LPtbred9NY21tJucvni5d6D1zFcMJe/whjly40L0/fUKwizMEQYfYzUZnblSrbk/K1wqmcAYB/75/CCp8hvRub7vom5GYAoghSEd2/cgW66sHDm7R/88uKV5dUzlaSzvXXnZlequrpyfvlqutsKG5U7O9cUmQvnL6QxBxCkiY80CYj3HgkRUIRZELRicKLAi7POOefI1FRAmNzf23pzcfGyAyxbb6e6F48Cj1ftSsx8xFkzhHnMzhH+frh2mEUemfybpB0U86uApT/9OcY+72XU3baFOI0qUZI6DEIlmpQySgFq0JGYRSKwYZhYh8jC4ntCaBq185CsLder4coKN/3nf+1rO63t1SsXJeZ2Zz3irl1bWw4X9naSu9e2pYZPPfXJRiPonzZQHD1QNFF547O+Y6io+kRt+wRUohmMZYaHbx48oiE/bpaW73+0MT6blB3xJdm+Wbvr7yi/g0jOcrx9P6wsaRN2Os2wWtUN1bl1O97rVBa40lg0cYXb8Yp4BsFaNUafRI67No7jdmszJff8C8/d/fDm5tpGffGcldgEZ9587TZStbln793bWF5dAYXFmRvFoQDSjxcXGGJBoyV/ggFw5N9jwIB3HiD9RExi0YU3ZuTto+/wUnYCOePNjrdw7v/23/5/78YmSqTZc+qXtyXpnV1UX/rqy57ShFOsV3WgtBYl3NzY3IrvLq0spAnphYpiZdudrkuJqdXdOvvcRWN0x69F9aTnXM9WSTjp7m2v37nw4jMS1JvxbtJ8b+nCZ0FVFWTHZfdV51GX0OOE+Z3903Coej/iGYB5ytwn8bEGeSh/6Lgv6+AZFboFIgucO6M2N9xPXnmVfPjG9bXX37+xcmY1VO988pOf/fQXVsjF3u5+84/+xbf+/bf+g9/+S0mqtAq7iVUKPZJnFgQmEOcxOxLGiQL0nj0wMGgdMoL34CygTX1+5oUMNc9JbQc64n44+QF3uC/KWGkfOavYt/VG/FLjVZj/Q9Myl8k/MyEixXbSUDjcM7Zf6BzMAEigkJOkt9uIFlFTs9muVhc0Ke+dCiJhlbK1KddqgUKNLgXXYwBGChcqX/vtr3S6zd21vV/983+rFdob1157r3fthadeSjvp2t3rC2Tv39nstHuN5aVbG/FOeu8zwATUX7Ag5Y3T+mvCSgOirP2fAA7UNeOzAfu+WyaAaX16+kyICd+ZaI891vDOKrttNAI7m1pxqXLJ1oO9ILJRbWHv7nraa0mv203vSNwEjwpCJTrS2GHeTtxStdZLOjsb6/VawKJu3t1MUul002ABkl7S2tj62Q9f++DWVouWgbTSRsQDQB6EN1i0k5PGWKt+ZJr5aCHlq+NqoxHNuXyzb65NKtn4DIGMMY0RcTZIjJPzeQiUckLou4y8d3duvPft775iTBQ09PpWp6LNla5TAb3x7r3VpaWrz10MjOE0vfbOdRv7heVFUCgtDKOKWFuLap2O29rca7c61Tps/vwNRnv1hcutnn/tzes3774XNzu/81d/5+qnvtxu3d388NrFK8vtnbsrvgdKMN9vo9wmMlLSQ1fxuDHyndHQvYk0MdEqKKti01+dhke8C9A0EofhC5haq7Haz43y9MFBpxKK806zKwYRg7R9+9q7v3yzidF3//gXG712G4xgit3O6rdf/Y/+zq2//bd/5+YH7/ziR3/6l3/3G1/9rV+3aNvdLoWBFoWeiIwTJ6lXhApBnBBqTZoQPAMQJq5LCoVdRKR1oHIfbObqwfz8vBOn3YfxSR9JAQ6HPsWcWMmn2fPzjNVDqIkTPzRus41IFBx4EPP/8812+qsB8lSAwNnZjYQILEiJggSTpLu5Uan7FR11u81gacVaq2IPGIKWRhSB6wGztj1wTYGu9V5hgspi0GwsxTs7H3ScvlQL7NbNd9+/wRDUF9m7uLO+C2bh7bW727DQXr9z4bU3zz3/+TCkrNDYd/xLUca+9xPLVX80uuZ4v8+YDZjHtCsTwAyGiZP+TsvtUJibU5bG2XgxHhO1dERKDG5LdhqXICATJNDdFNdJN7fE4UJNpbzpyW3d2Q5TUtVFu75rJK7UIJRKklgT+K2dXW1cIlS/+GKaJnE3WV/rJivB6lNP39uMU9v47g/f8pWk69yDB+tpnNRXF778lV85d+miFyBUAvlpYFLq5/wqK9YEl9Bj0uQnBJxwdZxfGqd/KZhYhmmqCE6/HlBn8dqx1aUkIYr6KFL3b3+gMU1a7t5eXD+zsqPklRvrFxvh+Z30yjm319tbXDC7Gw/OX1h56ZMvv/nejXc+vL/Tglp95fJT5zvNO++9di2oL7777q3AtP7ef/m/uLCsmi594/3WP/qDaz99u7UYVG7t/Ozr33jhKqWRgq0bmytPLytvs813M2Y/dqjC8NTwqcSAXc+vsM/QIYYrO3+9T9E2oGPCUmSuihxS9S9/dB7HWzFIi9Gav8Mg4BLpucRzcvXp8w/avtltt3oIDXXpxav3b964vXn3T/70z37ntz937tLS//w/+b0z5y5H9YW0l0ZR5EUIiAWTNCWlEJX3TjwYMkTGi7AHFkHiKIwIxKYJhY3K6hUBoGzEF+Nw3DcwZ1MceozM2XRHi4f53Pi7J1n+aTbAvs045Nc51HdH/o58dPIMQE7i2WlDGflLcTc72BGBwHkrSQxup715z7Vb1UZg9x6ICcQ0ejFZH2PqkSIMAvJgwiiEAKHn7J64rpPUu97Ozg55ds32TrvXuPDsuUvn3nzjxzbmpQsXgDqbHZtgtNdx792Jd0m7lvv5j37yV/7mfywg2VGT+b4PMmQOyNB4yPeIPoGOHu+g+Q28Q/fs+M+SLjGa64izZB4j4eEwWCoFJzZBOR2HPfRp8juFPMjPxyAATpJ4Z5d6bu1u69795kbLbnXiqoWXnq9ffqbW2g0CxVt7nfBcPbXQbXeu391+5uVztfri7p63afvDt27fv/4gqO3tvvLmtRsP1rc629uuaT1pZSIS4dVQf2mx2ku7CS+GCggAit0/JXcE5bZwvh3KkH57HD18upWs2RiYS8WvE/vsvnb+lOn8CSKscHkDjG6BMO2Vg6PUUn1BMjA2eG+jqbQJQ273qNnj1m5XB+aNzublS/6FK26rHV1YCS5eXl146uof/skr1cYKLax89yc/v3PjrZUz1RdfeqF25vx779yOuVoh9c+/8+pf/u3PXjp//sIzja/8VvW1O9+noMKNs2rl3O5OK/TuTPXs+We+BHoBMus7i3+DIvwHSp6gQ+DU0vI07QEeloOfqAEwo4Rll6QUMmPIuj0ijDjJ5my0MRVCBJCzTXCBTEQG9INr9+7/8mdf/Qu//r/6X//Of/f/+/ZaJ75//c6DW3e1+IWlM9euPTh74XxUWzSViEDCgNgLMjE7UqSIPXgtRAiESIpFUiAFIAi+Gzcr1QXF3ic+wXPhwlWEYqv5bBkOZAsfi6Ng5qaDhyT4UzteZuBoyekQXx+/ntiMEz1Gh8A0Ja+cvxQiB2Ro7hj6O4L29X5BAERUAF6cQ7ezc+ON5uYNgG1Jdnp7u+fPrqKuse/ZeNOLDzG0EtpUAaJIqPUCWNuNm4BJCImLO8sVxV3e7HVc0t7ZufXMC19JQDY72z6ub9zfedDW2+t8a3P7nXvtmOOnLqys3bnZazejhToqAEBhASqKKIWqn1Wm2B9FcsfVsSug0wR22Syf5uEr40CcfESbn/RxhDGaL2khw3rQkWPAkB49tzjKs+MGw6PoVSJFUeBVd9dv3uy8/87WGzeaezZgTv/w368vLr2+er6xEHCzHeOl9oN2+/a97Tu3WmdXw4XF+lrTKo17zb1uN1FYcanVFFhyoJGMara61KGVpTO76zvbN2786f/0D7/0m7/x/IsvLyw1BBBBwQSeNs7nDl35x1nLn4GSGw9OsIZDw3L4w9h3583n+5QSZznOmpRaqi8mIDsDHjwwBZHtJuBRSFvvz6+s3rhzr75Qv7bT+eD+xk/fUWfPVJYr4dUL1194+sqnnn7x2//mWxxXfvevfO3S5dq58wvV+vLta9db7TjE2vdeubW93l2t4lf/3G/WqpWV1eDC6sVXfvCTlNf/yp974dbNtcXnnw4v/4qYFRRA4KwdJWuAgtVJmeucegwOAB7cmsSvZ+OwTPaEDIB9e2NYOzma07nnKcwBPtOfcC1+ExAzk4B3aW/rw62719i7a2++fv7ll//D3/vie3fif/Qvv6+A/9Kf++R//p/99dWl6OL5Sxsbu5GJ4rhVrVZdGguI0aFnZ4ziNCXUgdaehYiUUanzLF58t14PPNu4tSOJ1csXvdQRQRc+NUag3NcJxZzAULUm1vEIx8dxehCPHkduUh4ao9OWM38+5CemmRMD93/GPkpblxZ9moX65JwWAQRIPJNYu3dr7cbPpX0fky6jZyu7DzYiSVcurgq20mZcX1rUqiqUsKA4dj30as+gNpASpMr1AgNb97ahl3S397ppr1Kp3X3vZjcJttv61tub795ev73J29uua6Hjob6gd3ZbFbN159aNFz77eURkFkQU4cFGiCgDNoiDs5lLPX7SdDrxe/3xclRmHoxlNS3PsaF63CcqS9/MON7vzIHDFmLSe1jyVAkAsiAlEvQ2NjGOz664Fy8yx+b1D3odCFp7CVXM+nubvY2tp15+4WffvXa32WysLLcs7qx1aT2xTEoDg2fWCKxId1Mb1Y21TqxFUuLRW2fT9N3X33r64uqbP2zef/+Xz37q0888/+lKfRmQETQAF+cD5zERxViQ4bmfgzbDvgLkVHTugTFc6hOuwz7fOogDAEdvHCEG0qBoH8kJDHLOIYif/NynVleW769vBSZMvLu//gAUdbqxjgLP6v6Oe9CK43Tv021JI/fe7TfeeHWjtlR/9hMv1Bpq7cH96z9678zZC072FpeW33/n+h/8/uuNGr36bnJzb++rv/Ebb/3k1cXIGtsKtV85v+RAOawxgEZAKPuIpeD4uRGQs53BLrmnC312PUEhGddOylx7hH3DaFjWgWp7QgbAbDk3Wt/MrzLkiXwopW3k3RG3HMynwuYnTQxeIOcFuJts39P2wVs//JYzcbqy+ua1zS5ff/bZq5r4r/3lzxoyf/N3v/riJ89v39/euHezVqt1du+aav3+uq/XFqIw0qA0mZ2tttJBiigGo0aVwSdJWyGyTUJJ4q227aXSa3Y6u5UojHDbyorIYNNgKarUPxG7Hxxx2DY7AI5QiTkBDBPDKWINx8HH9xXRxVZWxYb+mUZdvJKTVz+Og4RBhFPkZHftjebauxg32XcIE9d1JAGncOPtD0mgUqn10nakNITolUEAdrFSgNxOnNlptjTEoSSdvVYUKBf0sNIzSna3t+7c7Xzv5/fv7PmfvnW960WpUCkDAXnunTt/rorw3NNLtnPPqC+wCBFK4e4ZOqm4X6v+3MDgx2BfzhNGWTUvM30sxBQc9VCSUmY4icuNyIzjGQxz+zOPHw9RijGekdcJUSQ/fVeoUl9MjGPTVrp38Xxw9vxldHffurkdPVPb801tk5deOF9dgku62gl4c2/HBOTAMTNoJYQiwMgowCC6qh0xEXkWAomCCqSiEb137ebGpbPmwbWtpLnR27j37EtfXL7ygpCUpn/zpfv53kBlz9pwMzxEj892LDwumOiIfxSfH8achTl2233coZAbmJndKwCIpK9cfeZTLz+78WA79Wkv8cJMSiGAT9OAwCNQIE9fOR+H+O9+9Jrv+tWVlWbT/T//H//i7KWl7d3tVju5+uxlTcGt9z8Ao5dffo5U7YcfbNbrZuvu2svPrXzhU1+s17C1vlsJTM3v7l7/wZkXfk2CRegfhjdYmzDRh3Ya5wP6IxUKH8lkBXe64juu1padSnPiVGwDikN9lf9z0DkQmN5WE7Mq13kONia5lpSXlNhB2r5/58bP7rz587pJP/zg1v2NXmKDlz71me37dxpr9zXA8+c1c7hx716cthVWKU0Cs02InfYtXYkaUaPd6jQa9YXFenOvmzpAFYm4oBFUqiZt7qDlSkiGbK+126gE1cirak/zDb73Y7X0VaksEOhc+S96fqBY7Efzp2w4zMLREugwMTxGzfBQGBDJwGtZUv8GMZPFngq58lgc/AUiKE5Q0ILf3rrxbrp3M8Ik8ZYZvHO9bmu5Gi00Vt96+9b25vtPPX+1ca62vb4XVWxlaQGUDQNAsGmSiNORFky6a7duh42VBw+aez2+vxW/8pN3bt1v73Sp2aQ9R3spkeEauagaBKFRIFt379DSwu72/Z98788+8dlfV7UaKVPECRY1lHyHopKVP8EQllPA9cY5VdYjD6mIj8jsiRJilNkerx43YU7yscJYR+WNJSLZFiSZPxSZVFAJlhZrrc6eJJLEac9trizisiEbEqdAhlaWg3qtUt3ea2/smFrFJ6xAAZF3jEp7J4iCKAoQvTB7hVopRNGaCADQ0EYzefPDB2xloV4JwkpvZ+PVH37781+rLF6+LAqp8J31PbSlZQ8TuiD3kpYNhH06aqLN+MgH02OAaTOBIxePHDKgiv7vEnvIR3OxPYRgyhBGtWeevvxv4h9SZBARFSoCYEYw1osA1qJKoIJeJ9VhA8Dd3diqBhVI1b2NZtgIglrltbeunVtdNkGF0aVxp1LFl188c67Bf+HXnzm/tBB3diwiB0uBQe619279vF6PKpe/wlQBBAQqOMxQGw+5/k9P+465YPoYsOth5xAMj7SJdTmE6p/hUS4CHkwvjfGSye0yhhmPZiQuvzUf68rYKRQURc4Cx3e+92/+gdJxN9lbf7DzYGtbh4vsoFY/v/qF85RsQ7cVtPZazd03btwOGsvtjuvu7S2fX0lTm8R2cWX5zPIKSvrU1aWN+/He9t7K2ZVWG26/9+Fzn3zu3Lll39nVjD4MV6+eP39xRaMTScGjbbba8mOJuf7Urzi1jMooIMjis0sjdXgYl6teGDKnaUjMg6Mq8ump90mWpK9aZkukEAAKj2Gxl9qIuxwAgAH7M1+CShjANtc/+KVtrxlwAByZKLE+TpETD1VpXFxdfvb8h+98uPFqc2Up+tIXP+HaCaRdijxGyqaJFzBBzQAgujS2t9bWv/2D6/eb6u6DXiuh7b3AIVQblQv1YDlJtzZ2qhhKN+nudBSll6+c1YAE/va1N7//rX/1G3/pb4BSAISD8peYx4BcBIZ4y6M5MGaceoflVSbBjsAZOf6VkZsTZwCOE6dnwB0O04gFB9YyoAPlZCfZuRZxF30rUs7peK8d1yuVF64sv3tvz7VhaWmhETUChtUgOF+p7QilYg2REzbGACOgAiAChYgkmjyHRoP4akBhLez12lGt1myl1+9sx7vNL3/5ZU+ysbO1snLu5z/5t19r/G5l+ZyAyoKACqu3PzEmw8F9fQyNk31cYEM6Bo79fdwwPAJPRiSOf+VRTUhOw8BzUvwrICAk2fQwMGUeFiAR9AiCELdb0rUMgKgICJQoQkBhAFDELN1uSrpnjEl6CYsPwiDltLG4UJWKB4m7/tz5S5UwWKjXwCbPv3C+auiTL1yumPYLT18GQWdZHHZsr3J2Oag3BG1n851gaRlqz3qqoxAiAHCx+8N4A59sH+8H7EsqGJ1ZHHoqJbk1mnaoHg9Tp0dpAEyUVQfCjDmT8b/jzor56SHTnQQERQEDJg9e+eY/gM56it6lDhh8ausLDWcotq5ClcbKZal2Pn/15bjdltSZqG5T77zd3t1ptVqxtXHaETBBQHHSdrZ9/dY9rtQ3m+mll64GEWzeu3X1Yt2ooBcnigDQMbi050hFUa2mdWzbr/du7gXLz9Py856WFBIC9r09pcC3vgcXS25e6Z+VejpGxCNDZiNJETd+3E0xMuRPoPHHJ9byKucUDZC5C/NpgUyVFgHyIogsgIJeA7D3RFrivfaDD6nTrpBynp1lSl1otCWKKsZxWq9EX/zqr1y5fPntX7y99eD+O2+9U680CGnxwkIYRa32joqCZ14864Dv3bpTqTba19fjTlLF4Hydr15a2OtiJ7aVRpTEScfHlZWAGdhL1AhXlxrnLlRr9ejSuTCK4r17P7v19tnnXvoVCpdAGyhmNIpaS74mbNDw+RL5kWCbRwgp/T1yWpiW3bhv5QlmojSASoFMRRsiggALiDD0Kv7d1u1X0/W7S8thI6xFFb2z1/JJt2LUcqS22z5ptm92ugiOo9qllbpt2liJUl5Qe6TUWpPt7MZWIaFwoBX5VJFoNGRtTSnuxaGo7tZOM9HdVjvuJFHot3e2avWF13787a/++d+FqIaosVx+BMg0N4Bid8Ri9/RMWxLIBv5+o2LUwzrcPo8nSjE0J8P8+yJgxJA6PSjcJ5BvKYUAQh5BAJlBIQJ4tNaiCoKAO3s63Xrvh3907fWfGghiB0yoSDmfEqIine1Lwp73NncrUaSUDkMTBapSierVeqPWiLtpp9ddWakvVCsG+NkXnl1ZqL/8yRe7yfaFS09HjcW9B5tOKEnjeqMaBDXwgYgXF8fr7+oVUItPe1pWiCQE6IcaeFw7fKRtLf2DamDKYCrdR+ifdDP+EODo7MbTMgMwp1tupAkmvjI+kzDiBh//7uxi9r3pKGQZwCev/uhfWb/b7sWCFHdT783i4moaJwvLQTUUSROpLviw7lCZWkUvkhiKQKNTZ86ci8yFOOmB4zjxOoiazZZQ4+UXPr2+23nn3ZvNM40zjUag/Nmzi9Fi9annVz0a77qIGC40Uqskanijgkrkk5vxrRthb82c/bwNzgFGComAoTgNDwaWQD6BIYUkyC+Od63144N+G53Q10YvTuBbUsz+SH/tFEJJ+4dshx8BZEEAi+lec/tWb/N+msZKUTWoqkAnvZa33ShCUQFK6FJk1VFA5IMgrBN460AF6vxzVxfPrGxvrgmmbH2nk3SwmnAFV+pmoZ7WzwdB2H57w6M894nzZy42uq29xcXVZi9Onb9+/X6SsucwTbGb+jiNEqu87y7XsR7GFxarVUgirWX75i++9U/v3XjvM1/4+tKF56hSEyQEknz1S3ljBcxXywx3cn/r9JPcGmiE/4ykkkn8DWbyqBmK/jzleYL90Ff5pWRT5qMGhQGBAT11bfP9+MM/gJ0P453e5k5PQ6PZ8esbHW0WSPt6BS6dCXdsz1m72+0pnRjWjagSkIrCgAUcg1fKg2PPRESECkkTIJNDVkbZNNFMhGQIrE00Iok4x9YzW4Cex73O97/zra/89l9XChVgti0E55thEQKgQH52KyNQHigHiIiDib/cETJZu5imsDzWGJ4YP+bPQP9jB1ZCThSZE1qQEFgEszUuRnZBQeorHiOtddzeSnfu7r3/s1f/5Jt/+sffuXljS4eBUpTEzos3SmVHZBOiMBHSQqOhlVo+c4YMoNhqFCwv1ENF1TNLF84/j5zUIlOJDHF69al6GOwEgY93t29du7tYrbmur4TVSkA27qQ1NqRIISb3Yacj/h4tfcbrpwFBDXk5M5T8n4+wjTOdvmQCFvK3hIIsStG4kxKMzcQ9JB79DEDZITpyMY5pEnTEEpim949bGjPbMbfZcu0fCBiZ4ebbP1j/8G0nabPtSCnnFQqaej2qVhSyDiSqRJ1uElUCFgh0JBpBoxcrXgIFTlwl0uxdpR4x6IVqxadpNap+QuGXPvOMYk4BokY1Mq622EAdkHNEwMKkTK22JKYh2gijgKsFseq+J9strF6FxnMWzivSyE7lKh5lx5UxCxGyMAIJMxIBAgsTUt8kOJ047lE7yP+Rb1F+zMDBP1IIfyj+FcjiKBmsCNrm2vWfbd96w3a2FLskddHCQldHnun85QuoSFUqzoPWhnQkQuLiqFpLEiLgSAfGUMw9vdw4UzPVhQY47xKXekQKVKBYwd5WB2z7qeeft+0WxzveJtoj2u5qtbrTbD61WiFSaSzN7WZLfEd8jLba0PVGNVCBTxIMazaOqRb3djdbm3df+da/Xrn47Ce++LXFMxcINZCifAsUKmyAfFqjWP0LfRaa+UZPpuOn+XpmYx6HyOzXHzLBITGa72kLc9gXQ1KiUP77hwtl/lEQQQ8Cvgn4QRC/6uxNWALtFtLNdtzZs07OrDZ6TQ5rutWyNcPVWoWZVxaClrXbW11i0KKVB01KIXoEERJNhYrASoDZgwizRCYgIOdYkCMFly6dqdfCKNC9XhJVDfcSYOyk8sGH71956RMBgAEvkorvcNIzpuIoAg6JSAPhQLBhicBK22cNNcLHBcdU1fIcbKlBc74jhX/x9IyQUhwNiiAjsrdGbrh3v7e21jbPfm3hmZdU3N57/Ue3XvuTt77/nWtvXnvzZvd2E9LQJ72UiASAmZGIEDLdQysFIoqo22xVq9WlxVqkKSRaWagtNxrL9aiiK8xpauPGYuR80tzqGhOkKdSCWpo6IIWAIExKQKwBMuI5TRSk6Hcl2TMrqa8+Z1ERADH3CbvUqg/XtPPpi5NasijD8AIvKfd3SUMdFQrl38XMwNHitBwENqKUT/Puj3jIJgrIcZfbCOZmbJidNVes0UYv0Gx/eO29b8fxbo8iBiIhUqC0CbTWyBrEkJCiimKjiNAieiVAqRCyDg1bB0SpAOrQkybUQoo4EI0VTOuESoCDEAwwk3jPKSsU8aKCqgnrqCtgIqUMAZpIu7QNyqNf19u37PZ74blf99UXHWr2oAwUoxiAQBAsACEAIAkQCxL25wFOBeOZhPFyneLCPh7IV7JISb/J7QJMBUW6t9//fmfttarumSAlMkG9ES6vVkD3ui2q1IyqCwWVQANB7DtovGcg6dYj7cUmaUcwQBUJRyCVdtsYBQ4siw8ggC46l6iOaPCS2ooxypzXPmpWFogiQZNQxUHg2VHAYaQXWx3vABUFoUoEE8vh0kpYX+i20zStVGqLRsClzfbme+/8rLly6cWnXvxCFC0CAaEC4dKeptkcRz7R0zd58wnuk27/UXdgWVaNxwYUM/KHcWE9spGSf7is/MDjYwaUhE9mJvfjZ/IpUwYmBkpIQNZN8jZ2XsfkelQXXF1GVUmtT3p7lv3KSrXpOsJ07mIludtjcRQGhirg9aLwntdtEE6tx1TrIAw0e2AAIRAQduC8A4FAa62MMCP4gGwtUBdXlp69cHa53gDvNTnFViMqlgqq++/8qBr2Ll44k3S6ew/W4r1139sLtao0zqn6KoQLqrpcrTWUqSEiAme65yAYdILldpITlh9l5AO8dCaewED9Pz1eOEQGEQTK4gQsuDC53Xrlf7xz/afPff2vbaQ39V7r/W+/8s3/7h93WhtNDm7B0o2w0jRN1EpSqwQFkJTKDjYlIATRSmutavWgVq1EQdCom0ApQhEUi86jT0WQ2QSBeOi2EwUYBl6QQMUAigwrzaQhDHQ10KE2NiY0FSQFYKlzF7gHZ1Nf/ZQAKoRikktgIANGJwYORs7zeGsmoeyDzgy+wuE2NBnd/4qUxQBO+OyR6z8TDIAT07FGfPbjrvpysokTkzM8+lPmT0avpxeuCI8spgcFIG6vv/fTP4t3d7uJdpooCI3SRKSNIVIkoAkIPSAAeEZBEitOmAnYKPCOCcm5FA0JCwKwEmEEMCiaUFuXGFLoka0NIhOoEEQ6zoZBYKJFFS0xRYKRoBFEAKs0AyfQ64JvGUrSm/92z71RufgymnO0uGgoSjp76FR1Mezs7ETVGivvdEhoss1T8tYrRMA8rfIRw8exzgD9KW8QARDMxD8juGTr5g/TB+9pZzspW6ei2plg+YI5e1alPUlTpEjAGFMnZZghqISgFCllIbG+g8JKB6n3SokmVIFCTQIcUIAs4tAoZbQwkrMdKyLgk9STNvWFBgAl3XSlEYQUxD1mJxxAuLTADvfavdhxaBqVWhjUV6wKziwvXnjqBRPWkjRpNbd9vNe802xtrT24f/vqi1+89OzLqJCwOLOjCIDrswQcDcaEE+B5g2UJM78z8WERofZ4Ueu4RQOnvgr92fUhmZNzfyAADwLAygk6nbC7b5Kfq+6bwFveNS17CUOoiT4TnqssdbZ6Ww86tQZ2WzYI4cLFoLmbxrF1qTPMFxe0YLDes6mgEyYlzCmyCLA4IQIUIa2YWYEX65RGY/RCpXL+3PKLzz1bXVwgYxBQIYL3zCkrsnG8vXurs7cbv3DJaPRpEje3Ag2a1F7zfnf9VuKRguVKo7Fy4ZPL58+bICA0gJwdn1FYOcVYQShZBh9VHPsetWX7SUp8qLTrgvQ91o+2oYueJkAGERBKBZjk3ps/2/zRz5aeO481uPeTH/3yD27+6JuvPLi7Zxr1dcs3uvKgk+oodDbVShGgZLNLzEioFIaBqVbCRjWoR2G9GlUCXa9EGiGMtFGiiW2asIhRaIgco3IAGhhREWpCRUBEQUDVSC9Uw0pgFCoBYg8+gbTLqDBKNsX9VF+qc+VpRsD8OJi+ZlMybftDfGYTTP55KGQFKXPwkndhNHcs5g1GUh/K+pgLEwyAQiQer1I4QvH7mlgyzJjL745Icih1sYy9PsHNMaN0wtkRoiJMxD975V/ceOcXCom9RqKgGgSoSWujNSKSIIgAOQ/MAo5EsSCSiEdSDKABDBIBofPombQnQYSUFBl2JHEQBEoDs0dJXZKgoIlCFVXJVNksJlgnHaEKRCkPDEJKA7KWVLxvoKYA1/Tmz6vpT8Gcgwsv0ZmnfGf3wzeuX3n2bLxxq9fuxN34yue/Duc/68yiwmyuWU45gx+nikNNx83CyVf/Ubd5tnV5zpUIsvl/a5u3tm6+Zjj2VGMIIayHi5fCxVVBJTb2jlXYcJ68VqwCJMVOmVBjtUJBaDt70tsW3yZOpNtD8kjOO8k2NlGARDr1FjhlYYc2dQkBk3ilHIlzLGEAqUsDhaACL4KqKqBUaELtFQLpanVhtXHusqot1ZZWyYTNVhzv7mAQdXabadqr9OJOq3m7uUlJ7/JLnxdjEJTI2KzqwN3WnwDAw/nXD9DcUPpUXoqpHoryDGeJPU51zJ5WTCzgkY/dY0UeICaSh08iIDjlkD1sBf4dab9Dvfe92/UCoSaoNFKHZsmEAcfrG43AMFFzo5NY51s9sLoSIjNGQgjW+nQFVAq4mwohsWMWAgClFAIDiwApIKPAkBhD9apZXV66cP7M4srSwkIDwoA0ibBWxN6JAgZox26nk67vPmBrw2rQWK5bhxr48rnlxFLqd/YerKe71yJya+//7PLzn3vhC9+AoA5E0LcARjaiwjkVj8eBHk8HcqYjw4O7ePZo/XAl/wQBQpqkHe3d3q14/Z0P3rpW23GvX/+zf/YP/2B72zcuXXJLF8OKirvO29bq2Vq3mbQS58RrhTo0CDrQJjI6CIJKaCqVsFINKoGOArXQiDRStRIYRZExtbCqSQVGK0Kl0GiMAq0MGaO00mGgAkNaY2AoCgIVKMueE8upZeWBHQqGquqdDf2N0LyC52o+WlUolMftYe7nOtA8lkxix3M+hYGWOTyUSlqrlB+U9NJhI2WQG0xSg44IU0OAToAQJzrfRtz5MxT3MYtqkGc/wci3cCzNMIZCs6Sw04SFke/dvXX97Rvs0bKrVOtah1EUKSAdBoooP42XRdghWBAFxEiamAlYQFjEk4igAkRJCBWDgHUagZ04n5Jy7SQFEE1IKKiJNBoMw2jFhHUwVcZAVIjaAIKIpyxSTxFzR0STGO/r3gW//MGf2E6ycuUTGJ175tkrZ7ibbDY1BLGXcxcW9m6+0VvbuvCFvyQUeaXUnAbRacKRl/Xk6/9ImntIsyyEDQJ6D+Kthp37134egRcEK+iV0ZVGVF1QGAETMdSrDQ8aAsOoSEAYdFDxXpOKNFSVOuvNlks3fNJE2xHfS7xFZABGFskWo6Cgs95ZFiER8A6AvQB75RwnzgoEEChDqMCwaFAVS6pRbdSXlqKoEVUWWIUUVrSJ2q2WIlw9u7SZ7JqQKDCuG0sae9t7dbcdBrVzz38CiFCwP4r7Ls1+5Uu8+Hin4EsMSsp8v5xg/HrczbGvl+QQBTtiTB1L48z41KLk/i9ENREDgHidAAve1e1fQvyq4l2wLfReecUIJEqHFWCnNCGQj+1CrV4506s82FMV7Dah07GmAqFXcQ/MnqPEa8TlStC2zgF1nYgmjwiYaUNUiXSgoRLqWiNaaFTqtXqtUVNhFZQyQciA2ujUe89olOn0YH23+8GDvaASoW4H6Krbu1FgK5oiiuqrF2uNoLnb29697nfvmLC2vXbdW/j0134bKEJUg0XOfRVEylrM7OaaKMkfC5z4EXX5qM5aufTtgZPgkaHPYUSAk92ku1FdkO3rv1h77Re/fPvBvZ93dkRa3epmt7tqNQKEzqbeRzoQ73QUBohevEY0hiq1akAm0DoMTCU0URQEgQoNVSqRVmKUCgMyikJDFQ1GYRBSYIwJKAxUYJTSiEhaKWMo0EoTkyIB7sU2FodCDsCT10KEHIWOPWlnWX/A4SUxv0kKARiESkxnPj1non45Q+OflmCSPlpm/djXNUtP+/8MYldHvjKlFA+DqQbAcY/mETk3IL5JDThRcZ9Ppx+1oGYSwlDLY3FDkAHg8uXnnnv+0zc+eAPFLdQWASQII600KSLMjmFkYC+cKTsKCdADCZB4FgFgAe9BPCEpEgYQQcUekZCNCUWxF1LKoAl1YLQJosaiUkpHi0oFDlBIgSIEBAZFhoAQCVBIByJd8YkXjJYvm8ade/fe6rk117m3+/ZbFIWXPv/lpec/2wsX3GoD4mShWmluv95YPO/VVQZlivaWMUfjacC40iPD9x++xKeuzseP/iy0R2KJxbVef/Pb1F1fUNYz2J4Po4Wo1lCIrhdH9Uh8jNAxkHhGpQyCECCCAiRhL6SpWlNhxcoSpW3p7dnunndd4h5wIi4B7wQFfG6yes8CQLrq0Gf7SQtoRYRetAAgERplQqRIVMA6UkFEZFBHBEBOdZt7Eu9FkOzuPoi3NuO91karLUxhYFYWliRpvvrTb/32M88KKoJBCGi2PVC+5VG+zC3bAqUvh483EHdcxM+ejh7BcZTt6Jn8hOyOb/r6WJF3l7BkG+gIG4vg4X1ufg/3XrOyTaQUi/aAiILKOi+i2KMw6OoCqkSpng61qepoodJrue5u0tyJydTabdfpmMQHrVaasE68FmUS60SphBmIIqV0GCFSFBCZgKOKCgIKIjIBkSZliEjYg+g0taJUmsra5t6r793fS+H8hZXliizqtPugs9wwEpp3H+zWz26fv3Kp0ji7cvGpe1v30Dm/e+en3/v9y5/4TP3cs2rATbNBUmwNNBdx9Leffhz56JHb1AfCqAQr9mYdvnuEX5uZaSb9CcBx98bP/nW89sH5c6vJ9vbbH969GTW+f33dNKreJUvn6gAuTV0qqdZBAMQslYqmSDFJtRpoJYEOKiYMgygIKDAYBBiERhNVqxUFkMVMKIWBVrVaoLUKA0OEJiStSREBMAIQeWR2zjuxoEAIvRfwiKIJFaEWwjBSYqUHVIsqNulQ5wNY/CKrBgpheVpXhiY4JrRMqRUGFzKcoKyhwiT9Y2acydS2zwztfqiqlFYPY/FcRt84KuhysYusBQBPMv5n5Ga5PGNlm9a8EzCtLya9WEo4FBSIgoxIChQAsE888/LyIpEKg5AUGR2QJgEQYBREIhEiEERgFFJCACQCwCgA4hGJ0YNYhUAEpJQAEBKS0gbrUUPrQGkKogDJaG08px4NIiECkhJGIQ+AIghEIh5VBbXT4MB1xbuouvjcpz93+8bdd967VdXhAwIdqru7m3+hrs+ceyFOukFY0VG16lvx9Xf82a+o5ZeVIpp7rvfkMXsG7Eho9DR4ro6qDDPyyek7I2+EzK4VSTXv/uA7fxQGNnSeJQ1MQMpUaos6rHkhY0wQhj12nMRiux6ESINSFhx5EFCklOQ6AGoMlK5jeEbqqU1jLSn7rk+74lIGy+yRnYj34sExCAkhogZFAAaURhHhLCcEVATGWu+BgigAFmBPSsRbhC5CN+3uus4Od/co7dSMxCm72FkVWJDYq407t89cfZ4UDvGRgcNPCmtfxudmj5wYpjnvD/qhEdHzeOKRD7V9UfRV4QJHFPDkGBQ+gPXv+52fGLeToLdOEIlBJLCiNAJojaIojdmmNggDVGQi6CEq9pXQ6AoFDZ2kXtd1NYkSC6vY8N6k3nsmZ0VQWfZOwKhAVASCApxC6ExFaSKjUClEBUo5AUCVWo8m7Fq5cWfrl2+u33vQri02FmqB73ErbaWdvXhPFhZqFIS3bz/YvLf+3CdeajTOLpy5evvd9yoVZ7vrH7z7zufOPKUUIhIzI0B+pl5uDWN2tvZMB9uIE31YkkJ/GuFU9nvpnORj/9SEe31KGy2RHLVUkiH3xqy8BUSDvv7TV371E4to115b2/5nP7j27ma81U0MSoRBpLHFsSJkAQesKXPSY6CVMlSpmCjQ1SisBmE1ikxIWoNSorQKTFCp1BBQa61IkCAyKowCo5RWSmlCAlKESN57BO9T5mwSOTuDHpRHIFEKRSFrhZpEUmYPQaBRAmAPvQcSb/iwYQabwGV1Lxpg3BM8wlVnKBxle2C8/SbOA8zThcO9P3ZvLOGRhopNnAE4fObzVHnc2T+PKj+S/7jxMM0S698Zf2ssOQxUhJz9eQQRj9b6N37x/dtrN6J6qAMMo4oiFYahMJMiAEBSIIIEwl4YCAiZUQGCRxQUUdlcgkJNQAAKQSvQCrUOQBlUAWlFKgpMoIiEBBAcoNJKK0UAKJyvZWEhJEXGCQuTcoQUkamAjxnRWVtdOvfV3/jz8fa/Wb+/jvWFlWqj1dz54bf+3W/+9bO6eoYdchym3AmheePd71388nNMEUG+d/qxsumZ5vHUlFD0xsR5gCPS2E7aBJjhRDh0hnPkU/bqCQGCOEXxd//dP9fSAQ+o7OJifXOjrSqLVK04Ia0DK+g7iaRiezGkzmgShwKiNCKIF/HeZ15DYRERz4ig0RgydUIUTrW3uc/dWfYpgvLsRJyI+Ey/QlEC1lthEWYQZvbM4rwnomqgwcXC1jmX2p5zFlwiLkFIowjcYkBKdMxt5MT7jk16zlWD4NqbPzn71NMiKt8OYpjyMB/lhZsDCzF8PFSAwxeH/sg0j8npRk7pp8HMngMyeo2QHf6YEtQ2vie3/hTaW+lOYqJaNQpAOYiIux1rUIxFMoqqgbcC4JxTiM5TWF0iDNKgJ9UorKRJz6ep6nS6uuedD5JUaQXWo0PlAEIljFpQp6xDYxw7RZFVAREwaCDFgM67rmcMa9bS9m587dbeWx9u73UIMdSJd9s7m7i3GGLca7eVZ6AwcEk3/eDNd9bvrT33qWca584lH15zSVIzeP3t1z/9pd801YCFJ+kVMpfqPip9i2WMCDAU2JxhdnYnSybHrP3PcjnnD8aEIU6JBX84zOOMFgBkEEAPand771/84+//ym/8+v/nn/zoJ/dd4sSmlhR5jXGiwEFotImMIxCFIMoLojGmGpDWgSGtdRgFlXoQmsxuJRUYQCRNREpppQmQUAiEkBEYgcELM4kC8Y4tCgEjC7IwACAqFGRApcgrCAwhkijAkExAJjDWU8+r0DZNsub9c6yQhjZ57rP+MUoc4c4wJp6hWAw/0lj7tvXsziv5pvLrvr1c0EB/EmD8y0fF/IcMgIfPbp4cZjjDxg1fnJQMisTTmnpc0E76aN+ggnLkjwz0AUZB9sw2uXv7vQ/e/kWjVldKQqNIKROEme8TCRGzNVREBEKIQAqyW4IgCIAoChEVBYFGQkJUhISkFRIRKIUqIFKkA02KEAUki/InUIgEzAKegUGAEF129KRCESWAIkRoGFUSx/Vaw3pYffrFz//mzp/9y39Zi4K0mQSB3t7Y3Fu7fvZT5xJGAragvSCiY8+IKMIiCMMnAhw5J57RrRNTzvn1oyDak9ZMRuj24Yd036KGaR3XF+/SP/NTAOXB2haLDkItrouGeo5TJqUiFK2UsY5JKWFn407Sa8Xtpq5VSYmIV6BA96kcAQCVEkEknU++incAopRgAMgEgMQk7BmEHYAHZoRshSWDMFKAzAiA4kAcsxNx6KxwIq7r0q6Id2knibtauFatxSmiUqZa7/QAJA4R251OCuR0JXDprWvvfKHdrCyd61e/3yglr58U5kDeiOMi4EiQ5Ta/S2hO4CSGeVQ4at/oYOH1aUV//A027MjnAASEmNnxndd69264bhL0sNXd1rVKZSFSVS0BoGLRoGohaBKllAqVRx/3fOptYjNKY1BhLaiGwpbqVXZWXIJpGnS6PUYtUk0ZUhunzIJEPiRiERIg64gRrIiQ9+gFgSna2Y7XNprv3bi/th63Up1aXdXoILEmgOXlbsd2O10KQPxerRrGsW317J21rQT4qSvnPFXjXixo79++sbn+4OLVulbKi8+Oyh5Tm/ZDMZqgb1b3HduTNxid4QU6YVZ8vPZGn72PtuPEeg+nO2ixHr4mmViwAuBVIvr+WvzP/skPvv2Dd1sIttetGeOcdFzs2XElAkSXcBQFIOLYKRMwgLU+ABRDYRQqk21xiEopE2iltReA7Hx5RgYhBO+YNaaerRcEEBQiAAFrLaIGIUSVHWOnSGU8iQSQEAmNJm1QGyJjSGnUWiQAb9klKAzFqXeDJi1fTGy+vBWkZITljTrQ/ss9CpMGx0G6YRD2M9wNQ7kOFiKNfvdI+LPOszuiUSD7tfNImnGVZYQxzCja/EWeotfmn8LyGe8C2RwoIiFg6iAw9P47P7vxzquNyACoIERNiEorRSigTQiAgAjIWc6KAPMgBlCEiKAIs8MdEdEYTYq0IkIiQlIKAVERZksfkTL5gwgKg+wkx2z3acFsX1sGQJWxWS+ZI5OUAVORBHQ1FAWIKgH3/K99fv32B6/96L1qZVkb7HWbH77xytkvftmI6SU7QRiZ2tKCTZXONkXMN80tFCKRQhuakzTm7LKJ6ac9LatNx6o4nPxpaOWBjKXhMPL0oJilYpb29yjSMKBxvLC6+oJvv2O5SabadZwK1HUAYICBmbUWBUlid8Vt95o3FquBT0BX6p4BvUKlgQhYsqPnGBEQWSCPKhMAVEgKQJBZiAEFhBUDZ7O5AogonoUtCJFiEQ8ehQVRxHmxsXc9SbvO9ryz7DqaOapEJgxSH2ujQraNCjoKOeb2rreetaFOs+1l9/6dO88snCHSmWDr+9UQCit/eDvQ46OAOV1CB83w4QfFjPIcz3zgSVvac0OGLkryiUAAhJGFvGzfS1qdXk8iL7FPdMLdrZbuajSqXgnTFKgWeJP0MNakFFYEYiIIKqH1rNCISBp78sSCTjB1LIiiUIWaQMepZUJPziM552If2zgGVXEkrDD1knhKPLR7vpOqm9ubaztbG+sPXBqzdRpRk1Eg6H23jZ1mGiDYtMeWXdzVtNTqdFuxSxk+fPcmJGy76dr97cWl6sXKg+0775y9cAmiEJEAcms+PyZk3pmxvsdmkg476s4Zd6UeuWk8P07oozOHask0LqU7nD/osO04YI4K5c71W9/93pvnFlZvbTc3el02FCgthI4FPPtYCDUzViQIFChGEgT0DOgJY58agmrqDSkmJVoEAFisYyAQmwoq9qI0kgcEscqKiFKKgBgElANGBMUMTpxCItKgyGcb8SIoJZo4UKg1BRoCRVorUkBEnkPL5KyqFKsIiqMABhs/TG2mvhFb8gZJNgE2otEWDuNBaNxkOt8HWCQuH188ahKMqAWld2c5+w4CPcEEOQqM2F04x0AfSTb+CB6uwmMdVHwqpxSBPA5GEJW3Thnd2rn35ms/JtuuRaHXAChKA5LWhARIQEoZhixoD0EYAEAk61BCJAIiVESkKD/gXWtSilR+AxURAJHKNgfK3kYQEBFxgACSXXsGARHCTEEnAiXgAbLN4oQ9KxMGXI1THzSqvU6LwujXf+d3r13f6Owm3BVA/e67139tr2Mbiz7pUICu2yQHxrDva8ACfdPyoI2Mk6739fCMdOt414+Twb54VJJkTky0lGZUef5sx9+VidQuiCgCjIjeYj1YCc6cuba2y9hZ1NU0cY4VmboVAoHQGGYIlCD3xLbS1q24FuqQRYFohxAgGAAi0SAKEIU5G0XOZzQkg/2PEfPTRzPrmgCEcxaBAEqBF8gW0IOICFsv1oqLxcacxuxSHyeKIAiiIKgpUoReoVfKe7TAFhVqSCW2zqqEVZzKu2+8euWFT5iwgqiGdlLuW7aYGQF54xXmQLH341HHBzxaTeegONUnhB89xmROfgYkMGT7fyr2VoF3DtI4QWCKlI60s0lrrwWeuF5zqUq3tixJQolSGEUrAi6qR4xxahNEBG/SngZEYeUtI5IDSFGlAgChE0mcdG2UCsWWehbiRFmQZtLp2HYn5t2232klO03X6tqmYxEWaxWKQkFhTU5l48bKxsZaLQgirRiFKY27gbe+2217UL1W9w7IUt10ml1Cqa+tvffzHyydu/L0Jz7j+q7PvAWkdDFd/A5p9sNcXMra0wiyBDKc/8njyD49Uckpq4gykhTGuP+ICJQBpwKYIDVGcED9c6Q0g+wVcGtv48e/+DAI9K5YIC1evAgpZO9RAAidh9gKgzXGAAEwgBfxVoQFQSVSiVOFoBQqqwBBmEUJi0cG0hoJtScAQJDEOqO0Uoa0AsjcmkREwpLFVmRaUSYwlILAkDEUBDoItAlJB9oEWgdECgUASXmX5sarZNENUBgCffrGQb1HGn/gb+yfhlxEtJUTDy0lOzBnH0koOPi4FJkPjZnSJ/Ly4awMDwSNYxR2JJDRFptAoCMEP5JgPP1ow01iS9MUrEkdNFjvK4P2RxByqdWhf+cn31q7c2NxecmmLJo0BqiAtCAqBaAQsxWQOYsTEmBhFmFgAWSGTLtAEQVAiCrb7YSFSVDyk0BEUAlkyzGz2VdBkMwVw8wgogGEOWPHmMeHsWcnxKRQEQOkPo1JCTKHUQSoo6CeOGdqtc999TM/+JMfdBLfWKi3W81b77125UsXHHvbbMUb2xYb1jEqABKAjAyPkgrmz+twX50oW0651jLuLJDhRw+TrUy6WYIULFAQSJiBPPDuzvZ71u6EoUgnSbsW9aKgdoBGaSDDIp4tSOpdxyZxe9vUFwOtNfuqlqqQRtKkAgGF+YECBJANChRgBAAGyQhemBDEewAGye4KCIh4AEZmFAecAMfoYpSUfdf19kg5ktj7DhkCEBVoAHBxl1xK1qEXI5L6tNftNRZDrNRQLaUUbLf42nu//LW9byyfexpAgAWo2K5kwBdkxP0iucrysN2xb08dVVbTFI4nmBvDkmrMCUEgAKyyY9QJGdADo/L1pVqlVhOu7m7v3ru5k7Z9JarVl6vdnT0rSdzrPNi9RbrOKkBhURQEBpHAGGcodeQSSCx1Et+xqpf42Llu13d6rtmTdiLtnuz2fGx9J/Gxg17qrPPOZ3HSSMIaNaMHBYggDKRQsjk1Rg+cpjYg0gAgTArTJHVOep3UkuLENglWaqvNTq+VWkni9M/+qLq0fOWZy6yWQAdQPiS8cBkUOvo0zXNc0pabdyRlP2HZTnjobnzUGGfsA0ys4LjomuTFyTXC0utH3VQj+aEwRJVKSwAc3t3eRm3EOVTKeQcgwuBBUvJexAvoGL0EGlEhMLP3LBpRoBfEWkARKQQkFARhZhaFhOIAxGK2/YkoI6HGwGhkrxBRZdEUgogEJIgMrEERIGkINISBDoIgCE0QBIHRYaACrbVSWhGLRQRwnqBw/UMWz1A6zXWgbhZaZz9OKPf/9G8CDI7LKYzUYTKfsBh3DmIuK6jj9wfiqDRKRlT0gfjCCV14IAzWABzJMJyhxI+r5iPm7kgm5TQj2Y5wozIHwrF8RhIMWE5GF9JvXgEAx+KZUHZ++kffrBi9WAmdTXRkbDdRWimjM6e+RhLwAoSkiwWFIuwF0HsBFPGewaOgZ0GtwCEKAZJHJlIeNLACRaQIlREWQSWSFy7bgk1AQDgvIbtsIktQgLOthRyy80mXe10ybG3qfaxFFICLbRQGMXNK9OxLz7/63Vf2EpvaBIDuXfvg4me+TmFw//Y93evVzz+biqrSkBYEx+D7nIaJZtujkgUnKYZkjGiHnT4PlWfpTt+5gMMjBAUQCX2vdfvDH7fW3/RpByTQocTN7XBxCQABEQgFvGcPaL2NxcbWpQrBqQYbA8GysAUTCGivAiTtQQAJUBVnC2fre5FEBFEEmZ0AZxaIsAALAJN4YS/gxHtEJzZm22HbczYmbyvasiS9dDfQAELW+k47XagtCbu43dToQDySxRBMtV6j8KWrnzl/4enY+daeX9/r3Pzgl4uL5ymqIGWckoqjwbJJu6Kg2bxfbmLP0HXm6YGpOD7qOo6x8/irZPNgTPj0T3/PWHHOlDNi1qCQtNcVCDQFlYgVqYBqi7VKo5e27fr1zfbe2ZWV1ZC6VlQs7c5up8s+7tnddgwMcZx0UkxY9Zx0LfYY93q+66mbcCo6dWgdx44skwdKgcCQd0JKZ6RKwtnpqkT57hQowM5ppZGFiFCAnWBIRIq9OHQKxHtO4yT2klgXgwdne7F6sLnZ9dzpJa2trW6r84M//vcrZ5792l/5Pc43g+jrGyVGNdnKHE8JY3yonLik3eQJH+3W00M1OWhB9n1lsi9hXEeRKT+L630/dITCCwXPnD0bLS/3nKWWTqwFAO+Z8shjYBbnnWVwnIV/SqCNFiQE8sxMzC7oWUACTUjIgIYFkABAIYN4AADFWVB0AKCIUFh5EgIEUEoIERC8CDArTUCis5XEBlUYKqMx0GSMCjRprYwhna0RcIqAOSVkAMqiKSDX8or2GWrbggrzx5Ir/8XasEI4DDT/kbYe6t/Jxt9UyEy7Lh9CmBezb48M0c5RdPnAADgSApria59s60xX0CeLtGlUPmJOzDa2C5Op7/vP7gqCOCYPuLV549Uf/Kuos+trDQ9eVRsmqNUbERAJKABQhIQCZBgAACmLmBFgnx36K+xYwAMAiAcRb70QgiciAHaCCqwGRaIIFHodCAhkS16ypbjAgILgRRgLOialCBnBWnSK2GAqScfG9zvN3bB+rn7uvIZK2tqJW3EQNqCi01aLKqpx4dLqmaWdze1OO7m43Ni6+R4k2xIsBfWoqiJHlUoQjjF0LPP5Y2LOIzZeGRNFx+x8jgQnKYYmjo6HZ+IydFnmD9Kn+74/SQCSpHPjvZ+b3u1qxbD31HBJq41Bpyqe2BtJlfPAqU232HVDxLTr2HRsZ8OFFRSvaYEhEApFjKBCVAyAoAQE8xBMBYAADKUdAb1nwcwA8ACOxYKI8ymyE+/QOQWJgkShRZUE4qztWUw0U6/bBZuSUr1kNwpVLfAu7cbeQ6DqjTPUuBAuX1lurCrjDHQuNcKFhWh9+1Zz7Y2Fpz7nWCkCpUwe6daPOpChBpNsRuKQ8S/7vHIcFubHQ00/NmSidZjjlF1ukot/ZNRMDjQHdY3VJdfr+sCoMGBgDPDM2QVfY9vr3bm22dyIz5+vVZfOLK8ECppxyzI7ReHuTpK4xoM96MbYttJhbDO0Y2eJHHOK6FgEFCMKCqBXGhx6HSiWFAXQE3gg8AySspDWiCRZaAQCkUIgQFAaEZhFPDvvBEhAvLMqtSIiSAAM1tlej1vtuMsQ1qttDD/88OarP/nx1/7K7/Wd/8XYwLxFJnto+vxbhn8ONecEfbac16mh4MMUREZaasrzkccjrtByCaZkNCIuxxMeVSsKABAsnFn85Oc/+73vfDdTfZVGdpwdGQ8IqDDzjDvxiXWIJIJeyGjKhpMAdBIP5EmzUgwIHkQhA5IHFEFhBiVao9baG2UFxIJSQCgmW+woSgRQZRoXEWkklR+BoULUChQBEShCRaIyX6qAKCRG9ISegQr9ZaBp96M8AaAUeZP/PyITBIq5ryI+etSQGDd4p/fg4JVSn41MSBe383+GRg4OHh2td1bD0VHPCGSMcGGMiPspR9LDcKvC8EU5/yHP5pSBNvYtyekCcnc7AAEjOb++9tqP/80/W60rcS7ubIcGrUvRs2gdVuqojDJKZQFpKEjkmQlyiaGJRJQjYET2wF7YOxZGzPY7FFDIFomIkfLjwBBQaUAkFYAoQiERJAbw4FMAn/lPs/k1BZYkEe56jntpKySxyfbC0krl3FmoLgBbu7vhfBKKsbtd9G225DG68tSVV1/fJtaM1G23fWfHIy41fEWZ3WABQecnCpdHwIhedOCe3x8PmS2O0czD45hquu9HYZLf58D5ZEwMB91XdOZQrlKkxmwliao++8LLrdubvtMVYusT1N4mTUMQJzFzGhC7uB1A17NLLHjrbLeFvB4GOlCM2gFXQQWkjGCAqBBAONsayAMAAWV8jDlz/GQDTvLgn2wzULYIAjYB8cgexQOnnlNwqbjEpYnlrrepZ0ZmRc5Bwuhb7ZSUCQNdiSKhRuXMU9ULnzDRgqRdSbZd9/bb799wFjQu/fzDDyrnPvfyr35j+fLTnb2NWn0BVVCctYKAwsIoRMXS97J9MNnpuX+X4qTro6eueYTOE8xCftzVQBHoh2aWRESm4LLBNnAzCD06RdpUl0Inmb5EgZPKQtRoLELv1rXXb3HyzKVoBb1nu6esUMIVIq4G223SGsKq6rR9nEjPAyrDkilXaLRJhb3zmVQQi0IeECVbYS9MhEgKwOtsCLEHQCBiQGJBhYSiERUiAntmBkJgIvHOixCKkAcBcNYiRoghAO91WQe4uEyo3dba5uKFi5TvBNTfNb1wluU7Io2rMH3PpAzuj8r28s1TSqoHGESDtaWT3xzRSWCEC48oNBOVoWE1qdBVppb5UJxqAhAAkJyT/+V/9h/94JXvB2GU+tg5RwgsnkBB4Y1kAQZxIol3AmLEABpEYAEBjh1T6kzqAmO0ZkQtBKSAsy0NPQiziAAqw8RMqbcB6EypykuiCAkBRRQKaVSalBAJZZsnIhAhEaBCJELSAqxNxIxeUFCBYLaHStlCGyZSGfyTpZnAtiWTEX3/GQJAf5IQBr75oRfLJF/czF4RGfztJ5hh3Y3rtPDQXTyCqScBHwLTSjbNLTCu90xT/UfyH5F5E9tu1K4qsbKi+bn4DFpAce7+B7/4wZ/9j0sSbzRT0lq8GOV0YNTOg8AEi+fOVZYuhGZF65oguDRGEiJFmC1aFEIAYaUAtLYpC4EHFnHAjsWBeHEAAkLEwCxeEIAAUKEKEICQFKFBAJeKT5BTEgfIzqWee+gTjakmJmRAqgYmrEY+qlPjLJvIi5DzOgjYJtZ1NAlwK4ltI7gUBoH1gKKtb3iPSbMVVI237dv3Nld/5Yp1EGph6G8NOdSex4eJ1lrB6PbHyBB7GPQXvZ2wXOpHKY4bxofEQPvP1JrJX+1rNIgQNhoXn3tGxT9fb63rYLVaXWzUO7tJqhRBGntxKYACjxjbpM3SCwJJ4x5h0GtvskalHaqIKCCKlKp5QS9AIAw+Pxev4HAKcvcLi7D3IIxeQCyLR/bMPgABYO9T4US8FbYojoQBEm+74MU6qxGz5fRpnIZBxUSNJIVq46nGygu4ULdAoWsbfvDez7/z4YdvX3ju2edefFkx7dzZePPNf/5nN3/uw4u/8Zf+WoBP6bCCYQ0ZvCCLZUCl+qfvYLZqpzCJc7LMruaLVhgVI3P26SEIYJpn5AkOBinNjw3keXYmrgdk8MorQr9tlbVBYBoLmlIOQ1BEhI6UQZX2EhB/5bPnJAh++srN12/sfPETV56//Azw7bSbcuq7bdtJg4T0XqubMqnI6FS6SY9FiDQpTHwiSFoTAYgAAysA8c6oAFiIyAuzsAfxSgiRi32b89A1zwiAmlFEPPbP8iWtvPNeUISt9QgYe5+mEuiwZ+PE8/pO5+zyIiGKeI2YbQg9CIUb2ADjtFk4VOc6RvJY5ckRYP5BNME71lfyRhSbKW0mpZ+j+eKASw9+Yr63yL7e34dkBZluGlWir//Wf3Dh/IV79+87Kx3vBbKdQoCIIIueRtCkDGkEcMzAjjxppUSEEQwzeq9Ta5RSSiFzoBCMEkJmn21n4jygt95rxZQpUSgIIKRIKUBCRagUKOUVJUaBUaoShJqQSBtCg6RAQLyICAOFRmtmBjFmrOHHO6rf2iN7A/UvsbAYJjRqPy/spykroCNvlLT8/BqHSKic50SNf/LX98PE6YVxHI0BMKptl/7C2DWUlJ7+04kWwrTXy3dGLiYKRek3OgIM5n0RSCCLQkDZ23zzZ//+nywjd3Z7KtLexjaJgxqFkCrPRmj39mZ3b3vh4gvL55+hoKq0AnbOptm+/sJM2UwRaxYv4MUREXiXsGNkZBYCEWHvBNkDOhBh8aQ0kAa2JOJBrHfIKfiU2Gnl2XmW1CgXhKCJFSERolKoRIRtNpXADM4hO0MACsQnbLsKeujB92waW6XICayvb1+9Eu5uvHf16lfW17p7e9Wnzz7d88XCxxJJln8dlW4xkRBHb86tMh2hxlO2fE4MfdkwcfwfBgPChmL0lNnZQJDkwyAfgUSq0tzdXYg0kN9uPwir0t3eEtsFm3hwQmyUhCGlnhUCi1XCbFvijUuM7ZEOqlqHpKxLu6QDFAR2hCLsJTvUC1hAFCICokL2lh1ncW4ojOJBmNiDZ2bHLmFOmB2IY+dBxBAgWFLEguy9Bq8Boyj0YERXG6uXqhdeospFoWQx4uTBm3/6B/+sVg1/62/89ejMKjvbW7u2GGx9+eXGt3/y3r/603/5nT/79vLqU7/1jd988YVnkUVIibLVM5eXzj9tTWAogHzdfr/JBs02WZ6M9uq4+2bMINi3G+eGjHO5g7z+ccWQf6OwwovGy1VqkSziAQG8COoEIHS3SPVQKQ4DQC+KguoCMwUQseyRrrd77UoDn/vU2a1e+Mf/7oMbd976+pevvvzsJTLR2p31qnE7FDEIVVA6zM6yZ6XBCFkPzF6RsIgA5+oeM1JmTztEEuT8WBkREMw2muiXGIEJiVS271zuA2AQQCAgB8Ag1vvYplobZLHWoQAKMoM461zSanZ73S6zo+xEywHz6AvOcbfCRHdc+em4VP8oYJwbTEDmO+6vpyhxhZz+yo1XNhoKT1h2RwaOHciU8ImteJQtKwAoUVD5e3/v//Bf/df/VX2xntie86IIBZgFtTLGGKO0F6+INao82B5YRCGBeO8dO3SpooQwUaBEo1GoEMECCLMAkiICQe+9tUlkjFKECrVWWmmtCBQqBG1QI4ZGa4XaKAAiNI4lCAMGTzo7SAlFAaBCrYE1RjURNXTCY1n7z5t+sLPPiJ6ZEftkmh7xOkOp73H4ZyllWakZdkMP2Y1HjjnXBx/lDMA8KMvGEU8zTko5cmein2ykX6ZZC9j/1Z/lFWAgy37t1rU//J/+/hWV7tmY0LlOWlmM6o3Q+zTlTiBeizGg/O79Pe9IkuUrnwzrS0mnGynjnWNkRUpYiJCy7VWCmqNUnIIsWsghiDhh5ixGzYlYYCYAb50II1gGz5CCtySiCYBgL+mEWgchIjtG5dE4UEoZhaiAtFckyqBG9s47HRJwHKBL2YbkWu1evbairTXKo+sFQRTHnUuXLsR7Gw/utN69H3397/xv0tgEESLwgOSLNjxyTCTEsrUm0Gd1Zeo4CZz8OQAIkAWfHclXh80JwXEhUeY1mb4jgACasLK4GFVq0N5G6IJ1lYrqrN9Nd9cEVZzGYaB0qGLbIq3SplMIDixZb9Oe8jZNYy+M7EB7AXIJAZEGcWxFBICZPeaho+C9AxRmByKZWQDimR2wR2QWTtIUwLH3hAgCCgkRvWejCZViQFREgfjEBWFDKsvB4uVo5WlaOp8k6VKF77/63Z9++5tnnz73xd/8RiI23buz8+7b8e31vft7e93g/jV3ySi/tX7v9vrPXeveq7UXnr+4vb3jklYPo0/92l/8zNf/mmPU2pRUw7w5+7tATBEI03jScNOXbko+3gZZTMxxdo9PSzDuhvzIKmKHRKZY5VEr+bazWOxXm039COfSU0hI9RyoZJ0//KF0d5VR1mjyrJRzzjMAJkBMnXa72+p426sHSy89f25n037/R7f+8Ef3ttr03KUwqAULLm3upG3W3kCPRAEbQmtBkeLMW+8EkUVRtj8WocoCmSE7aQ9RgLJyk3Dmu1JAhJDtGkfgFRJCKTQFEZBEEIScF+8ZgASQBRPnPXgBHyodkHT34ntrG5W6Yc95IB+WYiOw5E7MMUrSwzdh8Ghwbx66fkwwXJXx8QVQiicpPc4VwcGP4nmxTz0UOxD3HQ9jOQ8+PKPpD4hSJ2EWw4mVavDX/8bf/H/9v//+ex+87z1nIgaRmMV7BoMAShNq8gBASAiMkkV+CgAAO2FkJ+whidmoMNSh9w6YAAFRMftsP0MAVKS8MAIGxmQb+hilBCUwGsBpo4xWipAM6UABcC2osEhQqViX6FCzF9IARB6FdEBgEBgyGwCHGOBQ++c1HzzEvI59K6BEwn3jrbyKoORym9xPY2ZA36uUJy9PMxwP9iWMEzUARqTitATTFMBplcEp11O+gEU0IwKLEx9I+/f//v/90pJyiU2AA0obK2EYahMYbcJKsOi6ViFVQm3jpN17sHenQyRnn/lcWGvE3RgRnIuj0IgCFAYBIk0EoAhIoVKeyKLySOBTYI8AIEyMCAjsAITAK2BhT8LCgszeWmaJTKAJwTEphaKEFWotgizOOcfehJUqgBWfKARod9LujgZFLCAerDWIkKbtTlpr1ESpKKoorcEs3VjDr/+d/2MvhkpkXO5xGuqBckTnkAV9RBjRm6bg5ETFo93x/GikYl9SAxbnuQ1/ZbCTQMHdEDwwq6pX5yxvIXegE9dqy83tnebaHbNYDwCIudVt+952aLtECIJKheyZHWo0JCCePTqUmBQhIDgU8BpBWAQ9iEdGQgFhZi/AxJ6FQRgYRTyIA/bMAoganRenSMQhocrWD5iq8cJIOjJElG36I3rlgqqej868qCpn2fci39l957UffvOffuZrX37xG19bu/0+7667+/c71+7sraVvvbp7625318vFcwGnu4Gv7F53vrlSN7y3t/7spYWLjca7P/zXQXXxhS9/g4EIFGTn7WVbSPfnVPLOKgZEWSxM0Nun8aT+0UqT+dvIz2mEMQ/ByNjFE4zwnqx/syOGoLAMQABQeSER8ADMVsmmvf3tW9/747R9e/mF5wAUiEbudZNOnKaLur63tsOJa1QW11psY6nq5CufXe503A/fbv/zn9z7xDMLX/n0MzZ6UKu0Fi0kVlBQoVbIxpjEsyLiPL4imzXLVvYioBCoktYg2RnbnJ2pgZBtk04AiEIKEYGQCAAlky4InE1nQb7OAIBdto+7FxGlCAACrVPBbuob9WVtsnOb+ppnmUn3w/3HzUmZTGVD/L2c4WOP0QiRsdoPMYJBa46ulhhcl3w0MHyn+Fl4bqR/TNvg9Yk8aO62HqTqczVEpRT+N/+X/+Z/9nt/Y6Gx0Gq3lULnWGWbTXm2YJUCAznjRwCtSCtCECQghQgkgh7AM1vL1jCjC0wICIKSbfGfx/EjhmEQRWEUmSAwYRAYrQXYKEUYhCZgtibURIjIiojZk9JJmlajUFFgwgC1AAmLF1CkjTgnhIp8ZvEOTNX+UQCDpQHQF4xS0H1hQefbh5ZOw5PR022K7RNxsHduQRR9q2/U5CgooNTjx2cc75vn0RgAhyj6ROVvRj4j+qJMIfrZb/elb7bbGYMPlP/27//3V+o7C1FYXVLtntMYOGu1Fu1co1YNw5AWVp0nl8Za6SrsuXivc/etUNHZ576K9Ybr9ZCYnc8dMgwAClV21hFpQsR8rYpHBHbAFgAZKDsqIHM4sbfCXsQDCzMjMBFoRAJAQMIAQSESglKgwLNCUSoF0oCpNp69pJ0ddj2hKrE4ZkYNqrK7w+vbsrq60G22z54PrWqswzN//m/97zvdoFo1IEwlh1HeA+VFKvt1yuFQEimTyGBSd85hMDx+wNLfh8ynr6Viyasx5CwqO5wEMlFCAADVp1/+xs9u3oLeeqMa7KyvLy0Fa/c+eLH+WfFtVJZ8B+yei7cIUsVea/SgFWoTRSqIPAsDszhmRCBhEU4UAoKwMDKQUBZlJmwZUhD24IQFOT8rGAUIlU2dYHaCNmmtATViqMNIG4XWg0IRpxCFzNKZcxCdqS4958OFRJIqttLN1//9N//Bl/7iV65++Vfv3769d+2tRmtn4xfXkh1+sEFnzp9dPt9ePV+7fHW1cXb1/gb9yz/+6fvXNq/dWb/63OpLLz/VajYvn6m98f0/PHP1mcVLL1J2bjHkS79QsjUBAw9Z1n4yCAuaockP3S8O2sCM648oWeMWw2xmOOtLo2lHHx6HVf84YGgYDGQBADIDECP6bHEKAAkQpeD3Qneje+8X0d77Z88svHO7fu9bD0DvfeHTlxvLDlV7ucKd9rqKsbfeu3d/T+pL0tm6UEfEyrNPrby5bu9i9Y/f3bm+LZ+9GF7U1Yp0K54DoB4JEzgLQJSfHoOMggSIRF6QwSNiMTmZzwL0l64XjzL1oiBXFhAUEZbs3Syen5iVZFNygsLskZyAAqgEOrUxi7d64eu/+1eFFAhDtmCnLFj75wAMlmiVpe44S5aRf4tXPmqYGI8z2WuZx/EjDPPh8vYyg0elMKExj8LoBye6HKbdmQeFKiuVauXzX/yV/+3f/bv/6B//Q1S0s7uriJDQM3vxwoCAXiEBUGaMKkJFKEAgmO9mKKkTDWK9WC8eBJUoQkKEbD2XUlrpMDQmMCY0QRSGxoRhqLR23gqh1kqTJhVoI9qQEgwDQoNRpeKJUKmYIU2csT4gW6uEKjAee95tq3CJQZFk+z8PFP3+juelIKvCfJX+nAH0t3ZHRCliQgf+oEHj5runlIyHQcois4GRMRDHwx00UYM9GVtZH+FXZmc0rrKX5dx4W4zcGbWwJr078Zt5f+aWuGSbHGQLdxPnJW3ubVy7cmEhlS6nCdtu7KUS1V2aEGDSEkO6sbzQTSFcWJV0l7Qk2AKON2++YcKFM898MQlDlIRFAIlAUIH3DABEipB84VrKzEnvLaMXEZEUgBEytsxALJnvJZMAoDUBswdArQiyc4eFSJCdR3baABF6YQFWwC7t2aQZEIAAi00SR6YOVN3evdFpb11aUbsQ1CoriZz/i//h3+umQVQNAPqhP/22yot6fNr/iBJftgRmf3KikPkIipRDYdhNlzVL5rror9IrkmY7PmWcUARFNIWNi5/5wtf/1rf//+z9d7StWXIfhlXV3vsLJ918X06dw/QkTMAMBkQShCEBLhMiKYiETFLLoiyZtChrmaJNSqSpaNOWlgTKpEiJi4ZMkJYYQIIgBwPMAIPBzPSk7umcXw4333vyF/auKv/xnXPuueGl7vc6DFDrrftO+ML59q5du+pX6Vd+wSU+ieNaipfeePnBEycjlxU+RxLxOYQMpVQQQ7EigbEuqdukHnyogv5ZWMATEihr1RlSZNQFT1BBQcQgCTAIQJXlWBW9JQLGJK55KSw5AABjACKhWJNU0LnEsAKRKotxtWTugcIsSrocODMw8L1LX/7VX/zIZz586gce29i8Uly5PDh/9carb8g2CEZnHzmTHmksL57ExEi9PnP8xPJHZmunZl958ca/+BdPXzrfe2mh0XTpMcUGybe/+Cs/+fP/nsRIaMcg0Z6K6AAwAXzGtsChXIgHpN0hh+iBo++KDr3H4Xe6yem/y2if0aS7y0JB0XgPgMDciTCXcsv6NfBbGIbSX0mGm70r59MoOnr8kZXvXr1yZeuFp69+/qefOPdoLcuugURx0uiH9mvPXZk5/eh8026vbjnDKaaPP3j00otXqWbf2O5LKHkhiW0dzJAsS8EIZAiYQZUR1ODY0KyawYNWEnqsi+B4h8Bxp3lCAAWtigMhVaW1QFUFBBSDAqka66qSQRyYgwgAeHEWnVXgsjETk0b/6uf/4M/87B82cTLW/kc5AOP2XxOccxrArOh2mAzuO+ZOOH36mPepmN+neNzChbznyFsedtBve1Ay4KTwEux+N33MOxysXbVWEY2t1eL/5C//lZ32zt/+n/5HRwYQRYTQiggAsQKzVC5TQFRFVTSEZuSfAlVg0VLEiRSBI8QieIcmQiIDxpJ1xjjjnLGWosglURzHcZykZCyGHAkMIaLUkggwgFBaa7gIyUTqyzIf9AcdlVCLbT0xao32bDozq2UPhHDuLCRLAETVUppkY0yN1Ni4Bd0/hHqw8C2Oq8TBQdhlZFJUjzzeMSYFiKZ1rElPAa2W2a4afNO5uM/0bucAVHSLZ7u1IYsHR//mpKN5gNEcV2aeKoCACBpnouTS5dfEwyBkqLJ+fatWjzGCnUGnFgmz40yNCV7WZo4fLY11drFpyYgt82Ex6O1cfS1pLUczSzZyPoSqGBBagzipf4IEtipvBQAMAlIDjwyAqChCIohUuQiUKnOACCqwh0G1yodnQFA2qMqMIEQBURAdWGMMgSgKIwgpAYB6AbZx0ux12p3Vq3XMa7Vmtz+/Qaf+2H/w/yzCbFSrmxH8gFNS53AZ9U4E8MFz920Xdw7nj5fM79EhdHCBjOdyPN5TA1ehiBMF16AwRQsPfPwjn/mjz3/r75PfsSpvvPb6hx96+NSp5kAzSh2pEhAqs3qDzpKL48i5hIwDMBosAat4YW9QAVEBQUZRCooMVHUFQFCDqgZRYFSmWQEACKnyA6MiOheXiizW1FIxCdoIrItdXckWhbikJeZYki6qBGeGZrj+T//xL515+OyJj/zIxsYGXl/ZeOaV889cODFT40jPfPQxk2a1JqTzsczM+NmZflxLHR195NiJcw/MzTW/8Cu//cxXv/rgQ48dmX8UAYZbb1x/7ZtnP/L7SkWDbs+YjZWeCnUdbxuTIsKTId73d7KydrV0PbAs3glX31zvv/2Jb8/w+MDSng1eR2CggqIQ5eJjs0Vrz5cbLwxkAE4dDI1mYditxRR6meWwcWFVpVZzONOqX+gM/9cvvP5vzHzsRLOx2cnqrXT5+PLcqZ3rm9tqjrCZ03bWLjabzRMPL8z6orMF7q1+McTyRMs1yJpYXWASsYY8AyJSpXEJjQsFVp3qSFAIaYJfVaoMTTYYVaLJW6XKXBCswi+MIoIhtV5UAX1ZIhoCIkIyEIH6kLto4WM/8Nk//x//Jy5JnHEw0pFwN8xEpz6oPtMpwbLfEjjAifs57NbsduiO8YGhW/zWm9Sa2X/+oebUrRbplLP+ba/ofafsAqYKzsXBh//rX/hLTz/9tQsXLnY6AwEhq6rKQYAoMAICq6ABFAISVDI0jkwDEBUVYoaSFY0qe2NA1SpUPgMyxpAxZMhYMs4Y59BYa2MlYimNAebcs0Q2CarXNts31ld8UZ6ab8wmENuy0XJJauPIiEFXi6WWBLKcX4l63lAEblkRzVRSu+5i/dXDjvZHxFHAzwT02QXOJr0hEaaAg6pfx2jFTGUCTM2h7tppE1P6oDn83grhd8kAOKj23YxZJx/uw7cmptI+I+zQe+HUm0mC51iGAiiqUhBB1OLaxSMJFRnnee/EyRnu77TmW0WAQb8To8ROB9tr2t0xaenmjtqoGSWpW1jIOhZY8t6N7urLc/FHo6QOFnMfCJE5IFBVtQ0UEA0ZBYyqVEhUBCUQZRAQBhNAZGQOVpUfRBUVVAC08q4pqoBUbYYNgkFQBLKWyKGtORsraNVAwETWs8kC1JLGcNDrdYbZ9tb8keXcNXr1+Z//y3+zJ416rY5QNTGesPoerpxkudwPptyPp94B7TP57sMPe1/vMTd73n0o2cEX428nndAnX1dQRoU/GFAxCKzRg5/8fCfbeut3/mF/s9gaRP/iS9/4k3/8RyEOKkFDYUDJ2ILFJQlIhFFNTKTg0KFSAPHIQupFmXDsU0UEEEBQFR2HT7Iw7MYvAxKiEiGFwAKqQLkPGqVxa5bSWYZEgJCMq896QSJyjQU0LbXGYgHae/Grv1J36cd/6g9tbOZubefCV557/duXU5ZTT8zb2QV7bMaQSRpRcGBajfryMroZg2lQEZp77CeWP/ajP3npxVeeffa5t15/q95apNnaS1//tdnWYuPUk+RslUsxhbLBrka0O8Y3k1WwRx8aqZu7kFE1ETD+786Xwx0iqL9HB2h3VMYYqqqiIDEUNX3t+tP/oDm4ynm7ubA4DKUXX5aF9mWnPdja7m3fyIse1+epDFAwu/m5q2uDZ17YWPooWBddvHD53HzzBz791LV/+tLm2kBmkv5W3s+9Db2Fujs+k3aH/QG68+2infmHF2spYWJzL8hBDCGi8SyIiogENKpEVXm9lCYtKxSqJgUjFlAcQZtVuEW1ywkIgaqqASJBY50qeNEhM2PVsUYMmloS2zCcbdbjhaV/+8/9OYxj5+LJtUc6zi477xUw0yg0HhzeKXbeb+feVn7jgaW079T3l6y+h5vRvksdfL2bhj2JK8Gqp/qBE+6SDjG5do1lJION2cbf/lv/00/85I8DKgGpgIqiQRZhAQgCI5iVEZVABbFqxFtpWqogIiLiQzDGiahIYAaVKlACkIgIkMAYxKo6FUpkKQQIZb/ZtAiyur7yta8/+53nX52fb33qo0+crC+cOH4sBB9kkA+VfQQ2ESCDPePymZkWZHlgwKWUTZMQUBTogBNgzNm0y1s40eKrMZ8cPH6JAFKFkewm2+9dJDAuNTTS/qdo33G7n+shrK33VRUb07thABxUUCq6k+d6G88+DWvDOA4LFUFYAJRIhIruIK4Vbzz729/70j8qh2sYuLPTLbmk0JUgaO1MIz5+ZO70g8cAQ2y5uH6hDmBnWOO6qc9iKB17HHb6a6/OzB0NdArIxJEtstzEiKoCUkWPqSgAoAECAjAKCaigBgQPUooYhlANi4AgSFXVAZEASA0JGgAPzFbRoBoUAjWRI5cAOaRYgVBUUcBYVuNNJORD0Pb6etEfHjsx99KbWXzuYz//H/7Fvm+mSY1UpQra261/NRG1I1PpoNH1Tmif4L8rdQdugojcU3pvLfDb0M1+2b5Nct+oHrI74whhGsPZVIUMV3NuncvUPPqj/8al186/+dwXb2y66+vbZ55+8xMfP1WrM0ve6XRmWy1AA+KsdWhjtBHZGA0BBw2AyABGFVRJhI0iKRCxAIuygiAZAhI0okAWEQAZRIQICcAYLENwcUS27hpLmjQxblpKRGwUJ2UZSsF6/QhjBLGU0oN8c/v1r734/Ct/+N//q5u9VZut7Dz/7Y1XLh450nzyiaMu4frpY97U0+accWLiFtePG78Ioba2XszMPYBHWubUWqM0T52ZXyuzv/M3fuX0SXj8w+fKjbWv/fo/+5k/9Yi49ADzK1b1EccO32ow90IT09r/vmlBPSD78cCLg/S+5s67off0QSboxvhFtS+givho+Nrlb/5iC7bJQpbr+psrRVamiYOSdlazzR0/CNge2BsrWXHhBkaw0fVX1zbXBhy+1v7cAw/WZ8NsK375tauNFqa1dGM775fW0Mwbl69HHWNiiKnWSKKdTglx82K7W0h2uhGaqI7EqFcl1RjJclVtnQAUCIjQeCmrxN6Rso+gIKCMaFSFgFREAcAYQOBRHXVUUgcoAEoohhg0R8iFlZyIAkiaRMSMgV0tbc4vPfrYk1GcwLjlKQKMwh3GQ7c38h93kVHc5826mWjfh0vsg/hg77f7PsfRjeBg8vF7T3fOz7j3r+797sAD70EIdtX9vWJ/nzILB3aEd0ITTxShabbqH/vkJz/3Qz/6W1/5cpGXXrw1zgIwBgmkY39UlVhiFINCIAUCQLFErBokUEAyVhW9MHoBELYU2JbBO7aWDbOUAUSZpTSJAhch68YOBm3/7CsXfu23n+53i6NHFp964swjp+eh7FxdGc7ONYLYYWEGg7JUldBJInvu1IKP+q3FOYlL01oItccRnKMpNgYYLaZR/0cAJUWokuJUsDIIRvq3jLm+ql4HAEAVpFY1ChlNEMooV2DsXJg2DnanZ8//u3ToMqje3Gy13Cu6vwbAoY96WxBg+sX0wQfXyU1uiuN0j5E9ywLMJXAJntRRnPg3Xvq1Z37zn7/+/Dfb7U1Kas42XZSApiQYvA7aWTrA9UFxrbf6wNn5BDuxCofLi+cgiZM8QH3hiJLjsl/2Ntqrbx5tnChsLYTgbMQhIzKqo0AgAQFEVUI0ZEBV0EVWYwSv6iEE0YAgHBQUaKSCKwCQAQIDoooBlA05EkESJEUEAseMSBbRASApESUMBq21zoZhV0Pps3I7jx75zB975Kf/REZpWksIQCvjQnSi64/GdUo/mZZW75zu+dX2okP35JLvX7rFYpleC7eWKfuuNWkbXGXCKCIIRAAlJZ/7/B977YXXKF3pd/Hv/7MXraNPf/S4IUqTtJ/lJk59CNbFAMjCgGTIgIhUzEQWkUCFmFAFRUEAsKoyhYYMsxgbWbJIACKqTMosIUiwBmuNug+UpDOQNEtKOVCSxGQTAWAia2O0kaHIh4J1AN1L3/iNX/3jf/o/uAHYsqH32mtvfP15J9Gpx5bdYrZ09lQZNSM7DwbMTARRzSTHgVqvf+eF+tJH3PzZIum1INq6ePXv/PVf/NLvvHZphV/duvTaZvvk0hHxb/zgv/JzzVOPxnE0URsBYOLmnYy24kjjmhrvm86JTsvyvXDPHcrDfW/fd9rQ7eg9Wma6i7pVKi4AoIwCWsjD8Nr6s78+b4u8tGSo39tOyjBc6W0XUb2+uL3ea3d4I8t6ga6uZkUhUnM7wVzZZq7Pnm/7514ffu4HmsfmZ+XYwoUr20eOH1lZW93OuwI0tOnqTtZsJrFlY8Ba6ha5JvFKVqKEk83IGSLDTjHnKiOfGEGABQDQiDJW7b6UFLRqaopKAOPU38pFjAqookAoYFBJkWgk2glENIB4rgo5KiiSgSgCkmJ+rjlg8wOf+KySgaob/G5auk5z8zgyZUruHq5jjgup7tdZptfCoXv4PrN57zVhHE79wTeFDz7BLZR1vMnryUdTw6qTyvI3u9rd0hgPr1JZTdYffvYzn/21L35hFNKg6sVX8fWiSojIwARlEEJEIqtaZbQHFQIUwRC8IfLEjpBBy8A2MJUlWkRSCQSALESk9TSiAFoM1ZfX17a+8+KbL17Y4MicO3f60dNLiy1qb6+nRqPEtld2Njfzty63GQyaWHwgxteP1z7y+AOz3c78bEyBmo8ucbQEQKP6nqKABAAKVS96IyqWSFRJQKoQ1qpXPYIKEiCDEJIqG0QQIKTKVhgZ5dUeoLC7Q9xsHg/bp3WKwfcfP9lodH+plntI99cAOAhMwp0xqL5Dbh7NCIBqiQgEGzde+9V/9L+0r648cPZIY8YPNy6cPVf/0Id+KJ2br7eOJ8kCAsmgjA3vDLLCDxKHUa2+vdlpNuvsC8rarzzzTD+cPxPV4vqyco2SBdfq1zTrrlysN880Tj4ZACxhpCbzQ7I1UTRoCAyAqar+oAJacGDZxGA5mKAlgzIEdmRAQsV+VQFEVVEVoKASIrISSmuNcQaQAaUss7gxY11ciVxShxghB8vU6w9DkbfFdfXok7//f7/w+I97A1FlTAhUfmUcx3PCHgZ+e2N980mYen0LGX/rK+jes94pY3zQ6LaPuQdkvunwTjl8pnPIgMZVRNQoJhjZ00/8O3/pv9zM/8Pv/PYzPrNf+NKLRxfr5067JEIsyBkLQUSZgLX0FCGAMahoIhkZEl5BgbC6sCpW7mECQ2gMxUBWEJEo+AwtqAASGYoQRcG5tBbQAhIahOBFvEDEAtbWDDkgQKuGfCzrX/viP37ssU/CwpILmb906eXf/J0kmknnkvmzy8lcL9QiSGLrGpDOec1czYAvtq5da504deypDw9712tl3n7tlT/zJ/8f33pt4ObmN4u88Hbrzd7XX1hfbphXXnz5Myce0pFsnkSCVo7dsXKke2WyjnHKQ6YOR16XcY25g8DpndMHXwt6t2lk84689jra+lVBSQFQOiiZlqVk5fU3rrgyp5iNlZXLxWb76tJCwwN0+77N0dZA+1m5tTXIbH1rGCQMYxf91rdufPjso9zeWt+Mr14rUqMoZrA5zNBteRpYt77jZ5Jg4lrk1JTeK5RB1gE8hKU0SW0agwSRUNkmqKiVD6AC+AEARFiRxjH/VU8KNGiqdhoAooIGCUWrLpE6qhSqFhyKIIFhtihehTCquygWSF3kjDt58swf/eN/NHKuMi7G+wEATPhsHIWgsKf+ORzQ7A/ly9Gl9kHV03b0XkPjNg6EW9zpg0H7lbybBP0fcuStr6gHKvfdFd0SZKq+SRu1x598Ymam2e0MQBQJFUAESxACYCSSKvIMJYjGRKhqgQwaBRFVAyxc+lI0JGLQORNH6r0aFJASAheqQX1R1mpomLz4opAr13eefua1nUFw0cxyK5mzVOM2Dl1XTHryzGvXOt994TVDMRn74ANHFxdaUWKSJA2E20i9jSH6QS2ct8n3auc+q3YWAFCNIrACAxKoE45IQYeQ9VmFRBTVF8EREoGyAFlw1riINVYTM0SEJABIqMKA45Z7kz21Kgd0Zx3jp8d/13rbOyO7+k+1hu5DzdD3IAn41r/+IOSvN/n2ZheYAuUUQAL7neuv/vLf/Euf++EfrH/oyUF30yV2R5tDn/U2e7A1mJvjpSWsNWcS4m57U4DrVkhE+zxfrxUiFKfHTp/KS7jy+nPr59944NGGMRaNobQZOs5g2Lryan3hWNKYybuFM56MIjBVmz4aVBCsfheyClpjwQEkyKxahdGplB6VEKuY6QplkSClVSUiFXHWoVEGNmSACCMAg6JVRB4xUsHaMDYvghezMawd+fi/+tHHf6ygZe+AQCsrnCaFJmDMtKPBvS/BlfeKWT+o8v5e0KGg0UGQ4OBGshdu1unddiqCVyc10RBAwaiJmicf/s/+5j/4//zX/+3/8j//vRtbm9/43oqNlk8vO+e8MVW8JBJpkCJCViVEImNBWYABFUVBEQgBBRQAHGgVTI9EVq1BANGgBAZMFDkNrApRHBVCgVJyMYG16NSo96WpNxwlEoyxMZqokNJwsXHhzctXNn/kj/zZneEwkey1L3+L+kC1+PEffpIXI64l0GwZ26zqtTuqD3Y2A8ULj3ymY1udYWa9f+Hr3/jrf+UXrreby2dnyGCcmjzzOXPabKrFL37hi7/vZ/91AJRxGOau7TqylkclGadD5m4+Y+MRHn+8b3+45zL9/Unv/gPqpMPSuLb52I1vFCBoCL0Nv/7m3DxiL3CxM9+065ezWXJz1tQJXlvr9DMQMt2SShO1cx0oDjBa3ekoEbPPPTx/lV++VNZhZ33Lrl7rMbBSa3sQckubpc8j8Kx5n+cwckZNFQttKFNkVj/0RxMTARIBMhKSjAuzIQBUQaQgOrJVFLBq8kdjj9SkwkX1lgiAFAxg1RiYJVhyIigsVim2BGBria03a7NzzYji/+N//FePHD8NVeeASYnKXX192oKtuH+vJJmm/Uj/3q9uhfoc9AnswwwnEUfwfbZWJhvxoU9z24c8qB3dyVmHXOQObiMs/U6vKEprbZAckRQEFA0ZRKxiSbkK9lekwESAQM6SIAmoR2+IFJjFkzoDZIz3oKogahgkjii4gvtDIwQFFWV44/z6s69f3+prZOOZhGqRSS0M+5lFSlpzz7967c0rK/XG/PETi2dOLx6dbxKWxgiLxrPNWm1m9eJbrrFY5EX/jecePPEE2JYCoZQAAUGgzMreluS9vL8T8g6EITkjITBqktZKARU1NlYy5AwZx5hCfT5qHgPXULIIBEhTG2glXqbU9ruk/UrvVKew6Qmerkmn4yp1iO9oPbxLBsChyNhtjzz44R2s/ik/jBJAqCF96Qt//0/+kR/daPdXNi70BjsCRIJlrsDOEQ/XVnKamZ09aRq1xM3wsOc5t8GTZ/Ihpl6p2O7YEw+fEV5fP/9Ge+PqkZPnLFiT1DNXL4bb6jeH7Uu15pOMQFwCqmhJiAAGxCiQIgByhSCiIhE5E7FjUAbLop6DFfQAhCqoAhqQZJz3hcZYAAMggAJkkAwYA4YZSlBDCKIMpOBgGGp+6eSjn/ksNB9iV4vHtW9HZqvul8RTsM69l6q79uvU37dHv9uA/wlN43HV3z0I3V46iK2N3+52B9MDxwMAVPkqKpExDIZqM3/q//Tnf+7f/OP/zf/tP3/xu7/aWg4nTjzgvU+BnYvJUuVE5eANWSQDapGCATtKmyVRZVVBFFAUJVSo0loAFAhUxFljFaiqUQ6mBAxoXFoDig0RAQiigKklc1nuybgoSgopXMK0df3F3/mNz/7kz+T1JVtcbL/0wtYLL0V5/tk/9Cl7JOkbZ5o1jBKCCNCAzUKRE9ZmZh/QxryXYdTJXvzaC//Ff/r/XVu1SsmRtL5x7fqcelEPabS9MzD1+Ctf/iJwVkgcT/VF0mltCxSURgWVpudp76upt5P8vZtO8Z0w9sEZvI1y9X6id3/lIsA4A15RQEGDKqiykDW5KVZt/gaVl4ada9nlS0V/cPlq9/rVbTlRP+58QweNyG9sFe2SCkrKyBQu3uqVvaxQQ16Q2Ttr2pJ868Wd3//krHbWWknjwnZv4HA7Snol52j6mVcCEUxKQQRHoF5UUcgWQbaBLcG8ZUC2xiozVFwFRlUr8F5YACv5XVUHRQUgrBLGQEcl2AFGnZUMAgArVWoZEAt4EVQTIzoL1kazs0lAc+yxj//Z//NfWDx1xlo3yoYY9b2DvQrhJL8Rx94AuBVUP112DG8rtfd9d+jRU164XS/E988mcAv9+1Aj66C6P324Tn1+z8ZoLPFaMzPGmFCWokoqhmxV7UFVEUhUUAhUwGAQLYMYNBysGhQEz4EFLapBKDEYIkCQINaKoKl8xRYxIch7ZY/x/PX2d15f6WZqycwmOhv71KAEWyTRam7aOxur7V7aiB/50IlTy3OttNaYSRutZpkNN9d67StrJ88ktdlmTxwQzczOQMgDDxRclK34nbVs2CUqUTiIiC92Otfba9f9MHNkojitN2uu0SRnklodPBoEA8q+CJj4xvLsqaegeVwwovE2jPsgov1+4DulPTbAZCOHvbNeqf5jder2xtsd0H03AA5VU+5qHe9TfW5tLY8qnMAoB7ssaO3apUfPnnztzbf6gfN+10YGkFTYEhpCBJFyOOiuZP0TELXUztTqFjGHPCv6w3Z7w2fXZxcXXQ0GuT977pF8a/Xy5ddn5mZtfckLzMzMb3S3fLk+6LxVP3rOmYgLcSQCQZAQLIAAWBVAYAAxULV0ISUla43ENgoMQYIHYVEADiiMqgRqDCGoMQaJAEAVDFoaddBwCiAcyCgYZQ02gmHPNB/8sdbiEwqOqK5KAorjPJZJy989MSC7PHRfpCrune6bKSs3U2vu0vnz9ugDsKMc5Hy8yYtb2AA4jocet3rZk1enioTIqoZiFLGNGRe7/+oX/+75Z59+4el/2AtXWk1jIVBVhRAAVBAEQGCUSDBujWVQFcEYVDKoIARQVYUjVGQICjwqWWgkCLMyGiJnjKmBTaq8dlXmUM4sLLAKGEEVAEHDebYF668Mttcf+pEfX+vkM3m48LXndZgff9DY07ZkTltLENUJDFIsRa44YEjTmUd884ygSXJP2zf+h7/8C9dvhPrCsWLL+/XNsy155Iz7yMeepMbMcy+tv7GyvdbO/u7/+7/7t/79vxiCWos6HqxqmMZ2wMTRu783zE2msMJrRld52yy3bzV9ULT/d5dGwzvWaCV4VCAgNZRBft3xoBhc82uXcXCtt32p6LVXzl+maO7itr2w1drZ2Pj5T86fbOBFyysSrXbDZq/Tx6KjOAi+VPQIgkaQhLBT6Is3Br/vkaOEiSoO1eRR3Cdp+8CIXsEHrxS1s7JVSyoeYBVRBAQW3C6YVBuGdDdXoYr/VAAc5fiOdeARjTIUK55U0VHaImAVnzYO3lZQ1aqsv5LEUWxMJEyLS8t/5Of/9I//7B/FOI6dgwmIqNO7wZQCMub2A7rG9Ld7P59eEIds9hPOPdRUPvjJ+NZ7IqzfLaF9n+9zV4rQvj10V+fE3QPg0CGf+vztkao++NA5Z6NcSouGCEW5Mk1HzRJHXIkiIIqs4EWDSGAmpap9MJEgACN5ZvCEGhAkFM4jOueyQY4xOAvnr2x8/cXLG1kURWlctyoqHHpDQUoHfd3Ou5uDbGlx+ZGzRx47dWa4s1kArg77Oy+u72xtJ+ns8ZPHOlt9W7cLx89dW9mcr894zkPoQ9Z/5Xf+2VwqzsWN2TqriZJ5SupHT54+c+pY1htsbW5ffevS6trGzNJi2kgWFiAy0XCQWVJE38+3h6vX+532sUd/xMwdE2Oq+ry6q22OEilvHQE0DejfLLF9jzqku2/3fD7ajt6pUfwehABNGzY3+9mHfn7z46ekC44TpBBUVBG311/trLzlfVYox9Zp4dFyYE8WA6AwKHDYWU+3b9jZJdU0jRu+ABMZW7fN1PRXdvobG4mxnM7Y2flT5x7deu5bly++fObxT9toBqK6dbEfbkl/i/N2ZJcKVQklGAFwKCAkSgCABAqqBAhAoyWKFq0jTRSEQqEalKtioL5y7o5KJBIJKAAaIFS0QKRKgChESgZBWAwoBOlyszX7ONF8BKDMYGR0LxzHM+8dpjFWc+uxfad0h9DmoW+nWf93FR2y4O9yEA47GGGMVYxqCE7vFqMFo6KKpADkolrBfPyJTz34iQ9vfvsfrrz5JeCeACAZBTGoBEJV+VpVEBzv6qQAgIJIoEA0qgctqKhCoBIEMagqV4VyiYxLomTOY6xgRQJY9N4bqxiTZhkFiV1SloWmeTMd/OZXvvypz30+YxMGa9tXXzn//Pc+fmr2oc+dGaq3rRmIY8UWggPI1WjmJWksQ3yacQbyrFFkf+2v/c31QWjNHO1s9tKs+4OfXvz0Z8790GfOcpTOnnjkzCOX23n69LOvf/HX/tFP/ZGfO7J8umRCBEtGACorfBTRP9aUbhfwuV/3ufuZ3D+Fv6f035JGRi4AVBOlquhMKNpx/63uxWdk+FaWb88dqQ3XN+ZSk21ezQc8k85due4vX+69eKG/4rM/9rFWKv2F5uzGRb/Sg1KlE8qdYDwAILGqKgGBD96Qu9Lm772xkSDc6IVOj0spu4MsZ2GyJasqlAzBB3LBIwKCISPAwgrqMtB2qRijQ6WRNoWMKlVYBY7yfSt4fhRyVrX9HfVZGmGCglDlNasgESCJGmMthsCBRUViF6et5vKxB/+jv/pXzz3xISE0ZGCcwTlJmBsN4SG44l4w4c4V10NAO937Yt+lDr4+NMD9+2JD0AmucEd0Myx1+oCbDeWhpx9+3GFEhs6dfeDJJ5/4zre/yyWEwGSMglRdv8Z4CMK4cDmrMlCpSqygYhFIEYMqkpKqZ1UlAQIgS06JPaGGjOjKev+5t9Y3ux6j1FmSEDKEHeQhR23P/aIzLENai44uzB1ZmHnt1deWFuc77X57Y4s0P3nqyOnTZ+J6KkI77XbWLyKXZoOyGA662+eT0Nu68qJPw+zsnPKc2FrZ7Zu0pQAIktRbC6eONmZO76yuXL16vr2xyoPh7PIRRMpztjWLCULotjdfLYM/9dGfwOZRoBgAUBFHKcPVerxzUH7/gRM2n+hkB2HQ6ZNH63D89dtT4d6bRmAVTf/cW/x6PVSM3OzgUbrXqNyNpcxvvGFDnw1aML4MzthQZoZQRZCMBgQ1orpy9XzUaC2deEKE0KZFiUJqLdZnj3WHF1evvFU7fiaL6zNLJ+r12euXzp86+yTalrGJJWMIiu6WZD1bX5QgDrxCgRShOqMmCBBW5ftRVBBJQaWqOQVVTzwHUUzgJYgCg1oQIRQEJhp1g69KChECkABCEInAGROjGkBFGwG4uPEARjOiwMBoKgtCkPa2IJ+ME46wmvun+u8T8L+nuNwh3Wy4pm2hO5y1wy6le/6DCcSmCmCIKpAbVVQ1MlZSKgtOj32Crz3Dg0FkyFAVacAEgqiqgiqVr6lyVYFAdTklqLIBABRJlQOKGoKRfa5VNwBLLiEbGyZmFmEkJIPGAvih+gjBSsjUOVP6/sbqjfXBj//A77ux2Tvaip/5zncbSK0TLVhIagtHhBYEWugaWmQgBdmIcF7rZ0M0i4ao6P/aL/3jX/nlZ11joRhkc9r/0R869q//ic8tnaJkJsnxWMceqZ81H3/yIz/2cz+3NWCR7ayt6JIodt40ydUAJkK++h/3CvtD5+TgBn3XND2J+7Sn36PDqWp2h1XkPBnowvrvvP7b/2BhptaYxaRZ5u326oWVjjXd7W5vi8sePvvCxsWt7Eab2pI8c2HwyflkueHnW0aGtj8o2llexk2uwHJRGbmCKFfdKfDllaxJuDGEXmk2et2uMJMNwiyCiIUEUhgUwTgCUIMioiKKKAzYD0QEcxEZYEAQEFWjAIwqleqrRkZLCgEQgABlZCsgKYiOmp0qIQJ7RUI0xhAikAFDptloRFH9xNlzf/mv/Y10cRGsnbAT7ckrxD2Nim4qX269G+uUiNp31j5gZ9qogFu9vpXqOgFS78smdn8dAPeuCdRBOX/IZacMt8pKvvN7I2BcS3/oh3/omWeeFQAFVUARJhIAGOkyijjaBKwqs2j1z6sqoCUEUSWG6vMKglJRCWUBJAIOut3y+TdWz1/rY5SQii+8je1AhIEM8zAf7vS7EdFHHjtbtjurV7xL3JtXb/hhfuRo84nHH15emEehrU57Y21bS+YimNQtPdrcvvxGY/5oyHpnHnigs3n59Tded0ly5OiZ2tzxsgyi4JzN+jtx3GxF6ZGj88eOz7/y/LfeeuWVU2W+vHTWl55RXGQjSxKy/tqbV15OTzz1o6Y+bykC2O0HBgB7i8IdHMZDJgsnUByMa0zD3u/Gp+nUhzoN397ilrej9ywJ+Nbm6Z3YA4cSTs0FK5T97Z3NS6llxagMbJMoL3OKCJhRRSWgCDIKSpF3dlYuz88fJzcDgMZEIqIIUfNI40jZvbHTWzsP3p85/ejMwumNa9c3b1xbfuhIUFOrz7XbVyFkRdaNa8p5LzVDoyVTTBCDWENm1FudAIFBBaT6K6iKwAYEANE4Fi9kkAyRJRIadXlRQCJCQgUqA6BFh5bUjFgC0Qpz2S9gdh7AJgQAyKKASFSFfu8B/wFg0sr0IDhzz+XdLazYfXQouPR9AfXcQxqNzR26zg4cdkD7h13xNXXdMe4ISgpoU5o5Xm8uWN4kEAAySAigDCggKAhCVf6iIiASGgUGU8k0AeFRVVAEUY8EBhHACgALijqCGIKB4EFKIlSJKhNDyr5oalyjLLpJOoP9zUvPv7h45qnMHEnNYOvisyuvvHZkLjny8FGMZ4NvYrxsk6UgOZqNIusGOqIzZ3P7ILlFKbayy5f+7v/4T4POcPAxrv/kDzb+7X/3h8zp06W1vjUXp6eHPmrZ1kYPZmZqppB66jDcuPC9Z7TMHnzqJ6JjHxfnuIqAGsX+616w9Las+jaX1z1fAu+JNX4/dal9YkMBQHHEw8xqum9tv/yrp48ixHGR+/UXVzY2Bqvn+5cvrjzw0KLPzO88t36pkL7oar9r0f6TZ64e++hs3eQn6rWhL7shsAHPmQIpkEjllRdCREtDH86v947VWzseu0gD0BxEWFgFxinIlkxehsQkDl0ZmABd1e5XgdUOvcagNWuBFJhVRy0kUVEVGVgEFQiJFEaWOZElUFUhsiMkBxFUDQIBWus4qHVkfbBxAiY++dCDf/n//t/Wl+ZqaSxTdf1HGb+TlqXjz++Y9qk0OH2y7m48+zhu2oy9Ha69v4jQnivsW4H3nN5nnccAbqkpTcMEh/zwvYbbIQDTJIJszyFjRUGhNTOLhAhKVJXFJB0lplSlQBGxKqBT1T8EFQxcpamQBUIUYEZCABRGRmBUj4wAeShZ45cvbb+1nhXkYqIizz0WinVA8AJBysxLCFJ3gH5oNLpy4VJtYQaDLC/UHnv4AWfdhcs7167cSBNzYnk5asJMM51p1gfrV5NWs+wMi8Jo2jz28EeT1tHX3njp+nMvPvoYNlvNxBBKsXh03osMOpsmSoL4xz/+FDr+5tO//cmPhcXF5WE7zxDjegIYayi2rr7iaq3jj/2gJDMEZip/BsY+4f0zsM8mVti3JqqRn4RlHLZv3x9WfM9CgO7kmEOdWbc+fWwXKYIgml57rci7JmYmjm2sSMbFoBpEqlqYhLbq8iBSbmyszW/dmFuIlCwiGbIiwbpa1Doyo73u6qWss77dX5xZPhrV6v3+xnyxEew8uojJIYRssNWYHwD3CQOXfTXKIGiNiiVFJAwaBBmQVEWEVb2qBy1AC4KSMBhURgUSUFBWIBQWQDVkWAGrlHoDjBiBAUSRYDAVsYS2s91pHq3D6FmA0ADIuL5bhcFOq+K4T3jeuY/lbuluPQD7fuW7RvcX7LkbugWMrDcHbm77+6c20mkBgxMPwDhNYGQJ7EIMYpTiWqMOmRXxoBYVDVkRQVWDESKqsqAQGFSLqAE8IoAogCKKahARgpH+gmQAq6QBdDYGIdEQQu4sKihrSZCQqIacQ1AVQOM5T7j7+nNP/8Af+JOByTL0NgYyLBvHQjpnqd7KOYptAyBGGPqiT8Zq1DK1mTKhYIdpv/ePf+kfXbjSo5nlhNsfeyj6d/7sj84fjS95u3j8iUZ9dqcnijPzy8ezsihKjSMTJ3T5zYu+f+PMcuPq8186Do3k1OMlkAOw1Xp6d/lln4a7b1nddn29J0r/vh/w7t6syrqQUIb2i9+M8s0BiQ60ux2e/dZK1zevXKGXnvE04z70obPJqpON7o1r17uFFoq/fgE+dbr+g4t1n3eGpWYmKiRUFTcrMToq96cQRMmQjxvSnB10+xv9nrpYlEQEEEWlqhqliFwFy4GoCgsgASExaFWgYahAShZUgUVFCasGkqxB0QBWUaBSYTmVRgUgBIQwFvCEAGLQAgqIICkCARrr0nTuyJ/7C/9lc/l4nKQTzWOSlj7qsvWOh/sg+DAF4B/mWbip8r4PBK0qFOkB+XYrHOSDQftKuNwdJL/7d/+LQyuCToIVdXfSp78FgD3a/8RRMML2UVGyXj7sZ0hkLIZQWamAAIgEiFVyIhERISKKimdmZSG0CMoYCabGolhgFIRSRMvSKQlbh7o9yM5f2+kNmRCx5Kr4SVYWCGhtEwxykVsyrWZNFK6vb84vzrUHfqaezM4urFzvrmxt9fLhh5948OzpJadSFsONjRtXLvZmmi20cOT4SYyavSybffiRmaN41smz3/3er/3WVx57+NyTD5xrunLz4sbCsdMmrXUH3RDUh/JDn/xsu9/9l7/2T37sR39iefkkBJYiAyKCEPFw481nm63FubMfBmOmJq+qOXBA/z9M8h4M/z9Yo2X34Gkfw0Hn2vSucJf0noUA3flPvY1du0sjiaLjlyJ8+fxb2WCYWGsMOKIiBAsaFBxZRZIAQgoW2RchBMByY/VqWp91yQyiQUIQUwq4eC5pnoUC2t3169cuzjaXnnjsQ6trb/rBRmtxbssPyImFjPtXyZ9V3/HAQlkARRMDgGBw6AzEBg2CBPFQQTrKIh5CLj4zkocyJ/EgOYEXFVVRZgUhsgCCCAYJ0SgGYxDJIlgko6oBSksmrjm0zWrAJl3iQXdX8kQATOTy/VMI9jHrbW2AQ796l4X7+3wvue3qvq1VMAVC7Bnv0ec60mqn0ImRIaAkYJSsASOgaKwlaxjFWBBlCx4BAc0IBkESCARGuCRQVAZlBSZSAEVBqPqygwKrMxGhYSkH2cAaK6qqbAyiorURcKDAiLYUqkO9f+M65OHkmbOZFCkMvv3M17K8d+6pJwPGNjClFiPDPCAeahnA1CI3F9makT5nW9mVZ3/9n/wLO3t02/dPUv/n/tAnFs4sZDo733wo1QfztiJns7NHCV2n2IF8iH6738/6vc1jp+ZqiQ8rN9ob3z1ycoloUZQq1XI8YHclye4B6YG/cPOVBe+PxXX/aTQeE4ZHEFBgVUyCH97oX1ndyVuvfv35qDV3vZ1+480r3s5+L++e7oSZXnZpZ/vyjU4vA2NiVO2gfWmjeMgP0rzf0NamN4ikIkgkyjAKdlZADMzOmG5WbrrBdjGA2BYFMysBKTKa6peJqKIYYRYVRq7S5wmVEBVEQIceDFFcQfxgQBSABJTQsJKgVE+HgFCV1tIAIIRYIYcGCRWDChsgohC4Ua9p0KRZM63Fv/L/+oVjDz+YJPEuyDulT9z/Lls3YdU7zl4c5zUfuOruRx9Udt5f7+We0E2sKpz+9rZWWHWUThkOoq1WEw1ZY72UgMTCFaaDIASGqvK6ChLEuCoTRUBAkUSIgRk1Fy/EBqwVVofOKIKIhkLo2lq3V5XdjWxW5nHkCCB432o1kdQXOYJEsXNJnAUwNh4U6oM2Ts5tZsVr19ajWvS5T37iWIr5zsaN7S0FbNTqs4uLwIygm6trJa8gmrd8cerc2dmZYx/9ZLRx4wvf/fZ3X3/1tT/wk5+oRbS+et20lpvzJ4rOlu8Pt9bWP/HxH3rx689/69vf/cmfqA/b27MLC2l90abxMBtKvnX9jWeaiyfszAke1QSVUYb+QYxubBFUOGyVKjyxwQ8R3bj/9X73GU6cBVPNAd6WGU93f8q9oX1S4dZH3vGDjZucAqqCBRMyaM2dFttEE4fABgFIiIwiqRqo8riBAI33yqUvsu6wv8WSh+BZFckY44JA2lhMWkuAic/6vZ0Vg2F2Zib4IfPQgBoknw8k6/lhT4ERh+i3Im4bv0OhbUIbuYc8QO4ZGTjJrWSGhxT6xvfJ95EHUg40DJVzkZIDCwfVoCpVmDEiGCICSxATRABRQBBgBEJ0Bo0EHvQ7cRpVC7DKEMNq1U8pgDg2/scf3C/CwwzgW9x3mg3uny/iZvTeIqOHkt707VRN+pscPE2TwTwgUsbG4a7SP32tSsjICCVEBmBlQTJAFsmhiRWMIgGRqIgygyigIDAIAysAISmKACvCqC0AgDUWEQ0aQkPGWhOBUhCPyBI8hwKkZJ85IgCRMMRyiD4PHDQUq9fP15ZmqNFgn/nOarm6MTfjasuJ1k2BVsgKZmh6UvYRSU3D1Jc91oOYRPw//6V/vLqtvRJMAT/8sWOf+qGz/RC51rmZhYdE4jxga+4kUUMpTpqzCqHorG1dffPkYjMMhtvr7cGguPTmCxdf+DpJLiIw3k/vow09RYdq/Lc75zYHvg95/m3R/ufA3S+wwifLYVZ01hfnmowqrFlJF9Z3zEzj2uZWvbXw3Tc3/+mX33jhrZ0dzyEyWelTZyOL13ohSWaPptGxVA0RKyIhVz2vsXLQsqgQGhbtlWWn9JjEgxA8gFIVvANSRflUiTIgpS8NWRnpAqoICioQqizePISSlSt9ChBGcf9Gp2I1ddzIQEC0quOAoiDCTAqWSCTYyKCzjMY165LW/uJ//l8ff+ihtJbqqIGAjha+wmiPmLr6vZ2L8YTgAQl0h+fuuU61te/y9b34xe8hjWAWeHe3Otg/ZofdfMQQ+wY3SJhdmHORZVYW4aqvEO1O7oQ5q14x1epTABbwrF7UCzEYEWRRZg5BSmYf1LNu98trqx3PKApFEchaMIiEc3PzcZqAQFmWiFir1UuhLKCNaxr0gZNHI9Hrl64tzMaf+uiDNNy5+NYrW+trrXpzeekooUOyaCK0TpEIFDgM2jsXXn+zt9WeSZKf+vyPRTa5fL33lW9duLTZ39zcxiLfuHqB/LDuTNbu5L3sp37mD263B9/8zrMSQt7v9ttbBqFRT2qxFtvXt66fZ+8JQEBgrHoCHLIx7NXCRv+NO4CNRm+/Aq+7k7XrI5r8HS8p1cmMvZ318B57AG7L/Heu/ev0NRFUFFHOPPFI9KGj7bXL1y68kJWdOHEgAMQqIKQGSIGDeAU0ZENRDnubZbETyrkoisfmgZKJBt7X504ssnbal5HzXjbIcmnGVn1gH8pCuuv92JHVJHUoPkf1WHaNiVVIMSAFIBYEQoMCCiVxUGENAbhQX3DIWEoVEA4ESogIBhAIABAMiqkC7IAskEHnERQqixMNGtEAUiIPaDIAOBaQlctvjx1533KmDszFhKbRHj3wOUx9fr9/20F6f8JHN/lVo2mddvrd4SKaOkv3iYoRKDFqKQm7KwmrdqMkLMoBEKMoVrVKDsgJghmzkoIiEiCIMqFBER3HPKAAEFbByiJVzSCFylEsolgI54aQwAKUAkLogD0Xg6IsQBJrU6KEs+HayurCmTMFsUI/37q4efXCE0+2orn6ThBTt7VaLJyjz0BzNgaShTJeUNfKfb65uvJPf/35YdLiIj9S7/7hn/0kNWqcni3piIGIG2UEMVtj0QD6JHVWaHtrU/o3oDWT5YP17eELF3qvvPVa9+9958/8X5Y+/JnP6C5s+h6w6zuht7dJvL/p8AeqBB4iGeO213ZWz79x3S3y4sIv/+ozN6gps8l6e8fE0fUCV1e5EyQQqKprNJSDtXB5u7i0Tq20NZ8GlxkVElUi5FHDUyRCZlFgVSBwXEBelgJaMbuoABKMu0ULKIB6ZmNN1YdUQElFYVS6PygZRRZERFUSUQZQJB7ZDlj1Bx5FwiCAAFRhdIBYdeNDBZE4jogNkKM4jRcX/w9//q888PGPxynRWHeeVCvZRQH2uQjfPt3CB3kL1+/Bc/WwtyPjZbKt3fyOHwyaPMe7/Qx3o05N78gIODc7530IzDhpP6EjDbSKbhOoHAJKBChU6TGiSlWEKBpREAOqTAYZ1RMgKwpu9cpOFgoGoKqftQGGKHYEWJal95xlRZKgIZPlZb0RW+fqRlKSnc31uTRqWrtz6QJKeezYUq1RR3A+lGk9ZhYkYgiEatEbY3IfNq7fGPQHZ88szLcaP/tHfvp/+Jv/7KvfvLB04qih/mBzJW7ODdqDWqtJqurjxYXjD575yEuvvJC4xpkTrlb2G/Wo6oQJ3M62ruvpAA4QSVW0yoa+7QhP4HodA0kT98y4VavuBuTuO3F3Fx9h/+PD3p5gfy+rAN0JHUAub3M4ggoCAkgoL7367Pb6heZsrfR5YG8NiQiO/KBEKAiIRJUXChEBuBj2B91u0iwRvbVWFYxxCkToclFxtSiaAW+jtDmfRJ1+rwzDKFXr0JfeGjMYbLtasxwwKVsLwggW0ARQVg5AVoBQFaQQCRqY2QuXwB60BA6qACqVaKaRHg8KAQBYAUAJHZKz6ECrDhUqGgQMUgSUgKUKNhp5qMejhrtrGOCAGflu0uSmE6G+7xMYf/gBFu33iKYN2j3G7RTd4SjtOxfH9REnr2BSFRYRpgoPV94BRVXNVUpUQrRkIlUyaBFQVRQRyZJWGD8arcqR6ygBcizipEo2RgYQVQAhMEbAg4I1VVWVIOqBjAFgP8yybQKLCgTqMKYi7+/sPPT4YyIBw7C/dg0lgAGMYgjg4oYqqwblvgXxClHUKqiGGLmg3/3yd1Y61BWJDf/Ip44ef7Ceca10R0x6MofIWEVNQTXzbTUSGLrr5994+fmzS42tldXnL29/57WNX/7V77ooGmwOHv3wlz726U8CuX3QzP0hHaMZu3e6Uyl/u+zF76P1dbh+qaNofQxoymBXr3YuZfTi61dr505dfWlzMGgnxgzznGxUljk5p6JVb/UkNsEX0qqlC/NzbjCztgOBkRClYtzRvjtq0aVCRB5KRBdCAAuKLKI0creSjlp4qShYQ4EDAoIgjRN3AQAQRYEBynE7DUFVBQEF1cpjUGVwjT3/WOn9VY0IAAUQRUKA4NnFLq7V4vrcv/tn/qNPfOaHTGJolP6lYxx99GasgNxXXrjFxadlPxyYx/26D+5xXX/gzdjRLL7XP+Mg7ckgwN33ZEyjWSdCg0YwQAUy6sRSUIXKlTVKAEBVGJWEro4xXgQJIbAZMzOiVYEAYaOXe7SCjKPLIiAa48rgS/agSGS9hHwwaNTi2FF3Z+PUQ6dyX5YBgH02HMYEJ44fQYcsgiSkyD4YY1TBICp7Q5jGsbEmL+ilF17f3mr94Gc+eezo7Of/wKf+9i9+4Stfevrnf/rx7e3VeUiiNB0Mslo9KQbbcWQeOnf2a7/z2yvXNxZmGq6hnZ31uDVPxqW1aG52xgpVRv9EQiPgbcNxJlFtewLwxqfsqvU3t4t1lH0xnqYPnAfgACq5Ry/cJxWmj7k5jU5CBQHtbV1+6+XfhjDcvBTEsh+2Y5IoScPIMYtqLEtgZCCtRCGhAodBtzN3pPTENkVrjQAQWiQFtWpi4xpJmoJRFZ5pqJFsZ/MGd7d6va7nodJgOPCYF6DINkgMrECsDgFVhByAARHlIogXDhKCcKnCqjJq94jKAqDEKAbRgip4HYkKiwqohGBQAElRBaoeY6U3JrG1hVIISCZDfGuZ+m7SPvh/GvnRww77PZrQNAwz7S3Bw17fBeHU5SetQPdhDiN4wljOkIMSBg2OVFUIlMACOjIWELFiXlQFIRCRKmGRABwAKnhQVGUQRQTUABJYAZQsOlAQ9aqCCMY44BKVTcgFsSgy21oWoGFnJx8Mjh1dyvtrDSzPX71csl08fgaUms5F1oF4YK9lgTY2boaSo6oOpYxh+2u/8oXhMBDhLIcf/oEHsTnjaQ6jWZs2JaCC9Af92MZIUovc1rXXLzzzhc9++ozsZL/4P//2X/9fn+eZ5TKdy3ioiZtdaliHVWuP3RG6R1y7zws82YlvDaLejHCKc6auuf+YDzIdfL5pqrZXtc42Gsd7a2WeQZYlw0L7Idg48mUBxhS+tNYSYhWvbBwKB8faXdngU7W50/GxJsVEEEgpIOhYD0UkoyIAICDWUJrYWqGeC9FRbU0BGunuqqQIagSIUBGMAhgFBNJKSSJUBRYICNaYCrypKsQBVFpUtQ4reBEREFGJRhX8FbRq+msMGWe8golqP/u/+9Of/amfAgICIxNFf2pPfQc6w9ugvYy2H3za5we4GTZ1KEd/UOl9s/QOE15Tw4zjYwxRo94wxkhgRKpK4eKoRPmIKwGqD6uIT1UQolEvCwHwgdmQF42r9BZAJfUqw4J3+jkjkjEqwswGENCqEFljrfUcTOwglD4fNOZrMYQjSw0gvLbe62XZkw+dmp+PHQ0MobMOUS2JoQiBREBVgi+sMjlgX6RRY2Fmdmd5+c03z8/Oz37iw+eeeGDx8ZPzN25sXL66duLYQhF6EBwHUtNDEM18K5UHTh7Z3lxdX08xNJrNZWZh5F67s+y7nY2X6uZhThqRsbsmNk5nXI9H8OBI7/MjT+yAabx26uCbEd7+kJvSe5YDcIekB17cjCbDpggG9fVnvh7pALkf8vaw27VIaRQRgAFCtIKklZeFFEi0ckRZUtF+bzjo50BViSskMtYYQBUI3UFfAIf9Yb/TDnkXi74fdoSL3qB35oEHjhxbEu7GSVGvQWINCktRSBkwCPpCpad+wGUmPmOfa5lrmanPhAvlEoRxVOwNsCoENMJ6FEkNARICqRKCIUZWYAABKVHZGhM5q64Oycw47m4/QIl7/95v6XNQVE/j/XBLGf/u0/t8P6nE6nhIK+xkz0Dd+aDtVSWxuu7o3+i6CFV334lEV0ANVO5QGCiXRIFDbiyKhEpfR4oUTNW3QpQVgiiriooocFUhlBRIGZFh1DyYVTyHUtkre4NKqqTBGgBmDWWR97QMJgQ/7KJ6n3faa5e7vY0oseiz0Ol2t7qDLNRmG52BN3ENhEA9hBxJAAjiI+Lm0aWq0Ll+fWNtQFTH0h2r67kjMcX1KG45m1ogVen7sgTjlTpZvrN5Y/utb89wn3vdMNiJjI+SeFiG1bWNfrdw0cyTH/skyxTcA6BjZeoe0HiFjCKddUS7bVrv8mJw4Cy8yTHfNzQ2YMcVkkFJ+exTP7jZ7gfoN1q1ixfXIhujCqEYY52LRDXzBVo0BkEDgRbeN5yZqVOjBsfnTew8kuB4dSiKgoJq1fUCEQRCFLnEkAVSEEEmMlCZADp2eRGyMmuVQg4C43g7VAEBVFFgQFYQxFHhf8Qq0xxH4USjF1UfMqqW8ribRmVbiHCr2Vg4dvzzP/uvMQKhUVFUQdUp/aNS/sdmxbs4OVP/YBS8PAEddN/+oAfOhb2gxT38VffiGnogYOP9SHvbf8Ie4TVxDlXZKRXn7VoBCKIqIqpS8XCF5lSEI0QfFKr4NahsAlKiyh5QZtUiSBGkCFoEKTwUQQrWfh6yQrhaV6qgEkIoSw7MCoRkjYuscbGLamlUTwhCNteaWV3dunp9/cFzZ08cnRv2dk4eOZm4pPQcRc5ZiwDMXJZ5WeYKICAiogBFkRvDH/3k43PLs2++/ubVq1dQ6Yc/+wlEe+VK19lGv9ctyqG1GLgwFLKiE6XlY0+cKZnbnZ5o6GVDRFNLmrMzcyn1ti9+pXP+t0y2o8DVSOhomHWUkHo7gAjHKNIu0++rDbXv79R87fv4bTDge28A7Pv14+Hbf8wdCCqcLMTgi/b2deIclMs8QwYupN8bln6o6kGUiAAJDYJFMAiEggzEceyyXr+70xZmXwYhUgDPIYQAZOqtuWQmDdzbWTl//qXvrK9c6HW2hsNsa7N/4eLVzuaK4Z0IO85vlb1NEyFB0NJzEM+D0vdUBhJ6oRyyzyTkEArkgoI3IsiAbIwaA2QQCZWMkGVRjwAATtSyRoJREGI1iE4pLtEwWRarASGeBWraSm2YjOoBjngnxuLbI9x702lT5CBN7Q/vHr1vwJgRHbb17Sb9H0Dp7+JSU/40HSkAY92/2oh1JLVG/YKrfi+ICDoIwatYDaBBEZCMAVGDVHWAVCFUM7IhRvXkGLQQyQAK1AI1A84MeNWCtRD11Q9SVfUBhR2RUQURYa5ihwhVvFc/sDLMBztiXF7qsNv13X6/r4WHhflG6b1ixCyqgxB6AOwZWGMwBrkwkK+tvhHPJScfOpom7pFzc60UeDBIHDVVoOgW3GdkiqMSAVS2bpx/7nd+/djRJbG17e3h/HxjtqaD9iaF8vTC/Kc/+qGnPvwUooE9LH0gXe6d0LRdMXmLY2ztHV/+nWwVHwiaLmysgKAElKRPfNI++dFLnZ0r17f6/ZAYa0Vbsw0CAFBEjGwEXNm64AWZ4iSmfn+7k/dqNbTGC0qFvoggikGlqkwnoQUlZfB5cJhAwAgiFGLxCgISABlBlFg0KAhr0KoXDBIDKFWutCq6v6oMDR6YQQBFVRBIkACwamugoqpVfFG1WAVUUMEAGCQABLIZwqd+4odrtdgZGmluSLDLUZMuFu++2MMRQgfTO8FIDO3Vd26Bf1Z22D388e838X//SEeY803UgHGMFY5maGKpVSeLeF9WXzPzaFeq7NYRZCSgqihaxXuOO40KAKtKxd/sJNgQqPCQeR0UMiwgL1gnzZFGnA0sXAbuDXpZPgyhLIscieqNOOTDE0eXNjbaN1bXT504EqOuX7u6tDTfH/aH2SCNa8rEQbwvvR+y+lFMNZq8lJxl6PMi7/V21j7y8ScI9MqlG71B/8zZ48dPHc013tzuo/oYyjLrcfBB1DobG1mYbYjgVrsTvEqJ7JWUjJid1Sv5+ks3XvwiDtYASMcW+9Q4joxshVsxmsIoc2Aaop32DOyt273/7/RXd6s+vXsGwEEbZp9af2sj6bZPNd4wEYHKIoBynuXZcEjOxFGkXOUiIggjVmXWiAFEBQmMQWMJQBVEgQf9bpEPVBmVUUvxQ0e+HG5fOf/i89/6re9+48sXX/6e4WEoCxGOnL12Y3VlZT3PdrLOyua1t5575ptf+PVvXLqWe4+owiELnIP6ouiw7wtnXGahHLAfii845KUvq9IiAASIiopVzUQEYwiUVEBBkUhAqyA8BlIgBQsYgSJoHjcaCk5HljeMxPwtJeX9k3wTF9adzO9B78TvHpF8KE0PwviFTjys00rOnVxqL41BCUAdOytHeM/4bghISCqsLIE5K4Iv+tzfMMwSREXJUuAgiIIkoF4ZyBi0VeuiCtJTEEABFQRRDayl5wyVUbkS9KIegGnU/kRU2Htf5HnwmYpX5ciRhMIQhrKMpexvbWWZ9wWbIss629vdfr1lB90tldIQIDOIJxJFAlez9WWBmEA42/nWl7785iuX1lY3y6Jz7JhtzSfMZRisY+gAd4LPgXNHPdA2Zmsvf/U3fuDJh+eWToBimWcPPDR/4rg1UZhfaGEof/qnf6LerB0yoveIX3eV/8nCHQnNCZZ0S5o2EA4cfAvB+8EkvamoqLB/haoPhUNTJAt/7C/9V80zx0PkF+ZkLiowz8qCGUTYj5WPoMGL9yia2ujsYrw45wa9/Pp6t5sVnrmq5lnF4yiOgHwFVgBHrpYmQcokjoHVVBgOVLXoWCoVCJgQdVQXCAKIkI48CaqqIigMyioyWpagKqICqgJSZVkCARBUWn/VdQlG5iEyB0CwjuI0/tBTHxn182AZOS1wqsfTWAl/7+ie2sz3le7sd777oNU7oF1Zslu3p6Jxp6BxGfHpUxQAkjiKnIGJi5KqvQhHX2tVtESxUisVgoQgpeeSOYAoAATxXiQrdVDqsJR+7tu9YT/PFURFRERUAasKc+h9ySIcQvCBCEVKZ7Fej33wWzttryIgoSxiZyF4AE8OEcAHyH3IykxVSFBVyrLwXgVMUWjptd8d9rc6MZrP/L7P9IZ+a6sDEk6fnlPFbjvTEsIwM6KhVF+KChBqo5XOL8+zUl7IYJiF4LN8YAz2tjeL3pYMVrKNtyD4KdR1ZNROGH2f60qnhnUk7vd6ZvZO1+5s7GkccdtpvgN6N3IA9v1iPfD6Zr/1Fnq/7k2fmL6MVGXzQRHEkimZWViYWIHy0Gg0vJBxVkBJ1QD4UhwZRONVyzLnQAJD53iu5Xw5IOQQetsb13sbl832Rr56PnS3G81EQokIHJAzNNLwRQe9J6uqptvD3/zO5hqe/xP/mye02GENYC1bS0gqXkJQLlBZRUBQVYyxisDKQEhEiI6USQAVVdQYg2gQkECtAYMMQGAIyFqwhghUwYoPXKUPgyjQJAjtVpMC900PeNuXfU9UEz20c8r7i3D83zv8odPloMYJhaOK9gqgIkKIooDGCjAAxNLX9qvZxpsR+N6wVCdExqUpgrCIQxtRWiEdLIUiGxJgRgAAo2iDBKMCgBYj5sAqSARKBg2iQQVUFIYgrCYAF8Y4IjSYqJeQc1FKw0tscuN78/U021q1WEDuewMuJEKPKTgdDqgWYFggOcUYYEncUTVNgGHwWbuzNSxgrd85mvpjrQQBfQAebLRaK9bSolkmA8PB2mw6+8rr32xf+saDn/9TAWpU+vkji4Ni4ATSuAGEtST59Kc/hQpV5PX+Fnr3hCY5oRP9bCwBcc/ecZNbTqcMTG3eB0OU8D1aaPeUph52epcY+8sAAZQQFFjSqOYefOo/+xt/46tf/OXtdjvf6b3+zAu/+dLOlUIRhVmMM8ospKWHVi2OtDwx12jEprudrXZDpkSEigLj0oaIiKiiVblOnWnWbGQgskWWU2Q8CwBUSbxVzA4oIqKIWHAhCABYFJTR56CV4c2kMCrvDEhIrFopWTSCEbHKXjNkAIVVjKIxFs0ooVhFFNQhnD1xwhEBAFA1EqP+ArsjNeaw94QHKptkWj0C2MeR7xv2vLNfgRNgRqc+gin2fF88zcTnAgCVfjrBlMYH6IHEQQABNABqjMZJKAEErSURYREiR0CgVEGnqIBgSU0QT2gICQRw1CdSSat8FvQAABpCqHplewYiG9hXh46UYqzsY6MChlBE5ufq4EOjMe+DrG11ZmZbVqXMh7XZOntPGBtMvEhQr8wGDSt6KQ2YaqcLIRiXCHDpC2dcMSjtTPPI8XPtzS1D60cWm9cvr27v9I616mmK6FVVXEwiask4g7PNxo1Olg3LJHLZsJcmzmm8sdWxIrXZdGfzSuJLsLHiOAaouuvepK79MzH+eMpNsAv57/m2+gZHVsX0RW492beldy8J+FCfBRwiwvdCYTc5Zp9FsTsmVeC+caIQR67Mg7AvmQkYhctSQNQaw2iJMAQl0DhK8qE3xpWoRV4IxMWgu7VyMWQb5TALIWM/sJJT3k5CrnlRFCEzMjtnQUNZDgxGgnEtXURpZEMrELv6Esdr51e2ujvdZg3LUMQmBjGBPQlC0MAeQFSUgwKh+iKpJUhEhFURLCQDwAYxIINBMGitsRYdGWcJLCpZBLDOARoV5OAGGBde0FKCu02KRsOxh7mmh+3QCXkvaR/T7zPv3l+/9V2ke/fg+63vUcOIUYXBquS5GGOLMjjtdC4+8/rTv2oHV+u2V6tFURQLew3BD4dJq+GsVUEyEagoBAUz4TWjwKAgaiq0TxSRHLqgAUQRBQCBceT3NGBNkoc+ikjIVT3K0AUph1k9mWfvTcqDwbC73a9FUge9eGMj16Sd94uiaChhyIrB0BowyUyZg0YzJTYII9By2C+21jMxUcGps1qbTT3ZQhPn4l7nWtNEKiZY28+4dvyJa69fXKxbaLTsoFF3Np632eqlolCiZJiHM089/MhHPsJqdnf6e82OldjXCYI08qEfwPVvet+DSMtND/1+WUqHP8dYzVVRQAIGgMax+kMznz/76YCdpHdh4wt/p/gv/kmvXfiYBqIWUMgqSQlsSK1qt9/Lcc5HdiujElCgSluc3ABVUDEQolWdadba/W576IdcknWsilUQG5JW9ahH1Tc1qCgqilglAGSUcXkfQEUErIqNClQBPVCFUkwmsqr6IyikYw0Bx2F7iGRAAaIoaTZnAYyIooJWYOwIktxjUr6nNN3dSz/Ywn2fFTP9IBOlR3e16/foSXXaGBmLmOoH48QtgJP/VGFcpBJURaTX6T37jW9FxjCAZwFEqtxckxuA4sjiHKm/UBmwOgopVVRhFZQAARWk+ifiPYvwqDi1jl1VykHUYIxEEhgVHGKrkRrrtnfaLmkUGYOotcDAQJZZiYhDUBAVFQRQUQXRAAjORETGGur2y8319uzcfJ2hGPg4ieutxmDQM4h5Mdhq5+H0MR+YQumsKbKcUDGy1tr5ubkrl1a6vX4Uk3DgvAhC6nMgRg2D3jZCKQp0mHNrJLZvAt5P6/f7sciJGTDG6KZNtptZl3fFX++GAXDQGJ4ydUZfTR98Z86LXYNiyrRQACAE62ytsZBtbbJAqVXilQFGZspyn9TjyEUigE6DVwElF5VFCGKjqCFKw/b2uubZOkRkADWKjUF0hINSO52sN8zqzbqJHDKhsJd8Y5gfWZjTyAIAF8Mjs82aw6LTQfGBgyiEgCqkQVF98CGIByUfxAePhEmSoJSIgMGQcUgOiBTVV3qTcegsWiGHSMhqEAwqkYkBYlCrSsHWZ2Yg0RXPJzQyVGXTIEyhLdWgTXCXw7srvt/ooBlw/+7yPqSDD35XRtuB06cRhn0dxUZ1yxWEyPjhZlxceubXf3H1le/NpYacKNKwx/UmuBSUPYVI8sI1QAx5ZQVhZlQBBYeAyIgBJYCKAgLYip9BlEAEChUeZbUDKQUgRWsJLWIKEsQHghLB12LNNWPf27jeK4PLvL2+urGcRHNLJ7v+0rWdwcKpI4w9EQYykgdDhWVhIYJQlp1aWrbmYWO1Y5UiY1h1ZrmmUiZJ3dVndzobsHFdIrfW6+XRUv7yM6+9+OK/9fO/f6fTnpubxw0P7AvPaKNQ+mgm/ehnf4TZIRkEmhbTCnpbb9sd0mHgyHh6dif+tnfCvS/et9x9fwh33eUj/5ZUH5OapDTxEEm6qZP+wzP+Sqt2PRhbsi9KiJIgIYDTkBBJ3/tLm5n45NJmz7NT8oijajyEAAoMimiQy9QYldAPWS7BRi6IAoBBWykgCEI4FraEnj0RxGiJUUZlt8aYJ5KqiiirOjMq7j0qobKvIjhidZ6CitKoz0Yl5YWsS+I4BURCVBGsjIBd/5GOvcPvH8bYu3zea2BqogDfqZ0/xXK3Nrjv5zPd9ofuEfd7ZcSu22JceGoCPaiOkt/L2Xnz8nPfKvKhEoExGoQm98URMF31pahaQirt+nhGap5iUI8AwgxCowAkAWOqyDYV0SpsThFEGRlEFEF9UTRqxiCkUQRAO+3+Rjc7eXS5sqtL9gKWjHjOAayIEiGCqki1JlSVg6/V6oXP11dXrlxej9Z20laDSclolEQcomGWZXlpbVKKZD5v1VIuckyABQw6RduopRawyPNhZkOZ58MIRbIyT5rWRGbIWQgDgjnRPWr8uMz/XTP1fp0ed//eW3ovPQDT7jI9cPCdWQW6l5kVKj8pmWNnnnj++qvOoXVkrFUJYUioVOSFjWMCQbRkXGShGAYIRMa6KB72MkNiCL3vlQAmihu1RJWJjDJlTIPS5MFGtTSOU8SIpNxud9bXe0eXF9IYZLgTk+t7BCxqsQMSgwZ8AAIGUAYQ70sfgihAGbyAGLUgpMyAwCqihAYJrAEiQ0hE1qElcoasI7JoYgZkMQYi0tiqQSySiMn3aPvpeOHzJTQiQtit6TgqXTce//FiBLjjcLJ3m96JRfs26JAmfO8PmvZ+wGEr6I5P16m3u32AYIxMVUwCIgJYlhtp9ty3/tF/38T8Qw8cTxq1qFXLy3LQ6w36nYg1qYNKgaY/7Lfj2QbYCACRiMRUvuBRq6+qILJUufYGAQDCyPoYpQqwVFsOjbqaxkkNEZSZ8xwNdNa2TGo07/qhPPnEQ1EcvfHS6+HkfJosD0PAtHn5ysbRY0axjy41QFAyiSccDPo3OGn2O1vWb+c5+jLUE605l6bGOVYDSDWfexPWY7scSj/sd7/zzS92Vi9Htd+fB4SiM+yf73Y22hs7C3M4Pwv26LEHn/iYkiNCrWylyfoZ75nvnIHGF5kOL5p4APZotW/nqt+fNCXYJlvENKQGCqCGUFRJMAYuiELIN69ejL2ciowV/dhp+dCj81vD/HrHvXallw3zmci15tJLGb3wSvd8UcvBg1GFQECIiIosXMXsp6DNNGp3hj0GVkJWA1RFHiESQhU1VHlhSUAAxamNjUOjpRfBSuXB6Ra3gCDABqt66qOGQOMiPiNAR3XSj7oK2FYRC4AIBsZJ6iojF8RIDdP93PU+pfda9R/x051I2zH3jQM/bnP8xMF3Hx7xFpccWTS7D3Q4dDxmjHHBuVFNH0CGsHPphb/93/zCN3/ra1FiBzmLF0sIME40HF92ovYLKCjQyDZQqLIuQRRgBPZXRc8VFJQQiQwLI6KOGmcAKIJKnueWTJUAb1CjyJWl7w8LAQrMooKErAEMK6GgogYkRSRhYQ2WjFQ2hFUBLvNiaXGp2y0vXrr6+muvPfjQA2ktSo1LbBySWtqo9/M+gwbxRdmLnAG1ouIDENgkilhCVuRNrg0HQ6eOy6CAGNkiGEhmgJBG7otdlH6iWtx2xkeOkzvjDLzJ67dB73YfgMkauxnMfzO9/ybPeahBAQbg9EMfuX7he8P2tahGRrEMUlKldKgPAb1HROsciCBhUkvzoQz7/bgWCZeJM9ZFFFmIbAmWCAOSQS4ByhA1a8uN9EittlSWWcHZ2sZ2p8vZoCz6hYS+sdGNG52YyqceWdYy58iaCDVkgCosZTEI3jMDi4ackWwgEQUfyFoL1qIhR2oVkKwBa40lY0EJlAJEoAloomTFxoAREAGRlk4kGqytX3z2//fojx3T458IENuqp9yYDadVyTEepQp0HyTRPaNDl8P3tzpzM3qHj4xjF++uoaOjCm5Vyy5UBBAFG4Cp3PnKL/2teRiSs/1eN+NiYSaJ55awcdS3NyFrcyiLYugksDXi4qSpBuuARjQCVGCv4AQEsUREBKNVH1RVhECAoztXOoyWqsDAxFYEvbFoUxsbwEzLnm0UG6sbvZ2Bi5PTpx9utVo3btyAec3yDH0OwV+5uN1KmgI5Rq20OcshZ9dPi2tzy82iXItTv3b9OmONrMdCXdNaF8c2KkQh9JtUkg81wofPPvLyK2898+v/8vOfPWtig8ChtyLldm/zqrQHtdCbSWtHHzr3iR/8BAFNnNrTytS9Lv83ciocOodvg97+mR8A2rcVjh0mYz8XAioqjzrdiUGIfCE3Xl19/qV6gAeORPFO95Mfwp/5A7PNxdmVjeFWOy+6cOHV9sW14dU1uuLSzRBiJ4FFgZTFWKpCDNQZI1hDmGnU2/2sFAQwIp5QLTmouuGBqdBhRQgqyiFCajjnAMog1epA0apdEpCqogHCUQkVRJgU/IEKGIVRvL9U+hZOCm5Vz08GkZS5GAxb8wvjRDgcL/Y9TPW7U5DeCd3FyOxDaO748Lu+0duhm1/+UNtGZWLNSAUZVuFzAtK9+qW//7e++5tfbm+VwgGMQKgcuopkR4KwymPRsXd5lBysKmMkaFyFSqv6/xWLA4iKsFSwedVKmABHiWmICiyqkTPCbC3ZCId5WfjSuZpylUNDlgiEUB2IBWBEJIQAagyF4ImICCWwxGAt2iip11rL84vlMGxtbC0uN9G6movi+cVGq5FlPR/YB1QOSqAlGEPspZAsSawh8EGQ7LDfb8aNoizTudgHCC5eWjprXA1xbGyPx3I/aHPrOZnszrdjCz3Aem+bkd6bRmD7QoCmaZ+75G4eDAFG/ngETepzH//s57/9tX8O+QYUA+AQR44DE1kfgim9jUhYgMtaGrEvQaTX6SUgzbq11hBFxlhWKAM4YwiQIIgvDWgzdYmLrY2yPB9ksNMN3RzeuLpx4lV66NxMPiyvbbdnGvaBEzPWmiLngIrKoUpIzwsR8YGz/pADGROBoUh86SlOU0dojYqCiCIpVi0jyRpjFRAgCVhTqoOLwTkypgwMSKiO2fYHtYW541ee+cKpmVM+PQ5koUIQx8EeFfowKvc43gzez3DioX6A+3H3ySb6ftsU90XN4d7P74Z28+10HLMyWmWjDIBKlnKcdy9+9Z8v5X0jOMQM0DfiyHeNSxJrm83jp0xY7nV73e6Gl9yVZd7dUcYkZUOpKgo6VIekI1E4kofKqqpMYBUNIIIgiKLIKHoZ1AgoCJe5qlGMXBQxpsnMzLLa3manu9V9K3+r3lp87PFzJmRrNzaOnjzexvZvvdxrLCwcmUcIAU0AivPh9vZ690g2rM0loHLhO29dubwhlBhEJRDDQBA7m4c+ok9cQpRThKeOHYnILc8uF8Ng6ihZj4b60Kmn5BT8xtMbwzyLXZRGjgxWXQSnoL+pSKp75wIYwb06hdrtGhm3UOL2vxn7Dm5xK4C9WcLvK/6/Y9qPiO0NxB2l2YKIR45luP7qdzgHUEApaxEtH58NRgMMl5ajWi03y+HJM4tKc6++2dZfv7x6yWYu6QxDySJIhtQSWTHGkSN96NjxteubgWJFIhIEi1WEEAKAMgsgGEQVtQAkWHNxZB2XoWDPQECWkHQEjwKNOvvCuOTX+C1WDlukClhFUmUgrMoOKlZVGCvVTYuy2N5aXzp1Ckd1iKZdVLvT/sGc6PtLd73FTEQz3FEdCZ3M6N3e6C5+0UQ84TinaG+6xfTNq4LhI+OQwgj5H6EciIABomzrH/71X7j00ssnzh5/q1i5dpHBOIu+8mXsBhHgLtKIVac6Fa26Po60DhjVz1Icq2oIoEjEzM7YxKZ5nqmoVJ02AFSRNSigBQTiKDYsod3t5T4YDKoahBXUuhiIwBoFNGQIWYUjZ0tfujgGUe89APbaXVDO80EcmdNnTvrgs2w47JuoEffzPCDlPi9Y+lk/ieJQGlVuxjOKCGQAwViuNeKiCMBU5nm7vRFH0aybhbTO6fLRcx83rgFoRlDXGBka4//joKB7NOWHqkYTDriru7xnnYAndNAMuPtRmtaRUBVQFZ2rnXyoceqJ9uVvazEYFqW11pkIgZ1xwMFnPviQRmbYG3R3Op1ut+j1a40IjfGszqgzEToCFgOkeWEs58M2aUYhU+lxiEAKCbi9FTzjdj9cXu9DgoPMb21njz94ppE0SnbCWgaPGESGIsJBmWE45NIrIViDxllURxgjpgSxgdiAsYacMS6yaBNjE3IRuUhNSrYFdkaNC1IYRVRf5gyiCMHNLGRU765cXHnunxz/zL/HYEfoE+ikqXQVnTYKzRsrgHc15O/5tnE/dPT3bRWgXfXvsM/vjKZOrUImJ05JqWowoIKKoAJSOey9+t2r3/iXS7VusjBXT1v5oG3KftiSTBI7a9k2zcxy1IBac8N3VgVz9HnZW484o3hWo3mAmGxQUUOogqgGjK/6f4lYEitBQAG1BChFPUsAqRr3GQMKUiqASOmBcl86MDMzc3Ozs52dDdVBe61NMc3O1bsSBqV79a3yLVIXbfzER5o1KE+dbBJn3O1uXOtuvL4WWWnW0u99fSOtN7udoMBaZM1aBOqBMAjkwSj7pLcdue2XXnj12NmTx86eKrNyvu58tm1Vs6GtzS5Yqqdz9Scef3x+rgVjv/VUXX6cKpyxV8N62/MNY38wjpVznWaBqTvc8k6TgJiD/HMz2OV9uQjuhPZZyvvMmwprByEM4N3Wq8WNVwYKPgaCsLTAi8dTTGbBRMMBD/Kmahd930o+a/KnjsErW+a17ZyLuKrOZvK8FUvN6rnF+kyttj7IExd328OkHklQRRRRQGAOAooWEY2IN+wjlaaL6mnSzoa5SkkkiEiMo2gLBBUwWvkNRooZQhh14ZBxnyxEJESDVZKwgCKKqkFFBUIlg74szr/++qMf/YGJcqbjEG240woiv0vp8NCYW9B48d9hBOktPADvfPXtYhE6wuInDt894SVTTrKqk68IiAIoGBGDQ4VcLZSYiDe10L3w9K89982vXt/qrJewMyisSwNC4BHMqlCVxK3cBjSKNVYc9SJSBUQCBAEEVBZDyKOkF6pSWEA1cs4YY50louFgAKO4IKrq0hE6VDSGDFHpfX+QeQYH5D0Pc9/PCsWZOG4GtjaxwmVlb4gqoTFoy+BFoNvrKqgh++YbFzTgbGNOrBXMFubqIErGZN18mBVAxqI1bEIZ0lp9kA+Ni6KIhNQ4qTVclnGZ8VDK2Xq8ONMMRUdnTzz8yT8IyRFEO3Le7oL/k74Ad1q9822zwds+8b0xAO61+Nk13RFGIImKCETLpx9bv/hMpDrfrOWeOSsSl4TCG2PzYTeyLuuVg273xrWVsiyOLM9GCbKAEtokIuuITJBCOJBKkWeDrOgMvCPN/LDfh9ilFmmrXSjGLnascGN1Z255/pFHzp47ecJG4DmUpQclAPYhsMKgl4VSPYCzUZzWktSRIURbb9SiqGbAiIAGESKwrBp5dRIidE1najZqIKUsMQoZxDJ4ZgxASDFpSBfn0np9diHON69Dsarx6UBi0I6y8ivNX8eYEI6iDHTsrrsTFrq3AutO7nLw8++/jeu2Izl9wJ0//ljRn1aMRjhitQkwGGYw4tX3QMpi2MbetZe/9HdXX3/GL8dHargwezSFtJ42xdh+PoThJjqH9aaJG3V3nBqzPt/Ou20p+73t9XqL47hVKigZxER4AGJVhchVBRmcMQJVgCc6chrCSFVT5cDMIYgqei5zoCiKYqOkAYsii62dnZnrdtoWobfd3V5d6/rG1TcGR4+eWGsPv/Lcetbrf+bDp6EtnTeu9/thc9sndbdybaVWqz/93OZOUcsBy1JKija74dRxt7O92SkjHYpN7c761Ya6b/z2068887L5qY8kNtreWMOiffmtFTOLi+qwkTAPIhP7onBRNBLmI6FedVLYY6G9bf7UybVgXAd0gvrvKQV013e4hZf17V3w/Ud7tP/xdjsGQZEAUFS9hXK4nX3vN3deeTV2TRcNIy1PHLVH5105HJRaxhgHKxhHIMBifHfrox+de+bGpkq5lWmamFPL7snjR44vzR6bqTdM7oX+3pcvXloZJM0ZQGHvfWBDNmhw1rBqwQGhMKoJwNJs0yB2ht1MNSA4igRVlA0QEqooGhQVGLX2NaIySjmokrhUDBIQsLBFo1VVaGurqAnjTNVHtSiyyEUvv/C9H/2pn05nW5NkX5wKU/++mPH7Qm/DA4Dj/Oy3Mab7/VbviEZxNlVfaJiUkZpoRBPITwEQWIGhUkzYSB5Jmzcu6PbVvLfa29nS2Lq5Uyvb8uYLr33zN79+ZT17a628trnVUw2hEDIKIBoMKEGEqICMYKhC/isQFmTsBhtLMlWDJBwAQUQQAaoyoaxFUSBiLLFWdXUnuDkhqSNE9oHqBg0UZSh9EFERYVZfapblHEQVSckgGmdDECFkFgAkQDKuGOYhSGO2rgLNmdkbF1altN7YIIMPPfqQtcH7Mvgw31wosvWtTnuusRBCKMuYoqj0HgCAQCXEDgxikICgxoay7M62zp36yE/Wjz+FSa0yaSbCp0JtppILb2kCTPlR7mbO95wwwjHvkpPeYw/AoRjnO1EuqymoFkLEdGL53NXaXNG5jCjoA0rZz4ZoKRuWjL479Fl32B8MyzyvJXHd2UYUZYIEhhQJwRowQFIUhDroZ1s72eaWT40rhzCEvmu5tfXhtS2f1ueOzuhiHZuNZGlxPlFW7gZPLBIqMR/KwgcOUhQMNorTWtqcrdUbaUQuMpG13ksZBDWP6zZKYkRrI2eSuSE3bW2e4xa5mGxECE6ssnjPiM7GKSE461CHgfNsqxNBacH3rn/DHfGuuVxIYsCpkK3y0qo6EaNEJAKVKkboth7MafjgrqXkHU/cnVz5vhge7+8N8e39uv2u5t2a/4qKDBAkYHZ5+/Wv9Vde3VpbLcuQZ13orddno7XVnbQ5l5i4eWShTCiY2NVsZIVC13dumGjBpktqjqRzRwS3ip0VCCv99nbuQzQ7R+kcoOOQxk6daUjISx6AlAQlAQuWpRTCntQjBxBRQURTSiCwqgzs2Ye8LBAsFr7f3s7yzDica6ZQ+NQ1V1dyKYaPPXLs+Su9/mC4UcDO873VYuPJJxZ8u48FFJgkseGlc1979vwGpDuFD2wcUqfNVy7xU4/O5z2em11utprZYCPLO5tr7fMXNpKk3tlZaczY2Zk0K+ZOnpq/3s8urVxZb290NgYPnT1lscLVduOoKyGjI9n1TnloP04/0f4n3rupNwdPPPh3cqEpzW/3knvf7d7gg0n7hmXf8wkgEQJDGReXt954urs1WB/O9TOp1+HkiUYcW7QUOZV8p47ih6G90w5a767l/U7xUx+e/wnIHnjwXOrictBp1BMTpb3+ds2U6fzsv9l8JP3qW8/ekJWNwthEUDOPth4HYF9khCYFXEpri3Mz7b7fyAdDiBWRUFDQgDglUpQARIRIVdcwRAFEg4SIBKCqqmCNk6CkYJCCBDQOjMkgGMLImkASWSMcrDMq4dtf/8qjjz36+//w/9am8Ti+EXc9V79H94oOU9reC09ahbvv7uRKULASoCUIAopYdXcRBUQlFQVGza3fpO4qb1/sbbyuW6tlnqVJPLi2OuyEaytf/sar2y9c665RVKSta6rdIAqBCIxFIgVFYVUNwARIggoiZCtVX4ksoRm741AMCIsBAmOVA6JVEQCpKlkRkYgOhoOqirQhM5WnKIAYgi+GoH7WBx0OmRmZpTsYNFOzOFMf9oc828DYVl6N6mpFUSJYQFCG/rCcmZ8zFrPMLx87Wk9mVi5vANiTx88mtiHa8cHX6vXEumxQ2Cj2HCKLwsJFCYRC6H0pgX1RCrCx4pwGKT22OD5RP/NhTFoWFFQAzBQKMfEJK44D0w/BUPU2psEtpnwP++2N9Lpzes9yAKY3tH3Pf/frZ/8AVmNBBp1GDz748eeuvszcK4uAgTGyTDLsD0G5v9P2w7KfZQimMFKyKmASxYJIgAbQAALZAiDPy24n62yVgC5JW2QbirLZgW+9snZtUxtpuVSvL9U4TSMtcqYwHFhMXBDNcu+LkJd5AIjRNloLUVq3cQSmVgQXDDkfayZR0jBpGqU4hKJUQkwGQ2gki7Y2iy62tmZMBAKq4rmsGiuBcyWBBVAVhxLbYGFr7eIrpp64wYruPBP5BYMxmBmbLohGTDWCuqkiYpFE0aAKjKNEdVL1Fw+O6X2VaHfI/ffJ8Jj+Ge8J3esn2hfTpaM6ImNvMCqIqMFBduF3rj//zxLqqYSZWadIUXw8z2fqH3+Qu/76m+evXd883WwszC11fKilqSFSQSn6EhDA2frRqLYAdsEl89xOOVsZDnuBfdL0aWvJORuC9z5nzlHUghUsNLCUAZg1sKiSkKqqoAIBgFSFoQWUGRRCKMXnRemHOQ/67ERiwMTQkcX69pvbCEW9YfvDQeYjqSXfeH37WuEs6InZVlxrdq4MXS3qN08kzTgut2Tom/WmybJvfePaT/0rT87OsaOOQW20ouubdgOS+iMfPuqKlV6xWAz6nW00YfHMyXg4/+wrb5XiTp04/viHHjPWgo6jqGDPngvjnIqDouxup228ie8B6KtM1ps5wPQmf++Y3kut8D4U4NozCVWqoQIClAZ8//zL22+9EaWL69fLRn3GpVlrJo4SREfGGQLc2tpBSFozR9944wq4eOnhpUdPHtN+m4rhsL9l0qgP9es3+kePNaKan1mqPWqHf+5fe+TV6/LVZ6698Eb74pZHVwMZgnDDyWwanWw2IjU7xWDQHbrINB2AH7U7QlVjyBoHiEFQQINqVbHTUMVPKiBESIoAGkVGVBGMdZSFwhhrHSXOxoZqaUzKMSkEUS5syH/jl//hQw8/9sQPfk6qtqwAu3jsaIx+zxq4R/R2x/HemQq7+zYBsrKGLLYM2xvlcEjNRdOMVMkokwSUgH4Qsp0w3CmLDRz2SAZGvMdIamlI62bJAg4GVztkqF8Or3V7OfUG/QJRhRGJQEU1gAIhiAqNMlNYEUCJAKEyEGDUXKZyChChiAdAMqQ6KqaroEIqrNV1jCMOgVmsG60AIEAC58zS0tyZs2c2VrcV+qrBg3CQdn8wGBhflKXPg2IQJ4oAapAISFS2t3auX9/qd/oPP36q0aoZMoM8WzgyX6s117bbS0fms5ApluIlSaIoiULQ4LkIZWyd9wGNAdIcQuRsWXKZ+9g5KYtkLlbEgdrTZx/Po4VkV3vSfcJ3ottPy+89iAuOraS75IX9gND47Lu90HvpAbh3cDLufVXFuwChoMNTH/5cWmtevXG+nxWNWtqaqYvfufzqM6999+nYGGPB1uNBLjvdvN6M45hqJiJVhFAWQ2SrXPhe16Dt59zu+e3tfD2NNdoxRrb75oULXSU5cRRbTVRSMFFWiMa2185KKvIsAzHWWKw347QexRHEtRKNsEVwDmMRmxekoFDa69c220WWumg2rh8/eeTEsSWqpyzadM5YUlRmZQmqSmitjdUZIk0MRKaAbNDburizsdpcOl47+URu40i7nTefcbKTOJeVxkSN5OiHdOHTPjrmMIGqOIsIkqlmYpSojxNP0iHAxsGJuyd0vzX7O6T9EOwHmyZKauXjGfUhAqiao/e757+6/fpvNFw+BBdsQ8Eak3ggO7MwyH1yDB4+dbTcXu3dWO1dubh06kzhybVmGcgCiPdabqrF8v/P3p8GS5Yl52GgL+ece2+sb3+5V2bWXtVdvaMbaDSWBkA2QUBGgAuGQ5vhACNRpChRM9QYxR+UTDSZaWwkM43NphFNHC4CyaFoshFJgDtI7Ox9qaru2quycs98+4vlbue4+/yIFy9fLt1dVZ21NeCWGS/iRsS9N87x48eXz90b0uwY9NfYY9r3KFdSuduWl7AeFSunOesmAWtqx8SQpSaKJkBDmxGaMSoflDgBNQICQgUTMZXUNm01rqumquJkFNsomWNQKauKi87WzjRJfu706oWXb/SYlo6vXd+ODz3xoZ/9hT/WTuQDT37g8oVrkT07+i//q//qhZdfX3+g2L+899XXrn/x6ecePz9cXpXx/s6Fm+215vgjn/vf/uInhiey+PQ//eUb7d6NF77S7cSPDx/43S898+zLV0O+/lf+i7/04ENPzIra3Ta+B+xyoM3hEZwt3OnaeKsrZg7gx3ke2Rth0XvFAb4Te78bPssDuk/a/x3u/1sDf1iOFgDMErbToshu7I+y0LNg4BN3ikq06LkGOaoiFyJ+r0zG6fi59d7qKSS4sd82lQ0XVhvOnv7W9c3tePrRc0WPBCgvAsroY6eyJ06d292Lr93cu3C92d2ZBOw44lRbquX61rhp4yOrOTLFBCZkgI1IMjJmAYsCjUEdzSGmGXBCFWfZxLN4gYFnTiZKhg7M4lKfupwG/axbhE7e63Zy7z2gFp2u885UesP+F3/7V1fOrC4de5To1uQf8ui7Lm+/X+ntHti7cB/zRWRgiFEtpGrjmd/81b/3N9YCfOZHP6X9xcGpFTOrqqmnA1vXYUJWyETJY+wTBcFhubFZ103WGWYDHZ5YPqbUvXi5o5LKKouxScJEyASIZIYATCCKpjOJrjCDFTHe6gtgSLOGL7NMM1JEP8tBVJTZ4jQFI/SBU9IUkyGQcyoKBKpGgACoYE2bykaMQtNEDk6UxGBSxbpODJTamBrmbgYGhEQqzhs6X4tL1k7LyeWLlx9+8Bx75wlJU7+XObeosaprImucuaZuCNBEmmbUxiLm3UYaRgYBZw6xoy21DakIdRHMTfa0z9TPF3NPDGAHNRXnXQAAD1w587GwO5beHe7Vt6p53DID3uq6fjdzAO6+1+998dzKcUSYgScF/crDH11+5GMGKGAIxlCee+STsYabL3+BIJX70/3tvYhZlTp13XRDJ2TOM7DHph05jYMeXby4+eJLNy9fnwKG128210ZNSnGnBPPZ8WF8YDkzpes7KZS1OijLaSOtK/JupzPsDnvdDnW6FLzz7IgByDnnyDMF8nkEmNT1zSvbl7e2irx7/vzJMyfWQ6c7LkvwIXPOMYGmqCKCigCERqoY2aIncTqtdy/sbm253uLxJz7lw8I0Rd9cTxsv6uarKe60zJikavbbK7+NJ75aPPgzsPAhwQUinhXHOCgHdMSvCfdyy72zcu0dpXcm0PF20xEJMHfzHU6lAZjprFqIldXVb4wufAPValpMjIDOkZ9VGAR1ruhY0NYyt1Qs+oW4/9J093Jx/GwDXfYDMfWMlqRtdmSChEEhx3xIdjKYg5FLo5txdyeCy5dO5HnGkFuKhgYcwFpAI2BDZ2J40APVUC1Zi4imBCooJiqmKg2YMpqWVTkpExAZA2incVmiVO2XXaInHllJwL5b7MT2x3/253/6T/4HIKlpywc/8YOtkffhoz/+2Y3N7d297Wef+eqLX/+tz1/afvra5onj7rHHP/XgZz/92MIHrLe4DuANfvR//Zedr05fedWHmjvhybXxx3rLS0snK+sgBTeX6fPBvuW8OXxxWHnjLt37DU3dYb32mcI/tyhuVYC/5zbxHQz1I+/f6mv0/Uh3Q4AOd8bDdxxhzvnC5p6VFdVlTHXbO6XdhQ5njQtQVnUrdd3U3dAZlW3R7S+trwnqZHe7newtL60Hn2/vuzYsHXsg9DvewUQttAmVg89Zk6wOml7hTg/Dzg5Wk3RzO23tp0ldr6zkq1ZUjUaA1riNEAWCYJWkVU1qYKRmjABABGYGhKgmjEyEIuJ9AFDHzjGi08V+54Gl/MRSf2HYCd6LOufzJpExlyklj0XmIOPt3RvPfPnzn/7sKep3CGYNgW3e9vWN1xz/fbqvdIQ331gIZl6z794fnqWZKgAqWtW23ZBe/8I//l/+5v9jNJb83AmA1iZX4/a+86Hj2JTBGIWAAYGAgABNgTxlvXwhdp/5/FcWFpZOn1idLixEwY8+9dDk69dfubrXOkMFZkJGVWQgQkNCZmez0iaGaioKCoiIDtHxAYZtprMAGgMiGiEd5sYCEBk6JoFZB8cwmlRtikwuARqIqhExmG1s7b12dePUieNZp4h1k0QZUMR2x9Vo2gxj5kosOrkLHhHEFB04jyvLi0WnM31gurFxs66bAOC8r5smptoxA0pbt8EBI5RtvTcaKzGopVbEoE3iCUAUAcFTW0NZQ+Yo93lbRVe4GJu820VFpHnk9VZFiIM/hxN3p0v1Dhvue1iLbyl+cIveaQPg7RY6c9NiJuMQDRgMDMnAQOlgJ8yxc+LHf+7P/vav0MXnPt/NUra2cmWv2t6rCySn5WDQSaJ50Uisy1F1eVw+/a2N116f7o7MuxRbCMm8Q9A07HRCyVtb1e64RY2DLode7PTC2tJSyHudbje4wIyGpGLRDD2G4Il8AkumHkQUAtPWletnjq8+eu6hleWFBG0z3gtFV6upOj+1CORSYnQ5MiMDsplWGKeFjfZvXNrd3hye+xAvPVZmFNrrsP3C1qtfD+WeRB2sHq8wmG+6eR6rkRs9PX1lPz+xHVZ/JPp1zwwgs+7zAPNqmId1IecjOq8mZodogbdjEt9VHMJRrfn9SkdigIdPZm2CzBAMSSxxKusbXx9f/gr6lGipjJ6dOVRiJBdULLYRzNRIQzf6Best5p1e2r2wffnK8kMdoU6EwnPmg2hdSb2VUsvFshTHIF/zNEAMaJyanWZ/T1KDS+t5XtQRkCzPBxKdpFqxQRctGSQwJyjRVCwRHCi7s/YVCoKAzoXM+UQc6zTd2a/3Jq0axdRulMIufvDs8XHDV27WKBAiuYZBFNiFrKcggXxK0l3onxsOz+iDH/3kp9D+PCTxweqqcqEXRTgwA2Sz8j7dXM0Pzn4I2anh+iIIgCJ0EOgWdxyRtYc28yzrCI5yz1F1/Vb77e80dXOvxdGY7h3L7Z7hhXue97bw8vzAHdr/95ExcLcz7TDiPpsjm8FprFgplRQVIIkklUQQi4I8KYNonUic497e9ObDH3i4CMXe7kac7K8t9Y35xvXyt7+yMc16H31iZViATZLLXK/XVSxUU71Xj+u4t19vXG+aaVuXMcXC9/K15SKWzWR7gq0DYlEbT9pWUckJuQSW0KZNrcgGZLNS/sgGxoYGoqLOZwrmyQWCXtDTx1bWV/unVofdvsPgJpN6VMbp7t7upB2P62nVtk0r1bTX7RV591vfuLA8PP3hH/3svFv1rfHB37cB3gG6Y4m+eVjt3JN+4BWYeZNNjwTsEc1QQU1jB/amF76x0tn/8Ecf/Mf/+oXf/OalvXL0R/7wJ4eEKZZEfcVM2wPnAqKhCak2ZeVCEoOw0Fk/d+KFZ1/pDnOENGR8+NTSxraOp62UrZGIwKynHhMSGs4K0zoS0jbNzBAxIzNQMaCAAIRAAATIBIRETKCGYESECISAqBnxDD/f63SabrE7nmztNYZBFRBRFT07ifHa9T0KIaZWUgRESaLIlaSLN7eGK7kjmo6qkEUwLTouQQtk3rk8K6BHqyKpaWYtmBAxK3LvCNCluo6aIFVcFAm1FQEBhCxFJvWOQFIClKjN9d2NSZwu9BccAyJkFFNZQmcA5BBxVlBvHrGdO93exOp6K2vxvqzf9wQE6L6eczYHh1spHl7rwO9hBoDE3g+P/ejP/vnfdX7vla/EvS3JsknUuqyvTaeii85TfWM6rtuNG+OtzXJrLyWExUWfE/Q6OFjIu3nY3K1GVSpRr0+aTLKVhXzlzMqwXzgOPnPkPTAoKTIjATt2IQNUcGQEaoqgCOjAUqo/8NT5Xnfo2LZ2bmT9Ttbp+eBMraxLq5XRZ50emiB6UgdVFaDObfOVp5/pLq+eefgjsbdWpl2sLpU3nk/XX4PxqLOw3ls7D8vnghts3nipGV3oBUwxtaOXd3dunjy/E87+bM0nPDCTHA1M3V5yBA71mDtcEN/L3L2tG8/v2V1tpu/boQwymPUjUTQDcCrUbm6//HTaf5k0TjQT59AFNRWGWYCAiDDPYNaWJXESSuiFTvTXF/PxjY3Xri4/mIUiVxGgEDKMbV1Nd0DUIMsG6xRWiNDAcBrSdLudjPeaKyvrZ4rOsNVWWRA9kMcUQFtmAQ+aBFKjWhN5VQUkE0FSQkASZDU1l0F32BkYbe/HcYWUd/ZGZegVCz230IPhYn+wvDJNVBzrra+tAgMAABKAiSkxIrABekadBQSZTCEr+gBA7G4ZfggKQPNGqg7B8EA4Hsn8tSOPR3Xww4Kghy7nWTHoudV8q9T+t0UG4V2R4e863XfN/vziR+ieZztqPHy7z7w/6c7xm//GWQTFh6UzLh+Sq6fVFAtWQARzToEFEFUBTJJqb3noB/2kMUXtdBcT5K9d0y9/4/r1qXtgfbnd39e0WkdcdJklUBMiGwxCwX2NaoshdaPFeGVnkpWUIiVi6vbr2EaDpEA+kGICaMUaLijPjAABAABJREFUkVqFOcz45aBs+kEBEfXMQI6dI2d971cGnXOnV9aXh1nuWqsv3BxvjKY7O7uTcqqiogytBsJO5ldWB7kLiwu946cWXvj8Pzn/yEP9Y6eQjrLzoYPn96y8fEfoIGPooP7e4eE3HoI5MBz0oHQ3IpoCECQDIDMRh8JtZNnfeO1bo4vP9nFUeH3qsQevbJS/+uvfeOaVif+X8rnPPrk47FNrPl9CBI1ioGpqIgolgk32ppQxojxw/syL37r89RcufuCJJzluFlN8+Kwb1ZMrX34dvWdHqOYcHVQPJbCZcULgmYSMDEXMEDRpwuiZkYgImZCJHAERzFpkM6NnZkZCCOwgNaroMXW7fn2w9rrbvbpfN4kMlcgUEB3tjsb7z00ILHNBDcU0Go0bubQxLnpbT5w/EVwq8iJ43NvdyfOMUoIsjqsWgKpYDnsFu6DGnSJrY8zYKSimGFNVx0kn+OC9iWbOe+LYauhibKOqIem0rF67dH0ybTtnfJY7IgNsOet2Vo/rQZIvHPRcgoMd4Y2n2Lz1wOxhuPnOzeRNnOHdNADeNkfyQeereTudW041AwOe1cJB53sy5B/6Y7/06//zvr16/anVbG+/mpbNPg6KU2ec77Tbe26611wad5w+crpfTid5N8uLkAXy7DzywiC8dvnmYj/3Plta7S/0O50iZ0cGlkAdCSIJGTM7F7zzRB4YHLPhrGSUipaGYNCeXD8VMS/raWdQuJBFlboaByrAkpl6Mkpl5nMvllJNONq5+dz21qUHHv8ELj6yn5JNX7Pt1/zulS4nXuzxg0+U0NvLlvOlR8QN1paP6+SsTS5Ks+tN1ijS9r+xUNixn4p+TR0zAIGBCQIp2NzjeTR8dRhoOuKffEt0qy/Z20W/Z7c0u/XL5/1gDBOasozGVy5Ot6+kchcsg24nEWJMnhEdGlhSBdVkhprAVBQRKcuCR2xT2LNBL+/mrW2/+MrxhyN3VmtlznqEnuNeqve1gRzQL5zj4Zp5rnYcqwC2qdwfbV1ePrOQh37UiJwYQZlACVVMwEBmvcJYGGJEYjIBQzPBlDCItK2YeGeLCy5av1LbGVXetaePL586s7i8tLw1Ak0OGruxEYeLfdOEFAxnK0xx1lZy1qN+5g/guZ5t8935iKvgqNCmQ2l++IGD/hlz5fngLx4Ef+eq/vwjNt8FDkpBH1H750baDAX1xtyx3w41+kaCckfffT8q/XPwFd7uh7h7zO78WTb/BzPrrr+ed1er+rLLvRVIhasbFWGgkDQ1jeU+j22zvLYUCarJCClIyq+P8Lde3H3uZvrExx4fONm/vr+xudAf9MuyVozmYpYVSaNQ7Hct86HcbgMzodv3ahr2R1FjzApNSKkxiqYGCmQGYooGigJIxIDEoiCqQAAOiZkRMyfrS8WpE8un11fM6Y3xaOvK6OrG/u64bWIqLOUOhgX3M15eX1jqdwe9LO84RYqoFWxXTffrX/qnP/KH/qRkPQY/Y2oznXUVmzPotw0l/T59j3RrqR7KjDdZrtHUEG817lRATK2nJtW73Iy12mj3NyGW9dWLO689t3D2mJirIn7sQ4/c3Nr56tdeffaVvcHC9U98qOjmYw4NZ5lKAo2Y1CyJtWpJHWXUacqKivCZz/74f/N/+3+G3vpqPwNfDXr08AMLz1/qvL4d1cxUHBE71jT7FTN/KjgEb6QAiVRAAZ2aKZiYMQAzMqFzNGukDSSM7IiDJ3QAakVesKNY18GDh+qRU/0HTix969Wru41FAFGdeXQwwUK/yHO3tz9mJAVqE90Y1Ul3DfPTq0XwAbUdLPR6gyDaxlh7F8ppu7i46C2SI0ASaRGlleg9BTaVtk3T2HBKbbcTMsco4hxpUypoUk0JJ1Xz+tUqR+wQtu2+9RxnxYMf+kHMVw8Anzivpgh4pFDcG2eSN10J6Gj7+TeyBdz59bkJ+vYaAO+STDkwm+cTgXe5tg0QRZV9p+HTn/65/+S13yjGL/zuSY/AJ0796C8c/9CPC3e1SlDe/Fd/969d/vq/4QAxdQWSIBJy4KybZWDpwbDWppSHvFNkWR7IOQVkxweANyRDSzArlYUOMKmqAXkPxgAYKcUm5iHf3N9MkPV7iyJO6sjkiDHGCRMnS75wBtLWDdKUXbu58dLm9Suf+MxnpFibpkaml2z3+W55owOOXU+KhXGTt76oRsI06a8tQxxA8bB2T+XWJI3QVpxG0uzBxm/ny2el92CEJQdIgLMxQ5qXOJyp6gcRrftQr8NuQ6y9Tdwxr6F+h7bwHW/r/b71HRRdQDQRIJ5VfCNIFEflzs16vMHgQrHg8s5kOmqaptPtsMl0UpkpO0KHEhtpWgfMzqsYMNaNZMwMUKsiZ+vrjwKn66+9tvYwaSck7ZHrFgOQumyaabl7xXeXIvbFLXI/QlsxijVxb3urrJ89+9jHiAtAgWQMhMwibTJVRHSo0YLLGMUZJUzCddNU6jJHbsBZOa2JaFROhuLOnOz2+2bAC0vDjJ3UCYWkbUTc+tr6w488CAAAOlOrDzT++aZrR4C0t1R6OCxWAXf4bI6K8cNOjjY/3W2ntVvNwGaTMXu8zfWPt/aH2etZ5GC2yt5Igu9REMHRT75Z5sVv8/y9Q/fQ6w8qO9sbuP3btNmjTldEAu52lk5i/k1qWgicRAWxbS0LRERtK46x32PKvarEps0wa6H7teevffmF/f1JArWnP/+1zzx1emd/hBl3esvlZBzYVFLwobMY6rLBiGoIhAtLA+RUVyri9qdVwATcSYw1KSuZgJgSUvAYVTPvo0gUQQPvmD2nZB5tIYdTy90zJ1fM0cUrl65ubO2VWk7akHUK5wtPXXJrw+LYcu/0cjdBAgqTqr66U2+N6lFKAuTg5tqXrrJb/PRP/3wCcURH7dXbBvl+zd/7jN526X8AoJ2Fomx+yTd8WURUSAZcS2SVHEfNha+Uk5upnRSdArS1uvTeHzs+bEZLL1+4dPrUGVcUmUw/+uj6pVev7lbxN7/2en959YMPDVw1Ua3quiUzNEOTg8a7LmIN3ud7u9vDhewjT3zg6a9++ed+5qer7pgl7e/okw+e2pxeHdXJe3ZMosoExNzGlpmUARUdMRCaaAJV4KZJZDqzXwjZOXZMmXdmgJgYMTB5Z855YswDKlCe9RwmaSOAZtA+cXZl1Njr2/u745bRGYmKxNh6VgMok6ijgjP2fmfcXL5+E5r85uUb58+d6rfNA8Vwd3tnfWk9D04SNeV+McgNsW0jK5oqkSapAiMDeco4ZHvjMsuzkBdJTZI0sfGBmENdp68/d6lp7ezagIEboe2t+PEf/uSnfu7PaN49DN0eYqTttmLRb4g/AG7vx/7d6FaHGJiz0xv/LhzVwOydiAC8W2bAkZ3yYHc9CMoDGhgRgmpOeZuf/9Dn/tMXe/9otPHK6rHHho/+4eTXHEIMkTtLD/zg57Z3Xi2wqstWRZIIARIzAtV1C+wyHzrB+8wjUUxJFNgwyz05QkRkohmqk8AYFNFmzVwOSubSoD9ARzGJR4eWUJAQwRpGp2Aao8+dZxJJYHVOzTe+9DvFsP8Dn/lZoT40U7rxvO286HTKGVu20NJS2RRKvtopQ+hatbe1MR2sDtvMN37ROR9Is6IocYo4KmQTqm3mHQ5PKK+rZkAABrMc/xln24Gac1cV27c2Jbc4Fo54q+8ne8z1rd9T25mZGSGoqhEbgoCyTpvNy834uneu21to2JMStk3Xd31dtW3TtK2CF4li1qYaJAViMFRl9izSkiMxIdPMO0S/lWzl+JPVa/HiCxfOfTCzkIkN2bqAqmm3jc3+jZd9b7VYPR/8WtVUAJjHBJJG2zdef+Erxx7/OGCGxhlFkFKkUmhD5rUpfdZxgi1WAA7ZYyKHXrFpYmWgHcoMxLjPLvgQlpcdhW53uNREdcGXW2U7qin0usOVbm8RkQ9LHR4q+wdwhyO1OudFdQ7QELcFAg7H9Ghpn0Put3kJx8Od/PACh12BDkICR3IEjtgGdtvfWwfeoPy/29nzvTD6e9PyvXMW5uEXM7vdsL/n7R+VU3PfK4IZMnj1xeL589nvwmqCncraulNNMlp1sUwF5yShirK4WmQ5TZvSKTIVVzbbp18e745osbdUbW8Pe/L4UycuXnweVo/lnVyxl9I0xkZi3fH5Qn+w107zlUJircBglAcilL1JczIbXN2unDEhIICKACAhm2I35K2KZ04WHRt79Sorg84ww1Mr/SyX7d3dK+O4uVNJAnQu9+xMC2lOrnSPrWYLfe+db5rp1kSvbe6OyiYaJSLhkNrU67pyVP69/89fb1r60c/9nOSMZsTzPEw7sIN/D9Pb/OPnnDgPyt4a7AM2/a6LEI2AI4hj2L34ref+1d9/ZKnpDoCyUEqfXOAUjYImW107VY3T1s5o+XhwYEsLnYcfOPa1b15tgL70+eeO9x5e6CM3ZFREVdCEoIhkQtqqQD22uuh290Zbn/7kk1/43d+6fPnmQsauk3cXF47V1enFzW9eGgv6PCtYzSQBYhYyVUUzYkADUvOOETmELOZStU3dJgIiAuccM4CKJ/SeEMyhesKMNfhAkMyhcy6EYBHG+xOB2PF2crH70LGFV67uvXx5q0mYeY+GZVnOxECMGqsYoHJOH35g4fig88qFnX/5u89ytnj6ZNHz+PiDnaWh87kDTWAKqp5IVZhARQzbaUxVGTPs727H/d1Y5F5Qq7q2yrI8cMhjA5s7462d/cUsO76eN2FpeO6pP/qzv3Dq4Y+mzsDhrPkA3qqmAvAWIgDwZrkQj7qz30w2z+3RJwR8Gw2A98LucuA0Oih1f3Bw7u0zRCTTjKml1fM/9ksmrSiic47AYgoEKflj555aPH6q3X3dJSNwTZtQTFGRoOgWhqhE4FiJAAjIHKP3xAyAQOyYnHNMyAhoJgRkqoYWAQmc88HQIxoxEhCiiAGSZ8dREhiEzDH5WCefQ4Dyy1/414uDlYcf+WhsKcluu/+6bL8Mzbbvrzau2/LQYJA0xFqK3iJiJ8Yq6/iqHiH3icA56lBIiWtaBOiidkIS2WkUnsdsx/VPtn7VELIZNGEGY8ZZV20ysPu3TxzYzHiX1vWu0Pt8/zMDJASbIbi0ZWrS7ut711/LyIo8F9dpjBA8ABtiKNiHoPv7puDENOp0fz/rIJs1o1Ge5+RZYgtEyRQNTdVHc4ES+HFLS+c/unnx2euvXnrgid5+pVm+hqE7XHJVW45GN8tyBK6TdZe5t1Y3VaI9P4Q80u7WJl14/tTDH64imAoRmfNOLcUKM9YkiaBRJWsFwJDMO1T1aAhqlPpD9jEhIznfhYxdFzhXTK0pMpuImfQHi93uQFVoVtkWAOCWFj4bqLnTHg6Y+UDHh0NojyHMK/ncBTU58JwcnHeelWc4xwLZ0Y39doiOHXlyYH8c3MdRk+G+V8R/v9LtiJRDN4HNbYC7RcbRbxx9xCOTYWiGqmtPfKxYHRrujKOOJnRzM54832Vsm7pilzfN1Ah9jlArc9ir7MvfvHHhWpVnw0cfOEH1xU9/8lHDxhW2tLiAZpnPQJOkKNKWqXJKzrRNJTFp0iLz2igZFFkhNXTzbL9OjowYTJWYDYG9Y6IkUQECpI6DYZGv9zuLuSsCj+vp1Z3x1bFMlAPRsJu1TQwY14b5+jA7tpSrpZ3daq+2/bFMGzCTboaDnmMVYgYK5DE2e32x53/rH37yqQf7D32kbjEjFDXHs07JoAeS/nAoZ+vmfS4X3yi9I3oK3m78zz0OAN/14gcKDJrtbF39L//Kfx6vvvjzn33qAx88QbESwlD0cyatTUXY/KmzZ7/8ta+14JaHRR3bxx8/+/JrWxuVPPfKjQfPDj/w2DFoqn4vF21EkwkgE4GZqIICgEOuNWXdwRNPfui3vv78T3/mg1U1ciGsDPWh473Lm/uVEKgkSX6G31cgIlEFMEKcVfvxjgqPReBe3m2iNFHMkgr4kAdHOZPzyIQMQAyZg+CgCD6qOCe9bkcTgMbxRFUTmPQpPnFiuLxYbO6Um3uTcatEgRL4hI6A4/T86f4nnjp5bCGdO7H21IMnPv/8tX/8a5deuhwcpV//0qs/+9nHP/XxRy0SajSDGEEEZt1ZTaJKIg5m4ZVXX7fWBsMw3d9XBCDvzE8rq8r4yssbHc7OrHVOnzr75M/84tkf+lnOFiRkboYSnQv0uQcI4M1GAN4QG9zNTUf4441/9y7X0f03AO4Ww3DXy3eM5qvn6E5wa+XN9nlSDYqCrFR4B87ABIgY2TgmHC72+v3JBDgnbRWYQC3hLB9GO0UwQiIyRjMAQSBEZkQGIueYZ9o/kSGoCjtSEwI2M2AEIBEzVSJiRBBA54iDGasqO0QMqdGQsZP2y1/+AnD8sR/+1HhfOd5I+zfi6HJuu92FTiUgMKjaolL1HvrDwSRhgki5gE57RS+zhttdr10A8Fmnh8MqFjXJFEkCZmFUpOdx7+W8/0AMD5lbuOXzP6h/fjSx/f5M43tH3bljr3svGK5vkOY7yaywPieJQa7vvPpF2b/eLTqCWXJB0GEIZGiAyIAAyNxf6NZTbDRZ0n6H9/e3pqOdcjoqOr3BwnpvYRGQ1NAAmUlNJEVyrjXYr2Fx7bHRxnM3X3nt2JkPltOx73XaCOSsU7SxradbF8Ckt/RACNx4nO5ewl4M2t688EwWcOHsU41knrxrkEwFkJxPlpJLjjwJoqqYELMzjICgCVwAVYxC7IuE0TJRbKK142pv0oymamSpiTGaGnh2M416DseHW+r3Ual5u5P5LmX/8GPz5ppzNR1viXuYo/znWLnD7Jb5p/Fwo78FBDoMDtgMQQt2aHK8C0z33uTz2+/qsMP9YSWUb/PB2w7emuxZwObA6qKMzj619rFPX/jNfxpynZbp2sboI7Su0JAaCFRRtINRph5To+GlV3aeuTQy5lN5OjPcO7s2WFzKx60uLa5mnJuqJ0zEhoKgqW3qps0Cp6htknIay6lWE9vba6WlWCpBlnlyraoaIiACMwKZonU6QWJ5fKlY8m0/pyKXiLBTtxd2y72aWqDA0nHQx3J1rbPQcQsdThi3yzia2P4kGuLCsFjp1MeX8pVBlhXeMauRZ/TBgw8Ysm6vuvL1Xz3OjVt8OF9YAmY9GM/DcC8cYf/fI9o/3IuL7v8OcCtKePB6Dvj7bpeao8uxrtu/9v/+W//iiy/6ehz9pYp6j51b7HUJM0hAiAqSPDEyx6QvvvLqRz7wCKr1++746eGlF3eN+F//9jODweD8er+ajo1VRVQUABgMGYk4mdXjPZ+71ISHH/nAr3zpX3zgqf1lr561k/Hxpc7aQvfSdmUmjsmzExUgBJ2hh5EN0SF5YwIXNDATcUrQJlQ1I2JIXZ85guDZMbFDZgxsnqDj0ICYLcOkJot9zPLuzs60NACRppkGiOsDv7q8fGmnvnl9x0QyhOPL+MTZtafOnVgbeI9NHE/y4D/+8PLVy3u/8/RmcfJUU+7f2N5XRJ+HqE0SiK2ZUlJVaSU2hGxRb2xtX768lVokcTGqGSmSQhxPRqOtaQHh5LlCp+VDn/rJJ/7AzydYYHQAqHYrm3E2R4ci552wKOcdKb/HS91/A+A9JTgO5RrON9vblQAEMCMEAzZgBDPQuT8EDQwZQtd1+sokAMSUOxQUNATVlFp2jAhECESmpghIiGgcGBER0QzUkikCE9O8szsxIRIigKokYoeEosbIs6ZfakaMxG5cVsNOjzB945tfELRPfepHyqaO05LTWCYbUo4M/WTam8RcBz3rrrDrJ8Hr29tNjKNJWUubFYOFwfix08vdoW9iTEIMLXHbzbvO1RY4Fj2ynksKcQeq57020H0ccJjUAxhCglm1rjkK4r2juL9N9P75ebeCjgCYBAJMdr71m3HngidotUpcsHnoBGLiUBhiAhQFAALKsgIxRkhlmZq2Gk3HN/f3d8pJPq3KdYSF5VVnGJsW0IAoKTpDAGwiZCEfLJ3Zuva1/MZr/bWHykShs6g1O99Gkkm915bO+ssUguuv2XSKed03gWZy8flvhP4gX3sgRSViZgfgEqQECEoOmTyBiEFCQPTESAIJTEmQUUg1884iY8KmaVXF+yBaglgIbn19zQcvKRIddOxCxINiSLNXBnPF+1BVv+WomYtyu8NZgfMIwi10Jx4W+5mt79vwmHgUXY0H+/xtL+exx7mz1eYvf5/uSbcq6x3M2a0Veof2dMcYHozwAQsgAIARt72Vhz/3v7vx2oWhXhi12zd3xtdvjtbXfc8zwqRpVMwUEom1NT732ujyJgwXeg8f16cezLO8Jaex1bUTJ5smJpTAiICOXASMMXVCDjGKWt3IeFKb+igKCKBgiirRu0xVAUFNTZFIESwPGCguD/ITXc9t9IyTstls+eq0aY0dQQZxMYfTy/lCB3oepa0lwailnQrqmDpdd3w5P7PaWR2sBYrdbmhSy4Te+YwRkBNRcpjlmvavXvr6r4WlV9dOnu+snMkHx4A9wGEBaIPfi4x4tw5+v71B86jKnHtv1dj+rjQLMMbUXHj55b/91/7GVLUqm9989sri4uL62iJTS5lXMkILrG09saxYWVt98eULl6/ePH5sNdbludOrr2zE3ap94ZXXv/bMhZOfeQJSjRlKAoBkZgrEhuTIzBwxGaZmsrzSKwp+5tkLf/AT53pu2pD2u/kD6wsbo7aNbZ7lxAeeFoWDdgJE5Ag8oWdkBkIJjoP3XUAAjIpmMffmAIM358A7co4dqidlk+DZM7KXvMPosipS5rGOMQPynY5NRy6nULh+f3HZaR7koVPDU8cHq8Ouxlqkdp40BHVcjXd+4kce263bC5vj1ESIsZ2MgzdN0kYzxZTa2KbYNj54NNqfjC9c3trea4sMOONadLo/DT0e7+yN9su1hQXUqdPOox//kcd/4k9EXHKzSnNmMyfTrUoSd4Qs3366L2v1PhsAt4G7jxy54zPvsJQ52pruwFi7Vctjjgae5wgqzXdmBSQQAZ8PU8S6BU/kGBNZEompjRqdGiAGJgIkJvRA5AEJ0BuCqKqomQIge4du1gaPCInZIRECIjGwNzMgR+QBnSggqmOS2BLVzHjl9VfG+xs//Mkfyoja8RY15XR/S6qRI6dZfx/WZOF4sXTCqA+Wt+VUOU22b0xHMZFsXr92cVSO1ronzz6QLyz6LHDRdd22Ge8GqxmRnZPUJq2yAD5o417P1juYnXFuhQEN/EFoy/SwruH7yEf+Ruh9u+kdmLNmYKgGtvfa1210PXMsGmPbYAZNfTNwQkigS0pAPqDLJYlERWSXpQ7GthpBlIJDb22t3x/e2Ny9eemCQx4Ml4hZEdoY2XmJ5hiRqIpaZMP+2snrN19Sp931D1hMRSjaVEabOmp0cnNEIVs4bpBnvRWs9yHWvWzRJvWFL/3uhz9TgC8iatKYU4gtoHUJzDShZ9NIzGqaCIENOKAqGKhIUgMUSRJbrevoXKZ1E2NqYkss07Kum9TJGewAT3/ovZ8PEgAcVOw/qL5zIADmXoGjBwHmB4+K9rnL5/Yd/GjI1458/55pvXYbVuiwd9jv03eiI06HO3O5b39y1/cOZ84AwJwpYUHnP/apn/tzX/qH/93+ZKqtvv70xsoPP4wF5CGHBnUMnkJqmq1J+tbVPc0WBxl84MHh0hIIdYg859zrdzdvXsYobJBlzGoQIXNZU9WooOZSHTNfpIZQmyJkdRW9d9aIiKVoEgmRiZwjXez5ATbHBrzWpXZSZqurVybNfinbjTqX9X27GOTESvf40BWYXJHtT2LVXXr+9XFZptw3T57MHnvogX4GHsU0+swDYk6BXIZmyaBNHCUl1KQ6Km/AqMq3dicbrw2Wjy2uPbr6yEc16wHw0cjWuxWuf4/QbeG4+6T9Hz49OPDGLQBAIHCMz33rG5m3nd2xY6pBvnXp9ScuhA89tB5yg6zXJhUnZqpVDC4Xyb767MWfPXlGq91jK4vHl6bV1a3V9eNf/+aFJ86tn1wmVCD2aKagYkoJU0pIRs4LW0PqYfKxx05+8cvPjR87m4GxRd/J1lYG/as7W6OICKZGRABgaDRPd5q5CYnUe86Ii4xmsTsiUvQIzjM4Bp+xY3aegkOPjk08Wyf3DlUdZgx57tpWc3NXt5sbexODLMcQQlagy7ytP7TU5/bkWr/bZ3ateW9gPgvkEVXWVofqspPL2XOvbpaNFdiHdqqI1aRqE5hYitI2rc84im2PqitXti5v1sKd9WP9vf2qHpecYJHRUU5SqcjCwvpjP/gHf+YX/xyuP5pmK8UOPD0HKWLvWgT3PtB9NgDuDq3fk9XfBeFyNM55+x5/CH5UNDMgAABDUEQEVEYK1AMh78jEJJkhRmmVjIABkIiAgJjQkSEj0OyLpiYqompgxA7NVJMphSxjpgP2odnXSUCRDBnNFMgQTZOACcV48fqV0d7NT37oo11inZbNZAfqye7mjV7IaheEOrpyJjvxCGQL1tDe5j6Dc9lgsGbRb4z39lTjqK6v71Lq7AxFOsMiaAoA5ArSXES4gba1aD4yhV7ml04AsDTbaVqx77msR+gQZ1UTj9QF/X169+mwOCKoITfbaeNFbptGKnaURAJr8KDjjRRF2sZ115A6CIEZCcjECWehGC4uaVOWTZF3uj54N5m2e7uT8f6WD9ztLjZiQIzEoqpJ0QyZJVq3c47DZHPjWn94MrJGn5H3JORAYmp3r72yCFAMzmHRjVw0wkDF4uLxi1def+bzX3zqR36kAhVNCujBIyKRGjACE4GhoEkUA3TEnkjMBJHYhdjGWKeqSWnWxEnBEXvvG1FGyDJnJnNn72xk8FYFybnfHW/ryoVHHuFIBOAo3alo3tJB7VBTuk2VPxJPuOMMcFg04ogwetfW0/tBybvN4zDfeW/bbw/LYd/z18x7cqIqIiIptNBd/OQf/kR3afQ//rd7F5/b2Nq9uTntnuwzZZ47VaVNTozFtet7W3sArj0+8KeOd0CrPHRc3llcWmub3TZWDGYE1lAs69RET5z7bjWtQuizB1VNGkOeW63sQaZqgFVdm0lKAuC86TDD0z0/dLDWZ4pNZ7X/2nRyaTdRnXqhWV/Mzh7vLQRa6AFYRMg2p3Z9BzbKuqzbB04UP/zhswvUClYmsSgKQq+iguozP562YGRATWNiNq7qckvL2FZ6Q+1VdL4zGK6ufvMTP7z/2I/+lHHnMLR7kOH+ftVnvie6xWbzyr33mY74Bg4kDRzRk+683CGqREX0C7/95e2dfVAlotjI65e2vvXqwon1JaJpkUPIMrVoanXUXm/4Qz/24//D3/o7Fy9vnOpyk+TYUrG5zVysvPDSK7/zzKXPffrhjmudKuOs47rM1oWiFIDEGAzFmg8/cfaf/YsvXrgyevC454DU8MpisTrIbmxPNFOHbGCIbAZqBmqgpmaCJAiARB7ZkWdERQIgh8RUhMBszrF3zI6CA0fKSASUBx/YFM2hZQ56wXWdPHDy/HOXNr718tVJ26Ysr8ZQ5GH5xOKZ1V7uNcscB0JkEWN2HsFMVIDRiuCb1pyDkydXHXNd1XUdy7IFw7ZN7BCE6rK5emP00qs7EXsh4ybFuk2xpVMrw/OPPnr2Qx87ce6Dq+ceOX72PHSGikzoHYDO88cOHt/nKtFbMQC+w7ZxVN3/dtr/e4Bub8sxjw3QrGPkQWoeAaDarH9MF9lBatuUmEFTQgAiSGoKxuyIMw6OiBmcAQmLgZqCWFKbGQQ2c/YzOUA2YEBgJuaAEObC1wQqMGRkQ4ya2Ghvd3RjY+vxB88XYaCKEmOsq/Lmjio33X4sTtDC+c7yeR/WSDu1TDuLw9RU2gBDGgwXU1WXfn9pLe/3B77TcZ1+1l8sih77LHR7BJlGJOcL4r4TSGNOUylHbCWjJO4lWoeFBzHzXhWRvu9c/2+NDhzLd9u67zjN2BYUQCWOL39dq+sOKcvy/el+p8hjOQ55cj60tbJBQheIEAi9S6bIEInaRFl3sb9yKqsGiwvFCy9+g51fW1phgv3tm459RJ9mPcIQAUyBI1CgfFL5hdWnNl7/jXLnUmfxZIxdl/fJHAp4Qpbx3tWXAbtZp5/3htX+VgTfovSXTr74+vPZ+vLph845B22qAntWNUsIhSqYAoKAiSMGYhDRVEVVRVRAiZpilKQSTROImqm1tSQnw8W+pMRu3pZ9Bhw5KoGOGv/fNujz3adxjvCZxwcMboUY8OhubkdjA4fdl+YWwtuiYLxZerduYDZed+NNjir6c8Lb37rNkTP/xB1W3J00z1+yWV1mBohZt3jsU3/gz/+Vz////q+Xn/m1a1sbwyF0ForqYuPYSdkmya5O2in6hSJ99ANLg25iqTqhk0SgaSWVnQ47R45C07RJMCGCWlu3PvQm+9O6baQln3WQsWnbVlM0UIA6JmBnZMyw2rNzxzqLZCuDQkyaPHt5r9ws42BAZ0/TufXlLsVOwG4vE9FRm726Ub+60VQJGXZ/5jMPnxpi15cqSQDIMahkRWgbJaTpNElyVSu1yV5Zb+5Oru3DZhnKaQNglpC8W1y1Tl5euHbzl1aPn3zy40aMR0brPSDc3k26v4vzQEIcju8tf8JtlcZu+wIe4XcFZlZQQVOVepp6g34r+uKF7UfPT4fdgJNp4TI0IkKQVjWy2t7+5MVXLj70yQevX7qxGMJKN7y8V1PW/+qLlz78xOlTQ1VsmQgZ1QAMjc0QFbmpRAgJ4mLef+L8I89euHH67GNSjTMXehmfXh68enWsSZQZkDwzgSUBQQNEQ0ZwaGgQDBHJe48MSDNfJ2rugRlChp7MsXmPhIAImStUBQg8o/ekaEqWdTnPyodPh+PrZ/e2dvanVTWNx9aXev0uBMkGHYfEhAjKQZt6Qt6lNgpgW003R2Px2Am2sNRV1aqRaZN2RqW1xIEhQZrK5ubOpav70woAatchia4o1JH9wE/+6C/8h3+5XXlUMJ91LHZwEFO+Dcw1r/7wtnc2ejvpbckBuKfv/9thgd4dRNCtW7h914aDfL6Do2ioiYLDEOJk6siZtgiQZVlMiYMLrvA+U0AycIjBeUIqxRhZSUFntdlNRV2wPO8kQGaHSOTIkfPIoklQUpKi6JqKUQJEEaumlYBe37h84tTqYDBIjZpVdbk/3d3TGMel1rFee/x0WDgbrQMVANaARoAhyxNrtV8Z5EV3uKTREfb6y3lnYbC6lvUHZgw+i8BmWch95li1kno77V+GZrOTdWwfQ87GnWI4MV5u8LgZ3PK7fWeH2/c/3WN3eDfGYb6eDNGMIJU3LmZqjUVrrFcMYlMFT9KUYMreaTtl103lfugxCmQ+JBXnmLhjbdtZWGHnN3ZuLi4fh6axlGptHfuyrX03J0UF8OhEQUQQqVFzIVTQP3b6iQuvfOXhJwsuuK45DyEMhtsbVzOnWzvX8/4xHxgdZd0uQ9zZqiLiqRMPfP7Xf6sX8pXTJ0qt2LdoYJrUDCCItqCN884rqWqUGqz1DlVsljbgnYqZGUbTLM9chnnXMRUIYKowLwM61yPnmey3rfq3Pl1HJNutMqNzH7PdPjGHdEtnfa/5VY/YLO8oHfjO7nX8jie3vfVd4If3fmseqrnl3EEzUoC8Hx78gR/5xb/6K/+vumovvb6xfXwwMN+9sT11i1xk2bWNset2V5bqc2cXvNtlwk6nmNRQtpO2LR2zz7wzJ0kcEVhopzUAjNv9DucdXzSqdWtVq9MmVXUKPmv2S3aZIVOKPZceP7M0YOt7F4K/uTu9XI52WukH+/gTx88vB0r7OYBj2q/i5j48f33/1Su1eHj43PAHn/pQBuOFwhwju3w6nbJ35PLptCXultO2rHm3am7upqv7zY29alTXlYaITeZgmOX9olP0OoxIkLid/Mov//U/9ReO906ccOTuNfKHJU7eY7z7NtAt4/w+/VSDI2M3RyMeqTmBAIeeg8O+IfNr21zMECL4opM5dqamZEBQtfLa1dHXn792crm7Wvi2Fu+Q2Mgopqn34dTx49949tUfevxMao01sjbrvd5OKDd2py+8cmPhsYWMpdvptk1kQnKIhsgcY4tIzL6eaqewDz5x8u/88y9c3zl3rFtoSsZ0bHkQ+GqjJgIuEBKSERkCECIxskfPpqiYucw7hygIhgTBk2d2DpjIIREBO2SCWZkUYnTkHAIREBk5ZiImaurGgy1kuHB86MOpppWmbRK1phDrKJipCkCFpAaY5YEBiVxjlBJ2B8WAG41ajqu6STv7042t/W4+YJDY1k3Dm7tNC52V44uTURl8igLnzz7yx//0n338hz4LwxMZBgIwmbVFggMJP8+9PZJYdLcB9x1Zwuw+Mtgbvei3v7/7ZgDMroG3v/x2KCD8Ns/fEboVTD48dAhtvwUInpX+mFegMEl54Lqs0ciBm8GuAbSO0RCZg3cZAhpyndo2ikMAEQUBIuec93mW9wi8d2hgzMwYADBqQwAo0AtFVZZ5N4BgSsm5nLW9cu3VfjcsdQeaRLkpxzttOd3eGiHYzZEur5/mfLFpYvA1Bl+3UXGWgawM4ti1SuSL4dKx3GcGncHKse5wSRQpeHKOyDNkGUestpvqolXbObShawRlm0Sji7FMaSdkBa2sAjkwxVsy6V2ZuN+nQzpYUggzV4SatIQlYTQ1RdEEHlUlgcM2tkwJqYntPjPEFh0tAiCTz0KWYowoPi9E01KxPtrcSOA4M51OE0LbJg9lJ++Lxll3aHZkltAoIaBi1x/rLpy+fOXi6Qf7bUSH6lzoDZZ2b17r5by/9WrR4153aQrgsmBollqHcGa48ju/+qs/9Uf+5NLptTi9aSgqQhbVHCgTsLaSYtRYWzvV1NaNtK20LaSoBkZAKWnbxComUWAkc35xecl5N+v+eyu0fr+jkPfk/KMmwbza9+Fb7+lV8i56rr5r4s09Nq3v4pi94607TnCrKTMRmqkHNSJafuAX/qP/+p//939luvetsplS67evTI5lQyPTSrKGHlpZWi760pYUuAKCDECarAge2SC1sQrOJ+8hxhCyGGNg1rbJ0DepRIW20ZSg3+mNxqnoFKiWYrsU2oePZQ/0wQFknf448U7dNnVzZtU/eiI/UcT1gYNUpOl0Kqny/W9u7D9/dToo9DMfPPboyeFKXxU8Q3SOY5RBd2latlUjVZnMt6Mqjhv/6s3mpavTzdKNRtrJ86Xl4vhSfvrEwiDvhpD3F/pE3ERggirWX/38P/uJP/6LME+OuccQ/96oCXoPj+RbtnuOfvGwBtB3iD7eElV2m5gxMzVk8FkgJhByjLFtCXS31Is3965t7Obr/Uh7eeaz4NQwpdZ59/jD5/7u11948dJuv5vVqeovdLeuTs+uD7dvbj/z/OXHTnZWh1TH5IiIiQhIDAGNIWpUAS4caHl6veuCf+nizdWHBoBRAJeXstNr3StbdZPUeTRRMCCgAwwQgIkwk8bGlMnIMzKCY/KOPWPmyDN7f1ACyDtwhEjGjIxAhAg6izUnUUTnAxKBiDgXJGoAQWsFmF1u6naaZlqP1xY6/V6XlNAUGKWJdS2TqZLQg+fPtNN2ezQpla9e3VejgHF3syy6+daNfb+w+gu/8Md+5Kd+uqpSUfCJEyeGyyeEOpyHA1Fus7YvikgGgEiHub+3A//fJIu8SyrvPel7NQDu6cW/5wZ5x15sR5685QH5nt0SR3XZuQ0wiwMgoAECKiAxOU/VJIoZGCZJBCYAIm1SEdVux6sasSbTNrUG3LTJJBGDc8whBF8QeWQCM5xlGcy8UQRJEiGm1ORFwMQSgcHXpV6/ehmayblzjwTHRQbVZNI0dTmpMHR2RnW2em7h+GNRXJLW1LVp32XeAKMqmpmmqLNl0iEDwGx5bX2wvJQUyTvnMkcBES02qdqFZkObnaAVoZp6BQJ0bQOUBZJadi5YuALDs4DIh3CH3+MxgHeZbl9MBgCk6FynH9trqEaIbawcYYJIxsQupdZxQ9ZgKrVmBcedYKZEhMzgvABgnqmq7/Xb/YSILiuSSFPVbTvJOPfegSGggsGs6hsYRMCR5sPjD7/w9Gurq/uhg2Ym6JW8z0KqyjjZ3bt+0R8n52B3b+x9oDwfb1e5HzrZ+7V/9M//+C/9r5px4zuWe4p1k1LNrktAqEKqVTNNsYqxlYSqByhTNRBVZm8YG9GqTQJY1TWTU1VmPhyWufPfDjfgt5UOQw1HJskOA/l3QIDeSyvnSLfid/dGbie8/fEOB9O3p3vAKW65Yg8nadYAQsBhRxbO/8T/5r/4tV/+q7vVt1IGAtm05jrWoIGSLS9kTTVOEiHvRtFAwAFC11uE1MQ2xlm550gtIQbwbRIAqNs2ijaNEvlAVMeKQqZ1TBKD6RMnuo+dHcZykoV8P+qFG5O9/en60H3q0WODbLw44I7HSdlmveErl6fPXN7+1iv7i0P/uc+cffiYI6tA60AOPYgZBZ8ME4ak6pzbr+ubu/HFS7svb0xu7LVM/syxpTNrCw8/eGqhB0UPC9/xWQeYkUjINXVcoGzzykvXX37p+IOPG+JcsBOAAtABRuU+dYJ/j9NdFuT39pNv58RbSUJHhMItzMEtx7DN72WevcQEAE1MVRMPLHaD7qAv0cYNXN3YX+rniwW2ddsxYCZNSbU+sbre7Q++dXHnBz70AMR60O8VftzvZr1ef3sy3i3T8kKPmGcAfkkiIKQYIHfMmpKhtKKdXnZsbfnilZs/+Oiy6lQFspAtDPJLGxPi3AzYOQPBBIYgJgaqFoECEZIZo4IREzEjO0dojj0zEJEjYkIiIwKctSXmGVKIZqoXEYIpEiu0zrHjTBXaKgJAkWWTKt7c2vrqcxdSgj/04x9e9kVqG0M1tRDC8cXV7f1vJMtd4LJp2/F0u0zqOqI4rVvBvE5u9dipP/V/+Euf+pk/wXmv1UTABAwIflY/2sDACFFBEQ4ryRsezBQcHvluXom76L1jSRvAgTJ6/054B70Rd833Mh7fw3ePxiqO/DncxA/iPKjmVNHUvHPeOTCNkBIKEBGQpahSizRN24ooSGKQjIUxIaHjEHwRXIHsATFJJEIiRCI4qKwDAKgGImIJ1ZjDsEzuy9/86rXrr33giUdEtNsLdTsuq3FdT8Bbg5mF5fUHHtPQbVVVVE1EU1s10jaWkqQYY5SkAIjgPHf7C4vDxSEBOscheO8cITEpyhSabY17AdU5zy5HcdIqmQYyTCKN4v7ldPV3qK11tv8edJH/nof/6JB/50NvJ9ldT94PdEs1usW05LmzQiEoSkqREVWVKYASGpnOTMISYIo60TgWqRVMDIAYiRTAkAw45IXzhSixz4i508l7eSfVJYjMeg2oISioIgOCWp1Q3PDRh5947bmvdlEzoJRiigYWTBRiObp5eePyqwTmnVMwNcgK36Z2MFzbvrn1L3/ln4S8E1Wa2IoCIUhbodQSy7YepaaMTdU0TVNHaRVkprURIBMymjNgMzRAVe10CyK6NSQHBTgBEN+xlMa5cn9rTzh0sd8B+n/PbAK36L1zS3bk8ZDe8O3dY4wP47iz6cAZMBMQEBwhsIcTj372l/5K/8EP7bfTpaX86vUNJT/oFfXezX7fW6BoOolxXJeYm7oGMnMd7zsevAm0CVry2rRtGyUmqJp00NvLJEnTSgWQyqYu27ZwdrzXfvh8f7WPZqpZfrmcbrfbH//Y4Kd+ePXhY3Zq2S31Mi9E2cLr4+yLF/QbL4/OHM/+6E+eeXQNFruystgrgs8cF+gyzNsGRuMo4OsWb+zKN6/Kr31z+huvTV/eqtZXep9+YvUnP3Lysx8/d3YtO3Nicbk/7Pf7nU426He8Y8+6stRfXAwrA/rav/2Vtt5WIAUUQwFQIJ2P4oEqau8rMfm90QHa+62uCoN71PY6DA7a/OXcPD3wrJndShqa6yWoqiJST+u2beY1RYiJEHh/3G6P25tbo/1pKQpJNLZp1s99sZ8//uiDV7b26pj6vS4j5rkvMlpe7EiymztVlSipMDMiioKZA/OxsbaOGqVqZWqA7E6tLO7vjHb3SqIABGK6vDT0s6ptkgwAcQbgQSaaaZTMxMSzsWMGYmJ2TOAYmQEZZu5/YkSafR69I0Zkmkl2ZELH4BwgGRqAWow2Tvra5u7GeNqCGrmqtTrBufOrK4sLkNREYtOoCSDtjKaNYFk3Ta374zgdpeCKzOV56Jlz1/bHpz/66b/6N//Wx//Qv8N5hwEK9AHYzSy0w7rPAABGM9FBCLOdBG6T7Le11X1j9B4Rs4cr+a1EAL6ds/+7/rY7nMbvjbE49H4d7NOzBTiz9RDNTEUVlEyBkc0bCGbBmZKICDFp1FgmUhDPhkkENCGT8zmTZ/JIrIgqCgxkRnaQQKKgqgqIjJT5YAnMJGX09eeef+mlF/+dn/yR4PudPkmK0+lkOp1I3cRotebrDzzmOqtNYlRkhykJkSHprILR7I7NgNAhWVEUg4WBKBCjDwHQEwBYK+0UZGTNyFvriGaAJwVTQjIAFUVVUScVbz9viy/Y+oeNDADnVVS+K31XL+c93v3OUfz7TkdZ8X26uc1athE511trNhDB2DEqGgAqIYKKAiKIWkziagQGzNp6QsFx6CAROubkJEYCB5xlRTdFRUsZ+4w9G03HI42EFowc0EFHDRVDMzFsBNYWzgB+a7R7fbB62sQRAjIwgUlVVft1ZcFlEhMamAohukDNuF3qL3/pi189/cDasQcWjFqQZMhtlLppUZKpmSWNSVtFYGQwQ3CsBmpJQVzwTh1gQqROv3v81DFAgMPujHN6sw6at0bzrl9zdQmPvPM2cPF9PeN7xyV1QG8prP6dTjZPyJ73cpi9YWDIZkoGFjI89uSHf/4/Hyz/T1ef/efF4mB3NM07vL7Y0xproNDtirJIAwrgEQgMFR2GPFgjmsDIOHBdalRz3rFA5pF91qRIDJ1evlO1RQd7PTq5Mjy+7PdG07zfuT4e3diZLA/xzFpaKKZ5gE6nEKVpqxtj+t0XRi/fjGceGPzER1fOH0O2uDDoizITp6gq2FTaNijCdZOu77Zff2nv2evxxRvjrO8eO7/0yUdOPHZ6IQTX61K3P4xiwVMSDcGnJGyGiE1Vh27ujCxWL3/xt3tnzq4sLhhmvuh6PzDiw4pXdgtR917jl/tM94X9Zu6ZozbAYZHho0iD23educ5/xNBCBABUkU7uOrkTQ0ACpRhjMryxUV6+GhY6XEs8/8AJxtwR5J7UsNtxH/7gub/zj/719v5o+eRykZFHYuL+IHeBrlzffvLBdQBMKTkmACQkSUKASRTEgBAJElbnz6198ekXbmxXDxzv58HG43bQyfuFn44iEaqIdwgASAQGYkBMSMAMSIaosxgzIzii4BgJCI1miQ2oB7BrRiCa7RoIRojI6IjNRDRZQmDareqvfOu169e2P/tDjwbyi0v9XreX94q1pV7u2LQmNgRiR3VVl60rq9TUsDse7zMOM+e7nZ3NUSP05GOP/tn/5H//5I9/rhgUgXMAtoNsXj3ipbmjP8zM9z+r+n9rVuZT9r5cDofb4ps2AO4ZYb3nW9/uwvdEDb17dCSz+wgdWHamCKrSIqEjBGcmBECWkBiVmRx7Y5WUoWpsLaBBYiLPmRgSuQPAmCogARz0bDVVA5rZm2hEjGBg1oa887VXnv7dr/z6Dz/1wRNnzlX1lLSsJrsxVdKKAk+rOhsOB2unJ+LMkAiBQM3AhIFt1kHADACIGAyDd51ul32gEMgHNYcIYElT2dabFMcOK0YAYwNTldlQmAqIAAGjayHLXCyvf6mz+pQR4cxGfkOeke/wkTfKAu8NDnnP0iHGRBEtdBcrdGDmyFlS4FlNTFFBRARSS8miV2gRpihdaZmCM/PMhOBcciZiHDrdnkapyqlKBEui2lRjT6gilOVkBJ4MIKZEjD73ZVPXLj915gOvvPr1j6ws11Xs5f3WBMHYLJZNbTsL09Wqqi01kmq01nsEa9FS0OJX/9Fv/Olf+hOE0bABNGtrkOSci0mImIEco7Ezc2DAyJLQNKaosziaQ1DGZDDodgAN1A4KNB/ur287D+Ftf47sHva2ibv7dar3jBC+B93He7sFH7qVxQdwENAkA2NVYNcMHz3/h//y+qMf/9o//2UaXVvrNY+fHmxd20tPHCuItZzxreWd3Bs6hpbEkIAA2ZwzLowZIqtF0CaGjBlcFlrHxcbWaHGx46o6x/TQ6QUM2kIy1yn3dj70wODBM/5UV7JCfE4esU2iWLx8Y3Lp+uSRE/jTP7x0sp/6A3ahUBAF7zKu27hfWi3SiuzXcm2EX79Yfv6V8eYEOqg/dm79Q4+sLQ7DylJX0RVZ5hh8CG1qu0VQaTOXI2OUNiJpXccmNnH03O/801D4YQ6j0dT7sHTy/KOf/Ine2UeVh4wEgGR2j53y/U538dn9Ybw7XEqHzn478q7BvMMdzvUQmMGPj3zVADCprC8tWdOEziCZRk0yrYLLOlm+P663xlOf8e5+lbOnjFJSdOZY15aG7LNrm9uPnFgGrRYGYXMyXuxniLixN53WaaGLAlESOu+SKFFoYkseDchUJCbKbHVlGFy4cG3r5PqAANigE3jYza/v7RmwSArOHfY7RABmNgRAJALnkGeF/xkcGpMiGTMTAREgIxMwISEwESPQLCw3S2VEICJCL2SEjKT1tMoQOiFknh21C1189PQKgYpNAYQpiKGJJZHd/YljGBQhlYkWO5UoiYPu4Cd+5Gf+/F/8S8n1qFscII9A5yC3wzitHXmYTwQeuHWOhAAO33h/05s2AOZh7nvsanccuaez/zvYD+8G2d0OsPnEHxwnEJDGIXEWWhEtUyNtbJvgPQKgkpBkeaEGyK7o9pIqmKa2MQU1EU9g6IAQ6cCVoiamCGoISMikhqZGiKhmmzevrQ46n/jgU2wWtR2VewFTPSljC0kA/KBYPl2bF0Pybta62CABsKrOnDSzclyqyuhCnvlOwOA4FACMgKYxpgraEcQxpIk7AFeLaEQAAlJLqC2AIAApRkB1IPVlaUfkFmZb5hFw81uZwXmpg/fo4nm3efI70JFlZ2ZHgLkE4PMhQAbEYmoUATNDUpBZexZVBRNoE3PQ2Brs+g5b6hgCu2BIzjmFlJSdz7tda+s6apK2TrEmjZBqlchERt7QyBHarB82CdA0cXfx9N7zX9m8tuE6w8ZaRCEVZ0aSqvF4++a2C6GejAM1ILXGhA6bWC/2F169svnr//Krf+gPfAAM2KUUWwI0FWZEwAioJjCzOnmGAMJkJjP4EgI7JABT1aSzhpQA81g7HpR/hLd3Qg88eocQ/yPNB265Fu5XsZ33piHxdtD9u7cjFtksyXUWCJgVYDzs6pyUmBtX5I9+7lPHP/L67/yy4m+k9sKkbPd29rOBVU0Va+QFzqhghwDiQmDfOmYModqfCEjoOrAmmngELw7Eii7tbE+XVnqtOO+qk6vDToY7k7KhMN5vVgb54+dXFrr1INSh38/zbDwuJxU8c2Hr68+OVgfdn/7MsfOrpUcrul1ADxamzaTIwrStSlED3pnUr99sv/TS9jcutdtTWBi4H3v01I99+Ex/kOfdIgTns8KxT604pk6RJxFyTkUtWkowKZvN/dG1zY29nf2tjVHm3JnVTtKmyDx985kvf+E3P/ZTf+QjP/HHrDNwkCOCHmyL72EZ+WbpkDnmW/59NDuPXuHe8e5DWY6zmiN2YJYi6Fy2I4Jj94Of+mi/4yeaJM7qdVrShNo2GhrNxHxKVJYNg/PgAknSthvo1PLq6xevV0+cJZTgnMbECllGk6rdn7THlzNPZmpmqqhgCdhUZ7AXIAQVdaS9bri+sV8nyyAFb8Gw18lwlg9mNuuGS4xgOOtvhwbM4Bi9I0foiJhx1jQM0JhwBjhwwMzEaI6AEZnnGSiggCAqSODZMbGBrS4sfeJDT27e3Mw4iKWoRgIOZZade2B8IBkIMLVJvacMeLCwkIjz4XDt7Af+s//4P15Yf7Dt5N4Hne+eM2k9S8o8tM9udY8/ZHQ7OmffD+x/aI6+xSTgQ56+Q+O/+zN3f/G9BLy+7R4PWogeZOPMmAPRLIkkY5GZJi8IGFzmyakmH7IENq3AubA/tpe//Eq313/ikVODjm+t8azJyAiRzLERzfBsioaIioCACrOVYZCFTon2A5/4gT/wQz86HPjt7cuWGu+s2q81mSGU0ag7DIO1aJB5x+yatj2ARigQ02xTMzNTEFGf+aLbzYLPskyUZuqgpQSxsjQlbQgimIkIIBAUYGoqZkAGBC7qlKBFzKNGhxOL18AW5sEw+B4WwdH5f08so7eKNn7n6WhEeb45AKAhGKHrEw1F9gDNQA56MiIigEgkRSIGU3AKPhGUqdnK8hwIATwYOvYGklJUNSLOfIDoohmZZt0Q21JUnUN0OVDHkMxAUiIzQpsKgu8fO/7ISy+89ORTHxSrTRkkMjoDTiYvvfrq8RMnSFpGacooTaxTDHm+vzvuhuFXv/r0U4+tr6wzVhUg1KLWRGJyzFGSKLKzWXjZDBMqeczQxyamKKigQlmn1xsM1WzWnMaOmJf4tssZhDsk4RGYL9xPLn+PhU7f62RHtvIDwkNj4NY7iKiIRIQEhgqJXLNw+vRP/4WTT37q6f/lr1987llMVk+rNqoCX3rhytLSo6lQRtRGPXizVFd1VZfSREfoiDFTjJAHomjcyQm4EcMy5T1aXsxubI4q3x9Py5VedurYMfaCDvLegDFoDdUEb1b0u89ttkR/8MP9U93Gg/iQsxUxEZlRa3u725acJT+u3Ddela++Pnr1Riqlu0y7n/vQA596cn1xIfQHPQVyjlSSIeV5QZyZNhZjE2uBbDyOl29sP/vK1ddu7O7ul9IqEuWd/OmrN9hRr+g4Bkjb33rpv3/95Rt/9N/9j6DD4Py3iZe/j2lW4fHulhTfOx0KoDvW7ZF6P3P/Ms4zTxFxFmSfocsRTczQVOXk8WPnTh2/uDGtOI6mlZEBWFG4G9uT06ePS+JyWncCeGeIkjAVeY4Wz59Z//yXLlVV7GR5p0v5xJd75XCYXxrXN3cmD5/KRCNxSJKQKEES1cB+hnNwBA1Y4PjQAwv/9mvbu9N6KVdACVnW63d8wFYS5kFV8yzM4MNAyEwEEJwPzhExAcI85xEJ0BCBEMwROcaZMUCIRKSWHM6qnjokQEQ1MVUzEDDP8YFjw7PHF9q6ygpf19NOUXBsRBIaI6OoGZgP5NQTCiZdXOj0VrrdhdU/9Ef/xKd/8g93B8shKxBRRGYpQIfOGTtS/B2PVHLAuwUuHrEU3wZ6x4T7ISt+r1WA7nafv8GvvGf2sUMb76BR6CFI1MBATVP0nju93rSeqEKUaGA+sIk4T0kgsA+eEMPFF65cvK4iu08/+/of+InHHjg1ZJ/MABSV1AAkifcZGAGSKQLPgHYgACKSrKwj9PMOQ9zavL63v1kQE3GKHFurUxTy+WDZXI7EYgoq7NBmy0pt3o2bktSkxEQuuKzIyWdmPPMvSBKUBrUmqVFbMBFTMCQkUzQT00atRZCZEa8pkg+KIWOTWM621JmX5NBv8uZ3g0P5996Y/yMMCfMn75U7uzcdsb7nskgM1AWXD3WMZjNT0wjBgAwEEQC0SZV31MZE3lFsCZ2Uk9DvttIgOTBEc8FnljCROO/UOVBA0FbLza0bTdOeOPGgK9DImcPYNiFnBUmpBsoboeUTDz7zjS88OJkuLA7LpkFLaDEw1PWkbXB7c3exm0VIIFQ30rYxpQgAnh3E7t/+//6LP/tnfr7Lk7reA9+NERAEqUXnut2ekBPVGC0ptdKCIyZPYujUCJynfDiY1E33IAJgRzbfW4/3lW67xJ3RsNn/eeLkkUf43phrdt7Drer36TvTUcPsaM2+I7MEM0uAzGzWKADRWK1D0FDPPfCZH/wPnlz9zX/29X/793t50ZZbCDAuU9Oay5yBNE012hthUkbKQkB2KTamUreVh8xRcCFMyqZwrqnG3eBBXdvU2OlcvTbpBVxbwGFeY+6KfodYAKAsp5b1Lry6tztqP/MDDz12xvW7KkaDpdW9rWmn3xvtT6IwmNUNXLlWP/f69F89u3OjMgHr++kf+eyTT5ztri9n3X6/Fut0C0RUUTNDtNQ2bYpNkkkVX7t89dlvXbp4be/6Xh3JtaIzj5RMKnbYtAlgAgS50Y2t0ZVr/6Nz4Y//+/+huh6iey/47d4fNFf98faDR+TFgQw/aE8BhzUMZh4MNNMZrJFQQ7BP/MBjL/29f90ZLlZ122hU1VZjzn57vz6xlPci7o+VKLDLoAWmZIiPPvrA1555entvtHL+ZN20/SI3wWx3Imo3dsZ12+/1fBKJUdA5dszIBJQkGZOYISBqOrbWT1F3x3Gh40FbIusPukysMnORAgdCRRNEpMCOULqdkGXzrGAiA0AmI3XEzEhMgGSghqZoCorkGAGREG5l3M5eGmhwTmOjKATMjG1MzoW6iThr/DLz5eusvIoSYmzrfte7fr68dvzf+3P/x8c+8gOu0w8cAEDVEAluy864ZdEeqe5/24zd+nsPyMj9pHdeqt/PKkBviu7Quu4XvdkTHrH2DrWFOTfM8m1iDdqaJiYkEzLMvXeEQNhIVMRJU+2P98HKhb4rJ7vZ2uIU8dlvvrI3aiajCgGLkBfee9XMUdM0mgCVZnVMQFWjgCSk5Fm7GTufQmbalBxTTm5alpPYAvqmEtNQ9JYQmBC9z9TMDNBspsGriomARAeYYu0cLCz2iJA4UyQBVW0RKtAS0hSkJgAyEjVDMBOAxqAha8kEwRSSJfbUM0NQNOyC69scGHdXePPN0Xss6/DOu3lv3d1tZHe/moVh0QAJXVEAKcw0fhMAAzNUQDWzxA7V1FS0UQ85CqZ2GuPUOTBTUyFmIprJOCIzbU2q6fjG1rWL0+2d3HmObRztjXc2qskumtXTelqWiOhYUirBZ+vHH97d2dC6ISWNDViVc7XkDUbjm69d1dZrCm00UTNJIqXLK5StfubKhv/Vbz0j3Pc+dAJnhCSW5XmvtwTUIQxNTMnAuRCCR6Rk1iYjYiQOWSi6naLo2ryIBh1m4b5dysp34pF7BUUPkEnf2+3cEYf+fXpDdKQF291+B8M5q9BM20AEQtJUmDnytV87/pk/8cf/0//7DqyEvDPa2k11ePXZLe96PvMSG8ckpvWkrsu2TdRGMvO97rIqN227O9orq3JvZxdaIdEs71A22Nwa9Qp78pHVtSWeNjeAp+TNHGFQ7vDl0eSV13cfXc8/cj4bdBM44WFRgQ6XOilNMKfGatftffWVya9/c+d3Lu5fbiyBrdL0Zz64/tTJ7spiZ7DQUYpF4fOQe5eLpKLgqGNz00qaF17f/J//xdf+/j/76he+eePKTioFWkmiqWqqtm1EUtO2M5FBLBHiVh2v7U3+9t/5m9/86hfbBAIHeu0MrzKjd3pG7ysdcsPbsSvhXc/x6FG020FHZmCmOkcgGIKlVAM0bFVvwX3sE088+Mhx79E7LrICkc2grOrdvVEV2yrGSTkt66pN2rTSxmSW+gWePLZ2c3PfmIg0BN8f9jxanofxuJWWmiaqgvOB0YOyiDVta8naulFJ9bTUlDou91kxKZtqVBNgbKphP889kWrTJB+yjF3mnSfKvSczRuh0HIGCqajFpEkhGSJ6IBRTA3OEjokQyMwz8UzxQkRGpJlaOnPFE5EDMPYIhIozzIoSEREpmIIZkigYgqrFJjJqoLbfxTzr/7t//v/0kU//aKc/9ORn3IoIOB/2u+kOb81dM3fP7oXvb7qfBsAdg2P3evl243+O2hVv5BJ492Y93ycMQFWme1vVZJx3i6yTZb0idHKfcVb4kDlCAFOH0OsV9XR6cq1/8mTv6qXXYlOfPf+AD0XIMwBt2ipJaygIQDPshImBGIipJJU2qoETVYuNVtW1KxevXbuehaJOpgZtbKumROas01fmaIrIKbYAOssdBhAAJQVCaGKJpOQ0ZM6xS2ACGFXNBK3BVGKcglQGUTQqACCbmmiUVFtsTBOagMxalKMiAQGjAA/RLxiB4kEA0w4Ai7N8iTc7mW+T9ffWaP5LDl/f9eQ9Q3j3q4MOp2gIRHknmYoKsSPHs6iyms6gz6KCaNLW0tag5NRpW8Vqx4MyimEyEIUk0BpEZiFoMNVexIk5gGpUXrnw+qsvfnPz8kVqWpQGtUEVk4QJgDhxfuKBx169enEy3o9t2WrVam2WCg+BtByVm9dHSXxTp6qalk0pmgwk6xFbzLj46vOvP/vSNoflsmwJtNvrsisSe2GfFHzI2QcDYHbMbtZimxyzY2Ta296ryvIgmQ7hNhTnfaK3xgy3shDuA33fbT7vNN2m+s+P3UrPxMMWLcxmRqI5oi+y0q39xC/913Xv8UpCIb0bF7baadvWLSFm3gd0bRXLcZxOUlO7/RHsjmoDDwghMCC63FORWZaJL65t1cP+cK0Lw0KrZn+wuOyy3BjQaxOrqsH9Pah2q8/9+BOrKxg6mS8KCg5AnaOFhZ53iAk3Rvw7z44+//zO67t1Y5aRffKR1Y8/vrS+ki0MewkwL4o8uNhWEtt+r5uauq3Tpcub/+xfffF/+ke/+aWnX9/YTZOEtUEylASiQORg1vnGCIxRGRKDUms0quHm5uTv/M2/wSma6cxqAsSD7NX3P1e+HfifN3jlAwXkFk4RZx2mVAUsbl2//NLXfuvac7/TbD4jo9fWB9nKsEcmTEBkSJBEVaUsx5NpXTWpbprptIkCSaBqkiI6ak+fXLp2Y7tqUyi880SkvX7H+WxnXFeSOHM+YyJWUAM0AQRSM0CIIgjaVFXInAvu6vVdDiF4l3lik2G/Q4SiakRimmWu38nywEWgzJlDYTJmnuv2s3iGEAAhOiREICAHjpAImJFp1gEAwBRg1p5gtjQRQQEAEQhwxnaoogAAQDALEhgiMROpSJ7nnvGpRx/7P/83/5cnnvq4cW7ABqB26ITB2wMARyfj4MltdAjh+j7g9bvoLUKA7ohB3xPV853RQW/rWL6Z0L8d+fhhyG422wiEbTVWretqmmW+rEoXSFsxsyx4ic2sWUorMSuKtm0/8fipYXdnZa331GPnY4ou94xkIG3CJrXOgRIhoFMGQZCDslLEhIqq6oi1iTub25aE2UWRpJKkJjXCrNNbJA6qAgCGYKYHRrMhmCiYJfOOzRRBiyxDRO9zQzQDsBZSiXFiMgatTOKsXeosZ0AtkkUAAUxmqkQAAOQUAASZnNESuB4CHJjRBHNDAG5zYbwJeg+hGA7z2u48/l66ybvoMFqJOKtkgGCM4rqA0oIioFlSRkNgSGgaGMAqQpeSqi0QsINW6h3WYw6zZIrSUqoYWqKaXJu5iMEg48qBiNaxqarSBV7JF01GBP06CbJULYliVgQFV/QWxuPJaP9mHnp5l1PjW1BDLfKO6M5LL7+wvv6RSVW2VaWawAwImTlzVLCb1s2/+a2vDYqPO5j6Ak8OFpg5InZ8ZuTLWJppsmRqqioC0oq05pkiUJZxp+PN1PBA/cdv39X0rdGbOdGRdICDkqD3zQi4vxz5nuXvt7/t1IHMn6Ev4NCZAXNxQKimBBoUOfRryD7zS3/1mX/43/3uP/i7IejuVrW0oiaJnDNVBGbCatSyy9WCSQUUCTQ4tE7eKmmESZWKwm1sXv7okw8UDiTWU1UAGQQEqqVNKfLeVDeuXfqDP3760cd6ZTUadPp1Kl09BW5xsKjoVVFC5/Pf3H5uO94cEwQooP3Y2YUffurYyZP9TqeAwMiMCugToxdIe3v7dXRPv7r1a19+8eKVcdMGQ0QHmkRSNFOiA9z5rAmTmtHMTWqgpmyQRMZl+tLv/MZ087XeyccNEXEWfT7Qx97OaXpH6N1aBgZz/PnRzXQ+tKD/5X/2l6+/8pW/+Bf+dDcev3jhJWfwkU984NrG5/fLKKYAqEkYsWljWTV1DF5T3cS2NXSIhGWj3Q6fWF14MfjRtFwq3OJCzqNpHlzI3GR/UpZt23rvAYhU0URNZg25yEwQCBlVsdfppagTaVQMwPKMs9oWup1Lsg9kpmrKiBhQCXW4VIz3a1R1xGaYDEgNCTCpcwBGiESzaqBoMKsCRHNH9O0gjCMFgcBMZ4N0kCsBqCo2gwwZMiIhMQA616a2Oxh8/LEPffSTP0CdBQIys4M0j8MCzUem+97OyENl8ODxDvzg9w+9xQjAPZ39b2Rk3kkz4I3RnTbLLWvAzFT2tzfrybitG4kJ1No6gqFj54J33nsXNGFs4erNTUY8d3rtj/zBH/rhjz0MsrcwCN2i69EhIbsA6OqmratGVcxUTERVkpgamaGJpgRC00ldj8t+XpAIKopx8B1FVCD2XRMnUU3EUlJJIklFzGaVfExVQIEMQsh9loMRo0MBkGSp0TiRuG8yQWkZjGYV3VXAEojMntgsO54IkUnRkAwwGbV+EVwx968CHFE/78ewv8tk3/bHvIdu8i46IsnI0BDa/Xa6x37AYYXCiu+t8mBNu+vQXYN8CbNeMooiaglEUkyCyaRmaaTaJ4wImmIN2hI0BA1CQ9ggtHmwhX6RZ+wddHth/dhir4v1ZAOg6XQydJxE6jalqAYUOkVq7ebGDQC1ZFkogss8Y/DEzFuj/esbO1WtppjahIDBhY7LvHMOdK23vLNJv/wPPr81dVQsSGCfZbnvZKGH5hBYVBVMzdRAFCWJiqhqiorgep0OHHrcv5O+/TbGdebsclhq/ha49PYLv5V7eDvyZt6z/P1OqZWzjf1AjcUDjdYQDG2mnYEgkFDwWVusfuCn/sypD/9wm6wpS4mCiLFuVc0FJoRukXtHDp1GTK3FlByHlJKKTKf1pIzXb0zyPFtZ6RGbCuWdXrK66DgmUE39wVLZAgX50CfP1DLOOlnZNECQJJo1VTkeTyaj0e71zcmvf/56iZnrhwBwbqX7mY8eP328k+W57/VdHlzwgNZWZYyTttrf3J7+y9/+1j/4J196/uL+pAX1FEGrulWY1aAjRDoofgIAZjTXuYxgXs7dBE00vf7yiyB6gDn8/nD+wxzR9L3RG0cc3H7pAyfcLPQy+3egYZrubm//2y98sW2qqxdenOxcWVvwJ5b7wyyjKNPRGAFnCbJAGJOMpk2brE3YJqvrpMaSKDUptk23486eOVa1iTgMirzTCZ5dVmRt0u3dSRI0sdRqSmJgAhY1iakhGKBzIQshy12ecVVO9nd2iSDz1O9li4PurOR4jOockcRhRufPDM+e6C8OPJmJUtNaVUvTpjZGmfUwuzXqSAiEQMiEBLdsADzw8h8kSAIg6MyHeYCRAkIGnOF50IwAkBhnvMueRa27sPCn/sy/p1gQ0PyqOIfv38O/D3BUTs+PIhy93TuffL/Q/YkA3PPg94GxRESxLcvx2LNr6rIsW1MjN7Ni2WEwQ2nb6aT2WXfSlEvUZEH3q8ZnrpWoKUKrVcLuQnc82R2N99bXj5kaHhT+AQAwMxFDiEkTqu7u3iDUIi/qmMwFFcfoRRpzXlE1Vi500qwtKyiAHVkJMziIiNCgs+Bcxs6RmYKQRGwriyWlGiWiIc6wryioCSSiyQzpj8BIbMgIAgACZpAcaSIEMrwrWvp90h/+9gjA++L3zBfXvIiFlbuXX9AWuwtnFDL2NGuzQkqmQu0U632DvSbuaqq9J4kVNbMOwFqNdwtXmPkUG8bWoDadSjNSGVs7YYtFhxcWctdE4sLnaDCWFlNd9fIhImUhE0EGkJiAcbCwevnKK2dPP9i2kbnjM/EMgaEo8q2t+vUru6dPLLTVnqmRz1QtQXTeFcHqmAruXdmavnqxfPzJJ5k1qQmRadNAgwhFnkdTIGtTZDRiygseNY2CuuANkQhN501fDea+3Dvou07vm5ZbdwQQ4YjPaM5U99QNvg8E5Pudjmzst1cMmmEPTGdgSCPAjPO0vPzTv/jv/w9/8dc3Ll46eeYDDHU9HYGIdxgBDFHqBADOEYtWlaIkJkfSZIAN0cbm9g9+9ERd7w+WhqPdKWtz/Pi6kRFmTbRxWZbTySd/8AngEkCIobvQLVObrIMMrARoHPHy6+Or12IKQE085tMPPDI4ddwVPcj66DuI6puyTCkixmlj129Of+W3Xv/ahb1pDYxFTFUrFZEDBDU9QFTMoNaz9o+zEjUGpjYDShuAGpFAE2ljawfYHewCdlhJ9R2esvtP9wsB9OZPM/cq26Hv0RDQUNEgiu2W0aX66W+8QlVz8kRvbzdNt0eLvaxf5JOmIXZJzIBEbDxp6mgdorqRsm7zLC+8a+uqImNkNIspiYKmmki6HedQU4y7o1JwFRmdOWYwRRMFhKQCJohMiIBMpCvLnbqafujjj+fYjvYmvW7H5w6ZFckQCMATrK6Ep548Pt7fZ7969cpIxaooUdUzGbFzKEJqNHPigynMQ0hANlf8D9T/w3iIIpoRzTz+YIimZoBqqkQzqJIBEaCJKjAyG5Hv9M+KW8t8b3YROzrYR4b+HvL3bijw0bjB9yN9T2VA38Jn3hdGwvyWzExN2+C4GdUBkdmrqCZQgITqQyZJV4fLMe1tj3YT69WrG/ulbVU7J1cWKVVmdPPq5vZmbD0/fG4984GJEZgYFQBAZ6wuKgoJASS2k/2dpUHXyABdTFCLoKaEmGUdSYhBTQRExIxoBv8XFJstGzMjQOecDyGE4JAdgqpIajSVkKaQKtSD8kOmCaFFa8HaWXYNACGRoZuVjjQwtVmnTHGIdID2NyA6sqYOFut7cBLfBN3+A468eu8YOHePsR0IJzOzVO28Xo2ugpkLfaRuo5EdACAgE4jLAhiZEkeVJsbYhtBIREaxNiURy3N0fZAGoEYrpRlpO8UUATRBMqK8w7U0zqFjI41kvm6ajgmgeedC8ExkQOn/z96fBluWZedh2Br23uecO7wpX2ZWZdbUXdVV3dUzGs3uBjEJTYIE0CJAE4xQ0A5YpiyRsmVL4h/JGkz/cIQdthV22OFfssIMQqQdlgeBpDnIogGaAASCDbDR3UCPNQ85v+EOZ9h7r7X849x7373vZVZlVWVmZTV6ZcTN+849wz57WHutb00Kg/Hj1156JWeKVg/diJkRDVB84YpyeOPW7MnHLigCQZ+9FFMSUyiDSyZl4cflzquvTcHtTqc3BkNviF1sVbJzzoBUFNQgJ1Xra08yUTbY3tkh5lWFOoPehQHelZDyLv3Z+rmy5v1zYsheYlAnjufv9kE/pPtKK5jQFlUa0Yj6NQZoRq6kxz7+4U/+ya75LS6CNOTRZ0oqlkHatm6nXQhDACu8V+GUqMvJDwYGKUYH6XA0gJRmgN4FQ9SiKibzuUN2fuvVN66qTS/tPxZIkkoIgb0Pqq0FIJYoouGlV+NXv3Pr0Q9dql+fYBe/9PG9zz9d7g0gVBV7KgvfzVqADiVKshdemfz9f/rt33+hacEjgmEkROKAgNqrNmCqxkzYu2YvbABgpn1iJAA0W7phkEPnjU66ai1b9geaHo7mL1gIAAACmakPxXjn3LXXvv8H33n1s5/92GQub77+5oef/FCGj373jWt1TQpoppI1gc6bLmbMgWPWuo5laEoqAUCSVOORoc3ruo6FU5EYy8BEmAQPJ11WFLUlgO4UjcAASDShEJI5MtP0/PNPP/bExZ2dkeva6uLo6kHTJ/1E75B9TGn74tbly+dKp1pCK76NoubbaEmyOGaPIVti7bMVKvSFUBc2NwDAxRykflb1KhACLaukae/q3KsPaktjnfb1lQjRELSPYCFfPfmJH03FDnPvDo1wsqo3+hvuRnRZZT65vcZw/+k+P/QeBAHfjeXrTt19Vqh5GwP+gyQkMExtqzmaQVMnR25QDYhRIM+aWZNqc7kY8u7+aHd7a3+8x1jePKinx7K399hOuUsJnn/+I0Wp0+ODxx+/NBwUCBBCAGJTNEWzPmGJxRidt9hN2vrYBzRDMepi9ABdO3fki2JkhIqWcmpjnaVTETRBVUUxVNOMkrBrC9XtqmAwR2QSyWrWKXaHFo81z5Q64d52KCaN5ilgY9YBaL/6FExBAJDQmxISiZgLZZ+bC3CxMywLaAM8LBz0PdBD+QJLt+TTrh9LaXLB0MQMSae3Xh8UWhQuNnXXHYeADGiimBKBGpD40oa7GrYzFtPUtfHYQRO7Q81HOV7p6tcR5oBi0qDMWWYeI5IT5ugooni2UUGlt6qgQMAMKXU5RQIqQzEsBqWvEByip2L7zYN63iXnfNbIAUKJxYiLoQuBjudtFnSAaBmR0JgpqBqxkReT+YXtYj6pv/G17+9t7ZspU9acsogYJNGY2radN20bU0pJsigQZoVqOCa3SFC4SOm8EeZ1lvO/Tbe/Q9oQ6HtFuQ9BgGWLlrrBypP0h/Sw0NqI2zKNLMBisMhsZWY1glDb4FM/+wvl7jDmjG6IIZigw6Jw3iwVFSOpSdIMANVkpkfTdDxPs0wHTbx0+ZxjKbdL9Ump3T9/cZpSJ5gz1hGU3ac+9TyQNHUzKEdgcDy90cSJAqMWt260L74mv/Zbh998FQ7euHXZxZ//0v6f+snzH7oUKo8WRdvcTaY5duSwyfq7L976v/36K19/DdXvelcoQNJkaimnupuL5L4Oah+mycjUl89YSEqABgTAvVAqhggOKTAtslmt9dm95p0Pfmnciye+x3vg0gyxciJ0bms0/uhTz4INXrkaf+N3Xn7x6s0LT1/EEJ9+9sm98zveYU7ZTFXFDGOEm7dmiiX4ct51dds2qetUu2Rtp7vbewUFFmRkUwWzgrks/M3Do1nTtbFrY5Oj9P4xSTRKFgMjyiZ103Ux7o7Lve1wcOvm4dHx8eGxxbg3rorgcsacXdfmcljunt+r28aIrlw7OJrFuVGTNOYcU9Q2a5LexVhNTRVMFuE3BEiIvSOUARiqqZn1S0/NFFRBALS3AoAxogNjUIc9WGlgRsSekDwxJtga74Vi2CfChjWY8qSzz2Iwt53Hq3FZ/flgpuf6U07Q6PvyqPdaB+Au6e4hr1Unv4/QwkrfI0SVbKpkys6QM5gxITkXygpAQXUuDTm3uzMch+CL4sp0+olnntOsxdb4O9986QtPPvmRzzwbXn61nt4kwlCWSKySRQTMnCNRUUkGQua6+bztOnJBkbuUUmwoGZMTQxcCet920bm+HqPvcSlmZ0Zq2RlY7phlPmu9f1qQFBUkpu5I2kOXZ85S/245JwIlTAoZUa0P5FdjQCTH5hHNcgIGQGHsTMT5QV+o28CwD7xfmCx/IMhWAvXGpLM1n8wHT2vpC2FtSvYoXV/0GdCAEGJqGTuWiKbArMBt2zFiFiPyjAiGqpgVM/mkDpBnk1vjgCJzleiY4vS6G+wjMFGGlAikD0UzZFHJqcs5O2ZVjU0sGUiySTc9Otq7eKnwpUKfmc3m9RR9mSh0MRaBRDuRDIwiHaIHxoOjps5xC40UNOe6ETDw3gFAiW5rZJ7BdeXVa0edUswQUNQSMppByqlpGkkUQtElM819ElwFKIYjlZXPAsCyXMWCNmwAbzOa72SwN+B+OOHbG3+tH9zUmU+rdg+ePvjw7T2g2xqIcFXxpLftLJKNAPvB9rM/cunaRxMDOcQihEFpjXHhXXA5i6p2nVjKSaxpUxgM6zZ1huD4yce3hkVthTdIoeQuJ6oqU6DCT24ebe2WXAE7Cr5q29pzR5C7RMVw6+jGgRtVX/3aldcaCLt7u2qXitnnngq7vq3KPSoGiMEUm/kcsZjM2j/8/sHf+acvvHwdMvmuaxFFDIhJ0FTBcQA1QxMAx0xEJqqSe09q7RPpLuq9L3zpTAQkQ1ZQBabFXAa4DwbSdXb3YOh9XwEnjkDLKdfD3PwzX/7yb/x//3FznH/vGy8/8/SnWrWmSVcPb7555YaaAwJNRowKeng02d0edEkcmaMcc57U8yo4hzhvu2JQWZ2ZmEAK701yCMQIdR2rYoBS9wW7mrZGwhAKVSUP7IgBk2YBeuWFNw+Orm9/4omBc4fXj8rBVuGBMANiSmnWzo8Pp+S5KEbHR/OjaTdrcknSdkkhq1BLWmYwRVAyVMNF+s7eCQj6wjUIar39AQiWhWxAej1UbCHmm9KyYAAIGiAB9IlLnKkhG2gK5AyE+gRfZ6oBrtjuxlTbdPo/ceA8cYXb0NDuO9n6vID7t1ncAwXgbvSidTc3eOg3npXUZSamyVTYkWQFJSQkT/3s7bP3mMeYgMEp5U5lEPTwjddaKd+8OfvNr7/+1W+98os//7lnn3nMpYRl1bRN4c3UsiYEg4TsyDlukrTT9sabN6swcC6kLETOW6G5zimF7W11bJIRCEFUDc2QneMChBDJsXeaIaSbt9746Mc/Pc31oPJZk6ROZC5yXM8PB+BDKFIW8kCaLHcqnWHw5FRZCRTNoQMk0+wYgdSjMMcIQ9y+qIBumc3czhjUPuDUG7s31vgyf8v7Pk9PrxUEWIZi9C0k5ytCnhwfATviQSYAI1E0MkIH2chEus5yq23DiG3TkEwnxzYcFiYJDHJ9QPGYsFTNYAAESgZsTFKgESgwdJrMjNRSNBTvSAuPVRkmk+M2t2SO0HmUnZ2hiTgESR350kyzWkxaz9rcZTGqm2YMysSiwMzY+8GROrTRgBgpsvv+Cy+9ev3pC5cGsZ06IgJCsoRI5j27nI2dkXeeCNuUFQbjETH3vNpOdKUVnrbeh2/Le+5yxFcbh+HySbYo7XObO9rmFzsVI3AXdD8m4vs+uR8+Wh/TPvQQ8cSVTNlIh3tPfeyp2bVvZEtM7WggAlhPoyMsqsF0LuRC3XYpqQ/FtatH6KqbdZ407ac/sjMuIREQ0lQTOYpNBLUQOOfmkcuXioo1p67tylB03cw7rsJYO/VNnDf8ta++0U3KElsfp5/90rkn9uX83mC0O2A3nk1mOclg4K5eO3zjev7Hv/3qi29kDJ60Q4RsAoiq2vvzqBizI2N2HCWKYOmDIxdzVlNwtPJ71oW0pS4we3AOCNWATiLB7tcEepAT8z0LI++pMuwasoOwDD1XAESyf+lnfmL/3Fab26T6you3Llzcz6C/+9Xfy1B0SQwJQHpzsCJ0MU6mk+DKKKme14WrIhEGP6/rZA6DARkaFYPB1rg1rcXg4ChNZ93OdogxIYFzwdCky8E5BMkxGbl5XXOFkqN1ePPKZHu78KNqXjexyQ5IUido27vldDL5/h+9sj2EK28eHFyvB9U4pqxqWQxJWydtFpewEucF0DuH6IDRUMSQTEwIiBDBxKD3SCYCJENANdM+OEB1kTIJEEx1USesj4ZUc84li1zQaKti7mVOWu3qS4Dvzk4oa8x4EZ6NK5aNtjqO92DKvA3horbPpjn6vjzyRAF4Ly911wD/2zwE7/D9gdPSZ7e3V5ngQrsk7JVzMxIxRI+OEMmbZkjZgLDt4qAqHdCrL72xc/ERjJP6oN0NhYBmyFkUFUBBLBEhB2+qCpJzGvjR4bXjvfPnwDyxF0W13FqrhMClsQciMkIVQENitZyFHBWgqmooqYkHDskH9iWDiEqHMrfmqJvctK5RP8rAWKBKZzmSJDVDP0xuLGEsIKQtmqAlJCKmLjZIkrDoxs+Mx48h4CJwZ9E/D1k5r/dMuBT3T6+795nw1OdS+7JlrRgUc2xG3ayR7KtRCNsGgsZZUc0QXIyt5S7WE+lm0DWU09HBzfGggowoqDIHn1N9E8tdYO6SgCo6M6fsDAglq5oJSO4iIlnm2CY/NpEUc1d389il0hVZm2IY6tkkx6wiucsMkkXaTpEDEXZROJTzWS0D8YQ5C4gjRnaEFDDWhiAOhoEYwuHRcbkFQwZrovPOIKWogIqoaqZGwGQGfVFJ58NJgrd1HrNE2jf+P/n+HnneCUpjy3zyt506a+jSidC/xPvuCtp5yBGTHzjCtVExAyNDQwMwRohSXXv15oDmBZPFZNrUySTLsBwe3ZqEYqjZkEgUm86EB8eTOI146zjXUbJ0SgYOsAhimkVDCPN6HirvHBFanx1aVBGdqLkCbDYPWP3G128cpCEyFe382UfDpfNcBOqACsFyyHuXt44PDrt5953v3vrNb976+stH4rZQdV634L2CArIZMKKaeHKOOKuwSuWcByKErp2VgwElzIhdios6rAZEaGoaU8oOnAczWhqzflBm5Ht+jfd0gxVjX2Zi6gtSAxLRU0996Cd/6qf+0a//4xbgVse//403jmbd17/3SkZCBk3ZeQeqfQqhpo2z2XxUQigwdqnrPCICIHGYHE4Kl2k0YEcGOhgUKjkpaKhuTGcXxxWBhuARUU3JsxmqADrfdDEpTg5mt64fSoami0VLRWGSoJ23iKRGIpIyKrjrt+aTIzu42bkw7DKJgiiIEShkpSygveMwLNP/AJkBEhChmhD20TaLwPRlBjVagvA98LUMyAFAol7yRwBaVE3msqjAj7wrzBSR12z4G36ztx+HNdB98Z+tew89kOnet7g3uz2QJ54oAPfkaXdiC2t1dk8/6+wlDwdjQQBQBVM1ME1CSMRoAKBkaIjESITssWBUKzV22uVYFaPgyVqVebp66+pHPnJJsiq6qhrGeq7ZDNhUsiUGFsUMygaStNVuOmvOP+qAOEt0XLY5qYBSga4AZFzUCVQSBjRkymqGmjUG5oHLb7784ic//0WmAtRUGpS5tQc2vwnt1LIm6pQhZHKoCjnmxNXQym239SjwiCRhnqDMQWrLIkIAAzVMdH786M/kNAp+xfYX47PmjP6DQIugUQDAJej3MOkBK1qTYXHpqAO5Pkq3XpWUeLyd/XG1tY9UBS6igEA061KqpZtrO7emsS61U23maStAalqVGVnVTW6WXAgWiz1I0VHvJ7woyR5jMoloPmVqBYIjx5y7tqmnqJhNGLNmjm0tCl1bu4K7tgXgHCm1rp7pZJJoXIIqAiEYAwOwYwMGIqSSXQjmqBTctdBeObThkEZgSY0V1BiQgLJCSlnF5axABAqkQEC2Cmc60UzNNv4+rUq996FYD/xdbTZ30gFgzQUIAHCZA3zt9zu26gdkjX1waFOLxKXHIyKAuSpsP+bql1Od62OxlInKDAamZemyqiMNnut5jB2Y+G7edlljwu++MvvoE4N5exx4IMZ1m9VgUPp5PScCIEspGpD3PuZOUldVg3Y+h0Zuzf1v/OHRlThKne4NwiOP+vGuG45dGFMRcnAiDnJOL70x+2ffPPrGGxmqMQlM2kYZCUCAoE/6DMBACEaIgTgweDDNs53tcXHu3NG8jdKCcXCEgGJMnk3Vs1Ulj89d2r38JPSZGd8b6P1DWqOTiYZLpyoAMDUg4rL47/6Vf+Nr3/razes3/vCFK997Ra5dv3HzaNZELIqhC66XFFXNe25T6lLOGSKbM0wJiRREQuVTTBrrnApHnkLhCUeDUkVmba5zAgiiEYwAxLKIkaITtdxqGy2Lv3U4VfSKuUvSSm7nmloCqjK4TAjILgQlf2vSWU5oHBHbnKOoqpoCMYpZNhM1kWXZTezzzS4E+r6u0YIpQl/dCJZuZr1zVF95GrD3zF7cpIfCDAHYISO0bYIuz45n56y/Sw+BrXXwYjGvW2TxhDFvcG48GY8V9n+/Z/3G/Q1PdpON9XZWZn7X+vg9jgF4F414WBlJ7xbS59s0FWNGEEBEIAXV3KkKdpiZHQF5dJK6KAksk6lH/OQnnvr+r3/jt3/rnz/5L3/JlWHWHIpmAKeqptqrrRJFTRSUjKZHEyUD9gYAar16bOC9GzD5xfazWB6GpKrgKWhunQF7ufL6N/d3yt39R+ZaeOnQxOJU6iOpjzHXCM4stW2UDh0pegLyYXzBBk9itU/qsjZAxGWl8Th3njB0bVbeqy5/AbY+HDyAiQHhGsT6zjwYHlZaLPxliM0aP34IZ6bBiTsLLrZhBABJcWJSp/m0nh65cmgai2rXhQG7cVbrYp3aqaW5aptz28aWKBzcONwZlrGdo86Dd/XscLB9wdQzcRIzVTTzLihl0EaSalIGBCTAAExlKLxZqmeUo3cOIFlucusObx2kCLGVrSIw+VndNm2cz/T4OGbAISGjMRKDGQOgAhkycLDSQVEyCBREHl3JHcuE1HFJrvSgRoBa5y5qTlkyiplpj872pvOTLuq/9el/7DRvvJdG3HWjw2acAW74Im26mPZs/VSc8qnG/5AeOG3YY5ZIx/q4LZ2+SvZ7H2sOfodA/KhKk5ijgGVVUxNyAVE1CQMGx8fz6DxjzJLp9//o6pe/8BzCxAdXN9CmbBlSIWjEjkQTMrFzmqRgn9XQuIttMPeNb1/77pv5QPOY9fI5fGIfz41dMQ4cyA8yD3JMScW+89LkpWvtPEGbOqQA7IBUAUQMVAmYiQCECBGyI3IImOfPPXX+w0+eH1XFK1cOXnot3Zy2TeasgC6gMaARyqgaPf6Rjzzx3MeWcsgPZ+m9ohWatrLr9kXZAI3U8ue/8MV/5Zf/23/zV3/1eD5FSdNWJNloPIxiIEC4qGOXRUU5iWTVNhoHjEkBLZNyVUYBbeN83hiYA4gpOiYmROdzBhRECFnZVFRyEos5JYMkmAFjZwe3ZpLNczBy8zanJKC+U4fkwcx7TxycD5lyUxsZJZAomPuXwj7DP5r1QeaiBmosaqp9GDoQU39qzzIREY0MwEwXpQAAlxV8zfrKFGtpnhdZHwDBhBhi23Xz2bK2B+CJ6Lw8ccmZFyD7au84w6YXI7OAdpbxLveTSS+8q6G3gSCsdrHT1mtba997as4DCgJepw/ILoeLjFUgTJhNzcgM2AMAivZQiPkQupTINKekqDl1pilR8hQvPzL6uZ/6zLdefHl7p8pd180jkKJRTDnlDigHLAgATAGNwXd1q4IxpmY+rwZDE2UENC5csYh1R0SjPu8VmBnmLB2DDBib2ZsvvvSNX/oL/9osleCJtMPU5G6Wu4nqDCGqWZI2xjjr2iKUWFRusO3Do9lfGg12oY2qmAlbLMl59hInx+20sYHtlGP0K5HqlAq8cn3+QAzoHWjTy249k+PD914L3gBL8R8QEAwhKuTIGoYDBhJydTeLKYVqbK7LZik3oq3qTKVuc5PNqKDrN68+sl9AnjvNpAI5QmqoGHp2Rh5yMqHUqolHcJZnJIqKGWze5lffvDEaBB841+2w8Jo70pyaSad47Y0bzM67IiZDy13bNfOma+lwMufS7Y39wBtzr7ZkMHSOuMCyBPZUeCjZlw6qyhVjNxi0YRCgCOQRDSwrOkFEU1FzTNxlMUBGNFlmlTawdY//k0K8uN6Ht/v+7kdkSSf7xmlj8ok+sBD9YePXe9OUu6SHb1Y/LLQENtZ32xOTdW9wA1SHaOeer79dDKytqhJm07ppmKksyga6uk6mwOy8V5jnsvTzeRfQhkTXDuTbL8WPP7MF2Ic5msSU2k5JQ+lzJ9VWSc5nUhSpfJVzZuMk/ve/d1xnHW/po06efaw4d86VW0Moxzz0fouEpD0+nM7yt7837RQpZxVtc+OKMmYjcgVhNkECQAAiNVBTs8zBnnvq4sc+8uRTl/cLlGc+9OTxJH/zuy/+0QuvXTmM5iDFLpQ8ICgwP/nkh4hKwnumPP+Q1ukkR9jCu9bUjIgl5//B/+jf+RNf+LFvff+7+/sXjm5c+7Vf+3/8xm/+tnURDI2wT8cpWbNCFogZQNETxrxwmHSprKNY1OO5NKCV2uE015mSmiffTjS2iOzmiXNWiclyEqHWNCu1USaH8eBw2nZSjCoV7ZokWcms7mIXG1PyxYAZUpcFtInIgMlE0amC9bI/LHAjBAYDU1A1BVNQBkRgVDKwEyyuF/RNDYANjJbS+rqkvvo06stX9HYCE6kKN6wcAOgaELM0FgBsBF/hCUqDsAjgWoeSYGXVXSuAdD/n/pq1Gm3TzLZyMz3biPeCw96bGIB3RB8U5oEAqmqWmWFZrMKIQI0YgRxkNSQmRssJDByxIxID1YQEuWseuzB49MJzFYE0k8rDZNaamQjN65liLKuiKgtHRAQIJppmTXfr4Ghre1AOB1mTQgYmCg6Yra/a25ty+xIAporRm5Hlq6+8cP6Rp3hwQYVJjSFJmmqcxPZYc01mRL6pZ/V0joBoLuccHA7Ig/eqBCCGQuzMVMkR0XR6C5obqJP0xmg8+jNalLQygJ2oz7ZUst8ZPVQbyGJDQ1wr97EycTyMVoCe1ta8OUBfnOfBpa1BMOJOYXI8ybFGpCSdqCWLklqMjcZWu66e1W3bXXvz5q298fn9ytCDkiWx1HkAAUhgfb3qqgqtCgKZiqjGqJ3S6zcO/5vf/fqlva1Lly4cz+aIACkmqXM7NaFbN4+AnCYQzLHTtk1tk0WKg6OZc3xxrxowUJ9hEY09hoKKAQ8GrvBQebc1GjJqWRbVTuCB04LFg6JgMgM1zMCMDgjMMc+6jikgmKQIK4RmvXduE6x+Gkt5d52/lO8XpWTXsCNb23VgacO1te9wBmta3nYVSfAu2nR3zV45Kq034od0qh+WggBuHFie5szJ8LHR/mM4mdfdnBzsnB9PDqZJWmZwZEoInnJURxpIqkBZXOHUu9HvfOP4Y88+mZprrMEDimrXdKOtYU5mJaWcnQKjiTREARE06ouvtX/wmuqg3B2G83ny+KPDixcrHzRy3Dm/g9xaio7oe69MX7wOWo5zfZyAgUB6B1bJAMjIRABghCQpF5Uvinz5fPXpZ598/NLj57YHg4EI4iPnq8cubj/3zFN/9598/dUbt6xP04uuKoqPP/8JZtdngXvg4/MDT30Fk77qQn8EkcwM2DlD/RM/8aUv/MSPA0BK3b/8i1/50pd+/PU3r/bjCwpESIhJUsoSs5KDPmkykokpzFLdmFfftNpIlzO2taoompjJ8aw+qgtH3AFn0tQmyFENE3HT5em0mRx1syYZcFasO0DnsmozkytH80ndIZbBMTPFTuqYkrFzlFXFVFURIDAiEvcGB6RFXl1TM1UjNTA1QMuWGQCBiBFx6XkBqH3JUiQDXdSf6yGvHucBWCDlfYQOaCBAsNzOURUZ1uD9E067IUPjkjef2iXWWEAvCtgixQTeV7554lzR/7kEjRbWEViYimxpKzqlD7yLdt3jGIC3oM3G3TMTxn0jM0BRIKacsy8D5gwA0CdBcGSgatKfp6JMgAjOETmfYzZT9aoWrbMo4oehzjKZxtIXjChJs2YEZciuKEENHYpIl/V43iTJIlG1i9JqKHMg8MRkphkR1MAEvHOA0OV5Sa5tZrmFT3zq83PBENARSdPEPGnTYZMmmHJAJx3evHLQNrNqvE1mCWvDWzQ/CKNHJdVoGZElGxGbQTe71dY3c3v98ctPtre+Nph+nIrnZFEiZH36P5Tj9g7pBHbA1YI/Mf49tKUuTxplqFgML31mnvO0OxqWbqtyk3ri2NpuGlylKVGKmjrtui51bdO20+bqq292x/X112+cP/9sl8QLlGUR2wa7Wp0XTTFGUjOyNtZd26ERQlF3+XAWv/WdN8g7snx8/WoknNfHTF5TthZA8eb1uioGmrHWFsBpLWlux3WeNLJ7cbhVAVMEcmRUBsLA1TAMxzyuuHQwKMJwUCVIxTD4isCrOETnkBxIJBM0BQBywAYOTFWcI0bVbkqQFcIJ/G637617MmnXBMP+gStnzRNGDWsS/8qDZO3qxWaysEjjwu5/iu4hb3wLlOhh5cAPjtbniy4UNlsVyVkOX58QEBgp466FfePvO4dJOu9hNPDtPBo5DqqcUyQxLQdUT+Ng6KZNQol7w/DCi9deeX33+afKZjbBUBCXam7e6GBUsi8sx6RdTtEV7F0Zj2cg/psvHl7vSiy9TdPjHx4+emkw8sQqBbaum+TSutn01pvNb/7e4WEczlOsUwZX5BgRFBEJFNEICACyJE8FeRe1O789/Nxnnn/mkQu7IzcI9eS4vjVpb066ukmzqFm7jBaNOBINXFWNfvTHv+jYI6ySwP2Q7iEtnVkWMiYA4sIpRg2AFlgkCBGHcvs//o//Z3/13/wrnlyXOmLqB4QJUuy6pqlGhbEJYBRoOj2eHR8fN2MvdQd5PidJOUlsZqUDy7meddNJZBVwPhvXTVaUJFg3ddNmNTg6apqYq2o4afJRkqwwbbubB82NaZwlHJXUV+dViQKaUZNaVyczQELvHDE6hkAYGAMSo8NFiS906BBMTcFkKVWYGaiYgRGSgpkZIaMBAoPJovoQCioQUZ/rc7lDiwkllLJy5BlRwBZJQtf7eYHz4yZTxjUWDifHEWARCmgnxoP7yi1XluKTtsEpnHX585rb67ug1UPeBwvAKXqYeYlqXxJF1RQBs5rrQyIRNFlg5xDRhzZHWFRVdIzMHDyzKChghGSouc0Hk/bg1vzpD12UmNg4C4JS6iRzx0jsQxYtxltUVeQctFHSXFSyCz6wOjIRAnTMDskQskZDY/IxJot5+9zlvf0PJx55Rou15pnpPLVTkVpT52hrdtweHUwRrRgioDoEbaZvfu9bj5UXyv1SEXNKOccyyCCkl771rebg2vknLye3k+gg5pkHZFjWxEZ8r1PldlvI+zb9EHrc5exyepgtAD31AVRmXF58+vxgdO2Nb6EdVWPZ2tq69drNohgAiHOIRpKh6eqjyTGqDQfF3u42q7z5xs3dR85t7w3M+84iQUrSIAiqoEmsm7qrDw8nPcidonYRG3XXp7Fgn9rm8PBGC0K+QHAB/bYvD4+OY8wfunzJTCTqvJ1qRsPw4hvXFLtnHr805nkgI0Ag4ICDsRtuFaMxjyvySIOqCkXpiypUzjBnUGYg74285qyZwAiBvHNZ0LL2WaQRKUYBVVoIbLcby3vb7XdQKXrGvGDPa8fWTMsb1y3OWfOrtuXt7/MbbNDDPccfBK3rjJupQhZb8RrggYYKzNevy6jpdoZc7o6Pj2eEVAafkgWjWGLTiXgDJOogd4kYB4Pg0E+4+m/+4OpTjzym0gZ02air47YfqpIzyDE6U1SRDLU0BNkPt18+uNLmEqfNeJuee3qrZAMIMeXzl8dQaQSVZN/4xs2X31QlzCmR4yZ3PngiVMmMKBqBBJGDLwQg5/b8QP7s5z7+zKN7owGl9ujKzcnLV4+vHac3D7tJnSaz9qAVQ86m6GxQ8oWLj+5fuEQLXvnAh+ePCy1m2QnwDItyDABIjH1yWuflz/3SL/2Df/j3/+7f+/vOPCKk3JkoIYgOokgGS9maKI5xMo8Hx5Ojw7g/hiIMGMlsPqnlYNIdHNXO+QTuxqRxquWYkuisTdlk3kjdtEeTLgPMW+myliY3Dw7arE2SaJCVIiCTb2O8euMwb422t0sCbSdNm9u2FVQYVMETAiM5IkRGQNM+r4ooiqqYgAIiEPQle23hyYOGgKKKyA4cqAnkXuoiIlFQywSASGoABH1AgApETRTg2rWj6vrkSeIzONDaIj4VfmXrB09bjJf8fMGb76vf8wJDWjXirR6BaLYqHPGu6cFZAPAt/npYiRlNMzueHc8L5xUgRXEOEJGIzSzlzMyFZ1NLkg3MkQ/k0Cw4djkRs4JFSWBaT9rJdM4COabYRRMPFTUSXVUm0q3hCMUO3zys93fPVZV2UUC29gZIjg3BiAjRVMWAkB2nqMQAHttYPv78p2ZEhYpXBevqNLU499LGeVvwsJnD1RvX6tSNqiEzJ4lI4Bzl7mh24yVXFRR2JOXAucLZG9/6PZhfGwQdnHtkFv1oHCbzW+fWprst7ZT3egjfFxXgQQpa9576wClnCuB5ePHRZ7evfvPX9zXvVMODOkLyEZwvfJzlet7Uk5m27fa4HI8G3pRTntQAIFXhxVBUKyTL0SOhqaXc1vODW9cPD2dGVPFAoszn6TsvXLt6vXnqvM/ZuqZNpJjSeDxCTZNmfuPm9QE15wegcZ67eWww0/a3Xr95WDefeu78/qAZY9obDnzwBFZULgx4OLLBEMmDCwWVRRgPlElBsybHDoEwZSNn4GJWAUyiaqxAXe7KqpjUor5023sZnFsAPL0T6cp4c2pSnZ1m73jinTn7ZDms8gKt3/wOgcirDerEgNDfzTZPXZ15yvj8Ttu9th+uo0wfDFZ8Xwk3vy3cuowAYJEByJaHFRC18BSSO37h+tYzY++5Ggzq1DhHOZoKeOeLUrquzcnIMDgeVAw5x2k3Lra/8a1bT144+vFPXTy6fk3LYdPkgNh1tD/YhTaJSTKtvDdT7epG/I3rE81B0/zCY9UTj3iCNowqHjGMfELhjNrCC68208YUZmSSJXnHqlmBDECNCAMSWFYkBoCdYfHzn/vQJ3dCIcezm3L1+uG3Xr765sRuzXSu1IJPSlHUkd/fqVA6Av/lr3wF2SGAAtDDaxb9AaGNvl0TCQ1A1ZzzgPi/+9//H7761d89Ojo+Ppqp2qCqCEzMZfKzThWUGFy2uoWbB13qcEr55lE7qApid1jLjZm1fsSsV4+Pn7i0z4AHs7ab5/k0RZOD46bRPO9k2uYYgb2rb94ypL4iOxGZISOiZjE8nkaAbh6zKrWdJFEB8I7mTUbFQVGaQs6Sc8oxaQ6mDMq9AkDAgJhVGHmVda+3VhEyAmcUMGD0KhlIDAyMGYnI0MQBgQKgqWI2bdp6a1Btbw2qUQlKC9eZNTbbL2HbMLWu6/tvbSVdOXyetTC/S7otMz/xNXzbNYar09+9Vv4+BAF/EKhfdmqS0SBlBWQxJWbHjIRMCICqKqqKgkCMZoQChITa30KzI1BH5oJDNuz29rbr+XR3e3dyo27nDUE7GFHLNrpctl23tb29t7P9xqtvNF2bHR639fa5c0wFc9FPtt5zGhGTiFkO7E2ipDZ4HwKWTiVOkiWpjyC1qFFSSxyyujqlo+NZ4b3zzjE7clx4IO5ivPH695sUH338YyVwV9+8cfzC0dWXKpb9C5fqyMXwnLeb0XQx93s/+XVJ5111Lt5+uq4Q0Ae3u5xyuTvz44Nsy93QaXFtITUSgILD0GE499gnpgdfT+pGe+frw7ZLLXSNRYlNA9nGw8HO7hYAkIcnP3w56QU3UvKuy101rIjIRIDFM9U5T46ODw9nXWedNHXuqnLn6Gb9ja+/Gs2f37nAniUm9kKMqZ0SuMqPb906vHhuazhwh0dHZUDV8tWD7lZn40HxyB5d2GavvLtVhLL0A+8LLioeDiEEz86T984FcIxMIXgnaJKyJMgo2HUxErqqLJs2c4Q+Pa+KsHPMfvvc+ROuvgb03I7WWO5bDv87GQxb4Xb9n2tNWbVmfew2rLn2di2G005EJxvEO5LfN7Y5XFm5f6gDbBCemkgbIkOfngUU8/lzF1+YyuRGHG4X7ApmJJPgEUSILAnRtPMB9Tg6HhBKcFAW1LaJefD/+e03t4oPfexDj948OoCUmzax+WbWDUvXJe0yFAmyxID+8GZ7dNhsbe80B/NL5wNabZQHY19uDTueN7kZ4M73v3/9Wy9Km32kVKcEiGjCRAYGhKKZkAgdWnJoIPn5Ry997InLYs3hbP7tl25++9Vbhx1OwHVIFFzqdD5vTbowKJv5fGtQtRG//Of+HAcPC3vpDyfMPaWN7jzTt8sUY/2PPfLtvHOe/1f/y//1X/7v/6vFoKAIKWWQnEdl7NKwGqasN27NwPJkmo6mnWcv7CeNgqP6Vndr0hzPWlHNsY0dXbtRpy4Ww7H3xSzGLsu8k6g2TzZLIobQoXFloDErEYvZIjkPIiBlg8NpO2vYAHPKSOiCYwBgMo9JsglQcAhGTKqKRtjb0Xo//2UU1QJVRCSkRUgekkEGpYWhF9kgA5hjZ2aqYppdCITY1o1oBlFQ2dsbnj+/cztHtR7mPzN3bzefz4jmm+DJnYfrHdEdy4rdxT3Xksid2CTghLvfLT1QF6A1NOuhBhGWcwdVclYFJDUlcgR9Ah5UNVXtS8SjoSk6x2BqAuicAgMamCBgQQHMLBsR+Kd2Z5Pm6OjwcFI7tPHAlb5IXVPPm9GwBEtbW+XhwMc6zWdt3aQqUUmBEQ17iUeJ0EwJnYmAoTfT3J7bLbeKFGCaUSTOc55LaiS1qsZFdTSR7770Egls7wwHg9IxsXMAhMCDkpHq9uA7N/V4MNhp5geHN18LJQ+GF7C6OBhsQZpvhajeiHo3ucUSOql9eu/o7YWg+0K4ad8/9dPDRqebhADW+1SiOTVEsp1Hjg5fjuCH+xfmcLM5OLQUGaCTzg/86NyQC2cZhrvjigtNbaYaTYjQey9mjJpEHFAyuHU4iQIZTLNizJnTJMPNRnbH7tH9LRUVyJSydknZ+XL76rVrsUnn97eidgJ83MCNafzWa4cjLp65NH5kjFueqmp7PKiGO1t+wMwQKqhKdI7Ie0WHxMBAbIhmbKIGjiwrk3pAY84ZybLkbIop5j4q3pD29s7RYm72edNO3Lbhjg5r+B4dbc4wbVx9wvLxawx+A2Xe9DXdiBg+1axT2P8p/v6e5uh7BY9+0GgDF1yXC04ZS5AkIXurdrZmB7NATCMvkiV2jgeh8LHtqqI8t1dceeNmUdDxNHadxChILO18d7j1xiz957/xwl8af2rLisJD08RhEdj5lJMheeau7kSQOJCnwjutdWscHrlYICUqKWMdBZquQ7T5cfe1P5xdOQoRYBZTZl4odrbIU0dEgNhJCo6VbcenL3zy0eDqaYrff+34D99M13X7ULujyRSjFJYGZfnY/tYju+deu3J1Zq6bH/7Iz//i7rmLhrzoi4d55/4gEt7xD4CTBbpQ1/t8lIajcfVnv/KVf/1f+6t/82//zY5pOp1tbQ2y6nQ6q0pfMM+OJ3U3nzZdVmiaNhTDtqNZbiTHo8O2iRi83xoXFNvp9cZXdFhPmtiyL4zhsacf/fTnv1gM937rn/3OV//FN5CKyfFcsxYhiJiZLaAiVGQCBVPLKgjABMyIZh6oYPYAJLAsJEOqCEgIhEg9L1NQVWBEMXNIPb6JQH1AlFhepOVDRTMCEwMAlZyd91kyAJpZUs1mALa3PfYskhrNyUxvy91PVrSdPrZ+9C1m+EY+UHjnEvfZG64FHS5qcOMGt4fbNfaU9A9re8Q7ePSDDwJed419aGmBRaOZigE7LoHqnNQMYpvKQVVUQSQniaqQNHrENrYARgSo4IKrU90zX+9cQJdRFMTQDavtnR24eXB4/cp1zYPCc1Kc17Eo/WR2NBz5ixf3JHe3rt5AIgRGdoykZoh9Fn5RA1VjQLGONRWljiomayB3Hl1KdWwODerYTlNM5Ms3bl2/fjh7/plnt0cDMkkLpRswW1GQJ5TcHl1/eR62TDrPNtrZA3cB9x4Zjipq62uvtxe++KRs5CfBvn9+ACSH9Td4u8VzJ239/aRVZjADMEQGyFicu/Tx77zxvUeHg+E8yKBqDmce3XhrECrPBSGRL51zDgSQyIMXBQzMzqkImcbYkfNJckzmfaUg5aBK07k5T+PhI4+du1TBbgmaY5uFITtMGPDg8PDgIDEXlmA6TZ3wS1duHLd5UJbPP77z2I5WIe6er3xVld5v7Q2wIKTkA3gPRIgOVUxNGBlAs6QsKadUDcYKpIKWcpMlRkuxTyGBoECIJiaoW1tbywSFsHLWXABLd5L+Tz7fO52SENfZtZ1i5bD5HU4rIqf9hW6ro7z7ubgu0m7YIX5Ip+gMe1sYi/papTi5dbUactiuHGOMXVVWXcwppemk0SxImpKe2925leouUOkFNMd5N9quDud1QcOrtf2n//evf+kTu89eHFrbUqExJkbj4Mx03kTnggCUvn3sUffS99sS894g7exuKbbz+dwKEEUBnE3i916ZH3VZKlL1Jy76/eQ361UZJlJGlfaTT5/b3+LpfHb9YP69N25db90rt5rjWZNzuz+q9oaDZ5+89Mio/PRzj6fyc1//zit+uPOX/63/oYUSlivrhw5AD5I2nLyXfEQNiIJA9x/99f+pK/2v/uqvOu9L7+J8rgxdzII6a9pZ2zbZwCh4D+TB8fWbx6DairAvMMv2YHChGk6vHDy2/6i1XTkYffGn/vSf/eVf/tinP1OWY3LsXPFf/K3/y7/31/+Dpq6BfcpKCMispogARtIj+oREzEiMBGCmWhXeO6C+cFK/RxEyYa+O9oA+QD+lzABR+9q/ptYXNgY1QwIyFkgIQGSEZGgiwg4RzDlPDDHpdNoeT6c72wWHwkBUyYeSHKspAq95/iy8MRcZNje7+XS3n+aJK+vpiUy+dg7e9pq3GVlYwEXryJCtPjfbdLKDnKw+XJ6LZ7eYt3/08hYPzgUIz3w+tLQy9hgIIXvmMjhN3dHxceEdRsi5JUIFILKyGrX1DECpz7bmCEEKpiQRQSVrIk/snJKBMlrYch9+6vy45KZu6nl366AuhhfRVYbd1k4wHR3cPJSUdre3z507Z+CIQA1M1UQXeQFM1RRN226+fS6EEmKcuqJIwk3XCDSW6xzbGNUzvPrawZtX6icfd95RYJM2Up1D6XzwKRmhugKqyonOCk/DUJqRK11B4uPsxvVbXfkMjZ4QBDpxmTgtf3xwJYjbuGXckdZn7sOgDKwGA20hlICZEvrkdj/6o7/w7d/4WwUXA1e1wmFYVsSmguCqomSm2NZqWdUDmoGRAqoiq0kGAQVJbTMshzHrcFAiWa1N3XQ3bxxuO312v6h0lrNKVs/IBXddbhpDoPF4940Xr01qmSnORXfH/mOPVs+ck61d84Xb2irCeHu0NSgGJTgkjAiJ0JAsqRiqLdJGE0hmU+fZoSVJOcWYY+xAjQmJ+/qOTIho2ZScD4WpLYvG4JI1PtDRWYPqNoDjFa3j92e9P23x5czetPGIH9L7QotVv3QGAMKM1hhmLtCTSTYRUdOUclUVmqyNptI2ddd1Mp+neqZmnn1hnTkQzt1AylnH/+B3J1891z3/xO5HoN7ehe0xpBaJPQM4BMntiOXZS+H3vi+jIlzcK5zFYTVkkEIVYgTEl19rbh00znOTBQyZXZ8RkZBU1UCRSDUTeTUqUT/12K6P8eZBc/Woe/MwvTmf17PswXYH/kMXzz3/zKVUT4WtZT6aTD/ykSd/7iu/+JHPfkLNeFmm6Yfy//2is1LnWur3hU0KDAyI0My8K5y3/+Df/48++pGP/o1f/c+uX7kSnbMUY506y/Oc3dZOSajzulDf1l2TWoaMYF5k7O3C5XM/8sXPffFP/vjVV6ZPfPjJCxcf++RnPm7laDDeISYAZaQuxp/9ua986Us/8Sv/vb/01a/9gZhIjszU+yAgWBJjVkOMatRD/oZlWfjgWFJwXBU+BGLPFBwW2CP8S1im108RoM9sbmaKtFhrhACGiEaAACCGgARmRKSmSKBiTJxTms6mkoQBwYSZXfDb++fBkJD7cmF9367Y7ylHyjV6CwvARnq33v1mTea2u7eLrbSQxY02ZfdVNbjTDVpv46m73fHHO9Jqu4EHpgA8DBLTOyRDQDUy5qxiIqPBYDwaZ+nUVERT14mYUZZMqW0QpSgG7F0nsjUqSnNmPuYkC3xW2XGyrFlV8s52VfD5GPPN64dyq+5aqKNuVQWmOlB2CE1KvtNQDaMoQDYFQDNRVe3nIqqIdpbnAb2HnGNrKCZkqQZLmmPKycDN68aBA3UvvXh1UPDlR8fDoaekjjVKAnbOMyFkEUdceu5iKvfL8/s72nWvv/7a0az4zF/81xspC4LV5re0Rv4AGADeERB6Vut5H2kTfViyEwQ0U2Yv+MhHv/xXr77wB8f6XefO85iDtM2NGx6FCm9AVISckhqomWPzzCpGqJqFiDRnUipCNW+OS18cHx2bG7z62q0/+uaL+yO+sLPlvNVdLIpBWRaM0sU2dzHWTYx11zVtmyDwM5d3P/z46NK2nhvm8V7lysqVg9G5vcHWEBBUE6GCiaoaokHuoR8kM8gAwmSefY4ptlHUhVBFFTYOQtioQSZHlgyAmJ3z/oR3v0/+hbdBjOyktA9sbjzrf+KZn9bv09sHbmtAwHfCV0+dsLzwHSFHf9xp1YcaBQEH21u5nUxn82q0h+RSK8GFmDSbIZKBa9o6GWFwzmvOyACezHunbesZR756baLXruBLBzc+dgG297c+7LQsU3A+gZhlV5S5bT/yoZ393z/0hRsMUKQtBwMUBU2UW8z++9+bX7kFgpSyOOKsPeq53OGZAACxz7Li90fl5Z3yeDJpBV+6Ub9+nGbCijAc0LMfvkxJv/Py1dTGDPCt147abn7h3HC4c+HxH/15v4W6CP/6YQjwPSNblv8FgNswLTvZnzaWKKKqQV8pDCFU/hf/W3/+537hz/6Lf/F7//TXf+PG1TeuvPHGxYsXPv35z//Mz/7c/iMXvvMvfu8//Hf/2muvvxo8eyZEe+qJ3eeeefbHf/KnPvkTX37sk59WHDgmFPKkiH25CACkLBZ8oC10Bf3a//PvfuWXvvJ7v/81gqDa12AnQAnsDQ2ozw5lROaRGYHNyhCqAp0nQMiggqAAqgrAfUVRW9XhtT6lZW+9IgBQWwA4RM7UEPqoA0IwIhXJhpRSBlByfOnxx+az2fbYOdIUOw4qFAD97WRnW/5nsO5addLjtx2Bk5/wRHrHJXO2k9/vZl3YUgdYf+qaPrB+kzuZf++EW969gL067QEpAB8I4H+T+v0R2TOYIZoSliWXXGlOsemqUCrYsNyqZ3nWQt10k2njB8GXPrTgyAjQIROCoSXLKsIO1TDFBGDlyG+7UTUYiPnJtM5vsO0XhaZm0uTML755zVV1eOT8/vZoGAiQLfeFkAAUyECj5tgGJ6Qa5w0FSrFLOVvqWAGtsNSYOAR6fG+rjDTvMAlevzW96La3hp6ImdEPK+cr0LZrIjmei42evHTp+U+km8cR4VAvfPaXfqXJu94vLE3ryKatHfigqXYnZEsjGrz1W/SLflmK4y1yIL2LfrjtJW97n5OWL/jBYjx69i3sMo/OPf/je8//VFvPiZNNX37xq/+kO3ppy2FnGRUXESwYkAQBNSmqJUngGGJMInUb60aPjw7bOD+e6fdeuF6U5TPPXfAVIMjucIRYFcXweDY5Pu5SWyMpUP300yPvt0IZLu6Nq4EOt/KwKqvxuBzuuMHADbeUC0SVpGZATGzOTNjUQAAzkgc1VVEwEcqmCuCcI/KUIGVQ6EvEIyJlFUMycj6UuJa1vRe3H6SGehZM6ut/nYJnTlkAzpp6z5oNbnsJbO447+hFN5v6Q+n/bmklCpghBsbSOykRJddt7kRQnStSFiMiB2rAjquqQAo+MOZ0dNQxY1Hx4XwyqoYQ9VY92y5DmqWYq3/+wkzo2r/9y88HvCHQeAohhHY2LYvisctbl3cOb9Uoyq4qMaBiMcuOpGgP+IUbIQ/3D48OIzIQGYKJIaKiGZCBiQkhE3OO8MigDKSN2pW6+/bN4wmRmbKX3d29zPxH33u17vLW1ogI880JdN2VG5Nvv/R//uKf+8sf+/SnlxPnh9L/vaMTCfSM6GlrYLCt8YBe9kQAo75UAKhVg7IcVF/6kz/5kz/95ZQzoIEgO4+ecsqf+NxP/K2/8/e/+s9/5+tf/V1VPXfhwoc+9OxHP/bx/YsXqBiWzvePIwbTpfC/qHtlaurYuyHX0P7t//xv//TP/NSbr183wCjJuwJsgdSToZkyICl4T57ME4Re21DtYjTV4LVwhfYFlEBB0XrhCBmR+9lqBgtFE9FAARUtMLBY6nUF1Kygzodm3hVlJYiHR12S6L2bzLtzY1+GwN5TKNUW5RROUPrbc1DYKLB7m/HZPHv5fel7s7rJWirxt14guGAh68OKfQokRFiFAcCGHeD0Dda4+Doe9C7oh1mAbkP9wsyWEXLpYALKDF1sAXMVXMEOg8UYiTjFbnt7y5GNrCyrih1nyzlHQyPnCdkhGQBBphK7mDj4zqWmbgzMO97dGxdh8K0/eqVu4+GhPrrnEH3ddtdudh1i91t/8Kd+8uPDrYFjiiZdbIkIlAoKKdaaa3TWdU1ZuqEbd7E2VVJFZBFNwqUf5Jgf3x89urP98vXZURPV8nHdcAHj7aHz5KpCUvYghDg9Oj731OMwvDiN2zuPnHvj28ef/covzzMWDhba+lo+vKV0hZs9dn/pvukYd/EWC2VwkXh3UbjpdhfdZQvXgdvbXoKbZ579/SQ5BMImToxGgAZkDECGOigqpBHslp/86UtX/+if5oNveqjFmqIoQULC7FxGZ0lVNJEvFU0tN/V8Pq/n87Zt50R49dqkTfLE5f3tKqSuLgfMxF2MV1++dTw5HlRw/ly1vTvY3nmcLBeOq0FZBgolcwHoIAzG1WBHOAh7VXKOqSxQExqRIaCKRSYyADBhROcwJ0s5ZjHCAOSiiHOujbmJKSYBczFmVTQgM6A+Sn297+5zxZbT47H59YyVeUPJvNMd7M4n2JmT70VTl1vZWe+lh5fuHmp77w863VWrdaeEo3Pj2CGPXZEHba1t06LavO5MMSWpimGsO0lmKm3bEiNQ8q5ApFD42JlmccSpi97RrMs1lr/zYv3or7/6l/7UU6W+XvrQ1ZrMYQeO2h//9MV/8gdHcW7DxwugVqEEc0xUt/n1W6nJaIRAlEAQ2dCsd6lGQux9p1lVPcO4IFQDKK8eHnTE2aQKPPADy/Kt737/uO2yAXVN4QpjNMBG2cwNt0dL0fODb/V9mKb4glHh0lS4xAMMbZkGB8wM+53XFmvV+n0YzQzQTMEICQ3KsjSAAhkQwAMAmEHBLBWV1eU/9ZVf+rlf/As5ixkgOwRkhEXhFO0fCyfi7CKXMvTZfhBoOCyYLnzh8z/2a1d+rcspOKeWzYzQ9ZXzeruE8wQkatjFBCp+VHkfSBNIF+uYCocDNl3mkUJUAzZicAIZbJWNg5eiNSl0AIjAYKQIjlDEVDQUTkRuHMzfeGNm4AzS44/6i7vnBgWxHyzeH2wdgVlnrWvlfO0tqsasT5ZTnHll4T2B8u+SM/Ug/8qisP65AoRwvam3nbP3bBL/UAE4SwZ9wmOE2fGBdCmwi0jYGZiomrBaEsxoAErWWVsGV+dOrAFFA/TOldWQkBUlpmTaF5fEwheSDdFCYDMyQANhThcuDo7mqa1rg0KRm0Z2t/eu3ky3rkyuvHp1a1iFooJMDsRSrkIhqdY0IYsEGDBorNvW1CxnI5CKmQzIVLq5qVUF28Bd9NuHL7xUT+aV2w5hONoelMHP24ZBk7RNlMrTSPI2YHf1ZnN+/+kv/ews0ig4ALU+1mEFQSwknAfNR+/H8+5e7FkmKVsu/V4fWLCP05e/xR3PCv12x0W+auGd2r5polza5leF0RH69KCkIsBFDPv7n/rZ5tojN77/6z625MAIjZ0ltAQC4tGxeUiqHcZ5h6BHx9MQ/JVrx0eztiQYavLZofMp+euHh7Ft90aDC0/ubm/xYKDeYzmUQVUUjtFzMQrsmbg09OCcIhhEgFD44NhnS4qUJeecCMCZR5UkXbYGRU3QgJwLbMShNApx3jFX1aCcN7Vj1iSaAQxFFQFAFdSM7moI7iutxvdUEpl1Q9M63W5fuY0asLl73YO3WzbtBFY827Y/3nSqM04GBNH6KKyiYkvQmRoQIRSVQ7CmESJKbTseVojS3uoc2zzNhwMGlEndMSITiikhFQV3KbssAx/aWP6D37tGFf3Kn34kys3SIfG4lYjdrWceO/f1P8rXb9KHW6ama7oI6Auf5vPm4HBaT4E8EJg30r5QgQEshMM+slKcI8jZY6U6yJmdDl2OJejQOyZLdTM97grvUHMJZnUjKK6wohr88l/8i5cfewwNAAnuDfUZGt+HufbWnPbBky11ygUt5UBcU7Z61Onk1zWAoYeceYFF2Qkot8oLAaZoDAiIBREYOEcrk6ItG3CybSwEY1sYAZY7lQEgMDv40z/3s//vf/D3vJhKNgNE1j7BDxoCMQEgKIAvg6AJmKKUVTEgJx0yKmbRbBJQDbMgOyRmJOx9+hEZgIjY0BSAkAEQUAhYEUUBFbJa4YuYow8smc6fGwfv0BezyWx/r/CEls37AXOBJ1776wPed8xyc3w7++dZC4BtXrLxZ4+krKwDm9feduKtsPz1dhq8zRy1tc/lTU6/512S/SApAPduYSMAEJqCvf7yS1dff+VcQTT3aqKGSUU0iYCJOPJdnagMTWqpoiyQJFHwwTtRIk8ERsxiAoBqkFJXuMqzRwE11aQKJikOKh/Fjg5nh8fdqBwEhnFVtFscCnfjyk3v4PKFcwUXCphSakGdA9OMHpwvRTXnBK0xewQEE1CWlEwzEqoDDt6FMPLy9LMXUXTgy/HutvcsqR0yR3QNVJrryllz442iKBo9v//EjyiMgl8YB4FWxb/6jWXhBLO0Cty+1x8ePntPqWeSZks7Xr9+T21pZ2UHvMNPqyPvqq/ObB0nYC4C9sHBZGbATKYFUuLB4MJnLofB1T/8r5iud/MZGwYfGAnMsnamKlliKyKWFdquOzyeHU0bz3lvJ+wNqXI6n05udd1gVF7YGW9VbjTEstQyYChdWbrRaGCcufQYHLmAbuBdUGIDARBih8zGgACQ+5mlAEZoQABiIGjZDEFMTEDEQDWmGMpy3gqyB6SsiZ0nl1VAMwASIK02UjzZVt9PNbVfL7aEoVbuvht70QkfX1l9b+/zs74rnDEv3Btax7Qeaj+P94ezLMFCA0Ak9FgO1bFmNTBXOmfALvsA7IrZtKXAuU1gVpaczaphKYBqfsjFrelMc3SI2KeNNvTei6hnmsHgv/ytN86N3c/+yG6av1aO/SBgbMxRtzNMbxzVGIYxzUG3zaRp2tks5gzEC5ZktohORALthZyFLweqqqrWIkltVMKFvWpwa5JqEAONuj8Yn7uw/Z0X3igHZUmsXrfGgyT6kz/15X/vr/+HvTXhXnX5SSjlA6S35sDvC61kvoX3yJ1OM+uRppOLYPUOa26Oy1vYCtNCQMNVwso+c/dCQ1hxyBPNYglmLy5ZqgAnzURivPTIoyKqKobG5FRATZmpnyCIQLQwxhIggGrOqY08LKqtEkFCYGDXY4iICNanUM/KJJKDc7Rs72IS99GJCEjMhGbgghdVZlLR2HRdzrnLuakDOzOdNSkREgCHYr2bVh1+O+Z2D6bjikufzLFNHoUbB1fnrmzWtvbfYt3aenjW3amt72Ji471VAN5fme/ePXq5LI3aplFNXRuzWFEFBHUOiUhEgECzlcPKjMrhqJW6dKPBsIo5CWq0pGKBiMgFjzElM2N2vYBGjCCmDJI1aU6S6tnEY05dGuwMt7ewjo1Ioy0i7Fy/PiXE7SKkTorCdymXFTmHVVWyZ0Q2M815pXYqqmhrlAUZXbCCXBkuDPy4ckgYfOG4MiNVBUgJt/mRjz13+UNUT+Js2pR7l5/7ku1+SMB5BDMFpBUzgNXqXEr/b9HrDwmfvT+Ey7rldlv/wbddCCc48b3pqBUHWdVqw0VJdYCluxKhSkDMboA7n3jqs+df/eY/Anud0qHGxjtMEpXarpurYUxTtXbeTLLVbdfu74zPbYWL50cFwM0bh+DysAyDEisnI4/BcwguBK7KohqWRbmFzqP36D15B+SAkBmQSInBOUE2JAAGCAJZMRJkMiAgx15zMiQA1KxcEgGaQvAFFhV1bZdyTsnAiIjJmQoimpIaYh8ntsbgH2QUwJqwfvJ1meqiHwSATSlkUxlYh+JPatic7BC2sXXcUyEK1zptlYXoIdbf37922do4lsPd9oByShwCgHfqJEURUUETBTEi7xhUUk5Uz7tOwZWuzQnAYJkR3SGyAQM6xhyTY9/Gwd/+e68w2C99/lJuDhxZWewCD55/vvqvv/rmm1P3/PZuPu5CGDeNAfgCyTuYS0YXQPrSSmCg2LsBqiGYqSIhgR5O50ZpgK2XQ5JjFwquxnHe/PSXf/T5zz737/7b/4tQ+sDkhlYU/t/8a/+Tv/xX/g1T8C4s6n+9dzXgfRH/bwflvu+T+wTkf0uwF1eGgg0j1PopG9evZM3NdJEbv9ra7ZaJ53uPI9Qe6VvznDnhOWpFUeWcEZDY5SSEDg1MrU/rSQRM5AgdkUNkMDKznMwcszNBRF4sHwMCIwIFw0WuRTKj3tMJ1QxVCcjYgWO2rJGAiBnEDCCmxEDC3g22LB6g5vP7O7tDH6XBgMSoKrxw19149038/p5NxRP5fW0PgA32vkR3Tl93Firs/7OTsTrZOTbO38CG3gPdSwVgNb3e99X13qjXk1kgIzniSvPMwJgzqgUCNeOFGqyOpWla58OgZOCsBERsACoZQARN0QiMgZImWsalsGdmQjEzC0Ug59GFwxsI7cx5v71bRufmwkGtQCoKbubzm1dvdo1evLBraEZhb7RlCijUFwlTBcwKyKqapEvamSl6dA6JGZg8k5jPWcmFoqwkZijw+Hg2evpzj//YrxiPPPVSo9elYaiP88eFJrr0UlzCy0sw4Y8t9UO57IXNoiN49tQ7HLkHPbiwOS69uBexY72OYqtjCmDEZEJq7IKNLjz5mZ9/9du/01z/+qgspJmQkgjGlIuiaGLqUCIl8nDx3NbHnnt2d8dpbNr5ZJ8GXUvdLHqGEKwooCiwLH054FD5vuY1B0feq/OGZGhESoRESMSIJqCEQGYZFciQWSULGBKAMUACZEceyVzhczIXAhUDQ08up/lcUifZBBgIEBeJpe1sAa0HGwS82slPYXSnvtrtIHbbvPyUEQD6I7hx5J7SiWBnAPcQ670/dH/64K6pf7aaqVY5w1Kmsd58RUQETEhJtfDeSphShKSILkeddaluNGYT7oOqgJAQpLd+sXMASOwPtPy//pNXSS/92HP7+6OZJgtcjnbczbl87VX58MWhp1ygZi0ci8cOsGB22pfF6EtFARn22eIBDVW0Z1I353pstFXoKNhWaZOj+azLmuXqlav/yf/xf/v/+i9++3uvfJcl/sqv/KX/8V/7922whcSlL3qVYjUtblNi9e5p5dv+Plnn7P5MoPfUJ29BSy3BYIHR9xLyCuyztZdatGS9VXjmZmvIRP/FTnQAMDNC3Chcss5UzQBBVJmdqCKSgSLSQoEAZEJGZCJGIjPv2BOBaU4ptmaag0dTNEDrU36aAhAskr8RgvW6DhIQgAESoWa1ZIaWpAuuFIOUwaio2/TdF14e7+yc267OjYa7o3IQlNWpJWIHRGua5gmycfImuPRduJNG+m5myXIWnLnwzO5wW31uM6JgsRWcvc3Jz7c5+s7pHrsAffClf1gtK0IzwKPpfLhVcCldnLtAaKIJVDQEIIIUD7e2B12cO/IZc1Qg8p5cX7JOzcwsi4lKrwImaREYAZGQAXwIqlBPmy7ZjWvTgYNbhzMz3T838uV2fWtOud6pim4+HRT+aDb73qvXwPze7hBoOKysKGPhHHpkYCMgZ6aqgGhWBM/eB++dc0yAbGFQsKH1gTV+DpSt2n/mMz8ruMcIaoLGvfLfp88lWGwmi6BXA3jYhYP3kU4vzrMddZZZr5/57hfOSVrl9UObjM1W9lxGVGdizGn46KOf+oV0+PSb3/n/qbzmtUlqYi5TMZXJreS1uvjZH/vRc159EA+tNOq4AEgpWghYeh88hcoXpS+qEErHhYOAysYBrS8CiRmcAaoqqiAZIjJYImO0jlIkVSQTRTVQYjNUcmTgijIAJMPURiTLkNhhTgkNPDNZFJV+yyJiQFQzXpMqDFZs/8HTnXn2yiawqT2fAvDsdj/dpxe5Pbj0FnQSL/w+FgJ8X00AgNg7KIf9nIjBZUkqWVU8cVm4ps7eu9h0SbMIeIZh5UUo5yjCRUnH7VzQGSiCIpp31GYDA0YSEDBl9NeP+Ff/0Zs3jtJf/NIjQz6OzWx/zI9f4t/4ze986dlP7ZWjttaEBXrdGSc8ZLDQM34EWvj+mRGCKRgoMgGCIdTm35zo3n61v7Xz9H6YHV7rmA7b+c658xK2/zf/p/8sdsdPXL48Hu5F1KJgBoZFGOqaartAGt49v1r/70HSmil7/dA9vf89u9kG4QmX38hBtwkcrH3euR0nLGVZpHAp/cMyeGTt1KVDSn9BWRSajQIiIjKqCMAiLzkREhE7YgRmdApFcIS9AcokpeCJFgHMi2rGZtpX9TIwA3XAJ1OLiJDN1LEzkpSy8yViAQrHbX316q3C4fmd7UcvXRhVZNDNm0O0Ikl0BMhs6PucoWsy/wq/XL3nmbRA6/Ru9IKFmezkHqdkeFtiyycDAKtDttHvay04mVUnUN89tGLdYwXgASzrt5Cu7hGdTHxVy9oxM5gmExHLICV7Am3aOTGVpcuaQjWKOaUcJVtZjdQATft1AbBUrAlUzbFDYDNVkZQkpdzFPD2eHh5OH7m0Dzm6wnXTaTqeT4/ywY3Z3jik2Fy8UO2fP//4Yfe1b75482haV+7atcOLF8tRx94BWGGgzhMCITARIFPpgguV84EdswN0RFh4ZrNssVNVoN1Pfvkv6ugx4l63517gJwBdsBpbav8Lx4AVQnnXPXkP5NsPIr3Fq65DNXczjW+rNrwd9TxuabtZwh8IAGjaFy1RRFTwwZ//yDPnnrT51frwSmqniM6IH/mTYzfc4mrLS/edX/8b0ze/pSkaZvRMjgdVULbA5L0rSu/LEMrCD4IrApdEzpFndl7RTKPmZChgZkiIhAIgoIZgopYAEokBALMDYhFF9sRETCCiWcRy13Wx1aIcxy4jgXfkiEhBcxYRWgo8YICES3P5A/ZjNzhlA1r/4cwyuMvRPL2p33mretcv+k6vNVipln+MlnNPPYKzquzMg3OIDiSHkpu6MxU11Aw5QU5alEUUEMQs2Rfs6zwsHRrmWSw91x2wc5gjg5EBIxigmKAhMuckHIprUf/L375xcOv4l770xIWdPLbjTz9z/qvffvG3vzP/iY8PubmGWBbBfeyp0R9dj7MWGShlBWcAfSjiUmJEAjMzUOCjNn/tu28+tv3keGd361ba2ylzEULAz3zuC12Cxz70WOAPERgzl4vcMAALCNqWPbCmLr6b2QPv446Aa58bh977nR/IO93WfrhowJlPWHGl2zVpsYY3TQmn9qZl3jvrDxHhpccf2z+/fzyZqhgS9sA9GiIiESzMvIyqhgiEiAjee+eJCarSh8IRkyEKIPZ+nogKRoAE3DPxfsoaAIL05iIzlExHh0ehKAHMIX3o8j5pHI+GYTCczufTWTMsHXsejMaV0z6weANMP3llW77dkondhU/aGcDuzK2Xo7PWebD6y96C49/mp5XBZ30k1oM9NvaC9z7j7o0CcNu96rZI53t/0Kknwj1edOsVnkmUVLCedmVRivZZnr0j7yueHgMANE0cDoIAqwoylEXJZgrKjgwZCE0VmBdQjCaHLouqCSISo3RZcrt7buTJlUVx63BabY+cAagdTA6QbP/8rnczlakj/9Gn9x+99PHvfOfqlWtTlRizS1GSz2A6oMBUKCuTQzQiQMBiMELnpEuBDBwGBoU2qyRi3v3Mxef/TDd6jpgdnCwIMFDo5/gqKBHgxNP9NnzuToJsvyIQ78MQfQDJ1j7fEkU4TbfZtNbuecduXcUQrSqXLB9JtDDyOkBQVfKZg249XWw9FyAD9AiNgkI2MJokKqhgJEZj0RDCEDsTwEBAPrgi+CL4snRFcGXJIQCTOiYmAjGLkCP2HvqOSRlIFNSyAgiAsbGpIBETCZkgYHAILCagmcwcMaJ5YkNARhPLKRECIZICKhAbaUJtGLYMqJ+5y+C3U5DLfaS1LWFjacAZlgWbf57VEGBznqxfgme+wPuztBZSyPtpBnigtK7g9Xo0mRsLOueQwBehqOuu7brYzCViyshcmcF0Nomqscu1aaNOolqMwzA41oYRCcQRQc6MjOiTGCEyIhWUckbkY6j+4be6r73w/V/4scd/8mPDNM8hD/7e3/mjy8WHv/BRd+Ng4v25Z57Y3fvG1atzyMTIAEhmogKABIDEAICmIgBoIKDfePnK5X28sLvXkcbczrr85/78X/gL/8p/B8EPQrFM9GMISIssB0s0bCU4rUWJvn3HrRxKTsyUd5rdDwu9m2bZgnHeJ1reHk/xh7enO510YtVfaBXrW/sZnBr7PWF7e3s8Hh0dTshRTsJIZn20bg81GSggIhn2BakNhDgwO0R1nl1fxh0oZ2w7K/rkWYRghoS9TxD3d+ttWABJtWljM587wrJyu1ulJI0pg3lDuXU8/d6L15pp89lPPY4Aljtf+LIoFm91ItQsemJN6l+axM9uxmeOnOHbb717r5KlbFx5m01/7VfbPLxq5eb2v+aNtdbY90j3RgE4q4Di7U54L3SnYVp/3D3jKCvJgciyOCYwGBTjG8ezN968QYCXL12swrhLzfmLFwhjTMJl4dmT9zE2xuaLIguYgAEqKBKQLYRtAmQMaIBAVallGRw5iDezxtFWRY7H++P61sHHnruEHx9YSpCdxpvTyezR87uPPLK/O/S/+8+/d9RkyApZEDK7ggARtaoKNItx7tl7F4gJibhwLghXw2p4iYqtFHaK3Sd19HTyuw74FIMHQDRbpRFDgNVi6aEf7LMJbA7E6uSNCMyNAXsblvWQbgX3js4uh3ekGN22f2537XI19OLvOis6ETYXrqHa1w0zQkPuHYcX3AAJFlVhDFAlenK+LCTnNI8G6gI4doWjEMrxqHJVKKuKi0BFcGUJRolEAEyjaULNjIREYCRGjIjkCAXAQBVM2Xk1NUDLGSQpkKCqGaOFMiiqKweu3I7qkuJ80ho2LrBlMxMkABNTyykVuPKhXOE7C158/2fXQlc+uzesQzVwuiXrQtTJL28r8Z+5zzum93b5+l72A79we+qFfgTsF48ZkLgd85VGVWMm55jRFwWXbZ0gWUrJFL1DKP18XrsQoE3bo0FKMTdtVVAziYGCiDl0rKCLWqgK2qdUxKwKyC2WL2f9T//ra//wn+n2zvDVw2qetP47b/5b+NRje6Wh7o7iRy/zSwf1XEpipyYIFphFTFUBAMiI0DnOnRbD0gS+da29merxhUt/4V/9hZ/5s3/+E5/9HAVmH3qoERa8vk8+cwIf9JkFbhdZemda7Cgr+/H6pQ/PzDmDwb6LezyQV1kB5Hd5/lswDVwrZLOm2Z194npuO7vy+pvH0wk7TFkQoPc3UxFyvJAVTEU1iQ3KyjlnpgsLF4DkrB6dIwKe1vVR6vb3tstBYaBAJCp9RRgxJQV2rKIpx8Oj2Wg0evTiI5rmau3kcF5WQ3Cua+q97X31sntu8OSl8eXzYVhgk3LOYuSQGZaz75QaAHca77vA5G6L3J3VFxbK1CmOf1ZmX5NcV+WF4cTD56Sw2Kmtwe7QkndH708MwLtb/ad2nlN3u0ccZTEgvdygiNnMD4ftvCFPk7Z749rx0VF386Db36uuXX3jJ378Cyk2gJCTAKYLly8TYfCha+fkqV8QREwAPY+XPnUWCAJITmDqgEhlf288m84HQw+mwdOg3BYzJBmNzzFs3XxDqyKAMWj7yCODL37huW+/+ObrV6/lfImxIsfFuAxFaFK3VQ0cjlvJ6J2pY3ZZpcXtYvcT7vGfofKiciFGjsABsKkZwjJ0bMnvl7wfbJnwE5ZT+q2CAPpZu8QUbjtAq3yI63lOTjxMf7DxRNtcwO9oG3yH03t57kIoXSvgtglNLCVQXR5aJSQ2ZAMwbTrImR3lDGAwKH20BkEsW8HoC3AO2IFhVgNV1WRFGJShyJJ8MchtQiQkNHJGJaADV2hKQIkQFZKaIiI70thIbAtgAY1dR86T41mSUA3aLN5EVAnBe0YCBUgqYVB086iAHCoLlSDTguUvkcvl5Lqfk+pkWFbppdcBp7OjthyHjY18w2BxF3RbkOUdt/juYZqNlr1PmVzeb7L+3xIuVQrFYMS1aFSnyohIqMBKknPHzlsGBnUlVZWbHHcm0VEYVG7eZAYeDYrjDnOX0BwamiqjU9SMYr1qzghmZgrIHeP3ZgxdVMiZ/Fdv8L/3N7/353/8iR/98M6FYvtTzw6uHl37/de7YzFl7rIZKTn0AOyJ1JouFgN/bnfrox/96Gc+8yN/4vNf/ORnPl2MxmVRQXAhuJXo3/PlHupZsIP+D1zPZXXXtPIeX/x524364dEE3ivd/9d4509Y23VOBs+WHOeknORtWMoKm1icizidzro2AiASIWFKmdg5xwBoosawiAZGYmIE88wScybyJRkYkKhEdBxzd3DzyLPb3R6j4zamqmACRQQzFgNTY0ZLQIqoGrv5sCDHJRMfzeKsaYZDdgEGlD793EWSDHE+7XCW49aoKhObMS3qJ2zw5LXvZ7D/TTH9TjN1/XQ7c3DjxM1wEzs7dLbRxav7bsr3py87bRV4z3TPFIDbLutTQo9tgF7v5rarg7C5xd47HWBDX0wxcQjTtgvOtd10d6t66omL8RHYP79948rrlx691KUmVO7NK9c127UrN7/5nRfPnRuNtoZPPvFoM2uRzZEDNQVTU1EhcGIgIioqkkUSkENGJg7BYxkkC5qQ56IoHTkCKHx54cJFkJo9s8dQ4f4jg3/piU+R35rMqYmSA3tvoO0gRCQRpcHonJqEohhVoxZ3/OVPugufyuVjAbBYiHvGq2kKdsKmDQ3tJDgFNrypb9u3pxbABgfBsxMA1tzu+qfg8tPWz/wBo3VmsS4jruhOW+K77Y2VOrZJCKtqxitz8nJ3txN7PSyVgz4nlBpmC87lFJ0DFDREYmSPUCAGI4/oEQiJSdFE+gz/SohACETIDigQF2gQgidUE0M0cCIimqIHLEKpSU3VeW/AgsyDIApAnESl1W7etU00AzVg7+bzmHJ2lSt2dlxZWp/Axk7W73vuw7uh0/DRKYTiTkzpNISz3JLfER971zDKO7/bup7zx5BsBcgtbUyI7CgEIxMDiTkmNcnkyAdPbQQAVQXoyz6S9zga+DDAEpybiUuQYwRiZAIFRvMGaqZgbGh9rhVEMUByAsYOREiNkHIgzRFe66q/8V+9/pvnr3/2ieqx/e0PP3V+6mYv3Eh1FmAGQk9EiEx6/tzu85/57E//mZ//kR/5kQuXLvtqpMZF8LYsEbVM73kC/GwWiFpWnn13S2ghXa42kFOSGP4gMvt7T+9eYTqr629efxfcZrnw1R5/8rGnnnzi+99/UUURiahPHaSIjIQAYAro+sSzIoIewTtPBMSIBJpVSIrgSx+2tkZAMJ03NnRFYDMwNUAwVOyTAAEOh4Ot8bZoYkK07AOByWg0nLVHKSoCD8tx6moCMe/N2DlXDErvAgKZ6fpOtnrT5cv2H2ti6Xr/bgrZt+XeZ1n46d9XIryd8I3TY3EHurNqce9Xy9srAHcPUq4+7Y5/vnuX8FM3XH2eUsXe9f3XqdeWERSbibcMWcBj1zXg8LHHR56K4aiswl4SydQGX15+at+MnnjmMcmqMSJhU8+ZySH3UolqHx+ORL3uiWZAyugIiQzRACgUha+EknQ5hGow3AoElqx0nAbBcjsYcjUI5MQFKCtsoLhw+Udt/Hg0CHLY3Ph+d+s7ZJOw5cBPqpJjNhx9eP+5P9XyM84NCIAMwBT7hwPgwodvTTBfhhj1H+vegW89LiuZ/k79vzZMmxVITnX8B9wIcKfFchZIWN8Sb8tL3oMIuzkmPTta8r+1o0t0xKBHRHDp1734RaEvVk2ECoZEPjgwZ+pAlT27gomRmMkxMRsTIgFSn8Ih5xZUQdUAmbAP+5LUGeUknUpCEwBgMiYi46QKDISAhOQ8sFPAydEsFAM0UBES8MiOPTE6QkY2SxJlWJalC2ordXXtte/zZFplH11047rBfLnfrI3EaitabQrLM/HkPve/1evtvyvZYnPGru9lH+jF+g5p2TsGiMbEgcoqo4mZZaHg21m03IJ5IsxJ2ZPzLkZgF1xhk+ksHk2RBzG2oKFgaqM6JYeWVNHMMaR+jzAERDEjMOtTIiL2fnoEXiE7yIAUxX/nBrx4oy1gNh4wV6WCJ9JhgUTIAJWj7Z3hF3/6S//OX/+fh+qCC85RUFAEXslGttqUlzN48X59+NZ6TOa96cA7gR7vD30Qwab32uDN6++iB5ZcC2l3Z2d7ezvFBKgiykS0dBYAIOgj/hahwQBmuFALjKBPfyIEhgBVERzBsBoURfCFI1TVyLyQNfrKQ13XqYemruvZHBH2toc4Co4xpYyWgx/O62gg40HpOWcT4kCWJMfU1gACSGZ9HPtqem++/VqY3FsJ82ek2cWRJRe83Q6+0an90zdwqbcUUt+yLfeeNhSAO4FV75ROQVnvbtG/BT7wdsrXu6d+TBHAQAEk1ZM4a3IRcmxB0ZJCbqPMr745GQyG4/GACdrpbDgsfSijxsGwiOxCESxnoj7M0rKKaV9O0bKKmQEhMjoiRBIxUTMwYAohNPNOc4cFgQkQIBsSMjtTZI8G4kpmF1RyJ7Eoh7DzdFnslK6lwYV6PpP5dOwMPJDb2tr7jLvwE8k/7Smg9QlgeuF+WeZ7gQVDjwv377/w9QeEE9Xg9KCcHaaTznv7kVhkarldNoP3kxvfE9Xx7lXlU3+uy+xvDT+8k7asISAGJ/HAS4kfYGEOWHFHWwaG9SxdQUEAgPusasjsnDfzoNn7wM4hIzokRmQ0QiMwYkIGiypKCAL91GYix8TRBDWbqvWFu/pEuUiKKIpMPoQgWdgFY6qnDQA7X6Ssse1UkYjN+tViMXaOGZ0LoVADA9OV788auHPbSm13pncjEpzoUrdjTbj5dTnEJ/4Qq43pnT74va+Wu59jawG/fyxtAADQ+y7iwnRmiOACIAEYkjOV4LwBaAZmROR6ktiRJz9PnbLGlHzA3NYIZqKOXCAIDK0hExL0hbv6lGyGi0KN2uvhSIi4THKFrGiMRECImBCj4Lwx6iIBkEdG8g5doKLEURn2z10cbZ0DHiwtTLQui1Dv1mSngLmTunD3kidvCEV4u88HTR846f+e0130wELrJUIKfv/8eSQAIETt94ke20HCVVUc6rOJ9+5k3P/IRM47h6QAWIYwHFZFcD4wmMHCRIAAiIREZAaFKwzMOyyrgj2HQUFkzkEweOTR/cB+XnfsUTFnULXMRAzGSKEcgOlaFquFuA4LqAXwZPuDDSP52Sn5Fh1l69x7dc7SQHjm5MV6WjlX3FF52HjcPZFJ3po2FIC7eNLdLtT1t3ovi/strr1tx73HLsPldAdEAG4yxGgxUoo0HG4X3oG0SDooENQKLmM72RoNGMEkjYaDLGIIKQkTG1CfIYsRBTMSACIaiWRE9N4DAgKTWRYggdTFrC1i6zl7yhBrQec5IBEzIAQip4beV1gUDLYDNJNbg7CTeE882P7YPcPN1T0dYzm8WOx/HIsPC2156lN5qSIv5I5llJctF4Stig2uOW0uxZqNEbjLebkJfN7xlMVOuhSMljb2B8eX1wDjB/nQ2+x463+e3RjfbdtwyemWCd02856t6rqB9YhGPy1srSVZJeEiubIZonkAQAfMzMCEnsgROQJHhAREBoQcQHMIHlWJWJG9L5kLBfTem4IaMDEjLvzREEyhDM6MzEgFc5vVsahWZZW63DYi2SRD26XpbD7tDPwgeA/oGrFyUJkZkS0l7JXssga93C9ayvRr6Ob6jFp/+qkhfn9Fn7NNegvamIe4MA3e77Y9TNTPKNv8bmhoOTExeu7myUQM0DPXWYg9mCKhpiQ55a7b3Rki+aNJbtsWoIhJDIkJCA1QbdnDpESgAoarmJIlTzQ1M+tzI2Yz71hVGQnJGYGimKEu4hTIIwM5Lorx3j4tZRUzIKSVxL/MLG8ro87StrMR73u/+vNhpQ+iWeC+07JHhsMBMWXJiKigi/KhtFIT+nzMpiZAhH1dMEJ27Ji9I7BMAI4xBM8oZhkBPTsyAjQ0I0IEYiRDEMuOYGt/2xUOc/KUEXLhyRWsqsOhY4dMmHNWyQSc1UbbO9X2o0YFnRgql3rJEndcvs8mZH/q8wytZsUywPFUyoclsHYnOnXuJuN/F7jhvaLbuADdZgGczvd2xzVySmp577vvW0j/qyfC7fbat7j2LWgRpYDWv7MgsncpCpFXV0aQYVFiTnPgo6PmcHr9kUdHHghQUUVTsiwMDMBdjEzmHCOeVPEEIABgR6uZaQgEjgkMM5sDhmIQzA2894E9OOfYFd4RlJjMucAeU0bnqXcZbW6+Mbhwg/d2wYD8ePepH7/4oc8bqFkhyAzAALowhPXF8ZZ+9usy3jLLw7LW4InnPkIPeZ1071lxea2TT+75Fqrt2slvs17uKxd+37n8qeUEb7dY3q20uMjBsaz3vs71EHAFmfeOwIaGuvjTEM1yY5LQGzmPQCYJFMijQ0fkXPDOB3KMzIisxEhELhCxKaNx78Hg0CHQGuZhAGCKSkjIhgiIQMRl0dadiKoKe+9d6VyZ2lZSdOyFBB07ta1t7o7qDhAJCNGSeh/M1rn9Spdce+LdyTN3n9fyZD+Akz1h9dNa77/FwG1ESL6/9HYME0/UnCXQhW99xQ8g4YJ/9p2halkduahAQN67rhVVS5JBIYsmFUeOPSFCURauKg5uNmSBySMQgALQohwYmC7EcEIA7n0gyJxRNjBQBFpI6dYbcREQTc2AsioTgQEgETGoggMDEjFTK8py5/wjyn4pD/VRxYuX6FfGIiwI12w8d71e3iW91TJ74Iz5VPA+3KWk88eMlv0wOZ5IzsS0UEcJcOEvvRY83ns4IyMiETMhAYGSCRKTqqUsXpQKJEQyExFaRomYGRMSoJg0TV2FQjVLNM+L3M5IoCmpgfOeF44KjggcEhcmkspy3Ke/3Wi7rb8EbrzUqX13oSxvHFi7Zg1C2wg5W+3h67LS5gM3tqQNcOqs7Apn2nWf6O1dgJY/rbOEO66Jzc7a+PMdLaW7Ofm2vXaqJe+UcFnoBhFMxVI3LENwwgQSO19iTlmjWjHMY/fC91/RwXhXqHI6Knx73PiCu5iIDQlzTqoZqa8cado7cgItolMQaOGfoCAGOXv0xMxMiMYE7EgZyKGgOmJQn4SInLInX6TYuoDninZ+5avF8ByXI0psyMgFIiqCA6Me80ECMLU12QjWZ+mpaXpSC3A1TWFzXt9ZoDk5y9YU4jtIt6cOry+kHyiOa3eY/7edsbdd8+vC2TvqGjvhSwb9ZNj8HZcfK9kGoGfChIpG2qUEnkyRKDCoSkLn2dSxc84TexcCOICF75AREiBJhpQENEOKSOoZjUUgq0rsamIUzaK6dBj1ffhubrum7diXRN6FEtGjZmM0cvMmNXUWpa4zptIz1XXy7HJSNQ1F0dvIlors6c6857LM5ty9vRh/Zh9Zv+SOt33AU79f3G+v9SxfZm3nhDuygTvSbTnHB2i9L1UgQwMg5NgmBjTi1IhH8uTqmAiQiCUDGiCRiHVdzkLzpkEqRMjxwLISOxGIaooAoIv6WqZmAEZEAKhgjED9+uyrSS5rLyD1/hKAC8eLvpYYARsAEAChIpmx2bm9cwR8AsqsCS2rne6E+67YzP0ckzsoFw9G4Lk94R1b9bDQ0jUT4H1ZMAgAoKLz+RwAzPpS06RiSkZgi/4zMABRAeO+NjCAAZIZ5JwRoCImJCZEUERwDMxMhLCMHlNTERFQZNgajwrHhgoqYMCIYIRGzntRQezTQRACEnn0lFO0whWD8Voe8w25B///7P1XsCVZkiCGuTjnRFzxVOrKUl2itRjRI3Z3hoOdXRoMwGAXsMUaYAtptgANNJjhgx80Go2f/CdpRgUjCYCgGaF2sVxgdnZHT++Inpnume5pMdVdWmVmpXjyqog457g7PyLufffJfJmV+bKqut0y77siIk6EHz9+XPsyV7Y584P7WCMPc6jD66WVkhb1cg9eaBHQYIuX5Y3p+PdwjovhGA/AUfI6Tnp7YCJ8oBPOcvDimGMVuYdYKq2U1Cm0AICoYCmm9X5haHUdg/NIxKwX11aLRhjA+TCrMhQmqfGOyBG2PFYN0NrQfwAQQt+aYUhRqLW8IqKaAWDwQUwLH6I0oITEBqLApsDeoVlWIRAFRUSiYCCthMY4stmrOf5CLgZtr6T53XeFXuYdOoCW8TFHFsJ8T5hjcXmLXpJvut1poUjb4tQDpLCQUc9CvYfGOXzW4+Nx57zPHPsgpwj6cAIGH2LJIcyTO7qwjaMo7povtpUHsYsKa007aAaqmcCcD5oFFBDJiIkCs3M+GBG5YGxK2hpnDNExEgfmgUbJ1kjMYg3WRJ4MhLGNxyRkpDb0Ab0virqZQrZQ9JA4pybVjaFCSjnKdFLFBKEo2A2AYl0nZpIcAShnUaEYG+wEobbE0SIXGA9sAveHM5NGp7rbMs0ftY4cHfOUtfFEBGFbkvVOvwHc7wkFcHjJnxGO1WE/ykLX8TCvl4wATpMBcFYDsJitaVK/N2AyJfDeMfEs1exCPY31ONeNjka5rsHMITpmBAAkQhG0LoYaW9MqIAB1XVcM221E1AzbkGlQBTAl6vImyQBA26wAQzIAZXShcL5YXd9Q6NrjASx3cZlnx5i1VYDOTQA+EuW5ENceEXyMlMqzw4Oq248cDBAhhGAAjJw1E7fd3dv8FASAtvgbIgKoARBzq9EatC3e0RWu9VdlE6dkykCtA8ohkpkpmKl5RkcFqNVV4zw7z0aWRIJnQk4iAIbSqsQEpGaSoqDjpKRcKhDPhZWjlLYkANmBYIUTuPNBlB8Illuccdx587GOqBg4FzMPnbUvhx1881jhTDkARzDzwDd2PprrseLk2fF4cImZGZILXBbqiJlZsGnytNnrldADpjh+6frQlSuxjlU1qSvZm8UiysZKX1RCIETmtsR+u0yAkECSIAKRqRoIuCKQuSTKwZuKRyMCxwHMgLlXFqaATITsEIoCWCImxrJ02J9l8k6Cq01QrdcJ/mA4L9e/lMk13+gX1Looj47LT38AUctqwnx97CsMh6ScI2rDfcEOfjg/sfxBbvJEWOrKDgtknG7bXKzq+97YsZh8WKbQhnUt1VhdmCtaQ+aSLtgSTyf9qzIYpWwihsqONSW1iABgZEiCBiTatnEEBgNEYmaDnBWJUQwAwXsiU4SUc1XHxhGSGLd5w2qg7IueMSOyC57J17MJWrQG1QSMZ5O63x/apEFXNMnqJs6qqqpSUfSnVQZVzwya5wbUjsq7HkZzbJ0dY2c9shNhcH9dnAzLU2ZHFs4TM+ntj/sgWFrUc/zkCVj3h7mU3PFPJSzIOQjeCprt7GgSAaxqgQzEbjjopZjJrFcWzURdwfWo6g2GEfJknKvUgCscIysyOVQlJCRC6fRKBgcAyVShlaEMqVu3AkgAjAzQugAWkTumJgiCjsGcSGZfrF+8AsDQ3vrSrC2LI7DfdfRcpI7j1PFHO+oD9ag+VjH9qEFn0Hgk83PWixw8DgGRrl69ysSmil1UA9u87zozOwJHrDmpsyxJFYlCq9i2am0WoS4kCAmIkLt6OshtGVoGBjJAaFKUnGfTafBFv99zAR0YIjAZOd/UVdHz2haEEEDTwqGioif0DvdRduApDljjO6FjbtJcfujT0LG0M9uRH/ebGuGB3xdutyV2f3SXP2fRv4V9BeCUUT+8wHR2qeuIXfk8Bl0eW1sZGrrCIggWUwqEs9nUTCRnAFPFa1evTPcm2Mz6BW2sXTJwt2/eyZB94TUDERMRoRkSAQEBGhkoMROCWiZEI8xJYl2nnIeDvvcMmomByIEiERkAE7RKtqqoGgDnHH0yorJkIq6K0jVQgQGhzAUggM5ChYsyhQCw39HxiC34vjg8SOo2r/d1QN1auuhZpg7nN7R88UcinJ8z7JczOv2xO5lx6ePRA44f4IT3h6584rD7K2pe/mnhwrF5qVcAQ1QUyKZZFNEBIGiajAI5xFoBiJHNoTqkDI7AEzlvviNQIjJ0YoaSVZWCA4dkyIggJKKKMbhgmnxgMEU1VVDLqtkIiL1DAs2WkyZBJVNRxV5/AEDofNctktn5UPYcSHAJUsrOczOdpNnU91cB0VTb4rYwN/wf6E79YVnLaSreAQPPCSOdQt9Pzrp3vPp6hjMeyQ1/vKy1LQs1ADIIOVxBZO8Dhui8MnJKSSSnBnKqnaembpo6S0JJosK+LEVBwYCAHVkbqNwq4ISd54oAABRRgQxMQQ2ta9qBHUtvD7S5SI/dckYFQwQiAjViYHa9/qC/sgaAYAoHA6Hndp1OGDmSwX4+yJwLVUvtUx/BHSxym8+4ET30r+cID2zMOAUeYJ0vmbERAGAw7DNRzMkMoS353IajtcchABi3taEBCdqujO0G0XYJax9GAVFMkhmZD85nzZ6cWVsdDpCACZ0PIQQidExAZIpJIZRF0zT9wWqTIgI4NAJAZnbgvMNQhOD37YnLBt0jj7cv0B8j5ZyINpy/zKtmzFflMcS7ZEE9pHsvqP3ISedMcfsKwLFmqvlv++X1HnqkZXnx9MMeYpijptNDUumZNn8EAKA2bAKB0Ehj4cwTQM6DfjDmyUh29iZVvXXl8lrp6dJKudIPVZPH09FgyICuVxQN6Lx+MiLs/wdDRGB2DNyWj0tJDExUzMDMiLtEzW6pmJkhtIYeIgR16AxQcjKYJBLUGEQAdtuWvrTo7730Z7EYWk3b4DiiO24Klq90AJmISxvGaRLtqbDQvk8b/SMM+8t6SdE6UM0dDmJv8c0hKfCI+nRkmLPcysk/HmUvXU/TfXUQAU0tIyqxsMuoONvZZVeNd99kMjVlckSM5NCCI3LMznt0zhiZmNkhknb5MwKgaKwGjNxWH5IMgDgY9KqRkmLOQoxgoKI5ZyRkBNOcqkrr2MYtZQUANMUUUxF6syYTIRM79sxKigDKzAooqZpNd1ZCjzhQVyqxnYZDrPcQazlOPj/aOu04TOMxS+SBdYtDIz1Jsn/onM9HIqx9zGCxdbNbf47uDlyWajR1ToqCRUJdUWpkMqkHK8EFl7ZHRGVZFtlApjMxVABEJARHTJDNTA0B2AzNTFVNAQjEQE3bKFIAMlo0uMbOTgUAQGCtBwAVNRN6I0QmBEBFUI8YQjDA5c1h8QSw6AHYCTJPYC7mK+rR6x9nfZqPiQb6cHLRh4ODpjkAABBVbatKqDERgoGqtTnqrbjSto8B7CKcO+MSETIzOUImdOycY+/QOXLMhMjsuxhDs7ZjDAK0ugURIZKhkQvkeVrHGOPeZIYIvcKXRWBUB21pUvCh9L5cyCYHi951j7RvDcK57f8o1z95V54bl46cgfvJ9HPFGnD52IM6QHcbRxjvGe2JjwrOlAPwoHvbSfCYHumky+IJrydCSwxoS2VjxUR9z1dVA6DO++ALoWY0mk6a6VMX18sg/bBWV3XVTA3Ioa+b2DayRmzNOohEgIBAhkDIiorazjwSYln2itB3HhGNkBDbCunEjNRmx7RmTMO2XYCIaqrYKxA6583rbHZvdQ3nGunSHtFZeDoytyU17gxoADyIriUVf/+HQ0rdfMnYEr7vrxccoq7HzZAfiYvhlDs8irTl90dPtKXXB4Uz4WpfqJ33+ILFzBgAmCGYImmV9n7rf/pHr33nL+tpM9neef659Z/+4uWLhaABEqIyEpN5ZmJHzhfAKAhADsgBto3DgAkIiImRPYMjgKzGnpC8KRhIaqyqZ6HwLjhDU8iYQVMyydJE5x2im45TEvGFz1mInS8KaAQM2TlMknNKjeYsuUlKabIz+s1/8mu/+Nf/ladeeAlgqdbygyIKDp12rEVnefvY1wcOmTZOZ6GPip0+KngSgt/HGFr5hwBd/1p2A9Bd9pBRs6gPPJkoEPX7vZXVfk5NEUoVsphTrZIE0ZlmZgRR0LaVUlv0ZCEPtLXiYK6id8YkVQMw7CR+AEDUVkqat61BAwAFa++tra5OhN4XONeFO/68ryFDJ8ycn7xxFJ408T268T9Si/oxwc72bsqpTUJvLZSEXUNgszbjkRENQNVMAa1N9sJOvQXo2gYgEi8lghG6NjGSgKAjVzI1YgQwVDSGdsy2pcB0Mur1Cug5QMhZPTMSKAiyc0XfrKt6dcjQBnNDPy58w4eUnMPb8DEHHDvFc4sTLkaauxfg4DcHbgYOEsy+zgCHj398cP9OwC08klt5rI900sXPZPtvoeOOBNBxy6zqmMbTqYo6plTNGKA/7LlBEJSkeXN7hKYGjsA5F4hZVIuibFNhCBEIELEt8waIBM5MANS6YGsiYBd8zjU5dmSdIxeJkGDJlE+AbZVFdsxFQC4hBHQARZHiOOfswpJTap/a56+4IK/7w9ll8UM+liMXuC/s+yiWxaPHCo/n+vtXPYS00z/CEVvDSRaL+4x6AhgsKnobdPX+DjhfEEFUCEEyvPXOzd/6rd8dunLtwmCDB5cvDSBndEbsDRgQEB0hMDkiaDsRtXGcSK61gDAag4GK5cZyUkNDLybOB3I+56RZAUVSSgQKIIqelCxLHbMkzaaGRJQzIKJmBbCy1zMEAxMRkzbaiNHQkgIYss7Ge2/d+va4kb/37/z9Xm8AzoG11Wtbbd7QjlV974u8MyF+kU1z+vmH5vEjJSgc0l5+DKcDAgAogWF5zQ2flt0m9EjrKHWDpioZgNVEDU1xbW39gxsTzdhUGQ1dIO+gSUjGrf2dAR0haRt3ym019I6oOsrF/e7pXcQ/ool1Fpq5pNF2eARog/kIsWvB3d11O8kEy1vEj4LE+tGAjyemF415OjDT6WTWBvS0ZUDVjFnBWv+SmhECECI78o69844dE4OZiRqTWOvVMrUsBmgECgAIpIwIrQaLBG0x3K54oQFaq2IQKKA5gksXL7Djsmx77iEzMpgRJiVw4aSAFTv8dsknZge33u73o3a5ObOc2/bnS3V5qLk+vTDDHnMvx4Id3FnOA+hcRgG7T1HIRwAnmd/OIlZ2Mug8ur09XLMQiqmoJJFEDME7AAW0/kpx9dqlK9evA4RJDXU2AiZkUEQjQodEranIDLXNhEdVQ+mUZkfEAMjoCFEt4zySui35rKat91dVzRTRiKEt8maA1EVWAGSDSe3GtyDuHaA/7HaHhWXnPqEN90PpCUg7Rme2Uz4dc3089Hr/cx4RLC39R3hBPPjx8AHHPtqhFXGIjD/M/dn8ZT8M7OCNtmFLjEaAnopBGHzhMy+n2e7Oe2++8/3vxPFO6TGnDIjYhSi0RkdCdgIoBoiE7JAdIJsZoACqSIr1NDZVziIqYjmriIGaERNiq85iVo1ZTDvPlUNXV3E2bVI2YCKPSgIOgSCLMDt0iA7ZeVOLMYpkxxhTA1AFr6+8+r3f/Z3fVk1gee4023fEPpIs80P7x1IS2eED7svlzofI7wsL0f9jKJ2cPxiAtVkzrStNuce9axwKdGCWLYuKFIWfjCbsvbYUKFow9XsBwJBANJMBgRKDqXVVVMwOhOe0XL712na1emHuVsVWozdcWt24yOzazwdGBMN2Ucri2p1TYXFm+/dHfe4f2fPjksR4PKs/yjIeEM6bb+AhERg3Lm4URQlzEiTqlE+cpwK3kWoOiduYUXLURgpBZsLWDWCqqqYyD3Czjl2LmimaWisdIRBYW1BRWwlGRHKOzOQ8e8+mlnIyNHacwQS9+YFioQAAqAtSP0Dw++9tIR4ttsfuG9zniYepY0mhNjz69YG3D0JZdrRM97kALVmZHz0cMEHD/p/HwXM+pGphYJ2xBRRMQBGJ2FQihFAgeQACI0YcFL7vAHOFOfUGKy6sIAVwPkkWS0iUFyUdusQXU2wvR4IZiZCJOt8AMLNm8d4BttsLdM1YDQDBMZu2gaEmkmNqmljVqU6aNIlkBOcLGWOeih6n+nTofixVOxZTeejNkUPOCOdK/o8YH0ek+xMZyBmu9KjgwJJb+IcWWgAagIIpAKgqolGWQJb2dsfvvv/Xf/FLVy+vNHVNrqfgDEARzVQ0KUgbyGnkgMgIARmB5squqQmSUPsPFaTR3EhOZshMCIhmjhmRAQnJd0WElEAdgvO+cGVgh8wavBMRQHDe93v94D0CErQJwWQEOSeFZnPr9mh790/+9A/fe+vNrNqu5VanX8LpIfn8YfG5bAU6OMs4//Wg2fWjCx9N2e+gELV4NThmnZ0nLK8nAzXjQQpXawnTuiHPk6oCBnBa9BnAbt++61yomzr00BXoArJDEzNTQjPVrJrVDNUsm4mZgGkbINEJIUhsxIatY7hVQLoEnu4fmcFckBJWIzXVlCGpAqA3FUzJDKDbihYPcNTg8DGDxycuPSbrpAEsSuma7VPyKRaEo9+f72wduIs2NfHpZ66DKaKpJkICYABa8kxBl7NuqCZqWUHUFLqC5B15G4AZgiIoIRAiErVpBPuvYEYIiqhoBkqtXRQAiRwHNG7qHBuJUVOULMpEAbF0BTGgyULZsgNYswOb8gFtDFsZsG3yPbebLv24L+Xg4W+OwENN01kjtB8t0GNlqXjw/WN9wA+hWiz3cTMzA6CcAbIMgivLXlMnA1QjASTP5AjNSvKMoBaJdG11tQyFY+fZM6NYRiQkbrm4ATIyAM1TcElM26XQenih1TxAzay1iBKRGrTZNkRdXxhDZaZ+0StD33PhfIgp5yZ6m6a4A20YxoKxdGaqhYL7KHF/iGctb9En+tzODOezCpaEjEc04BFviB38EQGOcykeptvFMjkdd2fEbDtoGw4zb0k9N3cs0gdNJDZpvPPBO9++9fYP1lfdT//sZy5c6hWFnzZRkBTZ2jRdzEAZULKKGBsXig6QAVAtEVsZisDeOdfyeQIDzW3TVJHkvG8p0QUfyrLXH3jfYxfMIEtGJgB0wbP3xA7QnGciipJiStqWlzbV1ATPwXtkbCQTQVVN90aTnbtbOp3+81/7R7OdLTOB1rm5j1w8iOMPBYuYqpNwvr8IAQ4tv4dmU09G8D3RyfEYYTno4NCgT0hcPXQbhqCgigDkhwjORBGh3yt86Z1HYlXNw2GZNCrkFBuxxB6dc8TOAFsDZ+scQzRANVAAa6upt4IUIlEbMQ1AiAREc+NkW4cICADBUFvJi5CotV5R+xVnNZ1N77z9HaumlgVAl0UM7BLDPq7wuMWlB8XMfY/v/ANzx06nzi3eLojMupJIh7aPJwK2tK21FX5SU5komrRBQAgIxggMyIhtii+3UT8IZABqCgBEaAjQdpFBBkQVTapipgCAnLMAAKBH9GKmOu/trgZtCoG2JVHMAOvcZEvesXPes2/dcSV7h0TMkNCMDZTmTU0XzjQ4qGLt229aQFgq6Xcq2152GzwiWCgc57wkD+6SjxqOZTGH1NyPAg9q88HblajITTaV9P6b30YZR2hc4YGwyamKjXmmEJCCKYFaGcpAEOtJjLOYJk2aERoTASi20ruxp9BK+4zg0QMqgqloV8MNjNmlmFqdtXUdgKHnEDiAomgWycRYFoUjBjLDrJTBZR8MKYOMYnVDuroQADBXYm3ZUvlI0QUAJ0ycHT7qdGjXpJ0/g5vT/BGx/eGutmRSOPQsB5bAcY7CQ4z+jMaeM2KsE0O7Qp8tgc8bv81NNYTMWP/GP/rPvvar/9UzVwdPXRhc2ljNorM4662GpJoVxZARAgGaoJozJiwRCwXWnCVWbMIGXRtHIDNGC2jkiLxnBgBpGC1JJvb93opm0oySpZrWKYshsue1jdX+cIDkHJdMHgyTqPc+OEZNqRqneqRxJk0VyBAs1pkAxvdGo3vbV9YG49s3b736rT/72q9KSgKLdAfY32Y/7FzjiR+OHNd5tfe9Dx8FPndu8CEf1o50BF8ssCeCxsNTbYCAjOK8EaM5h6riPIrGskfXnlrzXlb6RZomEyj7vVk1K8vgnA9Fn7gMoUwSmdR5yqoKSMQEZCqm0nmBQUEzmjERARK2rrPWrqNtmq+CWFvuBxQV0ViFBLxioYYGluLOd/75f/2n//T/Wm2/bdAG29GiTlkXxvEjRZhnhgfekpZMSt2uNn/fuSH3+c8RW6gt/YPFwctXfXxwygi4r4xbK17g1s7IlYUCEnkxTaDZVDq9BbX1VJmBGiE5IFRDU0cUvAdFADRUVck5xybOZnVVNVVdp6g5w53N7T//zvd2xxNgRrCcEyKjMiibImBH/4SEZkRAbM6DIyQws8imvT6Dn5jOzAiIkLqE+k4NmM/NvghqCxQsiyG436nrJOPpIw2de4JuuDP1AXg4OEX0/6iBmXVR9UAqucCd3/zv/j+jrXcdVc7TbJLIBVMBhKbJhlQWjOSQQCSlnEPhDIFdMAAFgNY/jAi06BpDbYkoNAIyU+0quBGBMZoQU+cmAwIDdgwdb7bggwd1oAZZEVWEkohYDz0oA7pQhO1mUnRVodt6z3NMH+jt+4jh6BWXR5o3mj/w00nXWfDF7tTzKkxij049wrlovYzxfWzsH3VA773v3Bz9dfmb+/3ayf049w21ZqhFbwgFAEMg3Lz9ZmFbP/Pl54Ghf/2SZYiU0LNl4cCk2DYMQ+gKPJspASqiKqgBYxYVM0Sm1iFgYNzWN2nz3VUBIMVaVTICqCEFAbXWzUVsaEmjkkNQsyymRIbIKqSqrS8BQMEMUQ3EAEQiOz+dzKzOQ+fv3HjvM194qTegb3/9ay//xF957tNfERBGap+69YBYK5efC7+dbzJHqPtjBodW7Smkd/TEh+U8uMwt9t8vHLWPcNmeBbrIAFvcmqGhAJuNIe6gzpjBvM9WM/NsVjl2gzVfulBwSE3jg/MFzcZNFprW0qTsnGMgVSBrTf4MbSXPRSgFIGrbt8PAoOsR0G0J83w63KdmBJiXi2utP4hAkLKlKk5u7bw7+pPfrj7/8//61Ze+gECA3DEBXCDynBbFRxIOP/tDIuJYk5IdeXP/yz/GLfs4OH3zWbwxAxKVWz98PU0qX1ATBR0BGwEAqmGXBYBEiASGaIYAbRK6qDpw7JkYCbCVzJnIOSRqewmbSN7c3KpmTVH2VQEQnGNAZAIARaTOYo9IBGpm2DoQ1CGKmRGDt3p2d/u7/2x4+WV/5YtaXEQuERlAWnwq2n7OK7aBogsZwPYZDMxNeqfsFo9ncs5fQnYwF7geOdEdy8XnmN7Xgp8045nregaILDlzvPf13/n/TrdfHZaDyV4EJEbHQEqADAhmpklNzLEgIIbge0UpYDHFnJNq5rm9pn281m8LSG0lLDQH1NbIIjNSg5hTUSJim/9uyEzsHSJSmwxsKiljw1HMeXbsfFAxkAyK7B0QOR2hJcOAc9VjCfnnx1CWGMYBSj7LwMcZxx87PNqR8Mjr8k+nOEyW5+boiceOcuyvx10NlzxB8586WaIrJ5izVtW9p59eSZVI5p07UwAmD95xSYQxYgGE3sApMgqgR3aoFk0VNANkQ0PGnHMWCOyAzCC3EZ4mKALSRX8qkikIIDICqBEAEzOTMRMhAgpmQ2BGBjJgVBYjap9CQU1Vs0BMojHFuqbdrZEBfvknnl9/+rlLz13ZfPvGpbWNd17786eff55cv621e9xUnCfXQXgU451d9D47nOFSJ/1+RgfVQ0tThxaTzXXYc90u5uO1Jdz2U3HFWGhK8W1p7iAZ93xdgTFT4YJpr1cyxenWNCUoSgcIa2urVV07J1mjAgAqs5mhB8Ikri34LAA4z8lbWCZbL50tXEqtSt8GwCgCtRp9V4qxXc8ADAoqRL6x0EjuFXG6/b1v/O6dXyz//oVrXzJDcmRdfdE5vn8MczhAZGemuEPK1CGGv29oPnDRYy994KePwsS096Bm3iZucjeYpMQMhOhMFQgByVRVzIDBANQAdZEWQIhM5JiZiBHZsWNgQiYjVARQNQZgR1cvXRoM+sEVpihobK28ZExgAAQIaETcecA0g4GYJsnYK7i/QoW/sD68/Z1fT+PR5U//7JWv/Ao89ZVMlwOzqhIAtRV8207xtrCIwaJmKC5q5M1L553zGjn/6SacazuPibkelVeWbaJP0CcwvwEEMEADpKjALn3vn//jIk0+9alnqI/jOK1TTQ6BzDuPQKZkAhJNBABJMybBqKaEhtgmCpsBzZ+b2nVASESE3BpqmNiRJ2RgmlRVjNm50JIfdc31yNAQjMlR25wYwDvnnCdiInbsANUkgiWQ2jVbOt1qCZq6eI92fDxYGPTRw9HrLrUe6w6wg1bQk2/lCcQCPT44YD+Zvz+F5R86cvki910mh65vS18tlO3OOth+t3QEs7bVlmPU8WQ2nk0zxNAP6EKjLExi1tZ2QyRkJCYiNlRAwS7arCuDrCZqESwzC1DKmtUUAQgIkVWUaO5dRTRTZgohmBG1zcUckgPnuPAFoc+igAZE1FaTQCYzRHHc+skEUJ0jEekVeOPt1yab9xymCxcHIJNv/dkft2WnrYvtwwMe3vsj8oz4PhG6/e8BrnlWeLQ2mvMb7EPBEzMWGXR1f+YfSIwt7cjmn+Cd38fZTYszzNmxM4OUYiiLmFJdV01s1EBUx+NJyskxDXoFGnrHWRPhvB46AILNG760o2DrGYB5fhhAF8bWcdSFZwCWGGsnrxCCUVuV3ShjyBaaWa5G4xA3//Q3/qt7b/wZoWRT6goAPhYS/TiBHfp7kMhOoLhj8DU/0pal/8PXuh8ZP2GbaCf8Hv0SoM15mawOEFypJmgGJnP1uCsR15EqzAOGAKmVRwxUTJLmLKbSZbmAtRXSwdQ5JMALGxtXr1xpebuhASHO5RdCU9P2SgbmyBNxCMH7wI6ZIVeREkAVL27w9Q0Jd771xq//X6Y//DWX7uQMgq3wj/vT0xE+LhbRvLDnoqvneWD8iYM7XRt95LBsjHyygEu0bsBokCNs3v7222//6bWrT89G21Vuij42UeqsZNgvHQErRjM1gdhkRjLVWZXqFH1wBRMjESKQGLZ109sCb7g/JCOAtUWtGAkAN3d2Br3yMq+Kpk6Wgi6X3tp6zoiAxgCMyAgGYpIgg0r2PkjToOMS92z2hpSr4Dwhty0lEdu4o4N67GNG6T5ql6T/M083PpF8gMcEZyfyo46y5YvAGdbmAUvp/lcI0BHgMmeDeT5w+4uCoOOiN5BmOqlkeHFtfTggh9Nai2KFkBETIAE5MDaDDOZBERUMoC3loERMCoImZGBqmms0BSFsO9qxg7Y3HqCZMDEjGZML3rsixkZEFDMwozowI+IkdRMje88IRErOvIM23pqTaqxBojQaSG7d26nl1eHG6tvf/tbKIEzWh8WlYjy6uTcerw4vtt21D2Jn8efowjgj9d3/sKWGjo+Yos/XA/Bhrr0MH+dlbV3aLRg1AGx30ru/M3r/D1cu1B5nhlA3ySH7ENiBZgCA2DRgxkyoCAnUpC375p2JAiQlbK2f2HbO6JYSIhm0mY7UKtVzKd3A2qXcFapGa1NIuz7erasAQUEBWUBKXyhSsrC5p96FeireZZ3d/P3f/C9+ud9bf+YrCkSfLH77IeGB8HDKwbgs5DzI5rcPc23zvPbtBezzq0PuCzTKDMX0vZJyo2ykkglNCblTYg1pLqy0LYzaqopLHNAMFYhEIWcFJnaECN5x2zWs8KRg3hFaBkRmD4tcYJzXTVIFIyQwQgNSZQCQnBhAmklvYzVPRqm22SgS5nIF6nd/1eJ2+dz/HNdeVl8Qtm3HEMHUOt17f7JwLqzZktTyeM2nTx7Oow8AHhRxjsITUQYW7t0uFypnmtx45Xf/8dXhIFrcHO/tTaoi9NrGQ1VVi0gRiiL0CNnQRDWLOvJM3gxEREANtCMYREQCpC4orktfgTbSU1u9F4AAmhjZh65N77xjb5dyb2CmCGiigJo1S84p5qaqm9koNTMwAybzjmd726/8XnXjW5Aag7acBKp1zi3rVJ3Hi+almV2ebVw6AA/N/5EbOm9CODc1f9nGf9IBH57JHHEX2LJdYzmyes7jDVDMpKrrnIwplL3+yur6ytr67nivamZmNi8rQgAeIACQqmYzUCRgh+iJHDsibqtVmYjlZNk0i2kCsLaRO3LbOMy1Ha6ZwTGxYwNty8NljWIxaZ2tTlLnnJjQOUdkBglRmJRYAUQ0zabj1FSSq/HentYyvjea7YxzPctxsrt1e7Z7U2V3d+82UjvFtDDxwAHqfBCUz+tSnBkO76OPCu5LSw9xqccAn5A9E9uChWggCIiWb9fv/NPmjd8K43eDjRwBGqeYYmyICcHNps1or8oZOHhiQtDCF/1QppRUtQge0QyAHBktSvsAmhFAVxMR5927sCvV06XtdL3tDDpxnxTEWsNmG8SqrVagamoGTCRNTlVuptlx787dyebWpB5t/8P/8v+4d/N1gLzwuD5xY9yThEdCp616OOe/OM8QnbPcMyP4uB3xse/cB4c/5BFBAxQQhAQzmL0xKDGBF9Q2vbYVovezV7DdBACM5i3sAACtdRIgWbbOOmgABszMSI4YAFrnAHXVRMHUuGXfrfhi+yYtQxAxMJcy7I2rvUlVzbLz6KzmtOdZc8K6dnE35g/e17e/ll79H2j7j033BNCI5z7xVm2ZXxXmSQGdo3xuvzyIjU8ePF4F4JD2u6xZHYVzx/FiQDUD1fTNb/5qKGlSy3iio6ls71ZZAVRKB8iatWGCMhSe2CE5j+whFH5lsBp6PR8CIokpArBxy9rZkDqXWGuuMQOhNk4IAUAQ6fnnX1zbuGBtfAW13S9aFaDbCpggtL4FQLPcOi4I0bsg2eqURFlTwt23xm/+et57MwFmAACgeU7w3O/1eLdk2/+HCx44jzVB2GdkB5uSHZSqztkFet4WllPheM/rg8ChOV6Iu3POechT0HJBsmRx2phgiuJ94ZjHezu5qUqHHgS01iQgYIpmPovLWXJKpkpIpIyCbZBE1+RFQLIQGiEbgJkYtQ0CVFWJIQQnKTVxEuNYZZqlMsvEBqCAgGTeueB88Fx6Lsk8RYSoFg0SmOScY2wkRlTJMVZ1LHuFRpvs1mToiKfj3Wa2U+BMmnuEGWCej76QnB5q0h98OuaYfwxgJ7z/MNd5DNCGXS0rLHbw/YPqVOcOZmrWprILUNIaNr+x9Z3fo7Q13R3Pbo9lYpaItGDjpm7qeuYKijmV/TL0OErNHhSjWur1C7McnJOURSSLiEnOYqaI6tCYwBEwzX101nVF1dYOuu+9m79aZ76fF5ds4+qADBgY1SRGVvWm9bTZ3ZtVUadTun27jqO9f/Lf/t8hzcRkIQp9gkWc+8Ajee6lfavL1+iM3ksDfAgXw331tPs+xIM8pcHc2QRgYGIGNSrZq7DzZ1dWLOfMSiDg2LcK8pKJ3FrSnSdeYdsAVVRUpS1hpYaMTLxwGJgjNjBEZCJQRUAiyKpJ2qAfNKQumgLREDWDKJAvZlnfeO/u629vNVY6XwaCnrNcud/82lu/9ScffPd745s7sBdH491vj279qs6+DrAncwF0UeLHABauFjRb2ixh7jqHx8bInzy485SBlr1jcPANnCuO95cDgoFCrvH2e98d33mjzzyZAYJIssn2LvaDNBPqDVEpJ51O6qL03jM5NCIFS5SKggugKjWhKGScTDM6ZmQxha49+7zqCpCZtomJbSQck5aFU9CsOTCgoqkJtJ1ixKGgmYg6VCJQ05iEvA9UGINIdK7ElDUmi+OLA/J8e/TDf9YLl2z1GW1bCnd+SITH6U6833WPSvX7OmCXj/OE4Ik69+4z+EPf2LLAhYt3hz52lpRWevCMnGIsykKSqkCcNZ6dJ2SJjjpeaQqiTpXNgAAkJvZFlAQWHZBHh0ygZqrM1KQYXOnRCeSsAsgExkQmaiaAICZIpCZiuQxlU00UzBMHwLarsANMaADZNAGIqKRU5dzUVSVZnGOqkk5r0LS6vhoFYqOpBsQQk3o0m+5u33qzvvaFcvUKQOcNAzBcqtR0dpirEIcweP95OB8Cs4MjnX3Ex35vhwdYSDILHfSjLHcaIBBiW3MkaSwn302v/84lmNaV7mzWk6p6Sp0vKZS9alQZ8upKT1VRwaI4IEvN3mQsKnWsmhrqqo4CWZJaEBNDBgLRrMgiua2UDgAGoKatpdTMCNEAs2nrV7Z963JXaMW6cvLW1o+edwYmBVYVk8gQdid1VJnWKuocyo33d775O7/38//S3wZQOJAM8KMLj2CpLq9BW3YBPpSGdeRuTrm9MzGj+0FnIZk/RutUAoGM2MD2hcm34M5fXPCZHadsDsBMiLhNABBFURBDMVXALALgOgsbARE5dg7ZOWh7wXeBFwAIbZ03FjPTlEC8OVJHyGriyQGYKRqYoFKbhQaATKJS1Q2Ru3DpggtsEhEcspsZfPtGfXO7fnrl7r+4/nzR1zU1Du/M/D8fPHcBV35GkRi6mo+dt6FNAkZsu0DhAYwg4BMVEx4z0IMT5oPBIVl/sQPM3WX7cL5bQXsjasaADmz02g9/H2dbo+3bs9Hu3u1b49t37733wbDsldzDzIF6KCjSxDSVHFUigjkih2ZxNvButT9UM2Y2yIoaNSmYdmnsQEZgRoiOClQCNTBTySqNA/VgLJlMmYjYtTFDhF2DvSyxiWPVhpCACySf6miavDOUuu+wJIsp7TXWlIH1g51X/idu9hRIrTMJP3bj/5z1HRrI9vEMcGKw6ZOUAB43Wo69/ily2sPhwg6+dhdZbjqGc0PfsgUW5xIxURmoCBTQ2BAVCuc1q+ZEqDHFNlwt59z2ZW/qqCpIAKaM6JEIQSHnnEzVLCPaoFwFpWwQBYyc75XkMNZTkWxAyETsEJ0KInGTo2NfuH7PDZyCyXRW341xmuqmaerYxNw0Gps2RgKBNJlTooQUKXDBwQlInWQ6zZKIjSfbo1vvvn/r3dfqelckt0+JSzrwmed9oaYun7K8H5w4Y4/Vl4VHP36knFnHw7Fmn48ozNeRApiYS+i83dj94a/mzVfrcXX7xqiaQDWNgQklEjY+IAU/aeK0zjHLZDIZ7Y1m02nOsSy9c+Adrg5XCxdW+kNHzMRgBibMACbMRAQmYmqEbVWgNqiaEMmgLabS/ls2Ke1z3La5WBsuAQRZVcjMm4JqjKgZMU0m23vjzd6Kf/bFZ37/a78a40T0kEXuEWLwo6zaPXZYMv3f13x/yiWO+eLRRU8cud6icEHnslcwSsgzNw7wPbjxx7B9l5yRA3LOAFQUEMDUTFutU0CTqiKw46ySco4ipgTorK2EbmBiOWvTxCbGNiqi1XyZGI09eTQW1SbNsiZTTKJZcpYMAIiUsxhaTkmzeIRPv/jsy88/UyKi4s6ontTUoM89X1PvvS35w997683v3oNp6WfBtkbTm9+3ZprRte3F2lil/ZmaU6wt0e5SCt0nE+jc2PEhcsMTXs8L2ph8a1nmD7/169TMVDjmPJntTHdu51SPJ03M6J0nNQIMznuPRIYOnHPeMXti5IziC3aEjoOCtX7VNhMSCREJCAyNiMFwTk6d36mtkAIIwDoXyqz1mrX5A62XN5Dz7IyRy4J96PX6YBaTVSIANNub3Ly1qTAc51I5wNab8ca3SWLnH24X2PngdP7muAk96Sb2baqLfw8x4kcTzsKsP7wT7BhxEOaO/aVvbaGELdlhEZCAHeQiYMyxTnXMDVh2BKhpd7QzmlaiknKdtUYCQspZJCYGRhHQbGamoKJMGJxHQjFTQHCMLoTegL2zLNY0JpkcK3c2SnY+lD0m9GxIGSHHOFaMqokJmQ0wAybATA6ZQXPSmDVljBIUA1Buml5RNLPY2plitmoWTXC6N6tns63bt26+9ya3G5q1i68N5O94/hmIZ46p/WTJZbnmtAucslt/GLAjH4/VRT5i6wIP35Et/33QRf+4oTUNzpeLKiIqxuad3013fjCZ1jfvbg7W+q5Hs0lVsGNrmnrLexWT/mCNuQ9IWayJyUDRsyLVTSJHIZRtXSBVM8OsmnMmNGrLeap1JeC6DkRtrE97M7DoU9naaBW0M9IeUWnbTGIm8B6blOsEGd200Xu7MyXXXx1u395+/Xuv3bn59vtvv9b6Gx4LFj8GWl4Hy123PhQtHrMUD2HBjvnupIuc8MvD4fW4hzq0GQB0rYkJQQEUlCugmZsF+V54+zfhxmvp9kya2A/KbVlDJtV9oVk6X5RlVTUjImSiLgha2l7XBkBETNQ0sZpV7WimAIamZiAA1gZEELCoRk1zBxeaQo6ZkJiYnYtNYuLgHKqoiRKlbAw0KMunLw98rr3rbW7rD94dT7VMmWw687O3oHoTtAFemPrxECa6NhyLD5/0NBl3/0MeBXxkjD8LU3W7p1NKUG+/+YPv/PblC5csWj3N06mxIZKrM21OqvWCLVXDtVXTbJhCoMI7cuAYmNEQKLgqR3ahH8rZaMoIwYWsmdl16rSpmjJSm4K+qD+LQIuULxQiVCQkJe3KALVyh6pkNRFVh8SioKJoqB54SL4EFQKabFU53w0N9/rFeo9Gt/6g/9QLqfc0APM8WPSxVtE+RZE7svl3X+PRA6z74ew3+iGf53H79k7yAByrAxzdKx7o3nB+yiknzr+3RdyvmeVmW3Tk+wVVJVjiEDTPvFPHNuz1Y6MgTROr4bDvmBOaipqpI8i5ERMCRGyrW5mZIjARZVAhcL50AaFpmtm4qma9QZ+dV0SwjIBADIRoOcnYQZIcRVVMHBeB+9kM1CSKI4/gVduO2OLMclUxBNM8Ho36vlT0tag610hMok0Th6u+13P3RrtvvfqXX/zq3zTgI0g6cXaOn4HOWwKwHzB9n7Mfk1HjJHXxeCXwIwSH1NGFdfSjd6f7t0QGGRFzBqfbo1t/2gtJ2Vm02b1R3J2lnEabO8NLoMCaaa1c8cnnVGPMBTlFQhdmeTSbRcCA6JskahSTIjnyCkmYkVXL4GplJ8ht+fSu15dpu0+hLe1a3Yayj0GweTOAzk+FgK0v2ht5IQW61+A3X7/7zp2dyaTpl/5nf/LlT3/66edfeGq88x7BV+BALaBHOB1PcmYfqJfkoxJOWqliLjrOGwztOxE7w/qJwiSeqH8csqw95L0dvh4ufca5kokICgim3CAY3l2d/HHzg98M996u3pzVe6vNdEtnYwbOagrqg5vjuau1ZgjUFbXt6p6ralZUMEBGMiJw7MuyME2thttKRwZKyG1aPGqrlJKZIDKAGrTdwNoqWQigSNArSiPNST1zktIHms4ah+GvfeFadfvuuJq+8Py1z3zlmXBp0FD2QS3djfe+6d21PLzq9sPplnDTGWfxAG4+ijzqw8LiqdwTfMInMfBC+kIEVFAD/YPf/YdXL/fu3rmpdb21eW88mTmUO7v1bgXf+M5rv/wzL3oPriDJjKQhUFF679gMVRQYCHxOWjjqhZKYiIKAqRkbWJdABoioIGpKwNT1dVxkobc9yKiteY7UmlmZ0MiIAYEEyYDNIXtwAmRgWcHAxxiLAJPd0XB1fVzVcWd3ZfCUZC14b+vmt9devr6oxNWR9uPfb4+yLzv4ZjEB849zKrD96rvnRhVPhO6PRdHRO3nQe7uv9L80UItwUjTFtL35xni0RbNqbbBSlK5KcTzT4Liqm5TjrffvfvrF6ysrBVhUrcGEACULoxqaiTnP7NlATaOqdL3XDQXEO3CGkmOcTRHBOU/Om7SJH6CGqFm1Vm3EsmMEQ8lgoFEbFSB0KpkIUSHWjdTRUsqxUUg7o3p7HNeeumJhsHlzt0qCHpXECJNaf20ADlOWnc1dMOuif1rn23xnPgN68eDOu1g9+zhe0O65kdLyLH+ct6aP8o0vggJas4kZQNp+pQ/bVMLmpDLmd97ariZV5PjCXtNf5WH/Qj1txMxhU01HmlLhXYyaRdGcd5yyZnMx5aaBnAyYVLRtPO8cZkMwaxvhtYn0amqGXW11Q4MuD7i9vy5WuXUJMJlBmzFMhq3/gJHIgBA4uN2pvH1n5wc3dnbrNJupjxl+eAsG7rkXL4+3b6FFMG4bUH60J+XB4MEyfR7Vcx8UHRcbL879XCcZw/ZPP3Jfy5vmI52eA1xkSfoHxAyZZwhKd1c2fwd++D+Wdz+Ancqm2kxQgMhyJQIIjpyotPm8hETMxNTlHiqoqoEaUKvPqoGaIDlAIqZAvq5j09Te9Zz3YJnJGSCikRGiU8gIQERqAgiAyEyIKCqNKjkiQkRVESZUpgYLZm9W+zz9yc9tvPj0X8NisLG+Wg6LbFkjZ/EyMZB33PBdHlxRItrPd4CFJwQXW0X3Ne6/fiJgWR7DLlHjRwgOrCM1vXnnne9+549+8WeeG41Hm+9v+cKmzazw5Wvvbm83fvP773z55UuX19gsEjvHvnDkmZgIFI0RAFCAzPa29nZkjGZccIqRiVUUEUzn8cOGTIjQ5VQCgBooGOSkYmVA09Z80zbOkNb8b5YZwCMHdARBxLLWyKoBDGYlm25P77y/WxlfvHoxpXG1reWzn0qyF3f+Yj3/DQh+/4nPJZdlma+cBfZTbjq07NcIOsT1Hsfdn8+mtzAGH320ZVPMh7yZE849MBX7yJyXQSDQ3e0P4tQu9i9haqrxnWk1qva26hRff/Pumx+MtnenX7ix9Xf+lZ83iUmSpLquqzKEajb1vcIxEwCaEdnCvcXEZliwFZogpfHO3RzjxpWnM3IUUzUiQmiLGGbQxpGSgYmyccFeDXM2dkxAkiI0tQjnpk6xSrGSpklNGjVwb6YJKcZ6ZzRT4v6gXxRezJDZuSIJ742aq89fAPDQiXE4t6Lul3u+H8IXM7OMPDz48yGOeh7wI8WynwDsK3aIgOggbr2a7t1JiqPb4+2dZmdvMlztbW7Wr79+9/lPfybCCEOWptoeb7nApi7NUsw6HiUR8q6X4jgaVE0ycEAoAFkBgEzNsVMFEzVFMzTtqp/DEivsOv92YloXEjEX2xSQumb22DYNRiRUUPQoRDspvn7zznTWAKEvOTje2pq+9sPbz11YmY38T/6VvZWNYh6H+onSAR7gWR7Vcx/nSliI2GgHwgcPn7iYazwQkvSgIy/D2Y0F8zochoggLMSJbq/t/nf2F/8Ix7vT21yNdLqXd5PfQhIHKuaIzZSM2wYU855f2JayBTBVbXUAbLMZAayNLDIzFARgwnnpWkAzNUFkM2q9UQRMxGaZyAgJCRkIANRIUEkNEUElEKMpKjZ15hCyYKFxzav0tFjrK0jdZE+OgeqakuaCJmH7e4PLL2e+ytAl+MOiEonNTZCfsKWwBIce6zz6AMBBo+9HAFprChLS2++8+cGN22++cWvz3mR7nLLx3nYTk9/eqqqEdeTX3/jAwCECoXrPIXgmFlEDY0fOMzMGV9ZV+vNv/HldNd4XmnMbsmmi0IlFBiDUVeRUMFUTVW3D9EWzatcARtVEJOeYY5Nz1NyQSZuokM2UkBw6p86BZ7BqNt2pbt8aEZQ7t/ecSkm6t7lrUbi5K9VNU2hzCdrHPjeSXp7oB/XELkv89yWZD0lX54OQgx6PA0M/2htYDGSHv5t/6D7NW4qaEcDW3a2NS5eLwjdxMhrf3tt6f3PzxtvvvHd3c3JvlO6M7I/+4tVXXns3OAeWTCQ4LynO9vakiSBZcsopSkwE5hyXRemLgplQc65G0717o+17jIjsEqAYADGyJ0cGppDRlKHd9BRAkdqib0zoCNAkpaqqx5M4neYmNk1dzWZGYbfmtzflT36w9Z3XdyrFwbAc9tghpSbnJNU4Sqbtnelg7aLqPmK66P+FV/6seD16YDeZtrjoA13vocCOvD+7mv1jeDA4zIO0yDsF8M1XN2cTVODe2tok8Qd30lvvVeOZVPXOrNlq8sw7FM1iMoWLzWYAAQAASURBVJlO6zp6LpoqxSZK0maWUs5tlXND1G6dtv1OHSC0qWLtrwadl8zmjYABoOsOaQBItk95nfvUujyXtngothlodYTX3r59e2syS9kAS1+iAqGJ6s7OaDwe72xuA/KRx/7kwFkWyONeRHiYJ592Bw+XO33Gi58C2BpGTAE4A6xtfqP67f8eb2xvv5t2JrAd8f2RvLMttzZj3ahzvqVDUVXTlLLIfrlaahtcdJVqAbqK5MZIKeasamrMNBgMyqI0E1Vhcm3YG3Z3AkxMjNxeq+0haa0VlZjIoN0vrCV9FQU1TUhu6PsbdbaUbDLL44pHM53U0mRNKRMY1VPZfNXGbynIfA/GJTMk7FdN/9GAc1IAlsWdQwR5En0+nGx36vGH5CI1wPWNp4ow2Hr/g+179258MPr//bNvvrOb/+KN2+/c3J1OpxfWB7ubu2++cbfwqw6cIx/YMzvm1uXlDEAQzNOl69eqKLvTOgIn65Z8K9J3qfXYZsCLaFZQMEMyBHUEIBlADEzVVAXACAUhISTQKJIyQMMus0vmBIJicBwsx145vL1NH9yjzR2X09rW+3F0cwoVxYlaNZre+yECCKidgPnHBMcavBf/7gv7gvJcFT8k+jxCZfJxI+RYQe2k/eDhVIKj2sXBKxx7PbQFbwbny0tbkzEOubzY76+Hy5fcF794bX2D1y4Un//88zmJFYN//kd/9taNG2gKSQa9wgFpyjlmiSIxWdTUyHRaVVU1q5tYN5Kq2d5eqmapnoCaK/oJjBw5Au8pePYUPHFKTZYEAIgOgMUg5hyzKpCqa1JKTSMpSqxjVUHOOdqk0nHjXr8Tv/3W9NXb+s6WTCpjZBKEaB49ZpNpNdvZuX3zbj2LuF9qsg2x2MfXmWf/pLmCc9sojtL8fUSKH8OjAERUsqyz0Y23x3f29rbtO69sv3s3fe/9+ve/v70X1rak//a7I50q5zzsrQLwpKqn1SwUfY0uNUoA0709h0ikYJJyoyYxpSRQZagEqwR1ElFjYgLsGiFh6xGdN/sF7FSDrseKEu57Sru+X63tFdg5JhZmlUZSDbubOdfswGlWy8KG9TTeee/e2nD1maevcCBYTif4xJHUWdbn47DFHBoAl6NIjmXTJ3HtOafqdnA7zAQOH3/iLZzyy6LIAQKiIlDcTN/8H/yte9WtMjYv3Loz/P4Pqu/8sPnhm03TlP1eT3Xe2gcBwIhATdoqcGRE6FARDE3RhMAcmpF1TYKt7YZEgIRtnjAxMjGjQwSb678t0gys7UNpXWqMMgATMgE7dI4J0XlWFJFJrLZLF5L29pqyzmVK6NjlrNO6Gk/GVTWR2EhK9d4N236FrZL28Y9YKxF/VHirmZ1TEnA33lwKPEleOWQlPbrtIbRNEE+k51NXQjeyzaMAzPD6s5//4k/+/Pjdb7z5nTf+/HvjnRgvyvjZKxvsodnbWrlWDsve2zc3Lz+19fz1C94zoDrnQY3IEaKYikHVzDyUP/PVn7i3ew9QffDQNo80QDACULDW1GMgCGAKpmioArlpZnVVF34DEAiV2ydWY1DCTJSct8IF57yAqWVkFOKsIhYr8d956/a9kZu+fe/KlcGVvpMqp0k1raY9qHj0PmFj4Odx9ucUyGZLU3z0m+V7OGmhLWnmh11xj9aC/sgN8Iecrcc+7LI+hkeQc+jX+wIe+XgcStGWLUv7HeoxCTz3ma+89v03o6XeoLh87SkZW1XtFGHw6g9e8xdh7fLa+++8fsW72zfeXdW1AK7ksppOy34xG4+LoixLjwZqUTURIDCYmeQGUctQprFdXr9YDi805hQMLOasisbGDNQPfUavTQ1t7KgJW5sETyoiOaKZ5GQKCDTaHW3tVuMpvXZn+8a93HAhwU1jvTueolsXwJVhr79SlgWWwUZ7O3du3U4xmikiH0FUV+H5DAg+bR7mjuNOXHusrTbmnOvArm9nppMfwxlgeYPqxA9AAMt33nz/zvfvfP01+O53R70Lpa6WO5PEO7u3brvnPtV/8enLZpAzJPUiLgS0JEwUszVV7vd6TVISBbKsCdBlicQlEVQ5Z1FPHoEU2qL+agBqKACKRkjWyikIYG2XAAEDAyUiBBDLjhiRVKVtPuOBzYQcE0PO5sD3Qhm1JkZAkCb1S//McxsEApr3tu49/aklhvMjTEnnsI7wIGdvEX7Q5D93LRpAS3oIYCcWxjjbDRvsh7Qc3Ry6kbpUBdOMwLtvjL/1x66R9z+YvJ/8N9/YKla99FerBibxrooYGDJlEUJs4/JRQQByInGqWTEwIAHuS2pmIGqAwsQxZyIMgeZlRyGDECJAVzMR9k9Scm5eLsUQgZAAzUzASNsKXYpgwEiW4nSym5o0m2bJ6ULPaWKVlDWSIBLkqpmMdG3I2zfeufRCNobD096huvWQf/IXAwKeqwKwLBgdKwbdT/Xa79JwVNg6AxxQKNoeK4PCVlZ6/srFjfUNwzFhf+tObeNNB/DS9Y0vfubZAnIN/MPX39hY+cLlciWmTMzeu5wVHZspOlNRw+bSxRWxOteV88Fyo6KIBIQpJ2JCAJHcykdiGQ1BUWJqmllbOav0hTcBVERF0zZ5UXNGNofKKmjIPjAHJVWLluu97PaUGgdPX7swradweb0Y8Hi2c+Hp1XKIwSGiLnU+PSdR4ZBQe5JAfNK5Bz/iIR3gJF1iGc5fJDo64rH0eUhpwZO/hLM9gh1ZSidcwQ7PypzvM+Lq+uVLl65X4w+sh1kKZ8M7d2+74ZpY7/t/+uaV672rvfg3fvYrL6yXQbGe1c10urIWdrYnGxfWfI7j7fFgNRQDrLURNRA29kTk2ecmS1SlzEkolIUPKdcCQGbWJEesjhVqRMmxSc0MjRCCw6Bils1iYymjadPEqpEmoUCxOY6vvz++eStT6PULSpOm59GjDUq+cKlfMhaQAkOWZlLF0CvJEXQBedbWue4k6bnh85BicJxF4kRYpK3DWdWJB4YD9UyWRrjvKvgxPDgcUb3RAIQ12t5064PJO/cwrgzv7lTj7akvQwm8FfNv/+Zbv/ylrwSfwqDXX1mzaNOdPXKOPSEmAZtGrVJm7HnUvvezWWyqqMxEjhESmqgx+2TZALNZNlQEMzBDNTMwBsomgAagiAhABqjaFotwAGYmgdgzqQIoi0IkqL0YpcGQiyZLBCE006KgoXfXr24Q4Qe37l7/4NZnU0W+xMdGwB8DwMXLOQ23YBnt636yRxs2s0yBnbFmX4Q/+33iob/7H/fZ2kI5mLeVBsVsN7+nu7tb7pmbk+r1ukqfevbt2zexhGmUXTNQQDPI5pjAABQAqYtPQzXIYgDASAYMQGqkGdkhCmhwHoyIQEG6qLU27IiorRzamqpEDBDbsogmCogC5lrZ3NpsCiIkUzK0lIUYcgYGZuXYNNJYk5p6FhPbpBkDZWeFGniGwls1irxaWU7A+8hYdoLhAxUi/FgDLlUBOrdHPsXGech4fMQy2nVBX/rmQYc1mK8jQ5Omfut735zt3SFIX/3KZ3rllf/+n/xpnULo2Ve/+vKzV4crfa9RLvQGBsXrr781GH6+16PYxIAMxIjkQ2isduQdcU4z06iSgFBFiAnQVIkIzQCNkTGlJrD35DQKIpILOQVXBmY0SwYZVNWMQZAgsJNMkupI6I3YOxBTVEtWFiFV+Xd++y9feaVa27iOK4PRuH7jnfF4HZ576fLe7u2Ln3rJb1xWAePlyW3X+2OPcVsItQ+qpx2a+o7jdTV7jyntdiwJPSA8AsI/yTZz6NntDDg5i4YDR04/OgosIxA63Xm/+mKHTCOiMqxs3R09t4p7d26ZcrO1+8p3blx97ulPP7c2APvlX/r8Z1745SFNCk9VrDcuDmfTvVk1TqJbt+9dHA4x5zrW9Vi0B9z3ZIpK7Kip46xpRjtjMRhcfhoRkEjAoaYs02DO1KlmgGy5FomgqqKmqiqgHrKlOqYm1bNGINRK2+Pm5mZ861a9N4X1QZhJbmZVwXDl2npRluyo1yuskeGwLDi8f+vmTqLB+mrrAcAD2EFEaNMlD7SxP2YSjlVjj8x0t4U8ymV1iFudYLh7CDb4YzgLLOQBRESNcW0lPP3M8KmpbO3WCNTUltXKnppovwjrF0tpSNI0zoSylEWxeW/qdUjEapbBVQmaWBszUCiCH/T6oyYjAQEEYlXLkEUtS1ssBay1TxkBgagwMhMny13ILqlkKdi31dMJwTG31aRzzk2MoeRhKB2z9zQc+I3UL+s4qbM6Xgl0cXVQ+pCjNU2++d4NNDUTPF9T4I86zI360En3ALCoGoSdnXMR/dWegftHPhicesoBk4IBEOZUb73y3eko3yl4cvmpt17f4str33vv1Ukeh2I4GeWUhYi1NZS3rY5aywrSos5Ca7Yzmd++AphZGx2Ebe9gwK7xmBG3Z7V+DxSR8XgSimJtZUhkJorUyn2MANkSKRS+aGIDgMGXZhqjUbDANJ5Wjtn5MkrKMY/jlAsquO+wFLTt7S2H6erGyqojhGw27/O1xERbNQh/ZDjr/rI/h2c9SVw7tL0dNZou3hzakB9kig7rwQhgqf6Tr/2znlMo+sVw+oUX1v/2/+yzN+5tbaz6r3zpqbKAatp4Z4GzAkxTfuvdN7/6E18xSQoaKHjn0ExFGZEMEWmwMvS+MNU29Xah4YOBQsZMjklVwFBVzZKIakpcerQIYuiAyAgQMqCqpqg5MQKZQyATMIAYIyOmGWzeitWOK3OYbo6+8cffvfbs07NJ3Nva3biy9tJnn/eD54QvI/g5le9LKOdg6Tl5oh94US2p6Pc58WxOpGNHeFSwxEeWKPbY8U4f9b73dJJVp31zDLLwEPY7vqwg7OiNH7wjF+oXrpfjnfFkPLr69PUPbrzxC3/1uS/8/a/mO/eKYra5syPqofSAuQBTzzbKk93dkCpnTkqPQs2sKetifX3FUk6Yq+momVTD/srdu5uyOy7UFBpUQc2QJpSYIUDSnGeQMwloRFMzFRCLTZ3rFOus6jIUd/fgvbv1e+9PtnbSvQkUHl9+biMMVl+9sTWd7a33Qumx9DDd3b28vnH96rXN3cl3fnB7ayT94UBzZs+t+WC+l9o8CfoUoR4OktKJytpci3jEy2qZSDpetyQ0LN/Bj+HRQWsfWTYzqKkBGfagX8qnNmh6me/VJCNXR2KXLl4JX/25i77fOPax0WZ3ApUYKqMZSFVN+6HcaUDJq/m6gqqGKkI2UFPLwAqImBGTmIhqW/gTAQ2o7Zqqwq2wBcjoFEBRDcw7B9AGkqqjQESqMM2xSRmZCh+4KMBBlAY9X9joofRjVAu8Niz6wa0UPOgVvZ7/iz/79q/8GzsbV5/6ERF3PiJwyJC1cMou2FLrrjyhV9UDwgEDLx6VuQw68xAgqpkn+otvfsfG4S0bfveNO+/vVnnnjVffu1MljHr7cy+9fOFC/mD7rkOnas7xgim1KSsikgVSFu/QABVA1dpaP2igqswwz/UFa7NXgBH2e9KK5qquABGQVAwBTAUBF927EKlpIjIhuOmsmqYZKJTFOhA2mjJAwhwGpQuuJGDyKeK9vZ3RdG99fa0YDqkso4Dk7IrD7N0W28J+is0nfF3sKwDn8KCH9tVDMsmxm9lJd/Xw62ExnGUkrZrx2uoaZLJaxtV7Lz3rP/XC00VZSqqbCsn5/mopYmR6de3K7u7uu+/feuryxeAwa2QgJEfGaKZRJVrgAtW0TfxtDf9oBmoKaGgoTp1abuUFRoemFatg9EjUNodvo0BNRAUtkikRatYmZWBEn9kFA4qNjSfTl59bu7JCP3h/e09DpOLu+O7z60V/lYtiVlCus7aN7DprQiejnAdBHyv1GsAy61s2cp9kGu+OmfcYmWceHR7iEDE8ufWKR989KLof2sRz9PHx0P3sW5BsaQVqVTeKxWg27Q/Wqckv/cTn/tmv/W4ezb77x3/w3EV8aqXYHm1y3xl7Q0pJHGIZXDEkG4dqMo2VAYdyI6CTXOfCfAhOTVOTi6LnfQ/Ap5hLTVJHIUwqJClrNjNVlKisIDGDgKkhMCrEqpmOZvXMwPz7N3fujPDGTj2ZCLseat0PMvT1tYsXXLG+NYJBEUKwVE3LC/1+idVs+t6NvZ29WhNev/40IM/r/u8HEHai+7FOpWOwe/ocPkZ/mh0kqWM55Cd5dzpvWMalAYCBEZBRWPvUtZ7djL0pNOPX351dfmHj3bvSjOJKmZ++pNPpTozjohgA8ayKMYuJ67veZtw1yQ5Lydo02aBMaJlMTJAITFVBSawL6TEFUISuST0AAhAQABl0SZfStq5BIDQ0BdS2EEUSjSk1KSK6QT/4wASkpk2sA/W95/XVviRzvUBsvSIUBVPB42nty7UkUUWJz6kcyEcOnvT6WTjlD+yF7f9HcW8HL3LUt7mvaICZgXrGb//5Dz77lU9//d3qN/7ojY31jabaMXaSIwCO6llv2C92CyPLOTMAtWH5bdauoZmpWhLN0jYUAzUQM7X5UxkiArUdfQnZETOZKRGaIZh571bXhogu58xkCEbEYKCWHTtTassNoaDkfOvO3Ubi808/w+QDu0YqpLbsijPFOMNqWo3THnhbW/cbF3qDlTXvGDgASKdnLSF9jpKFWPoAbt1zabP06OHJeAAWpH5IZjqkdt3P+/7QdwFgqMhCHJMmwUGxIWE2jU0oHRqAUVZIlpzzkVAahSxQ0LBc/eD9O6mpnnnukvckoMmIiQIQIwKriFgWDtwWAGorDrZJy4golgxYzdrGGc4HzJBydgiUlUgMTEDJVFPjEJgBESyrqCGjmLC5pkm9Qdlfc8++uPIpDZubsnJ58MHUvfbe3Wrr1md/6qcvXyr7ZZps3h6uQNtsoO04g92W9oQTvQ6J7waAS+5NO3KY7RPDYU4GBy5yOPTlnDX3Q3aVU0Z/5Dd2DFM//sAlrCz2GEIguL3ZvHnvnZ/7q1/k2Xg0nv3CX/2lP/nDPyiG1zY306V+aZJ7qyver2YRJUVVNvCF0crqVHA6Hk2mNTdpZcDlWkijhKX2+kPyfTWNte5spensg4tXBitPDahA9gXmbERUuFQ3IDnXEdABKCk2UZsmjfdSqtx4t67rPB1lmdnFXrg0dI54wFzlZq0gq/d6hhfK0BsWDjWs8LULw16p2zs7v/f17yXml5+7+uILLyIxzEX9Di1H7W/HKG5HMHY8Pk9G9iOEdp/6hJuiPiqwJBC0r2qOYP0iD8NLz0JP0rMX4O6kuhrc5gdysS/PX2IAXVm7ohaUanZlntZNo7PxXuFWZ82o513QSWNKDl0mZkOU4LkRACMxU+N5OHQbAt7WJSQwRSQBVTA1I0Q0ZUVj4dYnQF6J66xNSlkU1fUL32cuNFtuooJzBSn1yn5qYhk8mxS9AiCbo5nItNZnnr9W9gZEP6rS/xOF41fzw67x09kDnsisWmvkvhW/mu3d3JrRtv3Wn705iVRv7V2+sIpRKTbm3Obd7Zdeen7j0sbW9k4bSYkACG0gUNcTrE0FEIEsIAIioGRmCEZgXZkfhDlN7xtku940hLAy6CMGYkIRMBRRRiIizdL2j49N8p73JpO9yWww6PXKPgOYiokgk2MsQh/EFJD6fHHgVgL32EK/TGSC2LiiyebNlnl4t+ARuyTguX/3kGZ2Pwx/zMDBeYlKh0c5ddRTttYPfaudVIkGBtwfDHI1SxpQYX39guSYUnPx0sbO7t6kmiFAM2scABE1KffL0ijv7U5A5cLFwWBt3ajAglNKIpJjzAqemYgICMCM9qlbQT0FNW1Lu4kpSELFXtEzSAwRTEQVQUESmgKimEISBUGFVEVTxRAGF69BWAFnmtXSZDzeWu31Xnjus1d7M/vUp372y1emabq7F9efebaqpr2sGAi6zaWL/n8i031K6EKnkMF+OJ4dOeyUUIejkveTAjxu9GOdIS3cx7B8hmlaLJOj6D1y7r7xe2H0aCXjalKVqxfeewv/6A//8udevpCqKtWzz33mxe+88mdlqXvTxN7nxoa9ovCQGTMAJdZc9weDflkoUrw7mc4SZO0HG5TczARAQuFiXY33prO9/INX3/cFfulnn7l+fa3X0zJoilKnmeYkdWNJVCRJTnWOUVPU1GisQDK44C8/daFXS1IzxcmourwR6mwrwxAcgVCJBQCUjq5eWlv1Ptfy2nu337w3qf3gF770FRc8UBtWgWT7oZ1LSDpdIz4r939csOjOeQJhP7Sj6cdwEiw8pW0oPgKB9ejC8/TUs9nec2V+/pq/XPsCZtc8/fRPPPf05TAsQpJQ2Fpx0fZsE4iau5WAlaEvSlWGJKRm5lARsoERqgE5AgRJoIYiCtQqA2SIhmCtyISmpmrQFUExZAAkdog5W1RJOTdZsgCCD0xF8A7ZTJum8SEYGYrNmqrnOYuGwBKjD77fGyoUN2998G/9O780WFl50kahJwtP6tm7eJYjXx++o2OX9tEvj/Kp4048nk/Y/Bc0undje5zCK29uju7tgS9N43g6jTGBGlhWgs3NbQRTzYCWRYiJABC4TQWAeSaAmYm2BZ1VjdrQoK6tNWIbLISEKAbAiG3ugwIAIRGhSAZ0bZdJVQNSAyUkBpAMiqgAW7vjuk5PX78ukkd1hWSS87of+tDjIkiTudRe3xUcApMjaKIkn/q9HvmSOMCS7wPmQT9tubx9D/GpePsEgINz2eKWpbRuM1sSRI+afpfhfnbNM46/vC4AEAiI2V++vGGzD4rCpjUMVje272z1yhLEOS4Dqwi4ECw1RiqSsyQ3CIgwnVZyT6ejvLJyyV8sNU8QknJSVaQ+EhGygRFC2x+11WsJKWsGRAMSTVkFFEoXUJU8mJqIoiXUDFmUUUkJBUzrpppM95T8lWufCZeuqfJstu36frQ7qqrdQb95+lLsFa7gVdZ7CCEM19WrQYUkCoJABghL5VOfiI38WMC5h2TJgP0w93WShHQOz3hgiDZ288ivxyq0pwueZxnOjqyd46b14BcdqhctzikUxda9vXJ17c7d7fDZlezHvsTiQvFTq19+/43XP3hj8+rTV4xT48flygr5IUMpoYppU3MqGNavDGsC2p41s7y5PZvN0nCjwFkqAmBsJuPUJBVaqSu9+X6zypVfxwpqcjTLOUutmglQBJuUJWqMYoq+KIpesXE1zKpmOp1REDXQ2no+jGsD3wvIpKjgZZoQaC34DTJq6t1x+u4rd/ca32T7+V/6pZQlcFtAutvkDpXVOwHPdmTGnsBCMQA4SEvHH/MRWMWfJFhox4uN0bGT4dU0WNPeysqFtGo2Gpu/cHU82hmsRkA/a6oi9CXXoR9WLvTF8krsv/3evbqgGei0Sjkhg5/MGpFBnaSJkC0bECIqQBRTYCC0rAqWFcRAW6MktpXQAduycaDOsxE20ZJZYzmrmgETMohjQKcZMxoxB0DOCq211RlZ1gCw4oteWa4Ohu/e3b19e3TpylUk96NNQU9mG5yXtTh8K8vf3Nf5ePr3xx1z6Lt9iawVdw2MQuhduz6qFIgJxTPFpk4iCAAoxLy1te2QRQUAECwlZCLvER0ggqmxa1PSAdVUTBGslW4y5EwIZATCQG1QgoGZSs7eF93NEZgqkhORGDMhkyNUVDNFVTNE9Fzs7tTjaRwO+iw6G1diqgr37t51LxbDEtXyoOj1CI0EiZpsk0ZX11eKIa0Mer4/JOQF+vf3aOz2CLQTd9NPGLh2XzwYCfXoYYFo2N90jxnqQcn9Qcbff7i5jQeIfX+4cufuqwF9L2CMzoWeYy9G6ohDCOSQodLGe2dCSEGlLooQOWN2VZK62rq3ueeLen0tDFYKZiRiBQRVcoyigCBqhAaIUSMgqRkTGVJWS5KySgEQWvW37ekiiUS9C0mAhKFOqWliQxeeebZ/+VMSuJnsUnNX6ruT6dSV2BuWVZrsVXcDFyvFarkxLAeFRMkoKgm514p7bRekeZrRY4czDtGyvPsSxhnhQc3/j4PgD4njh9wg9x3u0FnLXOiIFjvP7z64ZxyBY7jcsoxLDlcvXtyr7r63eWeUdaPwJrONCxd61y49/dKzP/yj36vqaW+136QZJ2ccQq8g5xyl2W5jTfQ9d/HK0Dseb8XxqNrcHm+Ndwerw2GPp1vbq+vXwrCft8Y//OHmbLp7qXwhQ1E6UIm+1wtl2TQNMkus0YgcBHYAZEreOecZfYFeBlSAAUatG1nJGAUH5epkPK1n9tT19cuXr/pm1uxtbW3ee/uD6a27e5l6SfCX/uYvs/MdCrow2/aDLeHg2Al5wiz/oEoJMC8Lsuwlg2XCeFg6/qTvbg8NCJ2LGADAFDK43tpwABf2Zg2OtjbWi+nuzuWLdvFKLzL0e8M6VwrVaM9Yewlp2jRbu7ZTzcqrG7nmjeF6NZtqzNMqZsMsmhUMUc2ySFZUIzEzU9W2dTwoECBpWyZeW2cyEnI2jdkas0YEgYjYzEAB0NQkJ24AADhAJ/0LaYxGhqFfICEyMNO4mv3wjfeee+mL1597logNDM/PN/xRgyf4yGjLeb5H7A3Hmo1OgtOdlSf7hG3pAERjEfSDle0PPvBsTJibrCYGbc1MUlUgilJT14nXRDMYMzsmdMzUFrBVQ0eACNpuUmimhpRNGFAMSU3FBA0sgTrnPAKoKRGoooGJNAYIoCqAhkrmmcVy6UJdRTO/VzWhN+wH0pQzgzna2RtdffrF/vpGL2Bsqt3piBz1ioEZEvL6yqBXkHnz3BsOLzjnF20+OkTsyx8HeerZe8Z8DMEtkd8n9Rlb2N83u6bSgES2sn7hhhmyNZPKIwfvPZrozFEaDL1n3y/7d7ctAfleEetqZRULUh8CmDf1YFinNBpPd3artZXVjQvrwXEISgyYEzMqADhUUQBkJlV05ADME5tJk/NkVvXX1yAno2yqkGvRjIbVpIbhwCJIlWPln/vsT6w//3wMuWk2SbeHIcWZTQQuDFaH/RWFdPHihkQoyoDOuKnRD8kVaoG6/MfO7zEXGB7S6fsR3yIeVGM/JJ3D/c89IpsducIpFznLjS1z5ZOO3/eTnLpnH7b8H3sZADV+4aVPvfbad7zn3/vat/7uv/xlndVR8iyCR1x/+grN7plNCI2UzFzh+qQ+Efh+CZRRNSBuXObVvm3d4Tv39qLZZNbMJjooijoz9i6VG/7v/sdfnVbbd/e2v/e9G9cuhBcvr1OcXAgDELc3bZiMgbwv1DgnUNRpXWFTM/uiCG2hOS6sHGBosmUXQm863S0LvHCh13diTb61tfuXP9j6YALTDER4ZW3t5ZdeoH0n7+GM6Pnf86TouXe5HXyZ8x6EZTlgsUvBwkkN8z9ze9WC7h/UaPVRXssfBWjniBk1zRjGWUf9i0WTE8Z0aR2cg9WBqzCAeleGWE0Qx5CkD4Fn48vD1ffvxj+/Pa4BPvfMaqm5FmpAmiYDMRqqkmlyxgrWgDQp5TbUBxAJur7wqq3cjx5UsEmSTWPWRhQQHBEagBoSIIGY1impEhODkYkCKBIRYY4Re2UTa/bWX10dNXF3Kn/3F/+F3mAFABDoR1X6f2LQCZ7zKKAHRb0d3CnOMtzxn7piyAZIAMZIl65e1tL5FXacVQzR1KBgByLZTLIA6vK4CqaatFEC6JeFK7xnhlaXVVODtmdFzqZOcwZHpEqmaoRmZIYCxoYGiERmoGaqmkVVgJm48yVAysrsqlmjRtOmUeAilKtrvsSIHrOCKt/aqv7gT94Mffzi55/7zNPD4GYrAy/JAQQffOlyBMsQxo3bAM/zeTiEnuVuywYPNT0fHzjXJOBT4JDJ8yh8CP50NFCiG5CAwIrRTK5dWTVumjqGEBgbYkTjvgs5Z8lNWRakLqkCmqH6sijLcPfOrOQyEBVekcoslupmvDPp9Qot0QooSweGSGbSroGsaqVfFRUiNlaPlKomZwn9XprWkDCJao4aMwqpwt7OXc7qUvPSp1++9MyL0C9EdhgSopShHDXaK9Yc9Z3vsfNIVBSlmKEEMWYipsKxmys9eNRO+PhmfBnjx3IoPDPnOvuIp398RER1wMhyiHk8wofC0z62TkrEJRfysV6CI9DRwgGJEsk5/9M/+1P/4B/8t/d2tndp57NfePHFyyuUXM6CTi8//6nptpdqAqiSm1DyaLTtgmdG59nAW8oOGSkXjL684Ifh3r2tOhq7vgb/5pZ889W3P7i3G759M8b81Z95ydGV/l7z/Vs31wfEWABJElDE0AshFEA+eWhSzBCBTECD7wcXDB2IpCYPVlaIC0DaoCvrvrfeX9m8tfeX3/r+eBLDcO3WBzuzCNTDX/nX/qWi6CE5W+qk03lLuqpAj4r8Tze9HYClmqGnHb3soVgS81sjrc3boSxvU/vqwY/hkcC+YRCMUO++dcuXO1DHSZV7ZU8LkZjYce2aytLGcJXYz6Z7IFqNJ3mCmCOrryt97VbaRv+Du+89u9bbWBmAsipqFgBsokQRdD6DNVmMGAlyEhFTQgBEJjQwg6wqjUaVJAKIbQewVlQyBSMjQkBCgLo9O0pIuRccM0ZTFeiVocnZEC4O15XCn37jOzt78JkvfEnRMSxlAH+CtICP/qO0TODhqsfgwfeHtqEWTsbA0l7RMpp5Oq+aovC0yv314QvPPHXv3mjjwoVyWN65eaeazjyCEFVVJALVhUnRAEBM69gQgWfOrIUngLazCyJ5QkZQtLZurZmqGZlBVyFRMYMotIESRkiOHSIkFDNjR0QEYAwcUxpPZ0l5a2tWx/ziC9dNkxsUsckKvLm921vv7U3zq6/c/eZ33/rf/6//rXLoBv1SU1E3mnOTSZPxZFwjjy90VuADjZi7HfzQV6ei8iMOXbsbONHi+5GL//sw1tMznrqYzZxFzdVR3nnz/SuD9cHqxXo8mjQ1AhPBXh2rpmaOgYpQuGY0K8AKLg0JKKBPpmKWiJNDICZvYJqqKs2ShcqVvdDv+yI4RnYIKJhVqjQlYrBMYKbmCW/fvas5rnpYCR6Z0Fxjliscj0fT8c7GoPzcT39h49oF62UHUKKaaiiK6c6dRppZ3VxcXyX2RODYW7ZkPgzW/DA0k9xYGjDNq0os6l3Z/qp9cKye5fj94JKTBeLWhn04BPJDwzGLef7+0Y1wmsX95IX2oUZakgThkDvykB0ID+L/8N0tBJuFjGkWPD/33FPPPfPM13746h3Z+Z0/euOZv/1XS60kj7QCXBusXPvsaPtuM9mx2ESZOTIjcxwsExQ+9DlFkYawBlfY5bDOTmKlqxee/sO/vPUnN3ZfuTUbrq3Wzo+nKa8+s3v7nZLk3g92P/PCmi9HFy+VitmVzoXgiwLQE6MrigK0jjU7IvTOFwjOFGhgpqRCe3s7Fy5cnjZy65233nrt1mRUAYeGbSvlFKBXhn/vP/h3BZaEm2WrziPWgo/uvKccaYvm1idU9Vy+EO6ftL8xzQX9BU2caegfw4OBLf1hYJTVt165/dlPXQyDmQ+lYu5rf7I7qlI9vHKJBy5XsWDXNL4s1m7dvolY7O5OirWLtDVKM/WrG6+NKhqNA9hKwB5q6b0YJwugmECUXFYQRQBuA0OMSA2yiogm02ya1RQBEdkzmpIhGRKZgDI6FUViBJdNZ3XDjIwDFgA0KkEFm1k92Bj60H/9nRuvvn2717u0vrJq++UnO2L72Io6h+Fj8RS40OMf9naPY/UHfjr1pP3q4ABgYEQ0GLiNa5cn79wIvnj508+PxzMPtLqyMhz0gahOac9GVVV3V7J955GqVE3NxM5xnz0QKFCbf2gAzK2/itqC/21Gexf1BiSoCKRmpqakDI7QOaScm6R1URTkXIzWZKiN79wbTSfV6rCHGmOUd0czM7AU61l1+Ro888zanYmS7P3B17/1d/61X2wmNQd1BUmq65QhDKezem906/O/2FUkOiA1IC5HAu1j6WNBTPeDY5f2+fX/O8VA9eGWwNnhsNMMkfuD4Vuvvv6FFy8NLhdNrEJwKQM5hCSg2gs9A2pi9L1hXc8U4lPDqy7YdBbJYzOLWaJDU8KUDQG9BwJUg5zSVLXJsSBHRExSFqVDF3pFTHWua8uZwEnMm7f33n7v9tX1wVPrQ/JhbzTOUSw3Pd98+vn1z7z8Ml5YsT7WNimtYEmlmVYzmc1AhIyrauIcBV5R5CZFcEwh1I1Woxi9M/Kt/I9dXxFYkj8esQ0ejlDYIan0hOl4NLBsAocDHO4+Zz34OHDAiH5I4H50z4QnvD92kGO1nSMLfmH3t4WagoBq4pD+3r/5b/zaP/7VJsVv/eXNv/mzk8sX4tpKtthMR+p44/r1z9Sz8XT7dt1sk7eqiYjEoUQjgFQEpYKLoWuaRvemg/UizXY3b9y++e7em69vPfX8M9cvXyjLwdbde9/+9d958dmLeAmghOHFgSup6AcgN1jtuaJQYjXKCC4UK72yrxqlcT4gcM5qMZEh+cI7d+Hi2u0Ptm++8e6b33tttXfh6uVLU8M/f3V7s7KExTqv/eRP/ySg064l3xwTS/TRuVFOQtWZ4AFs/8uTg4dXyamegHlLoO72u/C9JdLrphQWiv3p7oUfw1kAF1YStCR64bmf+n//F+9d/pcHK5fRORKjonDNDF2/N1hdzaopNjJr1nvDauYK4toSr/RHFcySJLEqyyxbndOKd5pUvFV1BehiBENS1Cwm4BppM4AtoWUARTNRUZHO54NgRugkC7clEUE1qyG6ooioairZnKMkeVbVCBg8MwFSUJldWBmgLzZHk2984xWk4pnr11/69AuGnYa8sEP/mGzOFR4Duh+EKy0V4QRDJDCLder113fHr2m2pq4d8Wg01tZZIWpZ+2WporPYQMueWv8jgoEltUldA2JREAenDhUgZWFnvZa6uo4+XVYiAJihmapiToqogNDKKp1XE7FRi1UDICIUBd6/NfngztblSyuXr6yMx5tFWF298vRodzarbv7df/NXfvs3f1carOvdn/n5n/qnX/sa+PV/8edeHq4l0QR5GhxeurTx+vfu7eWoStQKv0sOGJtL/9h5VRHh4Tw0Hx3AAy9HaOL8FICTpLHzwu2yoa4LC2CEp5+9Mmtmb7753tNrFzYur8ZUyQxNXL/nJ6MqhLLOyUAQNcUYJUfxgTiUfnZvJ9Wpj0KJKARP6NAhkWPmgEQmJpLTuKlTyillUfWOHDtT0SZVTZMzsAEXF3NdfXDX6jHX2jR1Xi3jp54LX/3iM+vr3q+5WVAkcZggapEal2fVaFuaDOrKsjDVnJqsxSRBrLHoe1VXT2bMAfvDxiC0ev6BAIF9lD8mQeGoJnCsYvAIb+IkQf/0Cz94AI8t7LiLUx4rAR8r6y/u4xQl4cg3+zrRsixsZohkAF/96k///X//7/1n/4//19vv7P43//Br/9F/8Evr/RS8NNVoc2dnPBgOL15aufbyQOrd7U21aqbiNQ8dmlrhRVI2MUfo0TzC2sWB1HBxoGsAe7d2V6mA0q5yUfbDC0+Vl1arp69duXyhv7bS98MyeC7KQtt0eR8K531ZIJAmKYelgqVsSRIVPCj6ENGUbr1/74ffffXWW7c+++KnxqOYIIxn9tbNWdJCiP7D//R/Uc2kv8LLz96Z3HHB4lvevsDGh5mcQ6efThSHXDunnImHDjpgqsIlw1QnHnYHnJ0mf6wnnAxzjUoxoBte/2IOX/7Dr7/6N37haU8yqWYrF9aCegeMIibZqoYRFc0VvFKG2fa0cr2/ePtWhb1ZbCD5oihUwKpsJQgjknPsMEsSrJMiglJWwCyW1RTNCASUANERGpgaGhA5U3BMoCmwXd7Y6A1XPri9O5pWvgyqmRhMjcjXURAjgC9KTpK9D73BCvDg63/wncnMwqC4cumKc8C0kAo+aYTw8IluH3M4iSsdhAOGgrYgadt+2Jf+qz/3C7/7tT8oyoEaGGTEtmMvqHRyRK8sFClnNRWxDIAKRmBglnIeT2eFA17ph8AZSFRN0BRyNh8cIJoRKEEbc4SApmZkANqWK299BprAYDSZRYUcLVkEhaqxnSZfeurq05dXQpD+4FKKxfaubW5WBWhYLV767AvPghte/9Tv/+F3P9ijf/BPv/nZF596SvJT19Zz7sUk25P4G3/4/b/+K39VDBlAbbGVz40oiGZ2Vix+5OFw0ZcjT3N+CsBROLpjnZ/5qhOg5Opzzz332Z9785VvS9kvitKR6qAczRIgl4MiNqkMAbFXkDmCD+7ujifVsLciMU52x5agKICKggEBHQCBETIhACExoykGICHIjrLkrKKp2bo7AUAMnBoxSdlcXVUXN1ZX+m6jF9YGVz51dfXSc+XaGnLIe032FHp+JTV1jDXkWaxH1ayWlPsrg6Skibznqp5NJrY6vHTx+vWkBQYqXdhxBSBol79/PFofFZ5PmrKjhvmlJrSP+iYOikpnueppaslpZxyzoM6TT9zPaHzKL8tLDQwQyNDQYVHb3v/mf/e//fO/ePWf/upv5fjW5z577W/9tcvDyzzoD8e7k5s33tVYa5oONi6uXbhaN5WkKaRZZib0ERoDlZRFIwR2WtaN7E3Gzz09+Klp/tab9d279+4IrKt8/rnhai8HltXV3sqlFefY9wbeO6B2DaErCiSX21qqgdkVhlm07q0MA7nCaDrbvnfr5ivf+EHB61948cXpZJaE96LdmsnIoAKzqP/q3/rXB8MhYBcB2T7ogtUftvofqH/yoLznaKAW3O8KhwY6wAJPWURw0PIPsCzj4MNV9/p4b24PCwfn+DTWZdCG1lOGwV/7V/+X//D/9J9eGM5+7ssbzD42GJOlaeJBg4SUwJmfCjRNihlcceHdO9OZldQLPaOi8N4X4+29z71w9fLQ52ovxgbRGuJ7241nJocZ0BRFzVAJgIgARE1NrRNNaK7ym5FDE/nFX/q5ote//cHkG3/2F5N6YmDIJEnU1DsHCKpoAqUrLqxvcOi99sY7d7ZH5l2T9K/83M+VpT9Y7PzhlsCP4eHhUeH6wfnXnFPNLUmLivhq9rnP/eTm5uzilX5RuKquREzUzCy3lfuRAGTQ76ui5pQkNbFREyNEBTVNKlujbGjs2TlkQAIrGMEIa4ECmVEM0IgN0YAAVQHIrPMziACAYoppb1RVgsb9aFCPJrOq4rK/MRz2ycWmGgZ2bG+/8d77t/bWB/r1P3+HDDzTvZvvFWaf+/KXb77zzndfee3n/92/jmmUEoDrf/u7b//G73/v3/5PXkJ20Kbc274LFeZOgIWUYp3X4hO7Is5JAThjJMZZ9s9HMhvdtCNb7v29f/9/9d/81/+3O7NpOQu52vNOuB8mdbUyGBokEynLkHN89rlnvv3Kmxfv7OxubhGCdyvvv/3elS+8RA5FkDwTMiAzeSL0wTkHgEmtNjU0ZOpF0XoSKbvdnWmqm9Ve4cHN6njxpYtXrg6vrOBgvffUtWc15trDbpWo0mF/uOEvu2R1tbW3c2di5kFrdeWgHyOqQW/Nk/fTyWwwWF9dXwfFWE0wGSgy+zbgbi4lGBwJu39UpI0HXw9N95HZPyct73zgsT7JsSrxKcOd/BMeuhgCWqeQmZmW5XAa6//nf/mf/8f/4X/y67/1q7/2h9/+5Z//G1fYp1StXO599tL1m6+/M9t8d/3K1cHlq1wO+hevMvjU1HXdqMwk14ITxUkIaEQu24qyH8T1VXdxsPfmZsVF/0svP3NtxVIeX7p4bf3iRQwcgiu8945DURpSkwTYG3IjEZ0jorLol4yXVsJkb9TsjG7dee/Wuz9sZtMvvPzSeFtnM93diVMY3BjnP/3Bne09KC/1/vav/K0XX35BDVEXzX8PhDYvQuCWqPah9bj9bfcUg6MdwL7h0ten+8raIWz5xy6VZ+6rXlIIPjkr6jEDnvJpH6z70QDQBiX91C/9C//5//nab/zJa2Xx7MVVWFuNmapyOJzNZgWWFLXe2auNtzYVd2wSB+/d2W3Egw9lv4cOqhSzpRVOzw297/f2duPeaGphQOvFJEo2TAZABh4hWxQxazUQBbC2TIshACgYKgKR9xR+73e+/uWvfOnSxcvPXL/45vuTHBOac8RtcwAxIIelZycwKIdvvPHuW+/fFCAE3Li89nf+7b/jfIGABgpAS2S5ePyPNzV9LMz/j+oeH94OtTActMGGYM65z3/lS5evX93e2gbTUHhAAETJmdpuimjIBKTese+VdQWqKWZTBZj3LYyS722PcxS5MMyDIveRmpyNiB0hMACaC2gBgJgQgQhNQBRijlkysc8iMea33r3nBxfcKmcHo7pe7w+uXrg4YN68eyesgQuyttKr886b792OGcKl69/9+p9+7vMvXr92SZpbd2+8iy6HPr/6g9cHJMGvv3138/f/8tVxpNXVtXYTMF00h8RlhIAtm1Q+DpT0gLDYe87bA3BUOoT7RYwcvcIjvJHCh8994Ss//3N//X/8B/+Hi3/lS1evbIy2t3xRNv9/9v47XrLsqg/F11p7n1Dppu7buXtmevIoBzQIEBIICRDCGAwITDDJfjjxjNPPz9jm2QbeA38eNu8ZTDDZBuz3MGAyAgECZWkkjaTR5Omezjffyuecvff6/XFCnVR169ate/venvpOT92qE3ZYe+2VdvK7GkylYvndQCCwhd1+54GH73nuhWcunFy869SF+eXjn/zIZ6+vtR95+X1ba6tSAAqMNs1CloSWlNKVQrpsfOUrCHzHsk815uzz9ubath90bSEdkIE2ZBvLAZt7QqrWxvVjS0uWIG1A+9Jf1yAABD77xCVbqDP33d3pb1ZsB5WyWIAAlKof+HatMn/8JMq5jqe32h2XzXprc/llLgEAcMrq35Oxs2dyp92Pfck8PdQwwbsTZ7p/yLnEO4Z5Ro6h5d200AdABkbSGmp2rV9r/dwv/+S3fLf66B/9t9VO71jbzNcqSge1SuXiww+tX7mhultrlzaq88fpxLKzeI7cmludV8pXgRf4HaNaDvu+17MrvbnjOuh73WZ77sSZR536ViuQ7M3bbHRj4fiiZVecehWFYK0BIQAgabPRTIIBpUPk2CQQQZhWr+ttr924vHrtxe7m2kK9jnMN3w/6QeAFwp5buLLWe/pWczOwwTFeT33hW77IoJBCGFMkTWj654i693HHocH79EytnIYJP3NTL7KRaYB4FmohyeSF0CuIXZo7wHDbf3B8Wl/oS40YAYi/CCRwFo/d/bov+cvfeI7ff+ObvvrVp+fb/b6uVKRiMMb0tjvt1ZZozNcWl1eb/Y9f6j217m8GUmGgwQRdX/V755as+5etR192SoK5ckVefnEjIFdz4PkakLTRYNgYRmBBIlycw4AAaCDm22gBP3qeZoGtgD/2scfvuXhBaY+00lpJksyGCIUkNkYFyp1vzM8vXL9589bqmkHSQtcq9sMPPvjggw/Ep2SUcu9Lgok4dTjm0cKuZhkOhnlCrs9GQ5ARwnkvkRgRgNZbv+TtP/kzP1F3qwxsuxariFTMrJkFYjhzVBLVG1XLln1feUGgg8BoBgJAG4B7gbq12e55akGz74uqI32FFQtrFaui2TWi4rBlCQvJ6wckyLAOozOBNgZQOJUHHnlkY7t/6ep6R7fvv/vksVpN+55SWKlWLDJLtTltgtc8cs/1ld4nn7j29PPXHnnd6x+47/za9cvStfsdr93bXrm56j94TmjT7nSbbb620ZlfPt6YrzOgMQYgs/IlmgeV21HtThSpSaUPyAHIhx/T5SiQd99GADi2e+KwGjMgVCx8y5vf/Ae/+ZPXX7h2z+L90nF9FEa6pAEF1l2r2+86terq5q2XP/LAC888/8pHvqBRqW/7/uKphc1ua7XdZOPpPoDtErKnApSapCesikBbgCBwKtKRskKIFhghGBeFF7hAFhCpQCNrAkKQt66veWrr8tXVE6cWzp87Ixt1HSCS02q37r7/tfXFSru5Ua8Ir7ctkchGQOMjuY16pTov3WM9LQKhFo8t9tZXPZ/dmqOBCSC91H2KVs8IpHMZfEkvM9ufGZq7nQJ0RLGjezzkAS7tiOHxjUhgjHbdigfBL/z4T/3CfzjxxON/+eBdr/N8Bb4fNFV9cX7x5Nmg1/R7m35ntfviRv/WDXJrTmOBnZqo1pzKItIi+YGjlPI9ksLrdWqBnvNV1w+WDFRs6Te3pIDa/BwD2ZWaMaA1I4PvBxoF29pyLA48lEYIrNiyv7HRW11dufZCc2vDBrrr3F1+D7XC7W7Q8/R2F261gievdx6/3l7xQFQtieJL3vFWZFlChTI7J2V/75dHWnqFB1mnfYQI8d1wMBoAopmpSdw/n168t+gdzPNTBKaGf0pGYSJEG65GI2RMhunL3/nOd//aLz/2xNZC7daXP2rffbpeF47XV4DV7V6n01/cWtF9iz78ePMDT26tatFRij2tlJEAJyr8ttff9bl31c+elFubTdYd16agF/T7PURhAHwNKrW3IrEQ4SAAGzKAxCbcRBaBtRECvUDLiq2IL794tdPpGgO2UwnnTghJYIxtyUZtrl5f3Gp1L9246fmGhDCeT9p8xZd9GQmJ4awLgNQRkXBHC848jqj1DzuFukKLP2SfePePcLlTPqKNsdQYLLxFcF3r277tW//zz/ynfq/rB8LlKrNARM3GqNBoRolYcR3DhgjJsizCmi0DJT1fa+YgUESkldESur7CVuD3A2RTsS1poSutesOpO3KuIhpVq+JS1RY6FPsAQqBA6HYCcCzt+arTubDsHD9+3CYdqJaouhXH9TpqqVqnfuBUHZ/b7/ii++cb9PzlGy/0tl2pg3bbqTdO1xqbK+3Tx06wLzbWOxyods/YZD38wIXTJ5YRkYhMXqKGJy5mSTubAjQVjDRNDgCZubacjPACgjFVd0EFjY9/5qlXPnwXeUo6VtWtGWUUaEAAm1gKxaJeq37L3/zmJz76Mc3ikTd8vlw4cempF33x/N0nag6hZTu+FxjSksD3jLTBksZyKq4QwiIiAMOstUEGKVkbzUaz7huvQqCN0YFut7znXtxonDyzEugPPPmC7wsM6tVK5fM+9+FTx6tadyXSxurTjiUMKCZmZLKrjjuPVNcMjhTsa1CatdtlF6yleIQXAVKz/CCu+v43R2bAp+j5TTHxwi24092AHHby6KKpjfm7jIyMFHpkxAYc2xHE3/NP/8Wv/Pj393DOFpvQ6wjCrY2NxlwNK7ZjzVXqVd3z+r1ut73d2VoT1arTmENRQbvq2hWLgUgASataJ0DHcANABUHgewv1M9r3UJDnB0YzILmuY4wBAGX0XMPVShtlvGar3+vc2LjV394A5Zl+58TivERbaalAtjrdjaa/ttnf8qoff7Hz4Re2t23hLFUlOieOXeBAkKQoJD566mE5ufbLNU5NAUop6KhnQnokOjbqMQlJZWqC8cPJ0AAO+sJLh+EnRuxXJcP88dZKmQGYZHk4MgARSubXvvYVb/i81/35n7zv3R/a8NrWN3zV/XCrVbOd1VvrW2vNxfq565dX/ugDn378ll61LKxXYMvTgTZauxWaJ1XxWsK3V6+urG+2Oz3TU3Rzu9s3MmDhKRMoNoCAwMyExAwCZaB9QBAkFGgwCAiGNUkwhtGSbb9nI2mSlu32g6BSrXa7HrN2hag4drVab9Tnbm1sXL1+w8hoCYErZMWy3vh5j7JmsAZcM2ObUhy2lcSlUmkgsHig+RjCzd4wHuXYMTwQzokBQEDJD778ode/9tH3vu8vHBd0tyeEI4lCbgmfsSxLCBJASgXMxrZIoDBoacWGudPq1BoV17YRgAg7zV7TC6Rt9Q2jx5bU2yqYd512X8imx+Av1izXRssyjYY771YF2nalutXsBL2gWhXVCrpSKz8gZEHY9frzi4u9XrvqOL7nHV+Ym0P59e/4og8//sxfvvejH3rvhxeWjvXZY8u86fWvePih+26u3qxbcnF54YXLzdWmf/7cMSAbiKIVYpHwjfwfiE9ZgWSwpDBL6E7CgW4DOhUCpm27kqGuHd6DiImTmDQbYVG1UTl1972//8kP/f5ffOIdb/4cJCOMb1Wqre22Zur6uL2xubreVy9cufDQPR5UXv7a1z63svnYE7f6TeipbcfA8aWatJRLAizCgEEAeMpYpF1LCTCSGYwQJKt2YJQx1Wq1IlEYrbyexxDcWNm4cWlza93v9avBppCBcOYWa4v15693K479fK//9Ceefv3DpxcqulYTne2W5QAKhErVqTY0Vhls0/crkiyvv9FsrmxVqxc/V4k5keLi9Ejg1JGLLUOqmUY0xxgW2g6ZjigM3Jkddih2qnIy+puYnoOIUHg0VhhgRmRp2wHSu777n//PX/43n/9w1XU7NmKv2/ObbahJKV2tjF2r1GTfUR3te7rT0e0Ny62jU1fS1mhACBaCpEXCktJCBgFMjkCjK3MV7fWJEMAPfBUERMjSKN3q9NtK9Xvd5lZnY9N4faN8G9F2pGws2sLptnWr2W22zcaG39TyetN+8mbvfc+urRrwlK5Jc+zEsZ/4hZ9cOrnMDJQ74mUIs5WRa++8Uy6KckH+kOA4mLmT8xBivYNJuCJJIq4HZjrRS4rb94SIz+NZz+kJQckjyOHCQI6OSGJJkhtz3/tv/vcX1r770pO3/uCTW4F95a2vrbzhgUUKNqp1/+xdtvYXr9/q39rYagemqfuuVelL6Hd61fnKG1997OL5ug681qq3vmnWtq2bbdMUc5teoAm74AeoDJIJDwMmVKwNGyQMj45DICIwxgiSwIzGCABmBEn9wOeAK/V6r9m3LFGry7rjVqouWeLq1cstr6NJaGOIQIAAAZV646EHH5GWfccaNdPDYaNOLoaWRA5CDIQIACRHRY7rwURPG2ZCEQTqW779O97/kQ/6gSYNlkWK2bKkIEFERCgFIYBhNsBCohAkECUiWqSVOnZ6SQWBU7URQClNFUsjCVcoZSSS0n6/hyYw7Z5lubbluq0N30asWqbe9jY2dKVRNyRVQAsLtbm6sKTw+n0NaDm1bmAY+NbmVsWRELBj27rjLx9bYOLXvvzCXccXf+M3/6xjtFbeoy978Ite/eqgt9bzPGKns60/cb315PVmUN/YbvUWlqoIYGLfNzYK48WhsUN12Bhg6jjoEYA9IlF1xdTGTj/VXxCYUWvd97z7H3jgt9B5/ycuPfra196zXOfA95THoP1eRxtmlEsnTv3Fn35i6bPXX/Oa+z/60Y/++YefBLv+0Gsu3njmGd/XXqBACkAwGjSA0gzSAiEVGAu1xUYCA2rWirW2pXRICgNac8/vrTe3L7+4efnpLfIco9jq9/uiq2mzz9o5ff708bM0XzvduH9zrdVYdlubXY1GonQqNVlZYHLBUKAQBbVaHel1LXT6ZunhV3+RRltGyi4Thd8PqY+FT0iZJhOnyTtdGVGYGXLAjBkZy73QiIzN0NAUAhZEIrCPvfYtX/v4e3/qjQ8vMQfG+JZwgFFrtqTd7/cZQBkwhokYjfb7TfJ9DaiVR5YIFJMlLds1BomIUChmaYwUwmhljCIUnudrpVkHoH3ldQPlAYDX7dadih8op+ZYUgCjZVWbW/1AYV9Dy6ONwL68GfzlJ69dbkOnipa0K7L6ti/98v/nP/x7tz4nyKLk2Ou8aTx8xscO2PGlhDF3HHyKAsvxEH1yJgOnuk/KoU4lHF6KZ20MHj1quO12Z7iyIp4LlIv9x8+EAy8IAGiAEZA02Cfve9WP/edf/sf/6Hs/9N6Pvvfp7uOfuvK2z6m+6r7FpaVj1281GxV8x5tPv+rh5fd8pvnBS82Pv7CJNarZVOWW8GutVe74auXa5uqG11LWpi+3FfRYK8VKswFhGICQAQyDZtasjSGIFukgh/5AFNNlAOM6NjNLx5WE2gsWGxUphetQza31PG9tfbXd831mFEwkECBcGINGxsPfg46Swm1vncOEQ06JdKA6kRrJ5AbYXfnD4ScCBGbbtt721rfO1efXNzcZ2ASeAGKAikNIRILYGCA0bCwhHYsIgBAADCNZJC1hbGkxIxG4VWv+xEKn1/EDv1pt9Hq9brfnewGwQcHMRiu/VpEWG0GMwFKIwPfJ5fnFSqMigr7n9XySSLISaNYa2BilAqONr4JKVTYk9K5fOXPmQsXGpTq+669+0UeeunLuwvl7Lyz7uq2wZ1dIIT322Suf+sx6p40rl9Yd1ypRBNGQX3RWwaEa+dk/3M5tQHeFXLAfCrH/0SP38eSHjNscnfVAolK1Xv+KR7zNFrrVX//1P/vmr/m8xQbpdrtm0Vpn+8Sp8wvW3Hve86GVdf+Jz3722NzStcu3rjyxduGC1b38/Jkq1i1GHbS2NuzFOksBSLLikOugJS2SNqKN4AjNoJQGh1Agk/KMNv1OR/Wa1154cX7h1Bu/4ELFrgkftn1uS7pyo/uxx56r+/pYlT/61HP3nzpW1f3OulqcP+lU+7V526k42ti+1hAE2hdIptfpWKi32+LMw6+XtZMgCMAAUppeB2wuDAu7JvOxRmDios4CokMwsE2TMHNyJRoBjnoJC0IjnPMPv7l388nHnvidhy+eEvUqkfAD37JsQNOYn1dKB3peBX2v3zZKgQ4C3wettfJJGzCkPVDcNMxKa6M1EgsmViiI+0GPtSZkBCSDAhWisckYFm7DMb627aog2xgUyL1u4PVVt6+byrq87T3+YvPTVzcvtaDFAF2u2fhDP/pvv/W7/pbneY7jIoDhgWmTXc9VbuvtinQjn9mZ9dL3svOxMDUpCCFSUCWdAJN4VTbXo4Pb3DXH2TI1bu+wXxAAM7NEIts9ee7iL/6XX/3Bf/Nv/t+f/9XNrvMr71V//vH1l9137PX31e9fkktO29E3/vqXvuyLW8GVm91PPLV6fZ1rruw9u/qsh52u8ph7SD3seyCNFhaSUhoMIEhiMIya2RBrAxrZoEGkaKCIgRAVGwNGSmEhacNkWBBLbY436tWKJVCCsG9tbq1tbwWsUVrM2pZSABpjAi9wq875e88bEw4qMWcI8dIz/Q/bFJ9dIhRnJaZRKoqwyxSj0WCBeOrUqa/6qq/82V/8edaATLZtUZypVhyAEeFGbbaUDI5FApmBNJJmpZWWhK4jbUdWbCmBTs7PE1lstBbYsYgBDRgkdqWoVWWjYglhLMt1pVW1JEkMlPI6m9dv9aTrupW6CQyiBs3MbFnCtsiyhSOk8bxW329UnJvXboHFEHQqtfqjn/sgysra5vVuZ+X4Qq3qzG8H1kc+/rEXrvdExX7ggfPCsgFFPCg+mDg1OJi5KMiPMJuMgjzk3X7Mwg0xKFNvDwZ20oNmEG2wYPjihbtPLh+/tdn95FOXFt9N3/oNX1Gbs7vNm8vH5+cbjY9/6hJotXBicXV9a3N1xettfs7rz1w4PvfoK+9Tvh9YjIJMoIiV6zqOZdXnXLtiuQ5aNkkCkKhRcwCMGiVprQ0zMtqWszi3ePGcXlsLbl6/1QJRsW0NwszP1c+dell1vl49bltencTcYvDg/fehZFsvSPRkVSnT6nltrxeQh7bbCLpt1n4b3DU4+dpHvtAIEmF8MZlBwDgI8e4PBj1ppF0yZly/eH23Jb9jPIGpdtFQa6St1WjwF8IJEYDICGykMIHmh77427Y3N5659uTFC/Oq25GKq4vU73mBYlFxHNd1XKu2UAOtjfKRNQR9v+97/Y4xHPQCIPA8XxAgABiDDEKgU5FCWY60TBBYwuKAEQQSsGQTkK8AEbFa1T6zgZ4feF2joNoW9MGnX/z0853n1oKr2+whUEXUK/Vv/rp3fcu3/g2N6NbqHO/xORgBSPm9e7CVS1sgF/UvXsy8xXmFgtH+XElIf1DmbFw21VrpIf4Jq5It68H2jkGM8pCvWM6TGRGQjQFmYVmux/Bvf+hHUYlf+Jlf6FHlxur2p69e+7MPXHvjaxYffXD5RHW5t7pum/Yjx+17j51YbdK1G6udE/Nt7XQCvLbRCtosfEMBO5J8zxjNBlEzM4BGVoa1YQMAQIDMqIkEAAgBwGwRAhJoI5grrrSEXXUrVdeVSFKYzU775sbNvjbaIqW0hSBJArNhUErPL861mu2/8le+Zm6uQVIAJHucpyU33EGCcwccatNnbOQFRdyGk0U7ktNGAuN/xTu/8r/8v7/SaXUFA4MRlk0kDBtmRhBEqMJjKgAcRzqSGBFJ9Dyz3W03luardZsMC9Bz9cqcI4w2nm8ct9YI3F6gDLIEVa/RXNWxLfC8QAghiJkNa20hgyMq7pLlVnue7/V1z/MsKVCgDnxUMO/YntbSsgSIwFC1Vml3t3vt7gI5L1z+lJaW7ver1QpivRfU/vAvPn697WlLdFvtr/6arwai1OBXRlCHa+LuBLYYD1i2s8Qhwo42ZS72z4WLEO3mwMlQ70DvYngSNQhiVr2/+11/67f/4E8C1Zlz/G/561/+6Oe+YuPas3NgGvOLH/3wp9Y3tx+/vO1UK29+3d333nv2Fa956OlPf9yoPso5q77oCrKZdd9XRgkJUqDlSFswEQgkQEQwge8LMmAQjBJAAjAw2u/229utqrv0zOXtx55d22z2WJMn5GqrPV+tnltevv/iiUceXjh3lsDvV2zXQdcC2dlYWb9x2fP6Tm3p2LET2mETbGrj32ifvvtN32MvX3RcycYgirDGGO8TkhBt4oYY526xRXaF0jadACNGhGZIEI8GRKTiZECAGcl4nucQf+pP/lvv1ifvO+Ga9cubW1fnTy0ioM++5YhG1QEyDGwALekSAiAZ9o02ghlBaU8rrUAxGwXEoWeqPB9Mj7XWGoxBZkOAGpi9AAx77Z5C0e9Ds+051SUtah9/cuV9n7n18ec6rb7QCD3DikzXE2//0i/7H//z1wAlSXcg0cvi9ZOxQbQXzNDj4Ivyaax80qux0wI43IsjbYsV38RBzC9vvh1m5GxMOAplToPDUQAENEjEfr9rmP/vf/cDP/EzPwMsg2ZH9boWisWKeNmF+he87NwrT4iq2vK9Nlqu7/mrHf/yir600lv35WYPu4Hpa9FX7GtQyBrQMCltFLAB0OG4A4YWOhsGZoOAhCCRiLUjRN2VUpLjVpgkSLnW6dxc3/K1QRAAxKwB2LakRAqUtixLSDp99sy//Jf/4u1v/9K5ubqUdrm2PGLNMhEGvHgbRgD2O88o/ZxYnwDGvHjp6ue+6Q03rt8CAEtY9UZVMCKwY4ua67IgX7MQ6AAcX6jN1WwS6FacS5evaqT7Lpy1BWvfqzrSluBiYFlVq7G42dI3m90Xr9xwJZxdrl847lgUSAKS0PWV5dZs4VgIgk3P6wlpEZHjVhmw56tmq93r9o3Ri4uLge/VG1Vm7Vp2p9cWNjo1RwZga2vhRC3w17vtXqV6WjiN3/yjj/3JJ54FR7p2482f9+af/bmfnju2CCCjfVEGcja1LzbcnpGhg5fkh30EIMQIE5ALn5DVMalBsXjWVxzUQQiPXSRg7Abwdd/+LX/4Z39KgcOS/vh9H1lpN9/+hY92rl/21tde9+qHiOTrOoCOcPT6qTnZW1m5cGJJWhRgRTMJAKm5Y4wkAQBuxRYCJaJh1sYIIs3GqrhG90EZkhKBtDYgpZSWK6U06sLdVXv5rma3j4q3tlrPPLG1YPPnPXL+7MVlYW9zp+UIcHpB0G+tNLu9re1uuy9t++Sx84ao190KOv22B9b5V7mn7iVLIkQj18AQr3HHNEESQo3Z9sNESW78EctapGjEjzbrk3f3yJfFcSEsPHDYWT/GPinn1DpUTPaEjsxMQGB0pO0DvuLL/sbWi5/81Pv+563PrNj+9lvuu+h3NpYatkTjt7ZJSOFQpVZDYKX8nuc7FatSrQTdLoBi0gKNEIhMvvLAGABUyjNBH5RRShsWlmWRkF6gtSYOIADHCNuzhOfOfeCxq09faT32pHezB7BQWbzn2PqNjYbrBmy+7M1v/48/+eMBi4rlMgAnnTysz0C2T97OWbu/6OdCgZHHsm9j850H4mgQ4Y+fiR2xQe+FKECXlAp3zGkk9p3/yzIoG8041EiKSYjMbMAYzbZb6wX+P/7nP3Dh/D3/4l//gGcFhqgTcF9x+/L6s5fXX3fX/MUl9/yJ6rHFRtXx5rh7Yj7wjeBNnw0rbZoBdAwbCs/7RWDNDJYltTEIYAyjAa19FIiIAsmSwiJhCVmxpSVQCkBBmrnZ6W60W03fN2AxIBu0pdDG2I5tlDLMiGSM+s5v/85/9I/+2fzCfKXqCBLZ+kFBVB8Kv3K/SnB7q4UA+1O1jHlTems3CTHCwuLCwtxS6AAAQr/nzc/VHduqWDZqv+/7PT+o1aqBCrZbulJbrNk2oUbWjXqtUrOryFwBAu0ANypOX4sXV5uffObaJ5+8LKUDynvgwrGTy49Yjk3kB153vrHgg9BARhtW3OsrQEMEptk5ceqU6zidbldIYVu2YSOEXFvdMkrXG7Vma9vXfR/917zsVWeWl3udm0T69IULa5vVP/7Ap/7sk8/2PNC+evmj9/7Yj/+YtCzm9PKXJJwykL63i0Emz3dSfjrsawASDTc6DDzCxByo13gqZXK+c7j1Yfh8pVL9gjd/0Rte+5qPfvT9wsinH1+5+mzT0Ut3LYu7ztarFbuzunnP8tmW1yGqkrZq9gLrKmlfCLBsSUI4aC025pqdnrAQkF3HQmallEFGEI7rqsDnwCIArfu+pwSRRiaEigNS9aSlK4sWOZUqSItPdF97IdhGi4Qjuxqs7qYMhNne3vQ8L7AtWa2cPXeu1qi3230ynsXdoA+r7eNv+oJ3KEESYssuGetIHXiCWSqNidIYf+ljafpjQbHkHitFMeURgz+j04kjuCXFK83o0AKT2Px0k01GfCOEsY8ktIwIaBN6RrsXXv3ohQd+r0t/9t9/6vr2++46sXDx7lOg/F63U6m4tapAbCm/t3C84TaqrbUNDsC2gMhoZZSvCBgBhJRs+ipQRMKWlYB7BBQEwIo9X/cDlHK+raGpxSc+feNjn7r51JX2ZhcCLUCK4ycbV29ssd1v2I5R9EM/+u+/6l1fR0S25SQkSv1Js99e5CojlHadYcmmuTLntUXL8+InGOJZ/4jx9P90roMqDMYEks2NpsIH+8r/DACY91Ug3S6YEQ6HtjPmWx2REY3mimVr9r7+W77zDY++6Ud++H//k3f/iQTY3uh4Pq0A//7TrbrdPTtP957s37PoLLkAWtQlnq3LmiQX+xbpis9dpTzgvtLMDAYo0IIQAA0ikAFCIpLSklJIYRGRIMlEiqnr6+1ev+v1goCBEMHBwJAEchC0tgSxrwCMZQnhyq98x1f+6L//v7e3mtW6S0CppedF8weH1PtAEZZq30twlBcAFJFTapOPD0YrwsitVr/4rV/83PPP68AQkdam3w8IaH7OtcCWvkcsdNezbVSB3263jbYXG9WHHrrn8uWrut+liiWFsqQ4sTDva335SvM973+i6bFNFgNTpXZ1rfvrf/ChN7/xVfefm5O2rDgVqZmE2+p3O36/01eCrED5RrNV6TXm5txKY329s3CsoYn6Xl9LC0lcvXXLsfVD999/9z1nVKejve211Q1yarf6wa/9f3/84nazHQBaEgJ117n7zp67EB1pPJh+GQdIj/KG/4OS77LRkdkczlqnKzLazhuNWHcOVGroDADEC76ZEdEAeF736vNPfeU7vpQE9bb6WxudRt1561te8Ve+9NFFx4N207IbW61Ov9dZPL7AtjVfb1RcQbZQKjDMrlNZXJzre0EvaFarNVugJAPAKIQxGGgPGQQjsGGjjDYcKCRAQDDKRu75Xh8MCHADxf2+3+l7TfZ6KgCfK7Xa3Jzv+Q2XFhoVIyzLdZXCZnOz5lBnu2016p/+zPbrvuF75y6+wZYyXLMGg9ghjjgpaLIR+WK7lDbWXloQp8cDpYkfOSTOzPQMpsxwNKdGARILNQxGEoJGVFoJUKq5+uRH3/v4+/4s8G/deOYFAO/RN72s7qiN6zfPnl7q9Ntnzy86Ar3N5vKxqjGq2/HZABAjstFERgeeLx2XpB0oZbTpdlWgzMp65/KV5nPPrr1wpXe9Bz2wu1pudYL55Tlg2Wi4jUpt5cbWieWT3/bd3/GN3/5tfRLStQRIBoB0RCdr0aRM5wNA0efF7O14mW841XQQ4w8jFNHqhSjIH93F9I6m+zBAvW+0ifbZzideKiWOChLdEfaV8JjFfs+3wf+1X/ylX/r5n7xy6bofQM/zPQbNXEXfAnIZXKmrVbtiy5othZCB1oFhZUAZ4xv2FOjoFDAKTV8GAjIEglBoY0AgAwZaK216gd9XxldaMYHAIFBCAAECIqJgwcZXklAKa26xtnZz7R/9k3/4r3/gB/ueX6tVtdEI4WZCA88y212OrhV0NJCTEfuUPkBeew4J2I2a8K60/vjHPv6GRz9HCkfrwLKkJaUgWphvLFQrAsCS2O91gVW9ZhMZBL188tjS8YX1W6uObTeqFSHNwsKxU6dPffTjn3nvB5/e7ChlSAjh+75CPrawAL7Xbzb/l2/50pPH7M2VG7VKxfd1N+j7vmFm26koNt1u9/jJ467lBF7Q6nQCPyBEJDDGdyxh2+LlL7+34Va3Wxv9ThsM95X1zJWN9z32wvMrno8mCIANq37/27/jb/70T/5HY4xlR7sAJWEu5BQppqhfD6Yv7UElHF4HIMFkll82fjaoYMb6jxUrMyChZsUm+NX/8nPf//3/Sne5vd1v1OxTJxuvf+X5B84tXrzrRG1hvq/8+lyFA6MNgWbWik3Q3G61m51up88WATntbu/eR+6dq1VPzlnVitWoSQSlgn6/1wMNQkgEIkJkYAGEQIYESI3EQijlV/y+am6vX1/fWtnaXl1bOObe/9pXG8sBt+JIZOOj4KDjrd/abPf67nzl2WdWbqnFt7/r75585VtIkBPv554Lxw/Z7W5A4XHYvlS4QEHW5Bqi9HkoPFwsQFGEjcMM4xfsaOm6cQT6xAnCwDxNlgKnIs9sEAGMMQCaMdCIYCxHPf6hDzzx8cfml0Rz/cp7fufPX3jhKgh+1cuXl1x1pured3ZOmx4BnDh1vNPp9IOubVU3bzVbzb4mp9Xzb600Vzb7283uVkvd6mt0q9vrfWa3FXCt4W6sbUiGsxdOvfEL3vS5b/mit7zt7fWlRdupEtpogQ0U9mTO7nV9sBb/bsHJKjMu8vLQfoilfeeQI4yxJbI3N8wER8zkTJUxOUcjjB8iI5CnA9VXfnvrh3/oh3/3D96tev7G9nbX6zaqyMBaMYPxjZYgCAwiEpJEsoVwBAoEZBkqBJJkjDEMBgAMeYFiAE8rzeBppQCUNqHKZmYkyQBMjMgEAChYAaARSPWG2+32XvP61/yf/8ePvPbVrzWI1YprjInGwMPTYSGaBlu+aGaG/cF+CPAEpSpyaHY7FYKBlcLv+s5v/+Vf+UWJVhD4JIQtpef5xxfm7zlz6vxyjcBHMIAGOOi1+4bE0vElo4NAa0dW3Fr9ZrPz/OUbq6tbRtsKoe/3atXq8uKxuWNLl59/AY1xpLrvzPw73/bG1to132+v3dpYOLZgGAFFt6vq83NbW9vzS/M6UO1OF1C5lgWsF+aqx5bmq1VbIBEAE1+7fnN1Zf3U8rlnb7R/872Pr7a15dhBz6/V57SnFXhf/Ve/9uf+809XqlUhki3+0xY/AxdGxO90ILNhOKS1LjUTd4VRRicnu55HdxChrzqWdP5///if/NLP/QJpbVtYm6ui2Xro3Kl3vuNN5++5gIRuBVip5WPLytdep00Cb91abbWbN27c/OwLly5d2rpyea2+PB/0+hfPN1754D1f/AWvuuf88ebmar1RA4NaGaM1IGo0gCRIsJFC2GQ5yijJQdXrq9Z2u9XvttrzlcbCwryp2JWFpZ7vNeYbzU5r5eaL7a0eo1zb9j711JX55Qe+7u//6+qpe4UtJQAbDfG8prQ5hOl4YxmRx2mLMQme+z5OC5ba/cV3Rwi4YlJFd6I0uxlCZE201GhDOGOAI+s1Or+KwGittBIABsH3mmvrq1evXG732sjtxz/4/nf/+m91VlaFhMWlWtWxbl3dIhtAUj+Abtv4GhigNldreUxG93o+zNXPXLynUZu7+/y9y6fPPPjg/RfOnrx4111LS8uVxpwCaYBIEIGhcK/quGzhZP8oal5Wl8METqI1qZ0IYscregJyrjpHgX+AfYkd7iOp0kuoh/n2cEhbaiyYsGcYJiIA8IxijVcuX/7Hf+97H3/8o5o56HQVaqWN1kajsS0LlAJAA8ZoQEA0BlgDIzIgspCojWEDSEIbowGY0GhgIgYGImAgiMQ7AxAhCfJ9Two0WoOWlYob6OD8hbP/8H/9J9/8bd+EwnYcGa5eAERgk/SXmO5Hl/x7xoGIiVLOP4hcAQCHrjkeXYykY3rKk2C/4yu+/I/+6A9dp+JrRYCGFQJVJb7ukbvuv3C6VhNSaIlqe7Pdbnu267ZbnfmlOcXWx5944ZmrW20vqFUqS/PHt1pNQJ6fry3Oz9vVeqVaufTsZa3a3sbGF33+y+45XT3WkG6l0mq2A2YGMob6fc/rBk7Fsl3ZabXqVWf5xBKxnp9rIGnXdnyj+53+xsqqR8Jyjj39zK2//Nizz252wmo0qlVAwYa14q9517t+7ud+2pICo/PVoxHKaPQ1R5LDaRNPG4dxBGD8WO8IjAgnRxo1vgjxXFzNRpLoBR4F/E1f946PfeSDQWB6PV6cs2u2OHOifu/Fc2/5/Ecv3nMcuWc7wnWqWrPXD5x5t+8rrdVTzz979fm1arX+2adfaNTn5qpirured+/Ju84cc6Q2qIEZDIcxIZQokAWzFFJYbmAAGFW7aRl/c3WFUIIPi7Xl+rH5F29dazc7587dtb7SUrYEyS9e33j+SpPl4pd903e9/HVv8IRtWy5GrUmxpQ8pGZ/UebJYQIlZP4zgxaD7sFs7WgC7HQEYHVMsXjwo+Q+HrYvtCM59iyRm9JsAwkk9AAxggImRDbLRKgwuchB0Wuuffvyj7/6D91y9coWQn/z0892u98DLLwqbr1294TEtH19crNdPnzlXEdbqi6uveeMbv+FvfEttacn4AdlWt+fbjqUMW5IQgLIMEK1dzjZ20dk7lESPLTGGzOre5Hb2d+kUGih15Sctz747AFGohXNuzDg99DAjmXKWTKVBBA3Q6raC7e5P/dyP/+LP/Ior7I2NDd9rM1HP7wMiGNZakSBC0AYwnIEcGuWEBtgwIwASaaUQCBAYERHDufsGmE24G7pNhMDA2hAhaO24ZAvbqjhf8rZ3/Psf/zEJtlOzBApAYOb0HLnBAoDB6NnRov10cDCbAOVkUamGGkH9ohIsXswB46qN7m47F5sBEXp+X4L1j//J9/70z/wMG/K8PoABIQSiBHXhxOIXPPrg3WcXaxZ4nb4feELazfVWpVHxWf733/3z61uowJIWOEJqA9KWlhRKgzG4eGxeK+52t1F5r3nk7Nd+6aM3rz5fsSUBbmy0jQFjuN3aqtTcWr3SmK+xDk6fXO51u1XX9QIdKNVqdTbabWl4cammZP3d73/usRdu9bp+rx0AgAQ4trjU7njLpxa3t9rf8w//2ff9y39KjEKEtRsokcGhMUPipHcqDqMDEGJcB4ALfQsAhoSQ4++phaFJc4exOQOE0O+3vObGl7/z7c8/f1k4Nan9RrXab3eBzcnlxgP3LL71Sx59+IGLkiQSa7/v1i3bqhLAdnvzyrMvNuYb61tNIYTFvLDQaCzVlxcWdNBCQaw0GNAqIEIDhpWyBAICEBlAr+ujUt3tLWnZfl9Vwaq4c8YRK2vbTz9xWTqVK5dX6svnjGsrcL7867/zvld9To+kZSOCiJZ2Fbt6vMBlhKQbR/rASImTQ+mT43gIufLs6DbkSjIsnTEruz8YxxYtqfHo2ZkHA07+cvpKYsYxDPbcDy8aNtFNzRqUBmBtSLPe2tz2fXXs2JIKfBUoRXBieamz1XZqbsVxeq0WSct2HWZNJMO6m9juT5dn0MSx8ub4TlFBHkKk5+elxwGii4VCI2Ciywce2EBo7b2at9MBGN8MOoRI+DAstAnD6gZQgOf3hJD//od+7Dd+/b8999TT8/NOYKDXb/cCLaQNhEYZwwwI2oRgZmYGksIYRgCtDREgECAbwyI8BYAZibRWUsjweWRkMLa0HFsuLdVOHTv9f/zID7/6dY+KiltxrEF4K7XyPDvcf4TofSQRNkE6QjGC84tqIETp98HFlK2fT7Es9ySdscof+gBeV6Lzv/6Dv/+f/tN/ksIxyAZYErAybPSxhvW5r3/w0VfeWwGjgmbFdiuVWk91g0A89plLv/Onn+mBTTbYKD1PMbAUBCAQJaNBJruKjap79pj17V//tmvPP9Nc2zh56oRWemt903HdRqNSrbtCou3aWmlEtqXlBYGvYHurdeXaDY3WuVMn3Frlg5984Q//8hnPkhKNDtBodqQ8cWp58diy1+7/y3/1z/7qN/x1AWRZAuO97waGX+6ApJdMtxhMATo8GO3dDnmnLAw4xAZNvkNk2sReoGEACPd4aPa85sr63/5fvvXKjc3W1oYKfIPaU57f7xOr5eWlu8+efs2rHn7VQ3efXnQd0ZuvOkKQbbFN8ubNmze21px65VjNalTIti0VGEZQSri2a5HLWimjADQgorSQjFIB+MoRgpVZu7W6trm9uHTc0lpajY7CF1fal1/cePqFm3Nzxy/f6n75N3/jt33332r1wK1IC4QBBh5MIsBMfePjhRBgpEFZVL3DWmFYo+wQkBjyCWMYyOOY/pC9e/iwo22TfyBdl4M3jPJNyTFzpfoPJ5PoUu+lwtuRfEUgYDCs2YCQIoxhQjgPGkFFE9aYYomcrmxprdNWF8Qq6qgYj/HU8SH+ax4DM63w7NQcgP2T/+mzjXP7ccHRaK48hslJCM1zAAQwzIJIGe61et1u8+lnnl5fWX3h0qWnnnjy4x//mOd1u61+s7ntBYHSioENsDZMCEaxsEhrQ0hJNkprIQQSRtcBAJGVIYnEyGzqDVfalTNnz3/X3/zOd33d17uu61QrhBSOJET7fHE8FysjJY9iCxwxJA5AKa0zkqDg5w/TlZmXIU6imHTBw5hMTGpthKC+76Gir/zqd/7pn/+58jwASaSFFIGvAQlZnz3ReOvnv/ZV9y5D0CcRWJZfa9RUIP/4z554zwee2fLBrdZYoN8PBJHlWIEXkGBBdmPBal9be+UDx//qOz6XdB8IWu3O3HzDaH+uUWejSUrPD4QQwNhud9vNTtfr2m6l1eqxVbu11dpqdp946urNZqAVoAZEUAwMcPLsqePHT/yLf/39X/rFbxWAbrVmCUpOuweOmyV3bPxLqVscxoPASuzI4uBl+unwD5bMdxsWairNhYGjpXkMik3f8xVvfePXf9tnHn8ctNne2HSrLoCuVNxOr99tdis1cXzOfuiuE6952YVXPnLxrgvnF+ccKcytW+ufee7KsTPHzyzVKegiG6/nWa5rNDmOtC1HAHu+J4CRSDiuMb4OAhs58H3Q8uat7cvXbkjXWai5Wy31zHNb1zaClh+sbwenTpz+/v/zR88//JCw0UKLgdkAFb1/iN0Bjn4Mk0DjiIOilTLCFh9xd4QDMI5pXBRo6WST7yNSGP/6PmCsrJI509nLka4+SBO30EY5Ox+j02ozlyMbI179CczpcadIFUJ4wGkhj9R88fB6cd54qQC4vY7SrhGNAKSmACW3ImLEiyyS83JL+0vpxPrJS4RYKlz3mnRY1LIRgEOFvZMxqheDCZfYGkACMKDBhPueGAajjQD1+GMf+bF/93+9//3v6/vd02dObW62er6/fHJ5fWW91+lrYzytwo16tNFGh8tuiMEAIAIabUgIrU216gDymdOnX/WKV33X3/yuz3nDGy234rpSCgmDwFZE+bCQmBeWR6C/HHUMtv4d9sDwQNuIV1J/yp+OWr1M0U7Q5GEX9nxvbWX98z//jevrm+1uB9gI4QAaYDRs2BjXgruOV9/8xlc+eM/JmmMaC5bF0Pedjz5x/dd+770rLU2CJAghpRSExiBqr+fXa3ii4bzp9Q+98oELrebK4vHjaNmB3xPGuFU76Hue5q2tJpFsNruBpzylFbNbrbKwX7zVuby6+alPX3EqTsdTHGgEQADHdQXBX/mar/pX/+oH777vImjjiHAuXKH6SShlMtIccRxiB6A4sFUaqxpi/eFI06AkqByJycEqPQVKIP2j7/6e//zzP3H+/OntW00WqLVBBANGa42IlgVAApUvBZ06duyeu0+6BJbjPPH8zVpNPnLfieM1eXyhdmp52arY1WqFOLAssgQrMMr3DSu74jhSsK+DQG93vBu3mk+/uLqy3u92dX9t264vGHaNdG7dvP7Vf/2b/v4/+z5Eshw7CoNGM/6LEwdSRBix+88uje8cpdMmfkl8YkgTFN/aEaMdgFx2u+rCB+sAwHi5ccyM0XmOt8UBKJYq1jqD/SkHTmaKORDQRMZK+BsjA3OwmWXWrcBU/H7AYcUoWHkg7fYd2jghOJ52XebmxYYaAyByoePk+X86Jns8grJvAwFJYCXtBhzCJtvRVhv2FiajYelNW3HAmcygjSEizTrwlNdp37h+rdnanl9abDU7luUC6D/+g9/7xV/85UvPPefU3Fql2m51en4PgEgAawqUEkSAODfX0GA6re4rXv3Kt3zRF/+Df/i9J46fYMMkQApZGhYJi4CDy4eQ9ncycj2rtAGKGjanOgEysjbssHm9WxCOuXcwe2cXVQAAw0jY7LQf+8CHv/ZdX9MPtNfuMxMDAxgEADIMiMZYAs4uz7/x1Q+98qFzJxYs2xZkw1bXe99jz3/ksWfXNvqdvmHWlYqs1qQr5bHl+htf89CZE/MWBhUJwrYd1+l1ut2NrUAH/XabUSjNJKxeT9Ubcz7Q1Rub19daG+3+Z566bgCMBiAyBgCZCAHk3EL9O7/jO37kR/7ddrM9P1cHgHALrPwsRExVEA7HvNsc9rm/Hro1ADu7I+kpsaleMsyNLjxYHgPJ5GuAwRCirzzd0z/0gz/4337557u9tlWpBJ4XKPZ9z1cBkXArdqC1VooALLSkpF6raySA2yDWHHi21qdOuyeWF2wix7KqFVmrVR1XsgVKszJaE+h+lwLd7+uV9Xa7oxTQ6oZ/78W762ykdJnk/Q+84n/7/n+6ePYC246F0sR1wh3ohThc1RaEw9AH8okOMeWHRTJg+JW9sN0Iiblb1+IAML5giWuR+OWY+XMbMKA0w8ABCGP94X3E5HY5z+R62cCuTQWlQg2VnY6ZBMGzLZXhtkMoszNIlzzFomWsxxCdnBV7WEUHYHAxO7wyefHSAaCppDg8k8gBGNJet90yTRvxu343/pP0hWSBCgIYBgYgiDu2YQNGktAMxhgSpAMtBb7w7AtPfOZTzfbmzVvXf+s3fvva9StLx5bm5urPPPn8qTMn1le3F+bnv+lvfPPDL39Zv+O9+S1fWKvNAZLtWGF5TdqTy8yLu+2kfUljMuqPeKtcNQ+TFzCQsXspT/ia1toY8/u//Tvf+M3fFvj9QGsAg2gJQgY2RofbQwg2NvDxuvWKl515xcsvvOzeM0sNp2+w3Qmef/7mdltpY+bnatWa3ev0FhbmXIfRlr7XM15fOK7Rptfutra3A8Vaq7n5RrfjBwpQuO1+cPXW9pPPX1/ZaBskzegHSkppFBMJ17WFjfPVpV/97//lla9+ve3atiATKyeMrKaBlknPUIyAxUrnibp7su0v8qphNzkeuhGAsUozRhVLVOZwMzf3BaL1VcxkDID2UWrvyac//bu/+7t/8Pt/9Nxzz/a7PRbkujVm1e/2tApIIhhER6hAeUqDtEwQICKicWynVq00GlWJ0qgAUJAUUlpCOiSclqc4CBzwCY1liZXrN+carvbFyeMNMt7y8vm//ne+5x1f89d8L3Acm+LA4UCwjyTBMF07PoruU/HiMNO/1BZMbu22DMMKNjHrT/D8waTGma+3f3475x2STFMPvuUbOwnjM0A8syU5YiydQjTpZZATYryqJck0mciQH9E67MZN0QGAET7AGA55sT/urXypXZD3B4mKwbRRnNwt77y3qVnHyHZI6/DAU+VMvB1gEAOOzkZLJQUM4YR/w6C0IiQGJML19U2jAq21Y9udTtetOba0pGVJId2KiwyKtSQRZR2nOliBc9ulxgx7Rq4By22VYW8CAJROi94rjNGep//4D//4n3//9z393AtgjN/rAAgpwmUnrI2SAo02koAZBMCZU4uvedn5R+4+fv7kvETwNWut0WgivdnsGQOsuo2FeqvbD7p9pZEZbcfq9v2AZNeDdtfv++aFKzevrWx2+6rfC0/gIxYICh3H7nqeg1ZtwUESf+fv/p2///f+fr3ecFyXEI3h+LALyPWHXAARcuo2G4UZgRG+wYF1wYkzOoIjALvE6LoVbdnkTsgzRhskYtZGK8MgBCHzpRevPP74Jz/8gQ/81m/+Rmt7A0BopX2lmYCZmFBrBq363T4R3/fgxWPLy5ZtWbZDxEJY0pIIZFuWFwTdwNQqdPeJ2ouffW5+bu7FSy8E3Y7jzlet2rf+zW/7sr/2zTg3TwRWbDnhSJ8tquxga5YdiLMXizln6w9LsDQCundwWaZ3pMo7HJVKhzgTKyexZuI1Oqk9bUrkK0DqaLEsMrZtyv5HiCax5R4uKd4hINJuUB7GA4AhNclp/enVdv/3Qsz4GBznd8TaaxwUoxKpaE38BJRUPRohCe0PA8aYkEYUx3DifmMQKd7VZ5BeGlMl69HrVkcIUyNuweHMGTRTPzacwfR7enOr9X3//Pv+x2//Rq/TMdrowANgJMnhqZFgbCGUMVqzAHAtqNvm3JnGqfmFuUa1WrOJgIOgr8GquKT6QpLW0Ki7zKCU3tpqbrWDtoaVtWa753m+6Xiq02UAwHATTxCVSoUDfvDhB8+fP/P0J5/8O9/73e/6hm+dn58jixxpAUBk/Wd7SaJkcnswT3cseYRXsF+YSEMcRgdgmF6cACMM01EFSB3WM+hD0Xc2HG7VTFqp9ZWb//W//tJP/D8/sb6xhlLYtlOt1c6eOXXz6gpwwEEgBL3+81591333+j5LaR07tmB8JR3pSLtar3Z7XZ+p4ooHLx679PhTv/ervylcOtZY/opv/Pa3fuVX2/U5tm07Du0whnN+yk8RxcGfAzKGR48D5FhxmI0+sQdS2sEmSm2m5MZBTqgU2yHT2AwF5tgNEnUWh2QwtSziDkFO0N0+DzZZlbC/mQziEePFJu4AJNtkDeodS+hYs6TXxkB0e0ikN715/0uDfjNkUNStRb+SB3Jz8MJ0O3cSMAgCzT6/7/3v/+H/60ce+9TjnU631+myUgAGAACZAJhZCAQ0wEAsCIE1Vyu2XbGRAFQgnSqDAaMRQUrLdaDf9frKaON3+ypQQAgC0BgyAEprHYeXjp869ba3ffGD9z38RV/ypa9/46vXr9w8eeIESGlLgsj0h6inDWyj+OX05nWc0TdJ7DR9fSeKZB4qDU3uNwYjHLv0PA6jAzBd7Faz5uzaQakyR3hGW74FvkckOq3Wp5/41NPPPuP5frVe27h143/++m/fvH61VrNPnFi+9/6LC8eW6wsL0nKkLSuOgwBgjEDpVKrCrZ87f+HMyRM2ya1bt5bPnjp5+lzfMCPasZRPnA/kofXA7MeIqo2+UkoKLGPrtO1SdNtKImFDnt+xXUbY+jty+xgVPIwOwDBv6vYVtOjKQaJoMk9FZcVYoEI8uyevpOIpEyU9PjNXJM0lh7GtdoFk1CTnGZX2prLXowemXKj9p2l+6v8Rb8dxkXjC8U+APCcPmj7XD8oDGxx7D5FltxtdP8MRQGlrjrYpy1Vzip2m7QAwIhoTLreFXi8wAX/qycf/zQ/88Hv+7M8dSV637Xm9qDiYnLLEUlhEgpUWElmA0YaQAQSzYQatlBDk2lJIyUiB8pU2BsB2HL/vC7KM1rV6jUicP31KKPl3/8F3f+27/prlVBmtiiu11gIJCQ3k9pjLI+x2HLviaTomm6lzSjTvaGZMbH7sFbH5ktSyOP1vxwIcqAOwo5kIU3UAJhaOubAcJD0qsmoYEQ0DAwtEAFDGGK2RpBBIAIGBXnv7iU99+plnnup22rZtN+bnpeNWarW5+cV6o7G0uLS4tOBaNhsQBAzAAMoAABgDQoAVmwiJQ49lUf90TQ8yOJozzIrlyqm84t0J2qXoToxwTtK5H0UHAA6dXo9omRo1LZK5hBEiCsf76w4OphjZ0e8kwybLkJyteaaCt6nOB3McahI/uVPadQcwZM+azHyJpXr8LaO5o8vxk4O9iUabgbcFB8Q7MwAMUXYwQpimTNiplyT8E2bNAN2u1/eC55555td+7Vd/+91/sHZjrddq+YGHyIDAxhCwbUsUZJSWQoBgFWgiIpJCoOcHRmvLtYK+sqWFhIjUDwJlmBU4tqzVK4uLC+fvuvhVX/PVX/v1XyW1WFxYEFISIaGIi5TaGWHQwXJAgPj4mixBEfIjJ4mvMExy7U9Ephy5zIs+zmTrPQ7OASgw62DDj2KwY2cbYQhysbTJylkMyEW6O9vzEMDEHDdY8MgABGyifd+QgAEoLoxJ81m6JyemaJw9QTLvc1CiiCGRI68gKePuq7p3bZLTazm/LnkGht+dILsdAyQTpDnDGEg7AMO8rSI7YPb99KqBgUUI4S6KCZPsMB/lCDdazgEYvvnEgeK2EPQIt+JuMJBahRnGOe22U/wr7iwzTBlHkhOLhS46Bgn2p3oMgKH9Ex5GBAier4yCtur+/E/+7E/8xE9dvvzs/OKiBt3faiMyGmYSzBoRDStEwQCWZSGhChQgICEzVl3XrTjNzdb8sflTp0+vrWydOL70hW/6/Hf+lXeeOnXu7ov31Kouc7QQxiQBKcZ4R/Ss5Z7emHd48GVwGwuqrPAUpG4eGPfkdW16dDHxASC9F0H5uznczilAIxZdDAv37gpTcQDiS/HlaG5D6rjTVE6xoB8I63Q6oX+au170WIb6rdkVlAmPJzS8XZKs1GcbJoxgb+2yDziSCuDAMU6wI8fUhYeHOveDHzyNrasOMRJTMCTDYajnLIp70ODct0EgJ3srUTSZp2aYYShK4sT7xjnJOpaETUNe9YLAKHzuuecuXbu0dGzhfX/xlz/10//5xqVLxGCY5hbqne1u3+9VKlXbtXqtnmYdKOVWKmfPnen1+q3Nbbdm+33ztV//1/63f/l9fs9ngFMnTzbm6myMECI6JBEKomvgaqfD4ZicvZicRzIw4IrkGWZoYuEmZy4etBsQhozTe3BPpFSQ2dxWBVCufoaZCiNaZ7ptMMg6Z6nEsfj0UQRYbBiIeCy5lpQzd2VE9iXhwWKYddI6T5Fcpc5M6ZVdFbkY0tifnjZzAMbBmA7AsP5a0lHidzh353CYxfsKjuXDHV/TGUaB4wnHmLoCEPWB1FT/mZDaP8xIOyFyCjoyRg0QgWEIlCZAIGRGEOYH/tW//fBHPjC/OP/AAxc/+sHHle+/6S1vOnf+zEc/9Njc4vzi/MJ99937yte86srVF3/hZ34h0MFf/aqvevvbv2xufh4RAQwKkeRlosBrcnJ8HHDl1AT4gfWWncUfahyAvEoqaioosdKSsG90Z88OQNn2pEOeLMsobycnDsDYBboNIwA5AyF3vdTW3RFYeH1PZcuwdmpVRXqVeIb79pbriPKEU4yiLOKcDpnIKvYnyHevcjdgV/Uod7dSt+543NZq7lssKfQAMtGL6edye0mXGymManwIrP89hxFm2BOKnSrjAKSuzxpohsOJgZ1WDP4ZYAAGMMb02n3bkQaABHg933VtZrRdCwz4ypckhBRK63DLCARSSklbogESlOSUWPYDEz+37JVTJSozQfLRpnRpM5UZUtuBXz5IYOK+uffDHIsOwG5XWR20A8BDSD1OsYtNtx+qaxD1z7FCqtGjI40Q4vBN4hZG/Jn2C4rWavh33Ehnzvo/fBgn5LtDHHi8XPby+oiEZ1MgxsD+OgCZKE3GWs6V4eg1VCINkvKXioUZXoIoUQ1JdKnsgRn2ATMa7xpFGywT5ot1RTTQGR/kguGR2MaQoMxc6iQlRgBAAmMMIRmIop8lJ83n5kfkooyF9swbIekD84qGxQ4h58Fbe+WbPbNexlDNnj4+JmjnR6YKLPsyZnHTTTPOsMAewANzHwEx39iIiYzG5Gkc8PJAzUOhdsX6ltZlcHGoPXS4gEO+p7GXVhsn/b2nPMNtQKwgOHUgUspThn10P/YXoaoCiKqEOFwszPBSRuogsFG6Y4Z9wIzGu0YindMKnQGQU9TkcO+TMDzKDAAEiICCwocYITtJGkMRyQBExJCZZh1J0ViMJp2EMTqxNexBPMSaTAnh7IXhPkM+BYS8/cJ7NkP3zHqYjEnAkFbZCbTL53eHHVNOF3hn16s8lJ5PZ2KkbO70GWDlvJ4uT47rhhUye3HwVCkbHLxY4lEbjY7xevZ7OrGxe9kkee0ZaZG1D8lPA5yyglMXRzyf+TKN+ozvpyc5l/aY/EMA4YAaM0bdgpkZmKPFAZwK9exd4h4YeFC3MjFyVKoxw75iYOhn9cdBxbn2C0eq2NMvbGSMliU8cWalcuM20rlo+WBojsdXky8YAUxozSMDAObmvmR1C3M0ajCw9UuH6THlMxeitENRas/xKNGMmJxmDun+ybg3eb7713LZcVyipDwAu5vPcNsXAe8OaVch+Zx2FhwPX6UmJqSz4gFHFgswrE2xUPjbi/xgV2h9TVSsIVUeGrWdjALFkbqpIwkiHIL2GSA6TzSeL1hadz58DDYuUl7XCJUwlXwOhCZhIGzARfsjo6J0p5LyUeKWlwDS4nTWLkcR6dXbdxhy+jf9JYfoeuGMi8wIVzHFMUuwB6RiaXFamNqaLVP6VDUGwOTPXverm4bkHWEPjIODngI0MRLjJnE9p6i3suyb3th/wCHp28ngVZlTWv4vldi+ivVxncqcB4+4J2lVEh9mSLYtxSEVnziAsU8EHD+IcJCITi2JTy8vHy/i6LP07qGOOsecgQCDeH84G4iTAPr4Zc8/yRwlcVDtioUvcUn2IY8Z7jwUtcYMRw4H03YHL9JzehyH34q0VRgkTQYEgDkS9Nno9fj02jNlMR4uSP6GPkm0ajM2/eMB6WjEIn4Zk79T0Cl792SyDljOfxkHAwfgkNoHBSRVnWIfS4iYcfQwI4hLhfKuiHYAQiE3NlQ6Yph87ta2Gp1dmvkiLx858bcLZ6BGT46PXNQA9oFj4wSHBTVuG1K8lxu5zHxjZE5FK3Li4LDaEwzIDOEsoBRzxqK3UJvRiILuHJn+JXJiX9s1FsqpeME+5XQIXdUZZpgBRoXSpit8Do+iwuznwA1IYlLRFAMsPnO7gDm9iIXrmDOQMKNcY4PmdtE/Q0DOXhm7TJkRgMPASQlKjUU+QGtmHCvztjNxKYaVudhL9xhqKo92lmeP+cd2yW/FQbhpEX8Cv/n2IS4jQxz3LzBqwdM6VP26BByZ7YmTg/EU0CgwsxOTxhQY/BcOzyZGcjFSlX5xipjWGNduM5phhh3BpdPSp55LNNfjJYd8nTFzvZQidzCZkpkFkP1yuJA14rGwYfPA4s8uWogjbvmQ6+1CnrpjU3vgABwGnyyNUlW6TyUsTfxwx02HocTiySEnj6YfR8ecAhgcfryXEYBMFpO+WIohxTiMLc+JuErHVSCOByfDq2WC6bAqm2h3HEzGY9O7PMBupqbFZIn26Bp8H5H3/mKY47F3zCYUzXA4gbPRKQAYEh0rpUvpQP0wFB+e0XpPwPgjFdSHnNmPsepNKaMkaJWPvh8gMlG/iZCZAnRYTQSAnSq4x5IP65aHmSClGAy9pX6OqMUexcfwlDNDC8XHDqy3HLkWHI0dTsrCAcWLWifNDIeNLNMJGe7s/KZzzH9OEQdA3in2oEPvIs4wHRyGs+fuWHBe246OdpUa/UkcGsIZjAzJv+IrRwiHvOSRpZdSk8ksoNz16AvGs4HiB27zLKA9ZJ8ZATha2I8xNUw192EbEhkfo4s9xZGNMRLJzEe5XSQ95AJoAhRrVGrLprXRYSbCFEOGYyaUmw53IGNKM8xwB2B3feUwi51pIp4fXj4ttuTxGPFbDIDRzsdhUlh8+jaG0vaCAy7kOCyXC5CVlrD0OiYzhVKHkU1dg+wOe6Dv4d0FaEeCFms9Gw5LMObcg1Iajo/hD6ctz+m0yV5mUwx7/nCGw0cgKTBmf8c/OTMEVBgH2NVY8xECpv6OrmPp/Lf9kxuHnMFGFezQFnqG24lds8UR0sh7YfnJl1ek5DIPK0ROzhfuHHIccCF3y3JDyZ5KbaBY4z2eo6uRxzY47H1kYocOh9cBmEBw3GY/7KWH4W2UiYPsfTgladYdE9nVMoMpDoYcDDKTeTgeqkxkDw62LEMYVCxDE05ePkoV3xHJdhO5SpX+xCE/p45DzmAjCsaHttAz3E7cgWwxvnLZARO/n5rXmd6aJr2Cdpi8PvztcSArz/c01o1j+gDx/u+YvQgw2On8kAv8IjIOwBEqdw45l2wvmLkQE2PYONreSTo+Z46eapnDwcimfQIiFCeHJjFwhryZyxmvAAEGW+3v64T4g8FsevMEGNHWeKT7xgz7iDutp01nNuxEei5vL2YGcPMbOh+McTn1bn+QkpknDTXiyNdG0yR8lXN69EiAgWb9ebqvz5AgY3ceOMaaCHjUGzsdhYjPrY4m1CeuAWeeTZBamZEh1VEnydRxSKT6fhRg1GjJke8bM8wwFqbVsyboMTtnnXUJxnrl8OHARMk+ZbRDstH4DMLtWw08IRAoreCOWOln2B/sahCt9MnDYDuMHy85umyPYaC2aKKm1QamWjTxCtKz5rNT548uNfYJpROpDh6HoU/NMMMMU8RYnTqryfZbDuzraqj9w+0Vj5nxgyMkqRmQmZMY7VFfRLvH8h/16k8FE0yIHEG3GUn3FTtL1WH+GWdsf8b0tRnKER8xhtM5B34fwJm2LXcJh701wwwvTezrHgATpMw79dtZb51hWqCy+OFRRRLrvBMqM1WMQ5NkouFuZ9GVkj09bfGQ4+gGv3MtVTKjY/BEdiZQKqydnB4G2XY8ctTYbyBgaqrvYMiUx2OhvVO12ItH+Hec6stjdsNZi8/w0sN+zoCYLMWd+u2snx5OTEVvHnDjUtYiOPKsNYH9mn73TsU4NNlL9Ytkv4OJediAqe3hcg2RaoV4nUCZI1D6+qwFi0CIT1PKHXZd+FL6LuxNzhZ7cWlq6bhjqVs+7OcMM7z0sI/SbsJ1NLkYTEpi78W8mWG/MRVOOrDGDff/yEwBmmGGlxTuAM5PZn1AdvrHOK/kVgrMsFuEovPwzJ/cacJXyfOzqV8zvLTBHBvq+9ERBqmP/0ryJ/virJPOMGXwIT4HYIb9wCzml0Yi948uWUpjz6MnouRC0aVTxmcYC5jxvuDAaVjMrmgljDBr0h7gDDO8JBEug4q/7Uvye3pxNh57+HFU5ScCpYeyj2o1ZtgJs1ndpeB4vdXRtYBzZS7VFiMWlQ2ZLzTDbpDsrbTzU1NG6YwgSJ2JhgXPMDO54Ojz/wwzTI5kXX/0a/qYQKhGUzp5JpmPDI5qAxkejADsnftn+uPwYMSaziMd8J4uEDFNlqOIcQL/w8RTru4zL3G3wPgP566MePgAEJszxb6fNin4juD/GWaYHKk+eYj4v7Cd/CEq2wx3EggppcX2iqPqBt2JKIYAZ61TgpRkPdL0GdbEo216nKmWaeNw0ZMjN6CUtwdTH5KfpSnMMMMdjVH6cRYUmWE8HEkeCRcB7/6t3Q2ZHWnT6giBd2/SvRSWgRarFl858pVOR3Zz01hzzFBcKDwOnxxt6kyK0WwxARlHIDeAU+yPOWE7bHJXriSlzY2FV3aFI99bZphhUkywlnfyvArddh+XKMwwJRwh8Zi2f2iCKSHpceRhm1IV557OsN/IRf2H/YTUdc42/x3ZTEX+xKjOqLU+6lOidlzfmeMEGMIYAPGsU86kcGeHwErrlV4eXZw+B4WuNCyt0XKy9Erp92HP51IutmbywakryAn/wyj+53yVjop6m2GGHZDjfy7weu43H6iOiLozx995qJU1w+EBHhIdOaIYsTJL2z+ZEYDicHFpEHHvmHHz/mGCNnopRRrSVeSw26bCrozZK+MkGD+fDrMeBNK9NddPd59UOe5oTtgZDDD6zN/cvWLoDgo/97W0Yz6CkVHBmC1Uwv/hLyzUgKPr4dVk80ROpfISZ5kZDjly5kwU8QgDoonJHT8ZH/vHDAUWP4AhgeIo7gyHGaVC/pCNDOTtH2TWbICJiuGo4phybhB5xPPxczz07o5JZIexw/Vqw0hZyJqjzjs619JiIQ46PEN48A8nwoELLyNmvKgxqoqxdEkGFqPk44GZdKfHIZXmEVmVRTSGvFcWVUQY7HBenCEWlhsGKwhznkPWpB7FM8MwLVezNOuBicYcHurExiT8nxR4GP+PjhmXI84vxynjFb8sj8H3onk5zP6cGBg1eJReoiUxcaDiOwObcFd+VJqLil5o3JUZsNwaH0V2SNeeS5oxSTPlxsFwguaTHE1c3hXxhzHRmO7DDrlE9ENARgBGRMOGkACAjQGi9GNQqCMUaLLb8o0oa7qJYuky+JJ/tMzLyiVeIn8ySXEkVg+Zct4FsowYUyOxWTO1jStaqGqKoUtYNcePA3U38PlC8zntR8airjS/nerE+ZYds/8MeTIW79lKJbIkfslE9g8P6IARH3Is6aJ3c0mlBEusDUez7oRiOCWbino7xcMj5FI+85x+gLjrpR4ubb6SRHhgMfEgOgA4iBeU2Aml5SxSCCFR0ilTMl+auJlSBlVpmbMtNriaMXPyVs/eFeiO2KsMKnJ+SAvMDUskTMSACIaZENEYgwhJJ56SSOT010Qs7VyJYXnnk9ipjGOYWSNUyK6xo7VYKqKKeixfmrhPRS8m0iUyvAq6LqZ1WfXTSqJY/KyATwnyVJmjRjiqOjNFAoxopw0LQgAGg0D7FsznREYic6Q6k+3nYlk51KbCkmupGoUVwvTOEcNMtcHvUkULY9Z6LOpMj4Qp6u22pNGDg2+FfpikvA+2IMcuH6YspbiDjqNRRkhDKNIh21PHAWpjJCEggyFI72V0e7t4rpGnIqmzGik5znmAoyLV0sQZ/BnTRtll3xmd0j50GYCpW1zZUmKiT0P5bwSFP2P7Z1hgn+N3o6cyDg7nh8tK6jGEVDnxhLGCHqiJlHkPXBi1y2DH5hjmE+yxZyVGZd5DghR/pp+G7K0RLsCQ8uX1W5lewELmmQIXfImiekmMrjGKPlUM7V3jdLu0mZP6TBU1dg+0MWiMAWAEGslZewIzp/UsjGrPoWnsgUnj6scJlPDqoBSjdV+a2UeUarpcMXmzRDUfVl+IOAV3UvgcW5o7Prmbsg3tofuNjCMAYMAgU+JT7ZOPw4OoUnrQqGCSZi6mLqV+DcRUnCYi5mJ4wwfAdmDOXMDmNtuCg2aajrmxo3UxxeoO+l2mtaaXQSHDIdcLNUZAxtgOZsNxRDzncx44yly0EkzGDSmdzqPHk48cyh2/fDgDs5d3l37KpIjS3CfsaJ6VMwZnyjVUdkUyPiX/GRgMACW0GlYkgFRfTpeEAYDTO+qOSiIGQkEjj+/EDWnCMRtlGBnT6nh8JhnWXpMVL9vQmYjEjsbWxGJhxLuJAZ0p3DRRYItcmaAs0yGtH9sAue5S4hEhAyMjIDIbzlR9WvZPWt4Ooe/k2ezoAqX+DmmzokzZna0zhF8KHmTWbZykyjm3s/RusclTnmthaBUy8nEc7ytd/mkK/9urhkN1EArilAM8OBk+h70UNRUPTrIeR5hgWosnxYjollQgtuDSz6Tu75xVhiuGCJDCG6P18rQadlquYkSMJI2UgbQvfJhI43ia32SqI80vsINQG5YEQrYtB3yBAMYAUnruz9BCHAxGtMWemynWR9OWY7cDaWIMYYaE5YfWdS9m3u3HoDPkhMR4M/QH8j+rCofJf8j2xnxMJ6HPjnRKxHdOdo7TrTHRVWmRmJHc+Xx2Kksu8921dErHDE2lqLoSlTSY8zdC79w2rhsEr6du+aeBGYMMYKS7M9zsjIjNkOONgbjLvs7AaFinru3PWDjASOqNw6KTFomH5l5ItDACUqJzU2vnirZ+9JkacMiZY6Vl26Fm43PBaHCZGthVIodO+k8DYfgz5/whwGDwbJp2bOZXKrRQgjLhlxVCJXbxcClVuFz+XNqgyHD5HdDyBRPhAEyavD4eRw5NIc88BvI/bfsyczwQhUX+v0M7/EsOAw14xJc9DMOI2NfONWXOSNCCX1hMNmuvZp/L9pxk4kVO7BQwgXGZt6un0aYThljK7Z+9lCJObt9Hm8ZFeoVDqqWGsd34yFugAEO8oGwOyXT4gYmSIlXUCLFvNdKtCB0AxlLbcKg/Njn2kuQei1DwthNg5s80CrBz7GC8dKbC+neeyJ8aosNSGSNxM/DCS4g29MbEmUNm4n7chcuEwt6z2t2NxFaYMc/+IGcijINdqJj8c4ldkvJpcWD9RPJ/aFsXNdEMM9wRYI56RT6WMux5iEOA2dBiMolu1KuD/bPS/ShrQObDRKlno2+pjjz1adtT7t1FY2eEk4CpmFg+oHWIRU5J243vCWDuL5T4m/nciheHlqpwkTGc+BPdZjD5zX/C1AfucPZzz9hLkiFNxiQuZ78XIq1JEcYtxdhdg7OfnM4vlf3OVcm5aunkduVrHuLOc4jAWdJmiIapXeCmR814sC322pOS8CAuNVFYIYfyFHZKd+/5zjAOsnbEKLqPakfO/is8FHmamHxA9hvwUPmWE9YzaTLDUQbnfmCGtTHXETH+xOgTkcN9tCIDKn4fyzteuk+WWv8QR34YIKOBEksvcTlCsz88tYDDLYeQeUKjYAim37u57OfA+k/rvUQRYvzz0Fv/kCosJDwxPgZSOXsp8zMn1sciB5YxRYndjRQOEdwOGu+WYXflnSbhqvhn3Gcjkyuf2I4pj511klH6Z76uuznbYyAKQl6bmWZTAwJkQxF54wgL7Tk1pGOq0RjEIOtSI21ClKXAO6Z7WM41ufMQC/2oX6ctDi58iVHeHGNr/ijQn1cuCJja0DGDqcZ9ZpjhkCCn9TFeE1Qw4LOG3cCCT7kJmGwgFFp+ZR1xIMw5eiVROGFgMmUSY1Y0ZOQAp1wECNfwJ+prGn11ak7EDkkUb2dzzkQajpr4GbrRyjBkRnAw9a9o7pf5TPnwT/oKlj2GWV5BAEqM0wMn9gQZ7oY/h3F0Xs+OU4ydw/X55zN0Ts5eK0tkaMLFLpETMdNz/F+qMMwD0wozvTEfmZ060r1896GDUchFk4eopeLjJYnwvu5a85IEZ0b/kDG2LkKNF3JhJD5ScaXSWb5DNX+pUEtP9AwH2pl59OYlM8xwByNa4hn9GjUCFj1fdnF3HSirwfPjAOUx70w4KI4bxCLiEHbfgcMC2RB2LtiRHuWA1JUwXFEWB7mNGFGKgbkXGfDJF9hxdcYQqzB5H1Jfct+jlQlJ7lwwPLMaotwlYDbTn0o2LnYV1N/dGEiWvdKfpZh6/bOLizIjEqliZAgQ+/TRE7kF2amN4/MjGEfNUT5UiPd0TnNG0loHQdn8oSPZ1p1KCXhEP8jFvZL9enfa6naGvSBL/5EqLtfbc9/HRnZNNw/imMBl8n/W5jO8NBBtiJjGBPI/3EtohLmXN0fy/X6EcVKGdGeeaDlAMUicNysmSid1IZIxEXVL7C/MUiWuSgkpjoI0SqTp+K9kRzmGVXJEoxRt3NJ0eDhLUxyfvi3YbbvizuoyQWZWRTbHjG85Rhl2Gw1OPxgWI/J4C05deVgvcRzTZikOmpgH/uXR6BuHFYYNhHPuGaDgKB8UZRGyU0izQaIp5ZAOpuSlcIotGWLHE/PCeYZpIQ7ixb8jPYBJr8/37mIb5KIhxRBPORKhk7gB2dQyic4ww52NUQu/8k9mvnPJrcFRqsV3GTJGFqdfKAZ9dkIcr0IIFyTEyxLGtYzGzGbcwqQSDY0cBkgtTkCOpz2V2C2Yl10lEfEjIY0iK3pINH/IxazfmTMAipRIXy/a+mkrH1JPjigKAyOzOTIkjrCb0ua7VWJAJ9t0jrHXI8PgmRHOVElZY+839WQ2t2QFUHgVcxv8FtbmpZs+ttFu2wDOnYFBBGiCwM8ecx74dPlz++IiTKsopbGCUuzH7hJTw7AYx1FD1snjfMvkNyXhkpfLW3FoCw/Ok8gXpTgCcPTpO8MMY2LoCMA+5JOx9AuDAGMjHzEP5/JNsoV7zpyZXPcNhE66RpExM4gm5YJb42XG8SKLQy2YBmHi0HBLTuAFKN/yG7Mf+1Wo0c1KR2pR6WhClXnpCCV9DFNTpbAkKJpPNp3tbuLDCMDIOeGSnVaNcbx/YP3nk0hKWp7robXVjgAY4k0Vop8HK2QysY9kw4mIIQfyZHoYbDgxyDcbbhg3lHy7cJtLxjzpcV45YL4qZSY+QGombKql0k5BvsHyEh8h83YeXOT4w9v4M8ywH8gujRwdHhmGYWZEOjKevjTydLbxMsPQqcB4MGB3++/zkO+QVwnlz5RfjAYXB3YVJHHMQUw0/DdYfJ1Kqlz95EXZLnFABi4yxMYeZ+YUM8CgvvHDqc9UUJ8LZIdyuzbfRqUpjGPM0OAsu8OOdAcqLW+OwCNM9biVuPjwsGQz5tKY4EFzmMKtVFMxMmM6CoGFrpCqMyb3x/WgZxiBMLjAKbLGSLns+9w/Br5dcsZjtN3zNLPI6rmI/cJ8MofATpup9lqJnNC7nUAcNc13dygx0iFWockwYXqLttLmyVAmJzdGC0EIBQjCkYoBzTDDtJGyfyYOgAx7saQDJvN3Ju526QhA9LlXsVQS5OShD5RcTN3OBJPijyQSDvEm1ymxnuyzCjz4RB4ExaYg+vdfxiVBWk5lx7Hmza4yHFKaUi7CVFMPk/BY+Jd+cQQIGEauXTlsKBrGkPpe6kEVXo8c6Ens5129Ee7psfMrCBDN5dvBF4yfziQ5094TI+qWiIglZMxuEb3fJckbuYnsm3I28RdkwHgEGZLPTBGmmOleZPjBtcKBIiW5MS/Q0nG9wfVC/TGJuUHMQpx6emDWYLmFEPuadxZhZ5hhfGTtnzGMtCkgkogTd7t0yQZmM0y5yGMUj4ufGNk92XkWIxLeZ+FzkOZRarvHQdXD78wZWxAzuj1ntRcx4lZp/cYcAWAAOoJaNees8sCVHqw1GdHwqbU3Rd6cXhHTLnGqQCXFwrhQw9y4XIWxrOh3nhtwIDXihIPS9tNBIxUwST73sV+mrcqB58GDW3umQjjmZXKHmk3BB4B9JcwhQNTpY5E22KQW8l/CH3mSxkIDo/A+J9ML8+9COMQUGSMzzPCSBA4dAZuKoCkdvsxGWvYm7KMpNUNCBHvDjslh2WfJWzywcMrujchurzXKje3sL7KzuwcXORbAaTGe3gN2Sqoxd3HHyBkCUHr6z+3QA3ueH5DecLbIj6U5DLpKpifuc/VHeHGQFINTX9LmWe6Z9PhAFMbbhxLfXmRaaP8y4ShisZeIzN6RsGRohg8adx824ufcjygakfKApkyIAxXCRwxZ2V846SMjmVIuWnSBM70/CTAhA0M4qXCkdTHYTmSGGV6aiCfjl6ravSPXBRmKo7o7mn9lI3/5FMK/BQkxBMNMi3RpMPtzdGpl2WLp1xH+wohg9rC74xQMDja0lzRGOLgU8Vd+O5d8S40pggdtNKUzoCk9/nuAemAfbIKBj5UlSDGH7JWsO16OiZgv/VJ5NYcVLV0TLDxQHAHY1eqfI4f97bqY+Xs7fYAhoZDpFimRG/H+tOkQc3IU5diJDf2eXus+NmlLWvpOD05j/ld2UX86cl/s5YPJW6n9RRAwmtQwVkOmeGB/x51mmOEwImJ5LvD/FPtCRjjm0y266Zi9lbsCmefDjo7IyIjFrWZGYbT5MX5Cu1edmHsRy6oalmK3rZA2+iPa7Lp400C+xZAHKh6HVWu3jbf3qtEe3t0TYvdlrwoec9Mlxg5oceyNhzG05KXSAk1A4mG78xQN+uJFLl4f+JVDBgGmAZ58Z7J9x+Es1VgYVvSRVYp3Ptuh4rsnS9xfMqGVgTjZ/Y4AxYBReryzfPLJ0GTSbP3SCE7zQB2EM0gHh1KUHtMe3x3IrfxJlLvLHnC/p5zNMMPhBSdziKc+AjAqhZLAd84MLrUUclFFTEX9MdzQlzOb7oyqVLF4aRlctEl2hWHyBLNfSyuZvsDFb9licfpfXNR0g5YOd+wXkgOckr2VUzJ9UOj0AtSkAceYx7HHRini4ByAuDEyNZ3K1JXEVAIYxibDixO9FfejfZlLM2D0omuffy77JQMeGETFoMEUMPBPDxFKOX4qg18HA+bwoDGOBQFDpHM4O5CXmo0dGeKwH02B8XynFLcNGXoYO0kAyKqxKHlMmbCj1SsDM4b/UkfnHSpG3DcUNiMIo/eRnOSUH5TytCL2x0S2TCwOXhpEnmGGIRgsztzJGN190gAwQklh6VNc+EwXJStT048Ndp4f6A9I2b7jRDaLIwAYpzBFObGj9ZIL6Ebfyl7gcHeDQoqY/bwNdgIOTF1GGKwODjH4mhxIBbltYBKUMcTUhjUOzgGIq5nh5WkhRa98c/Nw/k87iIPVl9Mv1CCOyynTa3dMiZBsVoDZy7nMJsYwS+22Y1ibTFcq7RPiyRgYN33By8u4XdnY/D4grzui7Yuz18YdBChyYpZDC5kNeTdT+ZfItPTcXnh5pceZSEa6QVIyBHMvTlaOGWZ4ySIMxSThP9iH6NIoY3dwL6cXCrZryYhB6rFIinNieELWlCxGwUsdjgNDYbETjPhZ+hqnwuqZPZB48PXAkKFhet0ep0JZXOZpcqpZCi1RqjWna/Yc6BSgtDc5LQ9mSD4Dm3uMrFK+8tQYJ99Lk56auTo2dgzwTYWSu5g6PAQHFps/QgYiYjwtOxfpzfwJkfVkx6jkbumQ2ObJ/PHE+41LO5kILWv2XOCq5Pl0tpgMgmRHse9UE3UQvE9Lq+HRn8yLDFCyRdAu8ZLwtGaYYTiwLLQ2XeNklPxKh4HTynOwGisXZOHB8xg/ED0W/07FMpOKFMJO5WWbqu4elUxOF2L+7pAmSMXHEFP0SR+kmtpQcVj6U0c+6hyXI96GIavWkz+ZFsyXtbQteHhTTobbsAZgPxqjMOE+w/0j3srF0KY3AjDKfNt1Bxv7hb0cHTWt7cD3qbPdIYZKUSSX3N7p0hRKMdj3B9IDi6FYncQNzIWs0mKqNKn8xSGS7kgM80yCjPXOA70d64ayON/gM3wrptCknT72JGaY4SWMfRYweeuwmHd+UmZBLmcGCjGOGQwSSH/nwUOl9wepwHDRnFwvHTQYD3sia6yeYtcs6/jA4CKnptEOPjkrFw9ci6SbMjr6eCC5h5G+rIi5lpp6LW7bIuD9ABe+DAcmT+4PZ5QUYVLXLV7fEq3Q3YVjffCYrnt6p2KUd5g8sc+W2SixMknWpQb8TlxQMmAQKS9MX7szEGukzIkLHGu5wbh9+LdY8XxI6FD76zPMcFQwzoZ9e0p+5FVOC8t0fGgnKVwYLS5GvkvfyBnHkHor5y0ctN1cCJRj3Dgch6zygXZMnTnGeaU2pjWyd01blgLHMjwez0nTfQyy5h7Zp4kVd4gDUEqXkcSKRt1z/Wx69J2Kw8YpNgp/J/v9JbcPKQ5twfYRu5xANpgTGP3OiHCMwzkHj4mGgnLCdrwk4qdS0q10UPoOAee26eMkihX9St0IUYzfYSK7IHETJhUzO0cUZjgsOMzC/giDs9/2g8rlvTMnL0syLryHWdu2bMBgzMJnREn8blqWjG2mThUl+aWsnyFH4gxOQsO0Himx64aplomrOdwo59hliYuY5LQ3mk63RfiOcQAyenCMnXyGefy7enFY0xd+7OiTF6/wQDNH5/mEYdFURbmQ9O1TELlBt/0ryD4NhE0HuzScMyGWtNwNbxXb9+AwxWxLtVJR1yWHVoWTkDguxCFt6smAmbh+aHFgUtXUdcz2pDQNoy+xrNtzV7vtg4Yz7IAkDDRrqOljv2cCjJV93gTJadF0ZKCkv+f8gh1zK17kvP7JP1l0GPaGkmQK1nks9BIrusyuS7tCxQ0gEzpiGTUna/Ciy1SOAWNBakXH7jIqvjFdywoB6I4RKwPrM+spJrttDHlpdzRNhSyLHJVq7PJxhbSFXPzOeeZEiOR+OEUgsQo5qhTGe7ZH7sLtbslEiOyfsioVjXvrFdMr6e7LEQmmnPxO7xV19FAahckzeSjfB6eSxTyceL3xy+NHtQ49Es8m7ecNLiQ1TVv/CYMgQM57mAJZjiqLvbQQqoA7pRccSuzrjMNRLZfu6IMrpaVIi8Z8GkUDYkRuOXcjbR/vWP0x6BOJ9+ym/LmipQzy+KmCy1FokoFrVOob5WdNlnoL41VhKIq+xMCCzJA+m1Xutd1kl8NsBGAoin5w/ImQaQqAQh+YNMPSL5gycdK5curLOB028QGS/sSMkCwFGHxEXsFtVRGpvHGniu0FuT48jQGB6ZV0952c87wKEA/0HJ2IX67Oaf97aD8rCMj0a8lZZBFjT6mctxt55RVHDOLukjo5pvjONFzdGQ4dim1d8JwjTxlLbs5wpFAiyNLhd4DYEOYMA+TeK1OuCGOpjFL5smcdWpD/0eRWTIu8yIAZINl+laN1vJzs/cbJITm5yuamSqbDn1HeeeEaF2hkucfvVcOcikyief8gfmoiEnOhvaYIBJBTTXA6KLD8WM9zir9Lh05yjRDF0ydpldxrHCeW82vDDA0kNwZeLaee4bg0UdfH6AwgiDaPjy2jJHWKK4KAYVfBeEzgthmNQ7KdkMBjYxp1nmYBObXaf+RjmdBLaUjm6CDXF2LejH8nPD+iXrmwSuqEbkQMeXuqR3TcFhToVMAO4j2n0uKxTUbGZG3QBFQ6avx2lMCD5YvJ9/Rn0UMefGJoDw7miDEgMjDiERQSL1XsbL2VBEZyV3Zu6xIbfEhyOaUzDR5KRH3KBmFOC+wy8R0+MJgmn2yFEFlxzHGXSVlICKmltVHfSFMnfDra4Xony74YwYV0AQo6upSkhcTjiqcna01K5aLrMvU+fxgdgN1WEkf+jC4mFgVgoUPt0MFS7+ScRihyCBsGRAIwrAGJgTD1OMcBnahMCBw+EepzAmJmIABmNoDAjJhszxmqi/C8j1BBxIf/xb0kqeHBI2/4Tk++jMI00p8awZiHiZo8ikIkHbw5suo9LTwzHSR9IwRm7kXmDTMgxRIegZnjzawRmRljwX4n2LlpVom9/5SEweITcUQAYaAVIYoqcHacc3dIK7wZpoEoJpMSx4P4D0bGDUZSPLEYcrzNAMiIyBzHeRAw6hGDXA64Ync8DhdNMRs2yZmiQ66V2rWQvTjNOsbZhxY6RoEJTj8QGjSIBMCa0bAhQuRU/SJ3GMNhgdDmMcwALCiKiCIksxyiSkRhVEyWy2GYUpnkHBVc4TKijaDeyATCC+kWmpzYw8zNKUIeNp6fGMPqEAVlMelJPBCz4xnMmHxAzN55/yHkY2YGIjJsGAlRaAZtgBUQASITASEYYDSIbAz7QIYRdaTaJTAxUOgXUBjrMfEsLYwtgGQ8Id0XUgxymyKlePBsNCVDeWqlRsTxfYDR2R+1DlkQUIPIZ+J6Y6rHhc+Gp7gjgAm/MzAwGs1EiEjRKeqRrZRq7b3YubcTidTJ6KNkkRJmLsZIPcupLYNyr0/qFQ3ehztGE9w+RLomsv8Tt56Rk1AmgzGIBGiYQSEAEsXvqIBJACIaw8AgGBGYgYkIBqZgaSByhulgimRNR9nH0goxgxTeiGPaSQGHlBKHfC8t1dSAsWESmuIY8igDIBqDgIAERgGJQAOAJkkWkAZNIABAGVCGMYyZGoNs2CAhSEGACMYAIxtGxMSQCz3rqBaMnJNdMbU4Vd9S+peSIuOAj/dKLLn3S3yWenfTwmEcARgfaZIPI3+yc06aT+JTUHfVZqPsj9j2Y8PaIBJAoH2BbBkmClS/B9oH8vq9Lc9vee0Oeb6URhIbMgwABi3HsStL2DiF7hljqiyIAYiYwSAgmtCBNvGW4al6RwMJI2hwoNi1CbwH3P7aZrG7LVX2EM4+HEjruNyNKKSNceiTIdoEczBxBZBNFCZFowHZgBGAKCWD0BqEAGYAw0gYjwgf5ZlAmUGyolYaTA7JXx18j38Vxgl4Ys8/TuPo0vXwACN7P/wRur/h9GYyCJqAAQ0RACAAgQLwlNdzwOeAeyDQnXfIAfCZDQppAAnQgDAAEgwAgMEwmpqEr2bYO6YuUnIifVyFmLdVc6eDjTL908bugSO2r8JxKgYAJgRjFJL0ARWDFJIAQIDobV762Cer83D12Uv1esNoWTl14uTFC6iN6Xa9ZksFqnb8jFg8rtlFspEI0JBAMAYSHyBcDDmYHpoRg0kcZUe/a5q0wkG3D4kRSeRdBQSHt9/+NSsym5ekKElctvHjyEkHLR1WwiQ2ZwwKw6p7ffPmU1effQaVOn32THOrubRcU17XrSBrgwoEGiEAJIIAZo3a8wPuelbl2N3Owv1WYzkgGy1iFMRooUGOR4TTuWIyVSLZeHYwvHFgEqHY5V6CLAW7IXg0bHm0HYAi4m416BnGICjWiBo5IDDIRgc+IqtA2Y4LDKACv90iCLTRADa4dVGZB+kS2QCAoAEIGZkNETIAjrXO4vYhHMhIzIp034g6axgtiNf4pNVEQWuNkDjxAxgH8Scjy2D2LdxRrHgbELdR6NWGYVBSDD4BAwgIOOgxdgh63sp13Lwueze319c6a2s3X7h+7P6LJx54BIXcvHpt89amcRpzJ+86ee/D1XMPspwTABIQOBoRxoMW8FPFoSp11BOnz/8jYs/jvjw2clJinFJNtQWiVMMYKGIY1xEKwJgg6Hd0+9bmyou9jZX155/47Ec+cdeDd9UWq8985gWv59/1wL33PnAO/H5vdeXq888DoHHmX/slX37i4dfq+TPKWJJcAhKsQ8vaAFBuO+XkiLB4ZKC4bUSePqnQG5c9MKYLUUaDHGXHWhWIKXu0eGvInV2jNJGDcAAOoL/vsvcOHTnIcUP2mXLeyIRjGADBqN7a5U8//tF3+/3W1nr7xPLixYtnN25s3H3xbLO5PX+iVnGtoONrZdCyDBIxkDaClQYOgg7VyHJQCAfMfLV2lu0TWD3l21WJAjnJHaOAQDIrLmNR5pfUHACG0ai0AHsUQ1zWMQ6DWtmNA8CR+3YIij0lDLgTwq0dEDRrwh75W6Z5U2/f6G9toPZ77Xbg+9Wq3Q8UCexttftbbRTMhOutvsfVE+cuXnjF57in71boSLtGKNAAgyFKDJ9DPBJQ1AHxbwaA2AFIdV2AUGklt8ojRyl9lFdNMR9N6gDA3vrjDCE4nO0TjXMJReADAPvcukrty/4Ln2peerq3vU6k12+ucnPLdb0Aq32lb127MXdsLpC241ZWrt9YW9mgyrxtN6z6/N2vfdPr3v5NjQsPsnARBCOLwUDYkWyuw8VmBQdgWsXbnQOQHzWYXMKNMBn3lfLhWFd4Khej8BTY0H7+g7/z7Mc+4LVu9Xu+ITtQ/Xa7u7bZIiFu3moiWcx87mR1Tniug8eXayS13zO247zs0S88fs/LlbVcP3s/izqRAygIBAATJFFQzJyMGg43x5OC4rlCGRQ9paIDkHt4l1RIC3scsx1HOADFJ6eLfZ8CNKEHPDLBEj9m12+n2CCV4pB00kYm5BkDkxvICNrv3Xz2Y+/+/37hWKNGVqXTU41Tx7usPvmpZ5qdbmPJbputxYYtAq64FhhbkhSGUYMxho0W1MHAkO6TVsBWd/Uzfs92jj3iPPBmYy0gGyEkmzjEiGmmjcafwxsHrB9228pJ8SaLu2Dhy15S2y2iIG6Zaz9B1odIF+4ALnQESEvOKPANDMAGEAAD9qS30bv1VPfmM97miuR+0O4QmG6z1e12K44ESVopr9O/9sLNQGnpuKvbvVtNf22rIxpL973mc972zq8+/9AblG1bUgoUfCSNVUx/49RK5shX52jabIq48YOZ/l3Y+j8dhYgGAnY3OMLZnnhUCHo4wRxFJ8GwBhkQeEFXNK9cf+z31z7x59i6sXljfWt9s9v0WLrbvaDb7do1G9x5T6l+a7t6tS9lhZF6Xo/BaYiK7yvavv5k6w/Xb9x8wzu/8a7XvMUTdQEEaGJv7+g1WjgscojKXbDybk/BcrlOehh7WJVcMK5g8Uwb8bFEEMouRl+B8Lc+8ls/vfrZ929tbHoq2G631zrc7Ku211vd9F64tNX0haw2up6pWN681T82V33rF7/y3ouL2yvXaWWT4CMnXry0cPosdS5R/WT1xCO6coJJiER0xuuGc82XGP156z9t8fFgkk7ukRE/R1OgxH8bz6DfMZdptVopAwxGAPapT8YO9vQSHEKR3ZQ/E3ob471idDufa5LKrWvP/vPv+Y7PfdkDdy8v99Fgw5qba6xfXb3+bIsw+Lw3PeI3V2zs12xZqUGl7iKywUApzzALS9gCASxgIEnKsSzHMa3+6po/9/CXLd31JmPZAkM7KBzuIoAk8Br2iHjmabR6sljAfcGw8MkIoZNztcfJAod8JrcxRQwA3KcocbQhTZTNhPNRkgGbo4ZcL8i1AwMYZtJIKugJ78X+5cdo+0p/a8WR1Ou2t1e32+1Oe6s9Nzfn9bpr682+H/T65uaNzW43aLa7RlhtlmvNfrNvhGPNzde/7Ou+8au/5W9XlpZIWJaQhg2FhwUfdpT0PM7chXT4CiPexQxvD6JYiUaJ90Qd7AaQ/InnAg3nqhFxwUNkkx1NGDaIgMYEIH0C6t/0Pv27z/z+f33mk5+4dGWzY+Rz26LDxAY7nvAChURA0FVgoVqsyVrFQSKtgrm6W3UtjbQ451w8XXdcu7awYGTtc770Wy48+pUAQrJJNfGs0faE9EgslCmvSdLcU4H22hsTswbK7Mt9YheOjX9gUIAm6D357l98/N2/2u9u3djynnphU1lus+WJSkXovq+51YMX11pd5n6AXt+bq1hVqFbAfN7r73rtg6fmXKo6orN944vf+dbKYlXYjrHvPv7w2wJrgZhk7HEwAkHiAER7SsQFSlU4Jilihryc2KZFmheu7GCp59wsSAzfcgMhl9qIn+MbqWMil9RgBGC/BEm2+nuvCaY+i9d3k8bo90aUNNVAiZvHCGhY6yvPX2pubX/ik09etT+zemPlC77kc5fvu9DQnc0rTyzMVz70+y8ab/vee4+fOLHASoJxLUdoMIYVAasg3EPUQqhIu4IkAw1S2qfPN3zvxd7aZ2tn7jdQC4OgzJxYu1GwMOqEmW4QM/3+6oli90iTrzTvtJwaMwsoa7mU0Z/Leb9MmrSBNblve0QjeAPWSp9OGln/4Z70xhBhz15/cv2zfwHda35rjVC3uj1pS7cCGnDzZu+zz1ypzzW6nu4bePKJq7ZV3Wj2t7raSLyxvbXS8bo+MArH3bzxsz9349bq3/oH/2TxzAUAICROZX+IaZgs6k11hGjqT4ZrwtG8RFGkNBjG/nx0BCAARJvJZE7EGbQCppIsJUpZ0OSw0u9IgQEIyYBhTUqAq6+/+Ls/+9yf/Mq1529+5nr72VW5Zvhq24AlbfT72lPKACMKACEk8XbAsOExqJrEpXZ3roq2FNxvnGhUq7W5XsuvOObZj/1Jffnc4j2vZBThUYHRjKM018ywS0xRMXJaJWW/7CIJiN/cQzFK09uTWzIyu9AegdgAUcytK59532/+2q1r115Y624oeO5qS8H2vCuXEE8t1E6eWpLS3trobLU669vNzRY3arWqU7cYT8/Zi3U5tzTn9wJRafQUQYCm22R8yp07VbnwOUwVAErGRsO9h5Ap3i0xJfrKorWJwo7N89LKlFgbO1AvZ81EUjufyJjItSBmr0+m8opcEaZw0LsA3VZBVeriwUgDtfgd4uhdzttkMMCCmp2WY0zr1k2lvFOnTq589hl1/dKp03Of8yrHrpqq60i5XFuwyTKMgW9JcohIoiZjmBmNYTKEgCbw9ZYPZKGUPdUxsMFbtwA3G6ffwOCGmyruzAfxbkf7jWL3KPXTSnvRrqz14mOpGGiYHMYhVRzx1t6wXzbT4bbFsvY2xiF/BohXs4bb1DB0xPonOs/8eaVzq9PvE9lBoLa3tjW3wJjanDu3VLl+OegE3ovXVvtGikbt1na7JcWGZd9YafYN98jyBLA2QjprK633/uEfOBX77/5vPwiOEEJgrGmigtw2guyIrAKJdzOFJJKPkBFEqT1+IZEqnGx3jfEpAFCq0BkSgkRabgx2OhjxcEcio02i0xgYWbBl2v0P/tpTf/xLz1zauNxxP+vJy61eC1QggRCURhXNlUMIDKrACPSNMQYMYhegtR2cWJL3nnFPn1sSrmwHwQMP329Uz7GCZx/7w0fP3AXuMW2MIDFruCmgcMogD1FeY6eXt9h2gX1r0YxpOuWkw+14kIEJkIGF0Guf/fD6zcsvbAcvrpkVr9fRYLSac0y1QvXjdU8bQXzuzPIDtQuITNI0qlVHCsOelKpqo+OCdOXJu+5t9/3ta/3jiw3XVtuXPtI48aCuVky0BCA1NhofEJD4xXk7PgnYpsOD4Z9k6XCaUru1ssOHR4c8s4+P+JnGkHrsolAj0ucDcABKSXGbDJ3S8PGukKJk9lUEBmQNdOLEifvvPs4bN47V6mcunj52rFIRemFOBqZPNs/N16UQitmQICmFZSOQVkaSEJYFgGS0YBQsiCSgMVppCCz2+q2NK89+1tlWr/6yVwI4TJhsOQ0QropPzk+KeHEvUmyPGNa+Sbca5jBMmGZ2KmCy4fz4ie8SU0ivtHUOt0ZPx6YBIJqFEu94AhDu00aaere2n/wLXnnG73RB2vNLywFSZc5tbm4G/V6t4VSkeLHOS6fnNtvdy5+9ornS0bDe6a12sKOoE+ges9IgBHQ2O3P1irTtP/qdP7rv4c/7ynd9/eCcsHQs51B6TrGtniocDgqbLTOmY1cYr+LnuJrRMoHE+h90oUxnyiwrHoskk4WTZoCcNuFwEIBBEaqV60/98W/eWLn11Dp96oXVpkEjGX1NGogCrQ0hCIlCEoHUmg1rIiYpQAoEEKDBFppMp785XxfHz54zQgNIZuhtrW5ev3bs4nGMj1bCw8n6RxkTUzNnXuQaZpjiK8fkrbrDm/vAK3FdGRjYMLOCzWs3b622Lt/sr24rbaMt7VqtceqEMzfvEoK0BNjEkv3Ak6Qtm7XWHpCQTJYkxyHC+bpbr9iWoL5Bi1xpWp3u5f72JbuyDCgg3kwaMbslUEo8YjxMnARMMtYwDjQJxGvLkp8D+6mIdBxsZ2dxLHqPsItKx3DGbMQdhTsCyP0WH6XdoPTWAWIHShYKlvbvuPBctDu3QSEZ5kG9/EIdTi7WGlWrKqnOVK14QhDWhBSMjvIZEaUAAhBEiESWRYiGDSGgsIAYgbXxWXtSwPZmE7Tq+2rpwmvOvvodbOZQYmzvc3waNsclY4B4kXyRTfcNOd4d3+sbv1xY+BwkmCyXPJTK8EipaC5SN48k9p9cAID4lCqjtbdxqbt2Wa2v9zumMgfNjXVlWZVatTrnttEjpEAHF+853+qoCokFp+r55Pf6C0B9YzbbPUC0bEQCzxgfsUviuWu3ji8tXrtxmQjYAFPU3ukZNoeTyHEfDc+rGWzVE/vtkJQ+510lXzFRRqHCil/GVH9PI5ZJY5Ij14gzTIjYozMAotva3GptNNld7eleV8sKMXKAoDUBEqFkDcaAlCQFakPMho2HlnGYhdZSYlU47S21TUEdu921dRf06QvnQVvCcYOgBQADfjq07u9RQoaAE1OzaNvkQrC7CN9O3p4HzQnJmGYIJjIG257a6EIP0A/UnFutzzVOnDq+vOxaZASQbTtkk4rOOZCeJiKLLIcN6ID7KKkiLc1eNyAROLV6AEDEfb/pNa+5p1+nWFISqGcIz3gNp1GGRYhEblo+pr5HI6pJHGmwtwLHCY4y5znXxrnv6YaftCl2a7gVM8/dHfHifp0EPMLuPwQYWpZCw+UauZBMNOWeERAC9rZvXH78D+dr6LmN6tycqNSl60rLFhZJaSMKhaZWcxABiBE1AwMhCxEmY1gzGGY2aJAsoxVSUG047GMAztmXv12efpUBSaANACYBwfJ6JEpi0mWqu0H6eORsFHKAxHYvul/jMzpk+9ege2PmgfQr+1P3XSR8mDh/R2DhS+kznDzCzKnjflmwCjZXTRA0Fhq1RdHtm04/kAS+7wvLXTxmGz9oN7esapX8bsAeCF11rM0NXwAem3PWOqAVoyQdaGQwzF6/39TYDzbW1lrGGBLhXkDpwxd3afROESOyzFjy6S6Y3tonXhIQPh4fHxv6BZECK+qBrMZNX04kAo93VgKW9KEZdofB8W3Rce4gAG3X7Xe0RfrUcbcZmK0eWJIQgYjYkHS4WpcOGWIdMEuLbOk4LglmEWhisGxRq1SqFQk66G5u6W5XCLl86i4QllNrhCwTbrp+IOGdOx45+kVG5W7nxk2tFXbVorts/lycrtROGyPJlLpPQm/hkUQGHIEm0J5CIaxGhRYajdOnFhvzji2QyBJEhoG0EELYtuXaQkiSJJCFlCQstiwJQJrJECplbCMMy83NHmFdgWMgNv6jDT9xMBVoUK0sMnZSMs2yEMdKIohc+IxrzDmlk9zNqc2iMzCiRAX/sPRn7uFiA3FcvXw2Q9oyvLNfU4CKBBnhDd9WETY6c8x+ZtsiamAGxEBpVM3H/vLXWluXq/OLyJVqre5U6q7ruq4rHTJIwhIktQoCQgnGEBsmlCIc8AcDDKDAKDQGkYUAdGpep2XZ0OusbK+snjGOQikAUDMIAcA7xRQOmq7Du2B0t5Tvxy9ijqlKo5e51Pat/vtL2MOq1LN9lwEQCAHYpPaoUUxS1BeCjlEawKL6XIUlaIGeNpLdbjfoGME2nX/FXeL0yQc1nTp+RtjOlWurnpQf+ujzv/Szfxx0dMN1hPEIAfwAmGrHFl/xmleFJ0DGsZ4C80dS/YAolxo2LhYktU8UDiRzxP+D8yvDEAKXc3Iyqy29U0Xi+0SRt6y8jzfIjscMdqDFNMJVL3GkHC0OfxphVdCpV6vyeANN2/d8cLR/5nh1vkagPMlcrZGwwDZQsYQCFMRSSM0gpbQtBmPIcmv1muMABtr0vWqj0Wv3bl1fWTrX8LUAyLR76HjPlnLsAXkPm2ESSVI01CZ0z3b1wkTNXlTEOUNnvFwZIA6hh5MbmZlQB+r5GzfaqkeGTi1XFufr8/MV4YZCRlrCdm3bdqQtSVooBUhJJEBIJsnStkgSCSFIAgP72kAnCLRgy6osgpxnkIiAACacH1lC3ySIUmZrpqz8rF8AJW1VYl7Fl4bt8pm+OJyao+220vTSCY96PW8b7ZD4NKcA7RgOK5Zqtybg9FAsLENqid4OJIzKzQAMiByQxO7H/vJ/Qm/75Jl77WrNrszZli0sKVASCZQoLEsKAGRCAI0SAEExEZuAEBCBCQgUmICNQQj/adddFMBGuvPgdLo3G6gYJBCF239CZgALoFDuOJi4/wQeQ86l+0XOVdht+fZi5R1W2zqDw19CSJukkVRlYECBlaVjvH287/U1sXAdWa24c1WwLc1ou1XbiI31W5a0BFrH7uLnnr302Wee22r3PvPpy5tbnU5PPXzv8U4A6xvNhWqlrYK+b0iQ7+szZ84opYSU8botjHzgWHbHov2AEAa8IJmnn+KsQXAMMZqoxNGU/pD1MfqfB7t6JskmVn6iXtMW5mDXu0xZIDp4tkQBjapC6vNI9ItDgFwgCzItwQAGrMWTp++5ePbajSBoOx3v7CJaFddxsCKVa7n1ikUWsnRsEtKYXlcBK4PCth0gZNBICMJBaQHoymLVrtQt2zFSMIDRAGAZAAQDEG2HFW8Ikd9yaoaxkbcESvaHGTuVYSbNTiZFOn8Yz38vvDK2z7GX8Gu6guHkeUQwhpmZgDnwbzz3sc98/ENzNfvc/PzxxblqrSqkFZAhaZGoOtK1gIiYhBGEUkghybKkZUnHlkQECGRZlutIS1jIgo3jkFM/6yycqhw7pxksAAQQBIYhDqxkq116BlimDgglzRFbf8mvHRssZ5VP2vdGZ1VsrHHzKTW4sy/v1xQgGN4TIL4+QR+bHormaDoWljNQMyWNwgOMzEBIvmLB/ac++aft9sbJs3dbVsV1HCEtZmY0gAgkDBpCYjCIyGxQCmMYURpBYGxjNAlAQcYwkjZsCBlZE/sA2rIlWjbatY2tZxfVisITIASwgVj8p6tTGoQ4CMTxpx2bdXzrZBeZA8DY7FTw8WcacwTysTEASAZRo9BjOoiNAMhWZc5pnLaIrLorahUhLS8IAj9wqhXLRmh152x37erlT334w09+7GMrN6DWcFY2AzE/P2cb7m4vz9eJalcDYy8s3Gr3X7zRZDSNivOKVz/kuC4k4p452fCJIT55+GCbE5OZSIwlMaGYQMkWefExYEnILLWbf2jdx3/C10vc+/RGQuUHBkN8e3fMPesG4yHxxpKVGXHDAAAyEFj1hfm5WgXaJ9zeuZdV5houkEJpsWJJNhORtEEIQgbDQaARfSYLSUpBSKiM0RqFZZEtQKDy+4tzDtmSK5XG8erSvEsAiIJj9zM0/0OLdbYmeNcYorEmI2TOKZywJSJ9tpvA3XgB/JytM5kbkIgfHsxYJEZko4LW+mMf+NM//Y2fW56zzp16kCyJkoW0hSQpybYc6dSEkMgMqAHQMAGQMag9goC0D4iBLYz2gqDfJ0GNWtWGnnRBQM2xkKgHustYAYoHWaPwExeWApdVe1gEupQGudh7ik8Qk24/buhzmJwuNkTxgXQxR2eVzyid+pA3pzkFKOd85gJLRdv0ADCydXJeMxS8gpwy5/hb+EUjAvtgi/7jH/j9XuvG6fP3aLbYIYOESBKRUQMCIiEBAmitBAoiJBKAAGiICAWzNgyGGQRFu/kzAYMWqI1SyjBKUV1w0O5vPPehY/d8CWOdERFN6kCqbBGTK4wAnJyNvXeSDUPBSNxFVrsMXpRkkby1t4LvI3YfZTmAhRvjIN2JOXMtmvITXScEAA26o4PV3vYNwx27JkmSVp7vdT2/z+zZZG+vbm48+9zTH3lsfe268tXxRecVLzt7+syF++572VqrZYTqbnd7XeV5vNXub3T719f6f/mBz15d7R6vOTefv3r63lqlVkmKwQCIyBkreIoG0HhJxfZ7PBKSbC4R64hsPGHgC0A2zBhZ9xAfqAwA2TBWvBw4EUOpN9MlAYiPBN6x9AzDTqqZoYhsuC/lvCGEjGjAMJPqrl/prT53fEnPz1cdpyIkKm20qElpCUANiGQZEMjMSMzM0A80AIow+gmEoScRGEbGaq2iNavAF5XA6E5v65ozf8EgUTQExoNJ2DxN7n+poMQQweTybnVZadrDjM9x002Xa+8NHC7Z4iSOMtQGGl4gjKIayBgLsaCvoP3Mb/34jzS3bp2fs/vuSWm7vtJAQNJCKQUisdF+zyAxGrtqE1soZLinJ4JBNNImIYQAsCQiKseyTNC3KthrbhkAy+K28pwTHV64RzpzRtjIKMOxsGgGdToMmZO5BZoiFBYPZOqYv5OiEQ8GZwd5jjBBRjT9jlyRdtggL4My3zOpjfA5Um/i1NcAFKufkKWkPDEXThE5O7I08VT1YciDXPyS3l2WgRkIGFS/+dyT7+1svLjYWOhu9awq9wPFAsEo1AzEIFCSEARSOkgMQgIYwxJJohCoBCNiOKHfsA4jhATMGpANMwoNoA0LA47lWhK2/PaL1tz9hqQgRE4GKxNzYsAVnPtAzs9UKMWk7TFBuDH3OWYKaTmVa+tDaGcnRuCucAhMsqIvn+nEPJjEzsiaUaNqmtaVYOsyta6Dt6nY5z6TYKF8bm8B9lv9btDZDtZunDihqscaD73mzSfvelWz2elvtTc9X847uu9XwLMqumP12/7m6bnKgw/d9YoHTq9tt9Y8e+3FT55/8JTSiFoysrQEALExgPFSdxiHv8euf2yqh+bdUBIl4yGJ1sH0rnIhk0XThXK6KNdXIVoGHE3pSEYU4iBOtgz5lwfDAeNzdUyybHozlCPtDIeqnxkIwURLL4wCJkYt+YZbx+MXzrFoMLMOgkBpFDUJipXn+b7WyjABIyMFvib0GYRGJRgQLWYhBJFElwQYZjJI0iCz6nmrV6594j2ddu/YPa+xK4sQTpiA2HXEeEtezBR1hlHITvdJ69DJaJezJ3K29S7cgKR3Z0b69tSgkRjhAQ/nPmFnponWu3M4BQ1BG0QV6Osff/ev/egcbx0/3Wh6vovzRrFlNCAQCwOkmIQlgX0h0IBQRmutUfWJSApwbOFUpO0gsrYIkcB1XSERNQARCaffDVitzG01Za/vt7d46YxYupuxGq89CFm+zHBPm3uD2MngRJUy36foM4QpFZ/n/KtjI+d3jbgIZS2VM/13Zq0SkxYY9/McgDTPFisZfpu6fBph96eeybkJudJBrNc5+xaFupjDuItm4u5zn/3grUvPVy273eoZ9nrbm9LSPaMEGTQsyEhijUyomcGwEpKkTYgCyJbSIXIt1xV2lVEIYaGwURATERMCEyGCEGRAC8WA0rKEr4Mrum+J6mnDFUES2GQJHEmukirF4cTRsi2xInDnAGKOqhMi563tqLUwy8w7+nsjk9p3BbkHsuyPczKuVZCTMPlEEEJdQMxoWIlgzd94pr/6HHc3IGi6UpPNQCbw+kFva77CytsGqx9UerX7ltZbjYunL1Dl3HbbC3QX9datK5fWbzb7613LIJLUDVRCuw45lj9fMUvV2gP28bWnHvvT1WvzZx45ee6h02dPi2pVSy3JSvzbWBPw2Kw0BhVi1yJd91TYPJ52hCmlmsTeU5+JJwHJNKDotchXSKYJJWcBDBKIHY3E02DI1Syjk/ZiuMywIxiSmTeAYEAzgAAGQ0KzAbUS3PgEsW/bTjcwXq+ve10QQjFwr9fvB55hNKgZNWvFBgEcyxiUyiAhojRCShkuCiY0zGQL1L4tmFRbmqZY7TQ7q52bl04+8PmN0/eAtBHjwYB4rcnM9N8FuCjgBvvDjE/EUnGZe30iNyARBBhLm8mRjpPkqofD65vTRJjyMQ1zXymz+fT7/8d/bAjVViLQvkKt+h4TghDAgMwCJAMGQcCoQBAzWtKSEiUIFSjbIccRbDShZTu2RUAkANkAWERsMDAK0PS6fp363DGG1wP/OKu2tfigsetI1iBIkq1OpkIZy3qYvTCEBum3okRSywzSRwqMjZzfhYU6lDoow3yGEhSNqjJ/BzmyIKeAHPF4pxLvNtdi4xQJn7MId5NqpozMJprgO9htgyGcdslMQvr9rctPfmz7xpWg3VJaE/iSFCESBAIVgkbWCEayIjAIPoIGNEQC2ZcSNFJ4iguSEE4dybJsixxXOFVw5lE0LNkIGKW0CBQBGySjDdlGc8ciIvcMLbwcqEbAiWOaoXNqaACybLCD3cuRSNytAzAxRrBN+iIUHB0ufN4xSBsZt60IQzpubOkaYDKIgQmEuuzffFxvPkf+NrIWEPQ7bd/3mDVrJU2XTM9xVFt7HWNVTt5TWbrYsNzm9Zt89fLzTzz16Y9+tnHsuDO3NFett5p+p2Mu31xlBEvKU8v1e+89L8Dva2ulU+HqQttUFDVW1rbf/BVf8YYvfntggSMqAKCZKT4BJi8O9k6DUk0Oaf7jzBXIEI/TQ9OJfZE4Bol6KVEz8UZBOFgZnB4ZyIYGQ+djt35j2nOZYUdwdAQFMzADU0Dkh4TzO7j6pPfie7Y/8x5v/cWep9pd7nZ6Xrfna/S0o72ur4VnyCitlDJsAAmAbMnaAAEL0ihJSmFJW1qWkExSyKplWcIWJN2KW7OdSk2Qq8VxWTuzdN/rlx96g9M4iUIiUOz+JifE3F5CHRUwF2iFEO1uPLGJMonFtqsMJkJpeYq3CjKP4ygEJDsNEDAz9bXxWld+72e+71jnal9bhrHV6zr1Cmhgi/oBgGGBElAYJgOBEACABhBQGAMCZa1iu1XJwBWngqiVURVbEJLruiSJEByBQISAvofIAYqgWnOqtYazcNo5/nJ7+VVGzhMhgaFwXkZ5tfe243GKLgkR4ltZ0bwPwCxfFdtoZ3Yq5UIA3L9tQHM+dDr3ibm/SN34ymQORYI0QyAwMPLA8w6nAhhtGMkESuvW9ma/2+p3N3WvTyAsxwJfK18Z0KAVQYCWZhUAGEAGUIQshGL2tQ7AkJQs2BAYNhrAWCBs7QEjd5XxCO0K2PMs57SokdVAt44CSbiEkgm0ZkEIutW9+SkH5mjx/nDGKMduOSTBgkINoy876QWOdy2ZjHx7QZhOqcU1Iv0j4AnE5jzkPbH0I9lbk6uIfcLA4ESEeA06s/FF/2r32geheQn7G8gBa+UpD4yyiW0BRNxv+l6vx0bLSm3xxElsLFYr9vqVZ9effuYjv/ceIRaXH/icU/c8cGl97UPPX3n++ZtBIHu+BmVqpJ98dm29zQtzMH/sxPq2f/XJF9z5E21fXrty68bNK49/+pPf+rf/XuCCZdkIAiDqu4MVfHtkhYHwytndMTIiNT0JJ8k5r22zrsCglJn526np/ghZti7R4Zh2E1JxqZ3rF5IqlAnT7TWHsRtOAgZAZkYAEy3yIAQGMGAAWPYQNIL2N+T6p70X3quf/3T75nM3r6+vNL3ttt9TotkLWi3dD8A3rH1PsQgMGq2V1mwQERHItYCAibXEgAQ7EqRl2ZaQgi1HOBVLSHAsYbsVt1GtNbSQrUq167ZXL29eXbnyzMXXfuHiXa8y0hVIEO1gYxDxzmmEA0RItWH2xDgEHSoeUkbRhMgZVXtIYPQDBYSxioEMRDDAoAN2ufPnv/IfnJUX+6bXF7Ykci3Qfl8ZEfgQaEYBAjUwGUMGAgbja41SWsKu1xfm5+Y6zS1fkTHs+d1qVdgWBtqvOI5SfVtUmYR0XU3U73bJJmZHotXtBcpvLgKj0cKq09IjLCqZKT1oUuOgmKEbQ5Z8RVu6jLgpwuVJxNnPqXa4Edpm9MWShKBEd4TSzUwrAsSl6mmnUu0+l+x+Z5HOTxoWYaA5R5Q0XQQe/I9p2hAYRjJGBd0gaDZ7ELT77RYajSZgFXj+/5+9P4+5LUnyw7BfRGaec+791rfW3lXd1dXd1T3TPfsMOTPkcBmSJoemSFqyKYgCtMCwAS+AScA2CUEwDNswTQn+R9BCwZAt05RgaziYoUYLxRmus3dPd/XeXft79dZvvdtZMiPCf5xz7z33fsv73lZdLSkK9b177zknTy6Rkb+IjIyYxHJST8apnpjViA1b9FYRElliEmbzEJhAo2dhFqJAAFNyTkFCZD54RkYM8mLMmc/hC7A3Ih9yckN1ucu2XMhhEMDnQVBzrBr+RPbCz3vn2NS6SIQLx+w1t8YWe84H50mz6dqIP07Z51RtjaPO4bGP1KJnPdswLe0o58ubzsz4IW4AnBzD9Xk8x7ZdlZXMZMaTt6oPvsjj90lLi41KA0bSqpmMvOrAS1keJdgMkbL88rOvh/xqRjq7+c6bX/nWd751Y+fyJ178sT/0y7/+1f/kl3/t/iRVJSjLZk1SpI+9eO3zn3k+LyfV3v6AUi2Ycq7sZo354SBTtzHYnFX4mT/58//Lv/K/H17eoiwQ8SJLwJPsufMywy+gQg/6z3fQ2jhF7fzr39dbqU4URisztN+QJef0/Fdbc9TaSege9rsICvyQYOL3DxqdD87cNNwiHzEFiE1bt63EvjKQ3A0f/LPqzb9/9K03jm7t7R2mg+hujez2sUxGZZVsFqHKDTCtU5MaIpeSspmDOYChBPPOBsF5Vk8agMxRFtiTeY8s896bIwtMeZ4VG4OsyAeF99tDv5mH3d0ChQ+XX/zBP/bJn/izKSuYF0lS0bXiv6cH0MkdgIUJ7CEE8EnYc0EU9HB0lmryROn0Jan7x+bqgKBJb/zKv//tX/9/Ok75sDgWKpuGOBjYKBMBw+CMFAA4ZOy4To3Ph+B8Y3N7Oh2X9fT65SvltN7Y3nUhr2ajZjqDRg4YFJn3wbmwUXifhWtXhhlbKIZllVTNJ2GPje2tjeuvbr78c7b9Coi8ifVNGQu4P5fIT6Bfuv4/YSB9ajsAp9o319bph6BeKe2/yx2AJ1v3p8L985LR5Xpe/LLE8e0H6wf0X7jrrgTN6an67VJKrVWH2pIFrdUnojp6/523j2Y10/DazmZoDW3khJP3uYXG8pytjnWEGZmaKkwY6hxITZEIwiRmUUV9G/sNQnDsHGAWVSmCzZE3hZAQJyC54IgSoXG0aZakDiZgBwipaOZEs0NWIefQ2ex1bgvsemN5ZJmW+s2iB8+mh1+pzwFID13MmdRHQotP/Xm3Mje+N7FNVlow96XCol6LSvW58FT60H1/qPd3YQJbncFdP6uCBKza5NUHsw9+F6P3OVVNU5GkGJuEJqWycLpduLo8hJWDra1o3m1dHV5+Ls3K5s6to+98692vv/PSp3965+XP/I3/8Jd++R9+t2amkFlmURIPshC27s7kP/+HX/nsy9f/xM/+wZtf/9po7+h+WUZnk1IwHhfkvOwPw/Zv/JN/Kun//Ff/+l/zl3aCp3ljegPx+MDzvMFYHcnFWbR+d87n3DngwFZuXFnC1t7Uck+L+7Ew3y+Vga64ueR7wJq0UCU+BHb7foCiy4McrTN9f2UhEINgAvjaXCRszL5UfuPvHn7xH91/7/0P7vmbI3rvftyv4uE0llGauhHTqBC1qAomI9YUiUAGNs2YM0dERgaIakpwMIKYRSUOrFAlpCQUGM5LI7WVkOQShKK4LQGFMBlk07tf/C9tUn3yT/4LCjdvy2KB+37o+I8WdVPtnI47qZn3H+5Lz5M6/+PioqczniclEq1+hYHIlDrxlgTp/ltf/bX/ZNBMKliZ6oTA5KtmrASmnJgFCjNm9sGXk8plPiVhl2WDraPRuKmrLM/rKoZseOP9W+Nytr1RXNrc1tSE3JGpWSNC42kz3p+++ebh5Z3hJz79Azub18ty0tT7ud8Y7e9nDjHfcn7LhlcNc4m3BHdzZLAAvMvGnYWr135c64X2wwkw8qTnWf/1/b9rNzxKuatlrbgAPWYr1jiGeh8ubr49lxYmMswz6yxkNPVLXbky11ixXBmXiXdsnjvTrJXv7c3qiWMUcPnW13777e++/dzLr+9c2pW6dM5gymyqzI7ZhawoWGpLjYUAESipqVkkgJCIIrOoJcdGQEJUmGOAlQ0M88zMSBbZgjklR+Q63QBEFJyxMYum1AYVlQbBO2YE23N6z/A82movkYN1asyit22hGjwYFz+KGvtEWf+k6Omrdyszj3p/e/c8Jc3zgdRHnX2fcMyjw3SXLhSk40Nets8QeSukpiAiJiRtQv3B5IPfofoWuI7epEkMuNyxkAe81PWs1mqWF8UspRj81s6l2IzK22+O37v53q077vlnX/uTf+Rf/Et//c17abizW02OYl2ldnKWQGPXX3w+7Gy//+6NXx3/48+8dDUPeV6laiZFnokoCSeR5OK92x/843/29/Xfsr/6b/yfGHDeryn6T74j17S8/gs69E+0jPhDC5tZ70TR6ko0f27B6KfO0ROYgzrmt/5ud18XoC5T4dldsAyf9N9FOokAlgG+u3BMLS+RwZShMAJnotR4ZOV3Zr/9t+/9/t97/4Pqu3fs/T3s1zweYVSnJsakGhUiJCpdOhiBLtQKGIxUTcwUwkpi5BwBICJmYjIVTabem2OGoWmSaqufCBtJUxVlvbm7LbnDJfXu8O53/wFf2X75J/4cyKGzdmH1TPz3N/W98D4EOv8tJzXztatnwZ4Phx4KX/VvphMfevd0AQuIYKom9KVf+0U0e3VqkitgEI2xqQgIzGIliJm4UaixlZgla5rR1Su71bQq66MIy+GKIitn6WD/gw/u3trd3X7mheeKEDBwypGdBIcsZ+9DUQTauRybye/9zu99/OOfeen681cuXz2cHXjWo7vvee/ywfUw+ANCzqGLq7DEOwuWWdpAT8D3lc8ne+40/89OVvfE+RmseRYzPA6d2oBHI+7X+gky6KmzAr3uf6R3LZYrWi3krH6wOfZS617cBUqb22Ztns0X1A4zGciQBESG1MwOZXpve4MhNUnjHcyMmNvYgwCzD5wNfLHhBxs+G7osJ+fa872AAIlgDDhmA5iZSB2bYzCMSJVEIUzkfeA2W4DBgdjYg9hARg7qYd4hOHZExO0BHIFVMn4PUnUeUHMmbP9tT6iBzJY9bvNL5/TWo4zKk6KzNF2cbT5ZublveKUnPOXOpuVL5gC/Q//UuvjSQh2zuW62rsw8vWo9TA+c+0RnRCGAzDTIqPngyzz+wKoKME0JxErkvSf2zNykKjWVqRrIso2tKy9YyCdH+/H+vb2bh7f33Q/+1C/8H//G3/7azWYUQxk1KRmRY2awwpLo7Vt39kfHYXfr3rj+/e/cmETn/SDLBhCCcd0kBTeqk7o63j/64m/9xq/+3f+MYN3RvflceCocQP3uOtmBLS4nLHPT9FbVFbXwpGq7SCx8ylRcxxzUJgI/MV2oZ/o4aan67wnorQtdSDd04tLMYESGZTAdMzMRFU2RooVoFGGc9uzNXz/62m/t7cc7s413psPbEz0az6ZV2aRGiaNSUiRDAiUzMQigpgoYkRkZkREpw5jaiKA6X5bUoNapAmakagAcMxlIBUlTYyzEUeLxNM6qyXE5GU+1mX77t3/9+M6dNd63lpZi6fxu+ajTU5GZT7rQsyTpQy6wp937FNr/wJXCFlYFLM/ASj29++XfDClGpqgxJY11SjFqTE1sRJoUm6qu6yYeHpU37hzeuT+pG27EzcrUVGXuvKRZ8Dg+Hn3597/y8sc+9soLz1gapzhhmJkakRrKsppOxnBN0jLPw2sff+0rb/z+77/xBvlLRoUZq/jDvXvl/e9adWRk4C6VyuqqbHNwcCq4OPl5rW9opY/67tUrcPb0sel37Jp+9VCDaed+fWQ67dD049GpffwYoP9E8Uvh1l8/T+sQ65BAZyMzENhEDKZgiVBhS2zKqmzGCopKqnR4MDKtodM0Oxjk0WWSUtSkICbvBFAHMJwjH5iZQiiyfOizDeKCOXMuY3KtQ5CJIpkJAGdgMiUImTqCI/IEcgCrIyZK3jE7UhJRAYPYEZGlCEukSgAxs2MYkrgkUk7e1rSnatrvAepABIE6J+T5WjfXnex0LYAecYTILiBFHoNsdaS7l572wqV+3jO5PzVasx90vTzH/CuTnYz6Tmsnn3/i9PAz7oH3khEpAWiao7fj+E2NRwaBgomJEDL2Ifii4KzQxALjEMo6FcPLG8PLwTgeT4/uTfbuy7VP/Nhvfu32L/7XX6qRI3CVSjVIq7V6mLeIprFmVsVRWR9X8ajBflUn+NbDToko4wQttRRKKml2MP6l//Q/nR4fmejDtenRqdfBtnZhLp2WE2N+E538aPOUmobl5hudweDrNbDe+0A4oRDYgxnhoc77fz/RKc1aRO3ufIWN5umMOv2LCATtrpkShE0JXhGSDw1KnX4rH/03xY1f5Bu/Pjq4c2ePJ7M8SWBKZHUtkkSaJFG0MUtqohAzMUuiYqZmqqpmLco3IwJTG1F9MZadKtCyhJopBDAwyASqmlRNxERgsapm02oam7Kux7keHN//bmrTES+SPXXmqFb+WJc4zE6qyGcYMD8yROvi88mV/ERLM5xiZHtgzdcsWSd/e+g6PCSd8zJaSLkuMgqpaX14G9PbTapjHVW1LCuJUY0aTTGpKaWo0wr3j5r394+/+/7NSV1rCN9664b5sDEMsTq8cnXncDL9zS9/88VXP/bMtQ3B2OfmnDK08BmBk5gm8exTzakWSZg04x/8/Cc/uP3t3/nyP332mWvBe/WuTk299x3sf5uaRnSeRaVT8m1VAK8A+RN/L9grZxi3zzD/96+sLganDNPJ++20+08CoUfmlaeYB+BpUSeuz7LA9b4unYDITGFQlXr/xuHkqFZf0GB7a4t95kNgz0osHo1RXcvbb3/3C7ufMTm2eJj7acGR8ppdVMsAApgJxkZkMFZm9i5YzqKmuaQhkoATqZC1qQMSVMEEBlubR8OW5mpVsHaAndtlSMixESdEMjAHNQMpO0dMBiUzYnakjvdk8s2we0m54M7ozbaAE2iDwnG7r01EBu3so2dvDD8sJy1asvSYfdK0pjevcf9ya7i/QfzU1zLrMeGqSWCJ/Gj19/VTvU97B+DJlk8wA6spy0G9/y0vI5Wa2BM5Y2UfmMmIyXMg02LDEzRWCZzxIPhtK0ej2/c3hlfMW37lE//2/+XfnyXXmJaTkh0JDIZoxmbU5kQ1m5UlEzl2s0b3xzO37VzIqay6+jiKooEZZE1TT0fH3/raN370p38a6Bjiw4uDss5zqx/mV5e+Xyt8QTjPCWfB8mesOp0KMLfLLY7EzJfqC1f++5765x1sPgnX1KEVr1BtUTepgWkeJqETngZTU1OQBU+A1jOqP3CHb8jNL9Zy2BzPpjffnY60nvk0Pgql+lhnBJ/lVdlou9lqXZEAmc7lk9nCVKAAiBwTkbaHuKzLPqM9M6O1u8lEBCiYBMYQIjhOrOoTcVOm8jD4Zhh5euMr7gd/hsgBIJB2SgYpwLSQP/NooUSnMe1Hlz7MKj6e5KC5EFp8fwAoX7n68C+m1QVp7evFqQ+NT3lHJ1+MGbPRnlEEIyWRiLqJjhxcUBEQi0FEx5Pmxv7kYFTf35Nio2nivmjMh8W0PtraHMRKv/Xmnc2tK1/4wdfr2e2NofMORR5MKKmC2MzYqZmS+CIbVLHM8kCOfvgnfui3/tE/+9RrL1/d3on3awZcc1zfe2Ow9aruXDOAwKfEdr1Q08/4enIp6X3t5XU5ZcT7j54zLid/pNM+24mvCwjyCMNN35cKwJm0hg9XhouIxOz43ju/8Sv/4TNXd93GlYz84QBEgckFx1kWUua12PzuW/f23vn6D7zOaA6r0Q3S/a3ClXasdoUoN/Vs1CIdNWNix2SOyNhlnjWoZKDcrCFKRKFzKoUBAiMiZpAj0NwIRWSAGIjMOXZgp1BCAuWenBmzDyBmxwSGmWeCJJATx9oci35b6ErY/LTwEHC00HwJMDUiJvMt+FAD82ri0icgUz+ETLpYG9rejsB8a2du8j+lUU8JA/bn8lkT/7yHnwKttPQhX/Gg2+cbbwrTo5syusFUU0rIPEAgx8EzsZpE0cyF4dZWNWnAqMt602cadXznrtXN/X0rtl94c//o2zcnvgizWGdZFmMEQVtFcu6OoWoKNWJ2rA7jWVO4anOQm2lsIhOZc0Sced9M64Bgdbrx3vs/+jM/i1Vb+oMH4/Gp6/gzOG3+M62xzJLmoX9s3gXz38/l3rlD+ZIB272/uXH3Am3+qFt9H4bmkQCWGtGqaJp3kxmMjCgxKeAAhinE4FoPTJKEEAScAFMwVXz/a+n9L8q9r/P4/YO7N+EG1bFMjyb3b8ejCmWq2TkEnxRG7IjEhAnMYgQxIgWTLqSUzZ3EWi8gkLaWpG4fogX7BGIiMgdjOGZiNiZzbOzJAVCJMZp51x4WblI5Hmege9/92quH94eXn4UplMGsJG332Dxx8fxwwKJGayzw2EzxfchV58OvU+nkVF4Cvrk+jtVL6D3ypHYz+kU9VJmnLlRntHquLc69yNp4+xwcO451bJKKqDIktQdbkGc2njV3Dqvbe9NpRUURlKgs6xdefDbFGjHlvnj/1sH7t+7+D/74H829hY1crAl5UBExSxIbVcfs4KYphcyrUOY3rInkPLlw/ZkXvv7VN/7gH/jpwXAjVVUZ4WZ3injf6BkB+Xl151oLLbZYz27lGmI/rX/Xbp9fXNtQOAlAz3nrBWmt6qey0MVHv8+x348KwFp/PvhkqwFkYpD7N775zKbsDstsJ+W5C0UmCaYGSox6yMh9ulN/QPTesH4n1keZ7gmNglKS7cJMU4TnKMpkDtzxlPOAqTTmiIrgkAky0gwxEkcPdsZmAoiBQczcGuEFIGJjYiKvLMxE7FpDjWOiNhOeGyQwExOxQc2kFeIwadNGsh4f3/mdwW45uPIJdduKjBkEBZShCljiSJ5d5rpVhrvzYcvpsWCvB0ruD0O029kiqeP+7p/ejT0O6LPCKdG/TlEPcC58O7eOfcTWTcr+IeozdRG7CNc+RD3azyv23tOh5oVKOu1au2tFBkPcv8H1YUIViNA65TA7FwgOFpnIkDgU5IYipcuZ2FWz0eGd95rJaG/P88bVt79724zKKgbm2KR2vXQAEZKBASJHJERo/eEACo5mTaMijpmNQFBVJoaSY+e8kxQBJccLNL7M1fsUebbXzacNZxejc9G560tBj4mt9xdY4atFYbRICNwqOZ2XR/t35R0P0+TvN7R2OvVSFM17ed49vU5WKBmTEkj25Pit8XtvTPdvbW5+7Monf7y8/LLakJgAsRi52df9d2T8XXn7S+UH366P9kSbOwcj2thxKe0djW8cH92pHDgTco4g0UyUvDolASG1+pgarEsi31azrQoTyJipFdft2XpiMIGYXLsOgNSSBzkEghEJgxwcMympmJkml0CRnadBvslkmY7Lo5t+55ngvHKKUgVqUmwyHwwFXA4w5uC/33W0lBZPwCb0fUZ23h7c6o3AaXjuFOxF69/6oO1JoX+cW+D5b1lTG85ctLC4TIskg45o98p1P9jGeI/AqUkgUrWkqWoadiopHo3j3kF9PNEkrtjNY5Ny77MQpqOpD9QI37p3kHm3uxmQxmzss8LUFBqTEMw5J6pNSj4MCK6sy2FRDLzTqoLSS8+/+M2vf/Gzn/3s9lamicGsqarKw7B0au8J2YtagdawRk/8Wmei6eV6Wf681qVrWsHJUTjlUg+B9b6t4P4HLugPpVUupvr3owLQpw7CAjjRXQsLB0jVDEl0fLQfpUyWe4UpN9NojpUNxISM1eK4Kad1TAdV9U7TzJpmmuKMLBuP9rOt2oUNtugdmSVjUhUwqZgR2AUVZXLkAueZmTfyrAYVM2EIE4jNMbUJwlTFt1tH1poMjNvA4YBnBweFEoVELMQKBrjNHaYGCgNyTkVEiCxuFccWf2N653c28mcn9xud7h29/97+e7fKw3GDdOWlT7/2838he+WHG7fr2LcnbGDcN0h27qErXuprHNj/8cOjc5je+re0xgmi9SfnnHA22F5C/4do25yvloXMAw+slrJeZB/9PxQ8P4vm7V6zC6wXfYH3nHe9E02t0sjaHN2m8gDOhWKjjA1gPgT1pEYgBzZmUwlhsFHX1XBjy8Hq8nh097bM9IN3Z2ErvP2NCcOxs5iUiWSe9UDNHKCAkKiqB6spMcFIgLKKGzsDTVFESDgLGZlDJCWbTqrdTdGUVI2Zu9gtveY/oIWPTj20vTqoF9DvDPOooS07tZ3QnVhaVLqLSN5ba+a7iujP10ev/Yei1j99IpCqMhNUwayGBCOQ027/00iJXDRTSTT+zuSN/+KDN/7h5OabMU6mU1x99cd+8M//ZXftUxY8yjvpzs3qzluj9747PbhzcPeGilQzOo52uF+Jo8zh5mHzzj0cJufJDTw8mRo5NKSR4BnE1KYjInS5Gs2gaiBybZwfYiiRtKKHnBGBnXWOOgYwk7jOOUl4rvsZTIgB5y2wAUKaVMSqpCAtZPTe7/7SJzKXF6E5vnX3rW/J0b0mVsQb1z/z09c//0fUZSC0uX/mM8R6bNDHHpgLtcXKYCsM/0T55glJxId/rwGngadTa7LW7lPB9/kzki5wz5mvfxCtKRgXR4QPWuNP1pp4sOU3Liu/rSKOSUGaTMyaJF4lQY9H9SxZVJjabDIbuuQ2suPj47oOu1euvP3+/r3740+8+mJd7Q0c8rxIaATG7AxiPk/mjNFY44FMdDjMU6oq9cxsVU1Qyob39+5tb7zkfHCZT3HmtCIkIFuv7ak5HNe6rHvkROtpLqf71pjTlOU11G6rBZwscnlbr+S1KXCqVnaWyvdQS8Giqk9MAfheryLLBVKhZITWZsmkoqSmcBYtzSqWhJRiUzN7n3kzZbSmcTWKppam90OoatmbliWJbRXb0+SU2LtChZVEjRybqcLgwAYGHEiNGebhHczDOTKm5AAyFVEhZkcsmphNYcyGdpuXQQRHwYgSRVYLvgCTEJz3xKRgtAeGJZGqMAnUtdHhhEBCFJNKRt5mNwLF8fidvXe/9MG3302TlGd5dfvb9z746hd+4V+9/PlfsMHlLnwRFO2L+8i1k/N9a8j3GBictLWsXe2h/vmmRr/2PaZsV09azrSFzvNoBuLevF7uA/Ql8Jml0rKyj5u3anXno//eFW/zC5R+nvRYRJgiZoal6cimI85cCp7Ns+dkwiLMzgAzNFGcattMH4i0jtXxIMsTPDbqz//k537j5huUk0Qhhmi7LbXU4IiJmTwCEzUWTY260y/cmBFBQZ59EgUUbOTZewb1j7bTsmuero9afx1Y6ez+y8+owDp8Jyx4aV42liOzuDrfwVu+7b8F8P0xybrjtKwxkvomgHnirVYaNpQBrg3JRQZCzUffHX/9H9z//X+I6X6cCChP4+l7v/t7mZPN554HWA7fn90/aqpmvH+8P4sf3N2bRmhyM7FYV5RT2ditSXx/kk2S98BmHi8P1HsvylFdAqT1tCE2M7DNNTh2bbwHmGfzsEDEiAwQJ7RuofMjyWZipIAZLCKZIXPOGAoLcOiOLShAooamyiSok0z303u/+e7stqUqHt+lJJlpMSgatZv775jhuR/5I4awFPNEButWgy6C4tx20oqmVpVecNuDoOLqqCwlYl8yn2/FfFJ0Qal6FiI/69lWanfrJdGpD55Em3bG7w+o1kPS+apIH1zaaV+x8vnkb8vxM2Mudjee/fitd37LsXOsbJRUk0obb3FaNnvH9cHI1bU5Z6KuLBOZ6Waze/1KPauPxlWT0uYgbA2cSlLSnDMwlVWTZQMlUqip5VRIe6LYjANijLnLjYzZbwx3JuNpFAVIVTj4LBuqEvHSKNjriI4Blzh77hjU65o1qXoiGNu5q2kftZ/Wn+sMuazfBcb6Cc6LtaKemALwPV2E5jITXawzIqiWpqIpkRFbTFVdjo7Q7GucaCq810Yqs+A8oz16q6IyU8Hk3tvXt8a5pCgZqaSUyOWTqmyqWbG1a5K8DzHVjpjBZspKMJegzjkYGzmDI5cDEVoRAmlOREQqZo4BTQCYCAwlA8yTY/JtRFZygDMin3PGHJThQUTqrYE1gAaXw9Dm4mbHKt5EnXOAJbJia9MXH88GQcm/8+U3qaaNPGTTe7d/++9de/Zle+lH1W+2rL10BDKgtTvSqknye5FJ64F00rbRVRag1fRwmLus9JHUysVHbt8CXRPOyLX04IJPOCY+LC2W1C7u8fww9EJ/WyolDyxnfr+t/dwCzvYQopmSqZFkg93J/SYj1hhdyFWUQwY4EABmOGJHzKKqEI/oqpEcTWYTeuut+9988+h3v/lLsvNqYDTsVNuIXKymrZmU2sPwBiJqpCEwWgUbRGRR4Z0TUQMcEWBCGg05AUAIgU4I21OF7xOiOV8tF5fecbCLELXMC6DzGyas7i3Z6ofunmXpH70J+r2hVmwpUR1C0pTzaP8rvzj60j8dbF3fefXHiuuvuHzH6nEzOdLy/f13v1TtvX3rg2+FwfC41v396XjaFCF755tvNl9+w4VBMz7aP6ob3qiatF/zvSNUwpK0glrUxmaJXJW0EhOyUSkzyxJT0aiCTX0ba0dhprIIyMCta78JmXqijMyzZSQ5sXfsTZ1jIKmpGkDOMwVHRIo2kg93gNzDOWOjxJQMQi5jmFeK04m3QqtpniW5/Q2NqKvSAnhjeDwrNwbZ7MYXf+9Xqx/Z2H32kz+WyGfzfdOW59qFgOY4z9DxcntPl0FmLQ7/gyZVt4QsdNTV+099+onP04sU2MflpwL0/pzuaTSnQ/lTfzzVHHOWPkB9c+Yj0flqxvnaDq38u16PriuYKLirz378fU+VRhEGcRSUpTTmTKysbZb80SSB4YtQprTliqqshsM8DzQcbty6dz8EevXjL5bT/WKjUJZam0AhzwIbsQcpsXcmkTUF9gPOyjhjx6bi2TVVYrjx6FiTbA4GyaSJzPkuiNdidvabdVbDTx+InuVlfvSh74N5Sq+uvKz3eaE/2Ym/OOPHs+h8Rj2zQqdVrP36hF2Ans5Ce8HXtmOsRHLvvW/cu/k1LceOVJOxpVRr3aTx8a3cksA0WV64duO9s3RAhBLCxv2D6cuXCmcI3seYaq2m42arGNST24PhFWNAnScPJKVkMCI1E0eiMLRxnR1D2cxxyCCJTUiFoKrJsWP2YCEiMDM7T46IIyoYnBWOqN0uIO72FpjQJhKOMgXIcyHSxvpRMJE5AGJK6gheDObz4bXnP/a55t5be/Ew7t89vJbtWn0wvflGcemZOr8eBluGnIjbYwkd5J8Hz1powgsP47OV2KcykGfROkrtamRzLE2d1tJWfkXBP1HOijng8ej0/YMH91jnHW6PLOq7/rA1I9QShbaLOBbH/ZYL+inDivXeoOUfM6N2+ScQXH7l44c3MpayqcuMfD7cro3JOZCj9uXt/hsREaQq6+no4Oat0X7z3nujDw5xY//o+seONxzXSRKDBDB13DkbACCCQNnAzCbEBDJTMZ2HSQGxEhMxYAoYA54Mluf5ySF4EmP8IFq+Zz3a9Blq9MLpejVWzbks2ekK56/P/x0lMzM1hiVt9vT4O8dv/ebt3/ilu1/9ZnKbcfCrV1+8HrhopuN6UnNGo9GxajO6uw9flpNmMmlKo0omd8pYlVWpVVVOZlVTadU09VggSuyzOmKaVA1JU7RoUAMlayDWRB1XoXHWBnaGps7TEm2QUSJqRW33mckIcCBH7JgdGTO3c4eIMT8xTGCHNmA0M+CI2XkiBhQmScw5TaIETpqChhRlOqqTjwBXtdVNssBNRaK63xy7xN/87le+euPf/oV/+V997ad+JtqAyTmimYpjhikDUDOz3Ds1cwsx0gUoxRKlrPHtGbQW9Gwhck597Inj/nPetX7nmjnpxD39XzoJtRpo/iJo+1Q148wHH6E7ehDyHM3kVPWGTvm6xFSn18bx1rOvIGTsVRqDKIBGqBKqNNWJq4R8kCepiejqtatxcpAXbjabzKa58xW7tLNdiFa7Oxt5yEQJmarBI2ti1NQUYQCQmAFqmoj8MMvqGEPOKcZqVtWz2XZROKaynhbDjSy/QsXOaeJ2qQmsjVTf1WHlEAitjNaKh5zNr9NcH7gAcF9TDPpIhnpXTxZ1cmj6FTzZokegJ6wAPB7fPs5ru7EiMOLsxjd+uzz6TsHi2AugopJgcJbEiJgcqQLk4IiMwMQgc4Yi0ubedMzZkEIuycynuh7DBapGFDd59xMSmIhZDYhAUoKZAAoVRgLEINbG32eQEZuDa2PyU2sdJTKDdJKfWFkZSsytodNYiQO7wAwFADKog6rWopHZE9ptYiWCmoFIW88WEWaBB0h9kW8/v3Pt+uDm3T0gUmiiHdZ2E9W3y9mNYXVtuPUZpU04XuCKNvYcrY4FAb2zAR8G5LgIQ69CoDY4AS3nd7e13S6hdDL7zTJ/0lNpytrsPuc+6j/w8GRLQdR321qJQr+cW70KzcOlXOTNnZij+TYDGOy2XhAUZI0kMRUieOdaUA6gdU4ggGGZC5pGBRS1mBQJm+M0Pa5o9Oa7rzxzffL+bUnGgBkU1gbIArECRqpiRHOPCBNVMQKZmhLMtNV+uwx/zswM0rpQrPXR08fIPT+6E286EYgGHYxv9SRarNfdIYCeBts9vxjnpwGbzllsvn/IACixpCq+9WvvfeVX9r79ZT89UrO3jvOD6D/Yv1d8fd8BzWw6mcX88i6ZFKwbjZ+VZfC6k3s1ev9odnRQSbTKJBrMQhIqZ1xDoWJWkQtwXokiVIwYDsRJzTSlJlZmFjyzMjNEqFWCAVCnCTMM7TYZUZvji9rg/ExM0mq5DGJqTzG2224wbn1EjRZpBRlG2i13pqoqpCZkUZQIQNOQGOpKqjoacVaImaVZNSg23tkff+2Lv5Lxvh+98eLzr/mta4ejWXDStHduXtp+4VPZ5lUB5qFkjdAFJV3jx8dhljXc06cnwoHdrL8Y9U0g5xR4omJLoXgO2sZpK9pJ08uTobOx+qlkq39PAftrJof5rzZnjM2rL4ZswC4qokobAYuSWFPV0WBJtoosioMmayqWuLMxOLh9HzB2nPss5MGbObB3LmkySc5lzjlOybm8zToTiCSyGAk81MgVoq4xiyCx6LPtBAxDziAMdpFtAbx2THfeppYpWklK6DtaruGadQC02sftoGMZ5vUhe321tNM+n/xxrWp9OpN/zjck9b7677nkf5wenNOyuWbiUlVN90kbIknNNOQb8FxqUomGSJ7UmUBExRGD2LEjgBxY1UJextqEmMjDRMqCyqo5dOUsiadmn/0lTQ2hdT2I5Fglwqw9u8gmRmpsSkIM1i7amxJA5skbEjMTmJmYFx4r1qkG7ZrAjjkY2mg+Rm3SGBEGHDmCc8RAWmwut4cGvXft1yhJ2LLNnedfeO7W1z9w3ktTcppSeS+O3trZufobf/c/HvrPfeHn/zKeeS5wBlVibmW6Wd8xhuZTZjE8T51PLi4QT5nAS7hrQN+9Yr30D6U1a8jv9JetG8kegRYBpxfn9LrPy2B0vSk2t2P0Yab1lIWTlSX0lCgjBQ8vE4c2mR1BVIU8W5uhuu30RT8TefD08NBSun1nfHPveH+aKmUy2dG0PRhMRzObx20wVQBwxHDSGvpJTbtc5e0WhKm0mS4MRvCAGcMISlAoOzJT6vSQuUr4Icm2NUvfadfnm2zUu3/lVlr7v3fH02nFQg1+kkDkQ6Wu9kJoRu/90r/1Vwq9o5G8ZXdqvD3ytybTD+5NGnHknMSUlHyZkGpXlzse3vtt77DtneODKb1XmpCCJKUEGBErfBQTNSIjY4iZQbVNHcAwJDUxqKqRGJF35tR1XDnXttts7NbZWOBBc9TYnlsQQJh9l4CMDG3uLu5Wg4UKQQRQG3OrnbBmxqrdMWJrTGKjSZ1zdUx12aSoBlRlTFGLfHh4VL19p377g+prv//VlzePJy9dcYOro3HMLJlpbKqGaee5H/yBn/kLw098QZGBXGv8mW8AzPNar502eqjRWvgYPU1qp8/FWbpn7V1+XS/wRPlAZ0s5CcvWCj9Z1CP0wPlveQSiEw3vky0bh9NNG4Rs52rId8ymYCU2BrFzShqTJbAPJGTM4eiwmlbjZ3f9YBCI6pDTxsbweBwHeRgOM7NapM7yTOFEWNUYDmbWCnWwD07VBL5JEY4KdoEyaSaZc0VRGJx574pAw2vCAzu9PXPI3gIaW2nSAgwsV8pzesyWa+wjzIBzjN3nXFpTCS7EBheu2YcaBajPcLTa5ofvzf4TczYlkFGjdW0pCKslDrmYmBobKUCsBmFus7ATjCFsRMzOgYfeJTJnYbMYaj2xyoW6TkejOC737008tq7GcaySyzfUEqXIzCmRWGK08fXNmRKpQYhUTbrc1NxqjkTUppdUzw6MNqGGgdkxewdmx8HIEztwa0EyMiUCqcCE2TmfA8zsTCKQCGoKo8AUmFhUgaSok6ZQFH7gM0/EOQNcW3l4WFw/9ld2t0L89V/8D176+KeuXf2jokPnh3OmVqYuSGibM7LTlZfD8yFYUx/y/nXzBGG+RBmdkG9rbkHWuQw9HTrJn0+j5E5yEXqoftULEqtqABYjutzvWa3jUrVaeY/ByIygnGXsPJs5JoLTjrsNpArAiMEASOEA1eSYj+4fxJoPx804goY7s1l5Z/+4yDY3OU41ChDgjWFQUTUz9mjjIhLZ3BGaA7GHIzNWMJMzgKh1iSCACCHj/kHDD4P6tvpue5hOnyVLpbM7M7A8p2xA7+zCh020qNb3I3VrugLj8fTLX//WtRcvOewWgm/cid+8eTy1WKY0q5oyKhEcO2uUTBF1lPucpBryVtRLLCo6mWkiCU5FYSpgSsmM2hhx3J6Hac8mWmtpBEkyMwhgotya7tmgcMw8PyTahQAlIhiDFCQgNlMig8CUuDO7MFGbYgbMOvcEai9Ypzsao5u7RK1ubFBrQzuoWkoWNSZLEhXmYKSNpjppavZnuDtqqjB87258+927jg5qfY/dJqYHkFRXk1EpzZfe2L9/9Mf/9X+Td55XMxBUtY1KNF8FzrITXICebkDedXqoV52P4E/ik1OVhJOFPHBSn5S11rt0EqCf+vXRJu/aGoHVRq3s+q9B0Ln26rKt3G86QubJTJKZdwa1JGzObW4NpoeSiKqELFgjaGrNFFaqeJuMmrI5Op6WL17bJFKf5wZO0TQZBVjriwYYlDUShSgYjWZJymefvXr79p1qOitYsoxUGuIcTv1wB1RwJ4hPHfyV43prPb/SjbS8ZwlWaeW3R44cgjM485xLj4KQH8ivc3oqCsBZb1/78YEPnvrLnE75mcwMEsuZxBSkJkJshBwx03zfx8zMe+fYwWCiRGBPROQ4UJZtFduE4TtvffDJz79m9ayezKwxaWg8aXKM0+yeQ0EyIDZWAZjMoQvuhrnwVkYya8waWCQosZIZgw3JVIlcF6+EdJ7khbx3xJ5pYM7Dtfu+HmAjODJIA43EGch1WSI1AY2ZtHvIpmTiCAZT7y2ZxFgaNYrK21AqgQWyzJomxvqFl59Ns3t3v/xf7DyX0/YL/vqrhBzEoqqUG5HrVKl2xiwymD519P8I71iXUe2erC1VFzsxrVvAY31DzpMnW63emc16JO139d6VE8B94bU8xz132p1fX2gJazaQNdvI8nN3yQCCKik78tL1rmMnRmBut8O120ViJW3TmzrjzUGxPcAw8z6j0TRFQayil9lwWKTKkhrACdomx1Nr3ei6acvG3jETcu8cO5XUYh0TJUdMTGqOmZmKIj8pu9c+P1Gao/lll/f78wyyE4N+Qmn5MGbaCfrw3/gkaNmXSUKJ/Nvv1K+8nE/u3rl1t5qqP5olQShTEnhVs2SGRGSk7NUb6aRRoRCc5llUpgiKyWAg8maW2niZbf6sLrBVezTKxIDW0b9VCxRqpoY2FEWn47U7B92UA0AGVYKYhC4riwFgIoY6BrUudkQOXWQKA9qzLkwd6CACOSZoG8DHOqcxMkMUxChlI2rG5L1zpGKq1axm4WmNo1kzqsLN/eb27ckzA0KeJ2tkNitLOR7XH+yng9nsILzxylvfee1Hn2+hFBO3sSusl0MGwIVCRKwx+keTw06TDicBzDnUR9JrYuciz9JqCWuPnPr4WcrGKVj2tBtOvv1UeHbWcHUrmsHM5WHgmAjmg5NGnGNJUaCEwGCRZtpExyCzppbJpBqSNno8npa15sdj/co3b17ZfW2YcwgeCohGmBkTmbbn01WgYuymMd24c5AjSorvvf3OtStXN69uD/NBmyw1KwapzeN3ysE/6n9cb1fPvrm2ZmNtRGy5dp7fPw+kxxTvdLIU61848RmntGhBT3EHwM79iostzOtg50y8ZAYyg5ivm0wpU4RSmuA3YlUTE7OXJNNJ2t0JsQEVTs04qoHVtNFUVWnj8jOzxji7PKmPJgepnE2gkJRLJdOx1m6k6Q6X5P1AiQiOKYewILX+akAwOLAnE8RZ4KgmJIlNOwVS4TkYhBwRqHX6MagSRUQP9s7BeyNrw0SbEZMxaUqzlBo/GIiqkZCqsyhpCm2c85RUxQsz+6CRXZGJkIzKyeGkTqmJ452MyRKlOk6P4uRyU2lpJrpX7n1za6g6qg4Ppy4iH1wZXP+40FBs4LwZmZoxMA/+8KiGn4vRo1mW1vmcaO1ap7v3hNyHgq7mdoLTq7leh8cSJS1AXx7UawunVdC/MGH0cf8Zy9wpNVsuamZelY2diJGaiAVzRg7MZDCTNgkdiMxRIzGVVZ5iGLhLl8KVYb55TPenFbEJ87isnHPes4dTkMVGzcjgiI2MiFuzaHDsnYN22SpU2yi6rCSBMg+XgXJymcuzbNh5UM8VFptrrk+HrP+uBxqFrM+NXXcuFIiemvU9QkrfE63jgXSxWpkptoudWFIzra4UWwd8gzeKw8OyFlKiKKwwdl5MAGMGQDEljwQijjEvKFiChpikSTHPc2sTUxODADNp4wvO/b7nHv7toRMyUxhU26hugCmZg4JIWQG0MWxbUK+mbbxNpRaxEGDmmFzn468AAALItE0O00bC6m5v38rkiNW6hI9GxklJjJqIqopmxNDE6qAijSpSxORYm5kyYlm6ewcYXeUsRwNXN2F/pAdTd3Nqd8dNcevmnTe/9Jkf/AlkG0TcxciYBxpbP+py/vB8lHF/n07U8Kwq24m/59AcUK5IhlMRDK1ewtk4/hxVARfr77MKPAX9L9cKW18tjAzKzocsNJrajNqAkplqBGmTZFI3SdN0poPMF7kXbZoaWcGZd97RgLgk/42vf/DaS5c/8bHLoa58FogYTKoaPJM4s6RGHLIZ/K2D/VsH9/JU1832M1euvfTC87u7w+DDIB/k+QANNqAskNZ4ueiOlbjfRKtb4ad32bl6D2h9BjwCPc6zJ81GD/PMKeS/t0vO2tcHVeN8Drf2dBWCF8isKYc+RQRmJ6p1U0I0d85iTYYso9hMMh5oXVZCddWUh6Nvf/s7X3pv/5d/5dfpx/CHfu7zR3v3i7wwsbquq7IpioHE4xTVQgEi7/KkQQ0wYUpGAgrEuZlXWM4q0hAic4IJ1ABzwcdYZZ5jTFkooKZOlATOPGdGbMxiaqZQYg4AqYgiidYEeJdFc2QEFdM6NiNKdQLYb4IyFQfJOMsoOcRKysPR8cFkpi5HUlE008nRsxsf1zg7Hu/fGzXfeevt1/7oT80mhzmwWRQax6O7N2Z7bx2V+Uuv/5wbbiYm75ypzDFmOz5PnVMe/wW05r3YD5TT1/WfbpjTM8vu8/ljVGCB6Vugu4xHMHfw6TSD5f1d242WIWh6FeprYMD6JbQBOrvo5t55jgwzdszOEwLg1QQATAkGYrCLoiDUqXYOg9Bc2SW8XzGjEY1iPmSqmqQJLg8uY59Jimpd9Fbqsg5Y5rxjR848GTGJmJiZCRE1Gl3EIMvaaEBEyzTAbRtoEe78zLFYqrYXox4DPaQyeeqdazz4dJXsU2n+so8qTjuvMxZ1d0TF1g4Prrpm1FTNx19/7Td+++79aZkXrEmiqBLIhIkJcMxm2kiSqEOmKrlplNp4Erk0Y+Y6JTMjJgYzwWCt172qgtvIXWpqaG00IFFhIhF1REbtgS+h1gMOICIFHBZHU8xoznQEgjlmqJHnNioYt4ZMOHYMSq1zUDf9CNbifW6PBquaKcBggGJMTaQmkiZLosYamIMbqKbU0P1pGguZjUjKAAEAAElEQVQpbJTo7X351Jg3G0ylqWpVZSQ1lUmDd9/df/OLv/G5H/jxq5/+WWZSE3a+ZfgW/vfxx/cqUvQ5hsBHoIWUWCv/5EsfqfRTJvip8n9xaQ3fr1oMznjJab+saRRn3dl/3YnqrUH/FTNdkpi0yUKwslIjjURMZpTUzSKOJiVxtrHpZrNmuLWBRLXEwpiEr+zu3r5zD7x59970d7/43pVLu4MQiRNT4T2LIolAW9eK5LLMZ0M/q7KCL2/s7mwMP/HCc5e2tqGzQLU0pdpOTJyO7m+/ACXyWMB8O8WIvwoN1rpr7fPJD98Tuoh6ctHnAayOor+gMv/h0IPqcNbEt/7lvBkVcTwtp5XOklVFMZiWExVxTqbjqRTsQXdv3OZAZoktpSbGWaPl+I1vv/27b1Yb5CcHB5N7d4YB06okFYtNnNRbWYaqShzVzHmKMZE6UWEWUM3OwN7EwzKCi2TkQCwmAhNAW0wTQi6Sgi9UIjkQrHV1BhM8qxNyvvXuNDIy8gZYo0mybAuaZSE0TcycSlNaMyGpDBCtQRnARgNVF5C5alTv365HY4lgx1WpIinP82FOKFKgsU+o9g6ychKKOB0f5luXxJprlwaSRib23ht/7+rLr+987Aui8K2FCtQavrCcP0+YnnihK4aXnhBbtcZ8aCx/rur+iHOvb+qwBaQ44x3rLT9RyALp967Y6iWwwRjmmNizd+wcExugJtpxrbVnYBwjy7ONGscxxsEgG9P00mbYzhvvNYklwGtqnZfZVGNtUAI8g4mZCUbOkakSlLTdUmARlfaoSuscBCM2hapRe6BykVltrQdOdLD1mnrSjnb2eCycqtCCuIdeF1a3ZU6r2hOdC+dzVn8GfBTk/2l0XqUW1xyZ5oNrL7zw1bdvTsaTnUtbx5PaiE0kRRU1hakZOyZjVW0lGQMztVms69QQJRMGt/H7TdVYwaRGMCPHRBCASJSMjRgm2loowQYTVShBzREHdmKmpM7MATAiR2rKNj/VawCkTe9uZGBix6rJMQLDkQUiB2NDu0cMBRhmSu32gGNt1Xhlg0YIUBEF77mZVUkkRlNjEkZggUliSTJRUyIzqWAHldsfaV2kRlnFpK4y8tW4ijKY2PD2e9984+//rWv3vvvyp39y97nXFM5hnjFgFQo+Rg7Dx6JzhNyjF3fqD9ZN1D7yOAcpnipK8JCTq9+6k/LloZSfk+Aep/3S1z3WGtV7ynq6BAHmBz7bLIglsFGi4J2XBhaNQq3sQ+bZq0YquInVIARDBFJMaf/o9vZOOPzg8NLm7re/eePq1fALf/R1qSN7C1QkghppIgiYffA747IelPEHXnh2ZztsD7cDQauJx3Q6KV/82Gtmbri7ef/w1pbVhrxXdyykbHeG5mInWE5usJwc1u8Vrdf7USfgwprre8ea58k+HpsuWMRZ0+ZUW+QJWrsLhBY0axzfdmlajmbj8R77Yup9lAhCnrvx4YHfzhwDni9tbRTeOWJC5i1k4M//0M9s/6N3/s7f+erHXrnORE0lTUNa1ZzC9EiuX3KkSVNlypLEoXDqGAmUjBqIGjkiR5SBPbGDkImBtE0zzI7UDMbe5yp1FpwjtIFOMpcbMXmnrWMoe4ODmTMhrU0qEBN5gtMEhkIqa0qqSkszl7FpKUbeZ2SzgAxTyOGBG5XVyFKEzzLPShaiKWUFXF5wpiV88gfvvf3c5vbW5tVYHRVq1f5hfj137F979dLbX/oHmQvh2c8oOZ67VcwP1zxZ+8v6cD7xEvsuQAt78IcC/lf00lOh4lk1uWhv2AMac4oRaO1cN3CKSDyzxgYy0hptFM7gzHEbBJcAJlIwOUfiAAVZcF6c94ONiCbbqDc29bndcHNczhIMYHZzNc08cxs9F6bcRWowS131iAmARNHW25nMQI7a4OVk2gZcXw35tGq6OrnEU2f+79+/3lVn9vmKjeyhOZc6x6QPJybKuTXByrh/BHWA8/W4xXc2E3I/9jN/6I3f+u27++N7e3uTiRWBNTaqbVgqYiI1IzJjJ1GDc0pogHGVbAc+Y2k9/tsTJoC17jgGhcEUAMFxu0yiPRLPRjY3M3ZOQWTdNhTZwl+gUzbaWJ+O2JM5JiaYGTmDqZkGtja+MxMzzBMF58l0/oY2MGd7XNgY3M1FYiUwKEHrJD4EqxIca2IoNJKBYpNiStMqiioDgDTqppUOfAA0RqnqaHBMrBbGx6kpD/j42+kde//4u/Vnfv7KJ3+afM6ghXOFzXXfvtT5CDLPBeksJf7U3+20z2sqwZrsPEv4n1OfPrJZfD3593w6uUif/HwqtO1Jt2XdV1pBANiYs40tJVM2mMB5EBW5O26UODNARNGGvjWVFMWlpPCCgecsYHcTo6pOGn7rKx9sbvgfef25rbzeKTaybFjWPFVREQaVzbggfy0YxXI3WGajPBscjWd1eZTn27UbgEjSOKdIVpPm7fyjPq8ud73XVJ7Te+zkVzox7h8+q/cX58Uv9oAGPaAotDsANlfqCGQP9mV9MJ2qbp562/l0RkXWNOSFuzMMUOU333rz/v5BMdy6fKVI2ggo1lLNqlkzq8qStv3GVr6xOzCrgjeDtsmIarXpeEpKsYlG9O6Nm7ubQ6Mgs0ls/DRqtrExmVWWmRPRWCpUEZhUKYEaJgU7I2OuvS+IMljn4t/iDDV1BLCZ+txlZAaOQg25QEbe5do2h6BgEDmCk4bStJGJ8wHMAjFSx2JNqfWU69pBtayYlRlxGkM+0ORGRxPfyPHdajo2Thu+kcF2Pj2eXhEdHR1sh+LwzkQl3D+eIeeoU0fDEHKdGAsm4zpcuTyt9l64Jl/7x//fz/3CX7Gt7WXg23MG+GHogUmGn8gEW06NXqyf0yDeU53OhA4arMyqReD4szriohV60GqwBpeWmTlPPnSykLazVmYpmYFtxl4Jzjk2gqiYB7WmU8DAYFKJoDZKlTTazNJEgww39foWdk3HgDJby+lG1J1wbHeQGTA1QFs/hw5umKmZyTzhG5HNVYUuSqIYpD2m2dXc0JOPp45x75y0rffUyurZt3z13QUWJ69tPshnDsSJwvGUvScWb7nATauT4iOM5Fbm0NoFytwrP/QHi8s798apTE0pIWObSRuhoTue7siRsakRQGpkyaSNsamqwj4TaeZh0KDaMoEZWgd8Akgxzy3SxuE06DzsrQFmZDA1kBnNg7/Nw9yamYHB7R6awsEC4JL5DJ6USJmImZiIHbEDszpjZm03iWmeC6B9NYhBjC4FN3dTtdsIc6aaxEwhAolSN+m41gQOTk2sinJc0mZhBqmjqAuxESBlWsN8VUdJVT26RzJ5f3S4df0T7vLHrQs1tOSUNXPByc//LaBHwO447ZGH6pOTMBQnOvaB/bww8WJ1duNE4bb6yMliCAsV1LrpYCCDZ58VmwBglkyJMyIaFFzM1KkC2kRpolgLf4xrTxbYEcPEO/fMte3ZzYnj7GBf/8tff2889j/34x/bDLGs9lVdXmykxGo6ndz3goJmG0X0yvWsnlTNb/7Ot69eH/yhn/uhxvKQolRH8Ff71mtb010uxqF24uspa+BHhsNX9bGHfrBt2vwMQG+QH7NO9KgddDE1q1956o2ttdqLahqN7mcDT1GimUhqYcLmMDNCVSfvXBF8amogNYCReu8ZiGJ1zfcPDn2Ad+Yyvnn7NiHjGMvKH40a74wtStPACSwpERMUydgATRAjZQKcGDxTMEIbEqg91sVd3iIhJiPnmFqzEhOMneOMiIi8kp9HfYtmjWKWrPE8NHaChozJ6qY+1mpEceYMQIo6U4pQm81GRC41Nj4Y37lZHRw0RiHFlCLFiKauYlUe7+3fvrNXwk9IR/X4EtWaJk4bD65n++OY8jxryslwtvfud77x6fGx39xe4EYz9HbUHksDOPn0w5o3HvySVaj7sKL8SdC6er7QVpcs+xilX1xXp7kd8gKawgoatvkPC0lqUEszU4EROpcGANAW/8C0jZSehEUkNXWqRZNCQDbM3ItXsqvF9PYUGSEZpAvbZq1PjxkZ2sgmBmrDIJpj1rkUbjMAgExVyBwMzASYqcWYYkyr9e749BxmpX5Tl6PU/95bHzsr0rzQZc9RpwxciHrMcLEHHoUesvTFOvcRWdsuQMvRaautAA+v+cH24XjEW1v10awua1EIrDsk03kzKkAKJSLPILEQgiOpoyTrAm/aMpjIHNzPfW46ANTGYusC6fZRkhq41Q+snUg0X1SpVV2NQG2+eIIxgZ0xwZE5gmM4hid4brNHCnP7OzkmT9QuItRGH1JrM04yoKaqbMZmIGZJiIooKtCozMaVoKIAB7CaUGV2UDaXhvDsklLSWEMik1piplmVjg4qc3VOpuXN++9846XLH2/DH/Xni80DQj7Q9/AjTifPAODsubAGxxcY8dR7Ho3WFKpT6YH93K8enX3pAmWuqg/zChGBzPlim0GqSKoqDRkNQhhkaVBLShatC0yuZspWOURk28MsyojZO6Jnr23EW6UiHBxW/9U//eb9e3t/5Cde2dzxm6wuk3pWO8aQGrKGLY7K+P4H03duzb71zv3M21/41PM7W0UBhBDqtE1XP6NUMAG9mIWnba2fJ6apN6Dri/f3mp4GeiHAd2rdE0JIa7zVtxg8sPB17bkXxXA+JqcqtFisyQxwqDWOZ3v3dgbFeNIEH2IUZoQ8r6MZBYOSi2VZB+8iwdiYzZKUo4m3YXlUbg/x+ddezFKlfvPOnePJuHr3zvT4CF5LTCwMeDKdZSE4RxEp5M5UGQJS6nJ2OdGoyYUitzbvewv1FSAwkaAmdUw5kTdzhIw4KIzJMweAlQAoQZJWkEhwRAFtUERNKqXJVOPU6lkWco2NNLVohKh3ZGJcs43S/t3p8dgKo7AZapWNMAiUzd7f33rGV0dV2cjuVrGrSW5/YFfH0bFvBqPJ3qUXrtx//40Ag8pnPvOSyRH0RWZeyruVpLuPMjXs4V0mHpPaNbxLX/M9wjiLGdbtRSzSdPXWzoelh9LVz7t3ReZZ//f2h1VpaCSRmUg0xegzMLsuZy8YpqA2UCGgKk3pmIizwOZQDzK7shNfukbvjKwBJzVV6zwb5lGf20BAHVpCdzxG577Y6Bz8QWQE8szOc+ispixJ5irfMir/+WLnFHvmyetLcTbnpL4vqZ33/Jn9/NRjol+o9IshgI8+Ucsd1WRWHeynsimZYmPeSIgYFEXJzXeXrHUhM2U28lBHvGEspUls806vqn7tD102XLLOmwBAF1rA5spmp0GpWhsuaHU6GZRAaBMKOCbH6p2xg/fELMETA47VMzs278Bk3DoFMcgxs6GND9olgOxSgIshQtUodRtqbMQJ2qgm08Y0qc/aTPXG3HoNQZtoVURTN5FdVM9sZMZsbeZJSaGh4ZQ2qNTgZDSaiMHNYwusLeTL9f3DDfP/xOjsFeHUK3bi80ns1P/8CF3SR02PSX1F4qzJfrG3LID/8puRC8VGeyo+JURNTN4xbeQ0rRoBqXkfpYka21joNabjdGljSOaqsskzbA/DMFOLSQqeRfz+N2+//f7dF569/KmPXd3eRO5EmiiW7h5OD8bx/dvlewcUJR/m9Bf/2Cuf/uTLnGaYvZsVz47zF5/95B+OCO6EZW1NVaOVFq00nU78Pac/P3w6S6t8BNxOPdb16CGJJ9g8O/freY/REmZiactrz/adaTNtcVQbVHO4semz7OjgQMuUDwoL/viobJr41o17hwd7n3jus7lmVUqaUDcNBUMtpKAYgFAl2tgajI4Orm1mTn2WbRwfVzdvyd4UlTSNpjQGZ5tN1bA355yRJ1JPDO4yxKgpWWKtXebBjrsKMtACJGLycJYseWRMROyJSKHEpF2YBQUpWxJJKkwuMBdGmamQipcm1jOtZxor8lkqo1QNTILzUkWJUWqux2kydlVleW5KmmV+a6PYCLy7G7Jdf7h3GJvm2tX8mWe3TDXFBmLNaJo7HR0eDh1d3909ur1/fDRKMTI5Q5tAoe3ixfR6dGY5Z504qX8/Oi3sOkslcv3VD3RGetwaAO3BlGUEjQXOXmgAc/TwIQuXpQm7rQ+t6ezdx7Xciq1SoOSsPXcLY6buKC+xUZv2VIkUrKKJwWLkfCgKrpt4+ZI9e5Wv71M9gaqJWZtviJxbZCO2DvgTmIiJHLeB2buETwYDiUUxDexbqZ6FzGeZD5maMnVHC/qivGev7HfAXKud/3Jy6e19PVVK9ko9dwgX5ot+BKYnye2nvfDDeOZ7THNrhFEgHN6/NT2ahWLrWzeONNu9umPHs0bFUpugDoBq50sPCMDE7JhjCgzujDUM6qL59xl/vh3QLUO2iIxm6OENMzMlOPAiefbcZafbLGAzT+wZgREYuaPcWRE4YziybgeA4RwckWNiGLMxk2uP2KsR88IXw6hN/QIRJEN7XUFJIMpJJSqSaWAfFU0bQ9q66RWBSow1GYEVOVvOFgAxqY5nUqUkOBxPhw7PhoWbwBknXuaa0oVoDZF9z+msg/w9febsRq98fgQodnalHp36EuwstQSrg7CmsfSbM/873xOzubkVBsAzOzIyqJCKmlMi28j9MEuVSpGrc8oEq8wgKWE00nvZ9OoGqIwQZFl8/npx/0ib1CAQKByN4t7B0RvfPcoy50hN4ViqiiPcpFbHYXvDXr0kf+C17a1cMl8NsjSqrz33B//ETDcKhzbCFoAuaskZ7Vrr41XLzPrlk4P/oXGurY/C6fc8QrEt0VoegEdu2MlJTXOLyENXqnu6X9wCyJ0+xfpvF+TPv/Zj3/7mGykd5qT3799PxAcHzf54dn9c7mxtqfH+/SMhlSqKWCgoeeeZB0THs/JgIoOtoYo7GjXTJtwb8bfeb/ZGoRJ/8166vrMZpWIwSyANkSU3Bos5debbk5EiSmSqESKgNpwJG1qPIQoUzFS1RjAl5+AzEEmNUEgX/J8Y6g2IKjXBho622DZN2aQhM4oRdS1NQ6pmVNe1VomFE5KpVJPKFMdHur8vsQ5hq2iamVE2mVbj2VHaO+DR0fu3Di3i1psfvPW1Sy9/9hUkSdMqb/z4sOTtzWdeeXFyb3T7fvO7X75RX/v2z770w+w7g+zJg18XHdsTKfjWwi/22QZPY3b1cHa/fDpvZj0+kWEeOoOw3GbrfICWy+b8kMUpuPOJL5c2t2WiNY/P5eX66xdici72Mfd4MFDnkgACTFXb07wwbT2iDQo1kQgIyIRMOHGhA7W6rK9fpo+/MIgf1DxxXlAmEahpex6gjXcIJqY2byt3eZUMALGRahuTCmTE0dRBWKysU2EchgNuY7yj7eal5jVvZL95i5YtrJq0MDjMO4B6Z19W5fDix8U25WkTw06oyyf5/CGG9eJMcLFZ2ueu7wdaa3+3f7YYwtl0xh6e9bXnN44ls7qk3c3JvePMOwO3oWykdSNTg1qEKRKpJdVGO+8dnqt0a53TddHcJ8hW52V7IkBNHVxXMTO0cTppnuaXjRjMyTFlznJvhccgYJBRTsqMNuGd9+SYHLNjIkvExK0LJndhFkEE1darqa2BKNTIxFJEapzENo4RiZgCCmvgyqTS5nWBZQxnpEaODDARyXLvKHNEColVykTKvUN2Vcj81uaGa9szN88BWM6CzsqxypjnMOpc4n1UtgvOquqjVq+P2B4I3c55yeNMyfVi5xD+5PvWRJCt1qqHu7DIKdlp3W3EmNYhjgNI1STVrYC2YUGNJQB5Bu/ZVJuERpESDg8rn+AvwWJS2MaQN7dUQ7F3WI9nMQ+OSH3mJDY1ODXE7Bq12ieG7VLzIy+lP/dHX/3kC4XLQzRX1fbcD/2JqnkpK4hVBGzc1XYV4PfxhnW6+3ztO18aX+SXJ0gnR+mJv64Poz16bPpAeuBkeSwAR53QXL6t3fFfB4qn11RbocL5i5/6qc/+6J3f+0f/mfHxzEldVgfT6VgkZUSZL2scHZXTugwgAsm4DJ6HWSbs7x2ne3vl9SuhqVKT0qSR6ZTDcGDHYyjGlc5KyTMf68gwNbBH0gSNRsFU2bnWiJRiw96rCYMFDJBSmyOGmH17MEzaI19wZCRQpkygRMkpOUci4qRRjeY2OB+AvJmCFJos1tpUlpo282pdzriKKbKSNnUltToO5cQfj5OBvKfYKIzrJt6/d+f5sNWU2c17cRpRq41merg/gteC83rSHB1Pn33u6mjv1tGe3j/Auzdnn4rqg0uSHPNSgKz+cw51GXlX0UhfmvQH9SnQvODzXvB0lfkuBUHf8X+5IqxqJLbWS2d+eNwq9f6f26HXUG8PKS8R0FJ1IfbMCo6OvHfOeRdVHVnnF83QCOZWBmuX05HJZc6aOqbxINcrQ1wqZDK1BI6q5swYSRI5JiNHgYmZyLNTS8kE1uZi7Qw8RsbklABSlSTw7KkYBCI2NeKek37vzErbEusFiDjRrzZ/wk7YGnrjsFQZFprAGTtJi32Ix+SyNRzxxHn2Q7NoPS6tDdbKvGLYpZ2NEPDjn3+xyLPffuvwu2/WmvFm4Y8mkQM8cxsMVEydgWFJAY9EcdLoUW1JBfNz5AuHl8UMnefC6o4Uzz3fl6lH57EGTCEMAryZEZuYsQFGgRwggGTeBY8iWBFQZLxZuIAmCx4MH8iRo87vH6rEREDrSEoiALWKijGxwMwoisRkdUwxISVf16rGaizKYg7spzFV5kSE57mQHAB4YeecIjaDrIBC2dWWDC7fCJFIBUlkMLgUhpcJIKiByRbedcshmeOrs8dtXXH7iAWfPaMSJ+Xh4tsDIdPJS2cBuwsqIBfvpR7Prjy8AFbnZEc5Q1FZeD0u9sUMQDKCKhN5ygKnUlJZiQHZwHtNQ6WkJoxiI/dBywaYxKpSyoppkqF4Y0tNZVrl7Dac0VaWBzs+qlKDNNMsR/DCQB4GmaCI1e4WXn8ZP/GDl5+7tEFhK4Urgmxwaafe/pTlBINCiXhZ6zlMmSssi9b1G0/9Nl64j58uXRyQX5zOWs88HpK3ni4tNhnncVJ6KY7OfP88AFu362Nh60f+8L/wzDPPf+mf/sre8e/fPzo4HFWzRjKPrS2fynhUxmlsPHHmCRynpU5QFz77zr3xncPJKy++0EQ/mUyblJVV7UiGnDY2MT24v3dvdu3KoE6JHIcsc2AOxqCmiuyF4T0FJnLOgU0skTnvjJjYXLvDbOwAY5Aj7x0xC5wj8mSODZaUXYBJ0lJtCqbk1PlkVhPMUJNFksbK2urkAqOOzXEZIjQyHJl4SalMdPNeLGu3NQhJRQxNaQBoM9g+v3/veDJz27tuWGzv3VYZH3qSKPXm9tV3782ObLZ379b7b90/kJ0P7tUhzwFQuz3e2xNfrn8Xk9+rBu4LKxCPSbRcvtdevi4LngZ1L1pgUTtxeVnR+Q0fVljt+eva99ECLS9CGs7r1TP/W/uAARSGwXtfG5lIipBEnCdJBhgSw4J3qJQY7ExcElOXFyAc1/sVJ3PkKQ4hW65z3R6JMTE73zrCAZHgyNjEACODB0mXIIyIIGbOKIBa3ZqILCknbA03+jtN/XFepLE7C/uv/rC6xLfd1fFPT2071fi5bkCzuRZy7theZOCfuC74/UfrndvrCSPoq5/99Iuvf/wzX3h9i/Xte1P+5At7M3OzOmFWzlJritcEyjyxkAIwD/Lsqok0tW/jXLahQOdBPFs9oGOGnvWf5xWyTgFsLxgA5lZbNTEw1Lxj7zRzFth2cp8RBYJjhNwVAXnOeQ5nGAzJBx8cHLEPgYhhkcwRkYjGOirgg1eFKIulVr10RDCumyYKx4g6SZ0siqlxm0FYFDHZTInaPRAlggUnjgTm1LwKVXUA07SBo+QshSyblhOqaXPXYePy5jMvdR3eqg+9A7M215QewL+0NPmbLWfmRwL948xKnLJ89H48C5+dBfRPsw+Azv79cbpoOUn6Yqy3CXDhlaY3y+ZFUa9XvE69I7BkueUWJk2ZxJoysmMXwgBCYnAkmana1hCxgVETQfujenvohoPcNNlU8iI4aS4Pis1i83iG8awqo2iiLPh6Wg4KvHgNr3/q8g997vozO1tUXBrVAWlvsMFbL1/hQpngRIhICXOJvKa7nTUsiy8fCU40W1blMSvU1wP7H9aK9WvPPCydyqYPzbWnTqa+qOjuWj/dMddNCe3eQRsSgZ0WxYs/8DOvfOYL5cHdb375d2/dufPmN7/+na//JjOXMXlnBC+ilWjIXYoqitTYjVtHRJw5Oh6X5aROZAqYxSuXfJHn1jQHezBJm5c2UpUUsBblMA+ywjFrgqg2SIq0ub1FxM67eYIiduRMyRhgOPLOBSMoI5ERDJY0mveZg6o0TXPspPJhmOUuaiRLDDWZSHkcqlEsZybE3jeTqtyfqcug3ucZBNVUD4/p/hFVibYdl2VppFUdXe7LWZqwlJWXfBMWXcAguMxx5ty1555769a948T/v3/nV37gJ3+Ytz+5u/3Cv/4//Nk/+mf+dJLoXFDrktI/nFyi/iSkEyOIxdUnux6slnOW49iTpwVMmB9VPX+lWHsOhrlj1FNZGFcWsR6cIVv6TZ54Akv5QQDaQP2KlKKjpIlCG+IKCmLr/JLVoMwwM+eCINvdHAy2Nw/2jqA8GGxM82mRpWHA0Fud0iAjGEURMJSoO0MJY4DIkipRG0HR2tCHhDZNhrKJA5sqvBJDTYo8W933Pdn2dW/eE8mNTrZ/9YG1pNI2/6V/QGnOB9363iKksxOsPDj7ykdibfpo0kKqwISfffWH/yd/5W84G9U3v3T1mbd2NmlrNGs+mMVBzJ3FxpJSETJjdiaSZOi5CPDsmigp+cAuCdr0LF3UTmqTAKCzJFLrDDkXaEvrf3dcpQ3MSURq4rgtqU3/AkeUMQXoptfLm9lWQZsD2RnSMNPdLZeFIhsMyAXXMg5Yk5pqTMLMQX2WcZNMDCQM5RQbgDUhKSQRWQbjGKVJlCSJmnSBgkiBKsksmVCX5SAHDdicQZMC3hERNJmbNSomlwt9bne4kfsqVoxMXBE2tmFoNSPqR4OzVeFwDp06seb991HxBTpBC2G89mNLJ1cVW/1w/rrWv/kcheHifXOyHDtRSmf4p7W7zqkd+mNs81Wtc6400ckBBcdeLWqWoSjctEyiJEnFzBNlWVDzwxwqNVS3t6CmUCorM0WdkBGRwNW1d+QtheCLgmfJERwJyOTaZX7hufDK8xuffPnyczubWdiMtjU5Hu9uNa5qMveqVMdUPLes9NKSNl/gujQAC3R9nob1PVZKzz6+3LvlQnDGTtx56lNLBeDRmr3Gpgul9uEQ18oDczQy32jtnU8krHTHig5AgJkymFuv4VAk78PzOz/4zKc/7/D+N7747/6NGzreOxg3edtoUgZcis4kt1BJmozr3JmktD+LdWlKGqMMBrkf+o1hFrwTo/HUktV5xgRsDQdOzDRZ0KaO5Bg+J+dA8FnmnCfnWmeIbjMDIIOYOeeIHLq0C23Et+ThSU0xlWZmqXbOZ6GIRI5JBCnFQqQa7Vd3bwWRFKGE49t3ZSyV1pvbmU9WTZrpvt2+oYd3gYhqMk0+5gOq6+RLulXOwgsbR1UsNbGoinvr2zeeeW5ne3Nw67j6xjs3dp79hCK8dUf+1L/85/7MX/pLpsMomjm38OSZD1HPgfNhcMsSRl7MRvLIU7HPjadXZTk9nsbG3xqevMhssN6f5XHVJ1QzOzFB+zW1/k7JCs3FT+9yawLKYExooxKSqYFboAS0stfIwELOOA8FT+8e33nvbREZZBsNZW7QDAbYzLCZozYYUcYKslSbAJoxMUNZVZKZcySGJG0AUJI2bC61rsxoHX4AUjOJ6TR+s/nW9XqgP+v9u5Qjq920RPLth7lD0Ry09zrtNMV2udN+mgPucp26yDg/5XXpCarfT5NOraARCKbMEPI/8vN/MVbj6Zsv3LtT7n/361l1cxzLV569fK9s9o6nQu64lDrCOx431WbudjMC0YwotiEWGEZQmUfrtFXGX4amaJnL5qLQACIiZjKYmThu81mrgwaCBzuBJ2zk2EZ1ieMzW/mlS4PNrXz3ykbmiDmqCGAeyYNdMDZqopWRDKBkKYFr1MlEU3sSWMHt1BCjZBqFGzFRJLNkmpSTmSgnW579tS6/GfKcnDOVRlSdI3V+3KSJGDm6vJkHFwQZO0tGCDuqFLzNjzIs2WSJsE6OzBmctJxWfR/s7y3vnfbiE+L3lApeHOGc07QHNvziPbNq1zjjnrlIWnX7XD2R0elki22dFT3PulmgCoZpqsbKmXMwb4FsMPBJLM6qpJaS+iw4n5l6L5qRU2fRo26M2CmhnEndWOYRMkcwiWpNzVSXDVeVgnBtw7/24uVrO3p9F5e2N7ZAbjrhQsrJ8d79g+L1lz7+6qt1VGqiy6BEbWo99NLB9zpjoQ31rXKLw3fLLvzeysCTQP9x6tNvKk5wSFu+X/vpidDDof+1B5ar7EntwmjuwrsMwjy/0wAmtm4bts1olhMMniqxWaLRZLZtULFpjCELMTamCkRvOgxUqbu1H+sGSTEqNUZOYlI3WxvFZsiCk3xQVJUezxo+rmCytb11ZZevXA4bW8WsjoOhu3zlKoUQNWWDAmIgUkUbJIvRBpE2T46cU1JiD4N3xu1kE4IjBiXJmii1CPwW8SaFQGpsyUgojpvj+5nEOClzP6Aax/dGOgNn5Mk3TX14UB4e5XcO08HY5Rsu2xiwb4ylUUIdi0E+Se7Nm3uHE8nYKi6Gg8GxeOc3vv7ujWc+9ZlpGcRvXrn+6Z/903+xkY3gXMauMw/3QgBgTSxcmGlWFowLPPf43PhA6P1k0X/XLlqiSsAuNht6NV1uBDwOnTrrexcXLbfezWeYQharRfs3EXvnqYEjMLOION/eQJ2qS1AyBYEzT6xRj+8fUuYuvXDdq2X75VauO8MmalA2qiwCZNawmWN1AJmICiwalClKZ6YXo9avwgGAmZqaOMoIIHBKCtNTFJxTPrQ8vGrLW7LCEurPfQvXn10tb5lMbPVlqyrHCQ1gIeBWl16cTh/KurQw33xU6dQOapd6JoJXBcjn27uv//E//+JP7b335q333vqRd9+7+uKzkyYeT0exPvrK733pN37tH49Gx9uZ3yyyjWCjZPdGUmlWZDDKqloJJJZg1B4cJjUGa2v2NGsXGjVlauU6WReulplcm8OlzebrAE8IsAFky/ut3G0HPH/tmWLDxaG7k0RvR/nWrSzG3WF88bntzYFopgkkwRM5DraZD41JozaJQOajNtRqxVY3VCVJ4uqIRqyOKYmJtEkMIGopWdSYVMSUlFmNQRnzdkFbQ++tUSVzMLNx1L06jhtsqV7bzjeHoanr7e2tSvHsy6+wy9BFM+iFBFudPQ+k/rRZBJNY6ADfS5Y7jadovX106qVz6CItelL3nP7UYq3tW5Lnl+YBnRb9P18SFtGv6ISuZphnbdQ2VwvZVGZHzigwKzsPDHNujZXTWa2qTWRuQ7jBBQcRsGiqAJ+IfWNWTxMILoNzqBskgWeQqSdsZLg0SNd302aQwiHWMTrf5DwaTW7fvvPcc88+98zHUulme5Nwea8YKGfE8wx9XWPn2ze0YgDqaz3rAvijRqcbPC7yYG9ROpVjF/PucXcAVrnrovU7vTqrJZwi6c+o44qF04gYNk9dBSMmOEdxOmvGx0JN6SRZotJ5ymKEwgGoM74/iQcNa6MUKQrNpnY4nmROrl4eDgZUl9NqqqJ5TDQr0/6oVK8qe89ekS98/tXXPvvqcDOIC009EaI4ixtFYaYEiLQQ0IjJMZsZGzv41ERmazycwcQPsswSxrW67etuuJGZNJHUJE+Upbo6vkc0Lg9v1Pt7nvOYrJ7OUiV1VZRNcgg6sWpqo+ngzpRujJsqDLJhflxLqiwPfpjZThEaxb2j2b17x5T8YPvS179z8NkvvFZGrqohXf34dw5md27dfeaTn/6f/2//d8VgN3Bo88v03elOwVaPxDQPrzs8Il3A8P6kdwCW7rAXXCnmj60Qoc31SScNxxckOvG5Jw3mlhBaSsLeNKb5U/0lpCMFoMRKAic0r6EBROyYzdqcvVBjJa8IDBr4TMp6WOx4pSIrLhWDuFGNB2TwUSp2HIVhZMMQBXVCFFOQehcZTYv0ARioC+MOav2Q5hVj7ryPRBQLULHwx6G+sjO3e/WCuMzjNK51nPXi3vY7Z6Hb9SbFSUFri8LWrDCnkJ3s+ydw64Xoo7v0nU6n13fRy0QU1AAIMe/uXNr+0ctf+NHPAQAYYEANP3/znX83/i9+81d/tdgaTmfwPs1cmBhqAUGKzcKMSJV8UZalCBXZQGMtltBG8gcAtLK9M0gRkYEJjsgRmNgzIOpADHNsecAg042cLm8Xee4ObDDdr2bfHedUvvTS4LOvXnruCq5f9nkwtfqwTnVlZWXlzJX36nq2tznMNochK7Lg2QOFC3WUpKhSw8xqELMqWiOUzKSNktUGIDIzVUkAOVGIKMCBaOCdMxJDFY1zH6UZMd1vNJnbNAxTaqp6MNw+KuOlF1754Z/8Y9yeQO6pw7aAiBeUcKuAenGcuvvau+V7wJBnWFpOKOsPRw/smCfd0qX3eGeq61s5bHneq/tuS0EGoHNtM6PF6CxNFra4BDNAYAJhCaind+tyzATvKLXZqtmpmVqRxBJSWWuSxntCGzqCzDvyQaJAFKZksGQoKxAjGczIw/KQIedamxmFvWmaoSTlrZ2NkdHR4ey9O7c/8Ylrn/nRz4hLpRTBBW4OLY4122YCKeaZdsgWZ4IXlV+uc71lDmuctw5PzoKjp4zB/MNTZeNzYP3KTRcj/+BbLkCPAvrPprVlcwnuV9rVhyrLvZx5Dkda8H/r/8WgupbK09G4Cg7kyVEiuEpNE49qHTVUDIrNrTQYusmo2htXk0YLolFJecYK1zQpGsjldbLRJDbeSaxefuHS5vYmB2ZPIXjRrK7FhywmdQ5mUAJA7RFgBqlSU0UUPmPiQC7zLFbWzcHxfe+d294ebA99sdnUKbeAKBYrl1MkkkpHt/d0Ot0cFkjBYtq7O6rGUcVx4jTFbBaOGv/2Xvn+2CKqxtnAgwg5VAM7ta1imCxL3mfDjZQPPxjrH/zcT//xP/nzV69fq8lNm7iZD65dfzHy0GeBAO0OYJ8YW1r552FH9iNFTxL9txzYObaegp0fuqxeEQ9TS1udMSeu9hSUtQ/A6mvnn2kezQgt7IY6wDuGgqDtB3gGM5mqdvqAEStDTMWSyzAdH29f3vXBisIXhQ1yVE3aGlgyTY5FSNgCsYNFpiicCDCoWSKzNvqhwUCmMFJ0uQLAzMQggIgkab/DDItlcYHH59oKzSXF8rTGSmCSNqJLqwLMD3rOoXc/o8DS2XSh9PWWzkV/nhEjaNn/6CLKz12WVsX8SQX8LIZY0eoezDUnzTffj7QcPIYaGYwBmHEXMQeqYFJRNbWNy8//9J/659/+2lc2MhlNotYqUS9tetrwjm1zs6CrlHtyTKN7FjmLwsdHM8v8RHxZNzxX+NpoQGpgEMgcO++cZ/YEgjpCRmBo4Wgz8FbuMs/TpmmMjt7fH7jmx1/d+PFPXrv6bEZcHh8dv/lWOWto/1gP69bRDdBsEMLljWJWlnVVEbudzbC1WSgLZxhYNmu0agATXUJpVkutUkzdEWYiYnOcGCBxJs5AotOSjHXosqmYko0aSaDM5S9c9bR1bXbplasff+UHfuSnPvuTPzt89lUwz49Go8ffvZO8F6GeTOoMEl0yg2Xgj48OXRzzXbC0p9e4eVWXb1goazSPoWKGXkCyBZRXaoO1dSWgO0G78J6Zm59aXRdmALebQOYoodbjd5q6yjPOcopRTSmH48K3CUvJcUqpjqaSYoKIJlMjcsx1bXVMYjAFiFNUzmGE7uBK1URljRpj7TQ9s8t5kY0PMftg7/D46DOfu/b51z8TUKaYKNBOllt9I+CgigPOMqKkRAyHdp8Cwm2iGgCmIDdvK+ZLoWFpJJpzc381WFUNFnHzaF30r955zng9fADctdsvYlJaGqBWHzz55ifvAnQhBeVcsjMKWcM18wr3trI6v6BFjFpqDwew6Sde/9yl5z5+6923Mr/j6jqVschio2UUUSHzmblBkblrm1xLeRxlInzvOG34bGsfRVF4ibFJDbtq1FSlsPO7A/fCK1d+9Adfev7qkFPZVCjHI+ZsY7BN5MlENBqTAc45Im9oj2zpIGwwuJ6MJ+XxaDZxhOHW7uWdy47qON2b3IhkuaWayLncW3DVcMM9szWgnZvvfO2Dd/blkuMx375xMDpqMnDwtjEcjmbVqHZv3hm/eWD3owWONNEy+GLAjrPjabm9vV1P3N298aT2d0fyseev/7X/69/8mT/9Z2DsmetKth0zQRieHdk8WqLhBFO0sZYekVMWQ/ZhyvsVLnrKr50fC6S5mewRi1mss7holW1VEe79tFpCqw+vPDg3maxIJ8J8w791q+x2fYUAaqBiCgdJdeUyNVb4brFo8/YqEqEGxJiSixvXit2dy3nhRsdHZVlJE7eG2eg4FoSCrUxi5ETVVFtfZXhVNZDX2O1BeVqeXBYzUaXgs8COTBPYB3LByEvfUdsAIlEwEcxUxbn2SKYatYZbQusYvXQanUsUah2m2zhFPVG0EgRjeUTQaP7f4tDSA1eGvsKx8uPi7MDDT5MFnP/Inqx8KHpAByx1pTlRqwouoAp3u8BmbUJ1pzFzP/Xn/7nR9OY/+eX/F+tRRn6LraD4woYvNjcQMdgashl7yZ7d3Nze/spX3sHObrY5fPPu0fv3NKoQk0KlVULb9LtKntkzewdSYwITgkMA5d5y7xzls+TStNng+sVL+rM/cu25S2A7+vq3Jjf3cTz2FW1H5bqxSjHIGgrJyAcvd/emzz2TbQ6LLIN4TOomJSgygw4GwUDajI/K2iIHt6FOYxQjZwCcI3CCNYRpFGUKAWjgmCVCVZCDMq7Ejmcoow4cLm2F69d3fuTP/nM/+T/61z722stkITjnFsJhocouBEPb43g4Jl2aRhbQ/3usfV50lj2ylvLwRpwL0tI4Z90Bj+6YdkpdUHJNkoi8YxgY893OzgbioAAb0G6cMhmDujR4BiPYXMljGAuQWkVQTCd7Lt08/tJ/Rd6cD8Gzy0STmVIIbsBcx5AYSZlrSwmNSlXHKkoSGFjIBEjEYGNQnjmFkIAVzDCF1cqKRnB3X44nuHFYepm9eIV/4odf/oFPvTJ0blrPQj5kDtOoMt3z47f58vNoUMA7BswamaE5zpg1bNYWEHJmR2KeWrUAZswMUbABQDR1jkDEBm9q2iYOWfQuLSX/IvFLz87yEK4Ej80HD4DWZ1879c2PuwPQX+NOvvr8uj5QSejxd7/2y76e79Mv1jybx29u/2kFjTJosH3l//A3/tbf/o/+vX/43/zXMSWAm1rK2LDBTGPVJGLnOMtsa3f7aNJELcX7cdIP9iYudx97dquZjcZ1PBo35DjfyD7+sWs//IMvpebe8dg2eTt3eZHlBhdjhLPgSRVOyAWmBOVoMGKkKDfvvzuqj6/s7l65+sKLH//RUBTKXqRqmv0B4oCdNJEzVS0lpiSYzDxtbrvB7ic+9weG/oXf/s//8eTWFE0ItL3jaXPQVHcmB6P43hRvHWK/zkoYOZ2JNIaZ0qisr20PJxOSDZ/8oGzqP/THf/6v/83/2/alS6DgySeFCx7UJis22MLacwKZPDFa4pQTg/uEX/M01hfrUGrvUOji0hN6Q/e3Pd9oD4oSswhG2P3p7YKdUAK6rd82Yv9KfaUF/TaH/tRG+CGQQU0IqgZRZSqFuDHv4AQuuGAhFwQ1B5gjz+zNTETMVBnF7vC58EJT1nWaJat8QMiQB9scYlJhI2eG1mbaiCigkC4sDkmqPQdlJQuSlIDMeQZqTewzJucDB+9gLCk2k/FsPCZCgvo2nqOKkDGTSbRmxipgQTQQXD6E8wZv8CBiZjVhcphbyNqtO4N2Bsv5NsDybEDfPWuuPizXhflG9KrV4vRBXPm1lWOdGrIMRLkeu/tkYd16tOCcxehfYG6tne58ctTx2iOXewH0v/ja+Sl3h1Colf7d9CcGzIjVwOCs2P2z/9L/5rM/8NO/81u/ee/dbxwd7uXNZPvypcHuzuRwurl9mZFtX9t88WMvKWcf+9x3drfzgzvvFL/+G5c2t27tT/bLuoqNa0/Ag1RSRgjsck8OIDJH5BhO0zDQIHfk/bTR2Ewuc/3ZF4rXP3ElcP2bXz+6d4CwtVVLoYONO3vl4ShC1blAxFHTTEJiYcm277nNjK5fqj51VV+8OhxyCiwE89kg1mlzI0uc0XE6GlVMIThXJVMjhSlgZGKiakiWEXtvwTunSoRGkeo4rcUYm5tFKKsth09+/vN/+i//T3de/pRvkSGBzBRKfciPLhTSSfXrQkO6qhXTgp+xmDtn8vjToVNecrrCvmCnVejyQBhzVoGPSV1NOoEPJlJVVXXOGbRs6qEjzMa+GDTiwVnunSRpT6ekpD44aSrn02/+/V+jMPzJn/vDTVKfOQUZmSE5wJNranMeSQUq3iqd7dH07dn739p/92vHN78qhhAyH5pQOI0CcirGjfjAA3W87fJaY0N5I57ZlU2UxAGDTT+rJKYObqjaZAwgUHDKqYoa1XzBSankbDoTF+vPf3zwUz/0yqdfuZL7dDwdD4os5AUom02mAZRPvlFWSmHrg3dv7L1391OfecWK2Zf//i9P377zY3/qz228/qP03Gs1b2VZblUJcOTEgFkV0yxvjssbbxW71+L2p3T7EpETwBGpCoEJMEpEvj3f1q2eNl89l0vshUf44dl6XdK1434W1y0vXOhN/tHqdLJyjwB9znqEeo3E6ofFN8NcAW63b6h3/mOuqM3jMzDBnHc7L3zsf/1v/M3/2V89/uYbv/+VN7741S/93pvf/WZGdTWd1qM0K5vCI8sGzThRjauDraODQyU3mca7+8dXdt1sVs5SzUW2MSx2t/Od3c0mYnNwiZxNmzizVLjkizxkzOzLunIZkyNKcIkBPRjfH5XHuR987OVPffb6j0f4lOW1KyIPYZxC4Te3gCo2My4qeAum2jRSJScWolOJEcWl13/oL7z+B2YHR3/nP/67b3z53ZefeW4nlU7S7VF649b02HMZwsaub47HUAaCGDjz0RcHTbO7ld04OPrpP/Gn/1f/1r+nw63gmMGiCiMjdaC5DgBayOY5fFygx0cR+Wsjt/xLDzl1HuVdOHuqPCLXL2y+i7ioC/T9MBPvQUQdTAfhgVsBNN/NVDKab2ouMdHCjA/A1FqfBWm3dF1ni1NDmgNHAgzJ5mMjRolMKCXnDKnUyb3B1jWkzDGn0kXaVBmYK4idaqnSeGO2vMCWYBrTuCyTiXFwVVXHmJqUEkG0ydlvBIpjbCBzBoN0MRTNarVUa84+wowU1Pihj0rTuiH2BDJRZ2SNOvZtlj2XY1C42KjPmKWBmMvhUlXeuxOP9w5uvOM5XnvuymQ0mk0mYD/ceebyJz/L2y9Oo8+IHTglARk7liTsgmpnG2NmNSJing9z6yu7BCt91NJtK8zB+oW3yzqPiOUPyyKWs+QMgdhjGlqoATbXAR9M89o/Dcj11DAcnfw6D/XXjYkZmNpTulC0GhW3DmWpGHzyp/7Iyz/6R5rqeDweI05glIWBM4lgH/Kty9t5PmwivvALCL45fu+rHP/vb7/53nfde1+9tfd+pQL1zoEo45BDg1mA5t4RvGn0zJRMQDHfmU4bbQ5evYKffpUv5c3x/r13b9uB2x6l7XRXZ+MpS2VcXbuUX9umjaKWhLqOB7N4qJimcDht7oz9jXu4cys8f7l+8VL52VcH1waI8OHS1uGoMk+SppJY1EETOFSqTYqkCGQ5UDUxZ68haCAoEyMP5tmqJMPcuxQHFJ+5TJ/84df/lb/2b15/+ZOdOLO5Htlquydikz2RkZ3vNXcF9kN/fyjoH32L7vKn+YdlxXq/2Bk3r93Zv/rU1jgDTMkZIMkyNm3GIvVsPBaqbnz7y//sV/7uCy+99HN/5p+PxSXOB1RsIhuQCyYoU1XNjn/lV3/p//0f/eK/+D/+l37iD5epPPRlqXVlWnJqmiSRkHxOZBQP4uj9+ujtND7iaharEsTYdJNDD8fMKWN2gdWcMYjizjB4JsyEcxfJQqAi8PbQOS8uEDvPRFElxUaNyOj2/fpwzDFZQyxiSS2peRP2dG1LP//pZ37qM889f2ko3Iya2SAPjoaaqKpGljNiU959R/NJsbE5vf3u6Ob+P3n7nz7zuRdDXmW237z1j1z9le3mC/txqxa/UYrEKiEyw3vSZLPq/u/94v/nlRc+9vqf+9emsxf58svgQquSY2NRjBxn3gaBwrbywCgLaHeFtRXZc4vzw43ZQ/HDSUlnJxiy/xfACh45lzwemMXjkch6fx9IdGJGUa+EM2xo8zzUcwhGmBvprFfS/IifGZh9ImAwfP3Hf+rTP/bjf+lfUdWGY/3Gl770//gP/tbXvvK7G86uXr/UTMacZya8u71z5+CQGFWSuwfHgV2WD3LvN3Le3clCZgkR7KIkGHnzSmzkTDipOB+yUDh2TTUdHYzqOL507fIPvfr6cOP/z96fBkuSZelh2FnudfdY3ppLZdZe1V3dXd3T+8xgGtMcAAOSAkAQBIjFaIJkkMHGIBlJaDEtICUj/4uUZJKMxh+izAgZJIKCJBKAgQAxxGAwwPRMz/Qy3dV77VtWZr7Mt0aEu997z6IfHvGWfJlVWVXZy0zX+fFehIeHu8e999yzf2dLIHbgFhuihqlBXmNk5AKk4Mlw4qDZDVQspLDmsbhLcgyKnCw5teuPjn/lr/+lclSuv3742//sG9957pWXbutbtN5qVwS2N6ZtsLRYjJgff/pKXYfdw9sLd7D1/8n/7t//4r/5F8t4HDkCmNrgtjQcANZh5cVc7cXLIRz+n8p8fpd0zgt9at5/LPS+7rs0NwefmMNKYT63bN8nOcCpLqP3OsmPtf9BLXVFNwACQgBaPq0jmIMOzRLdSbVU3ruh0qg4RTKwvusOJc+869Pi0HK3sX3Rq1FoKivz3M3ZO+0WCBIDE/bGU4hjYGrGDWIgrIxY3VwNPZv2SOxOg+liSBADgrNHGgXuFYPHCTVW4axdX58gorc5Oym5FEVxcpjWQZ0joqAHBkTvihc2Ha4L5A6EAQACYc5d7sJ//p/8X37ui390cXRwYUSlnTdj31jnNN+/urUNmqjhng+gJF4sROT2jedf//5Xm4sffuxzfyxsXy7zA53vtovbqevXJlvTS5elaOr6uq6cQ1jbAGyAA2AEcHfHIXQ8pP0ss2VXuudpN8QdDs97TvWZcP6wl/kKJv0kefdtLrL65Bi58p1lkp/i9nd4xPdBp6o8f6i0/CnH8nXZHcZPPh1GhNDB2REROALTtJluEK8ez0EMmIAcVCESUATj6tJTn//zf+0//Nbv/Cb/vb817zqRztc3Zl05POqAeL3hSaBIxKCISIElp+koTC5s3N630B3+3FPws8+Mtip/8ZX+zUXdTy7f3i8HN2aXx/65p/FzH9t8fFvWxrwWkrlk8yqGeSu9xsMcru30z1+zF6/RtUN660361s7WSwv89GP0zKWw1pQLmyEsRL3qtcznaTKtLBklY3Zxc9XIvj2F/SyLrGrYMLHKWhXHFSXFioGB18brv/iFz/+F//l/uPnUJ4dtw3C1eo9VHIDj/ebUKD+A+Tr15k5P549RQNxx97OMcuq040TAexcz3F34vS86vo8DsgIQlCpf/+5v/5rODx5++GJT89HBzj/6W3977/q1qxerw1vfn0NAyQ4cY13FytxnR3vd/GCju/Xsw1V7/Zvf/ce3a16EUCqugJCJmWMIAeumHN28/uLXN8dc15oyETQw3ViIt1VqS4qgHL2yWMSKuzsyUj2K4q6KVIwASaAK5B4QlRhijMwA6A5R3VHzQ1trsw7deSF53tqizRzpytb6xY3xhfW4tVmvN9rmA/RY15V7JeYRBUrKUDmoW4dx/8buLk2b8dMPt/P8/FG9mE8zrNezg4/0h4cv7NL4ccf1ogzgqOrugmjIVZzy1oevz3aftet0+6WyuHC4CGnvyLsu0qjvpV4LW5cnoVmvtj8Wt55RHDMFBDMbeGWJqXSfM3wvd+S7pTtUjTNWKC4Lt+/nOuF9PtHpxe33+HnveIfzn95VjTrHkHgHWy6dygO6/kktzNI0IEI3D8QOCMjuKDD2wJ/8ue3/kdv/5t/5csNUedja3JzNbx1hgTHZAWxfnDSV9JKgbiqAtabeGtdrdT2qMbAqAFNED2wcvKJSIYdmXIMqJbl58CZXfPnq1a3LT4c4EasOoYE4pqauqAoU0MnQxbqqroiCa2WBHRkxIIrpIcgcQOo4MfGqQjBEkDS7nbvdPnRPfOLCRz//F25fv/k3/++/9o++8ir08eqTH3n2s5/5Q//SH5mM1rYuXPzIpz86Go+e+9rXLl+6eOXq0wUrmWAAQrAh0X/V3GUlo1fTeZL2fDJ5q0m+72y34/jBWe/lj5oeCL/dQYNStiqSPpaWJ+bSg7jJKaTse9lQKxPBzAkYJUXqoHQgWaQoBAdEL+TFPaNLduwFovc3X/nOeG1z8sgnxJtU5lpmqcwtHfJicf2lF/r5/me+8MW+akDY8p7ODqyfp3YeyHHUxOmmEVOcOEgpgEhcR2QiU3R0IoKKORiDo5pbYAKIphZj2J5M7aArEWZiM2lpDHmxAIC6wTAZCblYODqi+dycg6AXEYxQR2Cmw+Ra1DwkMwMqgGBABpPKawBv95/70j/5zm//s4cvXRoHjegfeeZqubq+Ng7CPZBPRhuLWQ6EZL3BPJLazVe/+i9+7YXf+mef/6V/eWf/2je//E+2p9XGhYub2xcuPvyoGfRtUrVu1mFVX3z82Ud/5gtab3IcIcJQrHBca3ectO9D7smyGuD+JP+x7rnyXQ8HlxN+rD7fj5Q5Tkq7nwV4bKyc75LwIOgOD86PRp87YZQTv9FxVtvyjJP5QaiIB+3NVwm9FR93AzZwZLIAqAzbH3/mj33smdGVy2t/929u/86Xjjp7IymEMdexwb5mB0DiIEamEqrGq9H+vunhrS8+Hf/whzfU+esvdN+4trGgDUwHT1RH/+afevQzT1fb69anGUJ/OKOjznsh0aiukiFyG0E+d6n63CPVQW8v7uSvvgRfu06/9Rq8chj+8BP26cd8c2rjymh7pBSYbHevQwijOkQLi2ygAqbMAjVXxBFtk9QzrIfCCHOEusKtD3/sj/y5//6f+Et/td5+OJ7yL9IKEeZUVfmJhrusgzwLrPKg6K7a9o+GjsXd+X0cz55z7DA79rmeGJun1vr5bft9MsJZc5pLhuizm8//wxe/9qsfevIJ2eDcveJt+u43v/uV575NTXwm4PV2bzKeVth5KehshRxkM6YKdh+f5phu3Xyj3d++dulCEyZjmE4BI1BUlN4r19jN0ssvvfWhDz0Zre45OlYxqTFvrm2mZta2C3APsQoVsUoRBcVcPIRQ1epIhEC8rKsKoXY0joGJVjCNzKRsNq0zxYhxXNSkJEJ86MJDrHkyqTqxnYOjccMba1XwmgCLFs4Bq0jklkU9UzisqrEGtCAb22uhrNe+/vKefvnNl+J6/dGx2sFumFbJo5j50LLS2Yzmi9x85ov/4B/9Q//6W599sik3Xyy2XkQcNBVZtN3+zb0r3fjDj27u778WH9rbeuSLAhwIyRWMYICmQ3hXNsB7oDuY4rxufG7Lv6/7PAAUoDuWOJ5VV+4IVdzrW+flxL19/29Dw161ygo6FpqIw5QDDr2DggMQQHRAAgn483/0T/7MJ7/4la/+6s9eeXgEynuLyvLi8Hao4KHLU8lHANj33eb2Rh1DVcd6UlcNo1ug6IoEFGqOMRIzEZtYkVbavLlxYbI5HU2nhVgAxtONYg3GmkMDSGoANuRY8mI/qYBDQEQOGEgdALFxQwPPqozkqgYKrhgvM1eRu5nMO78+uTz6q3/9L/9lvmxh+vCzP+/jTcOgaobAsRL3T/zcFwgrQKwYxJ0Q3XzId6az7n1coYOdEaJn9Pe79TS6x1T8mBX/FZ1faQ/06ksJeN8m9/1f+TgKs9IQ8WROhgOr0wyAwAy6t/ZvvtAvZkxATBTHHCs0MytmEgido1Nwaxe3X234YU2P9tpF7RH6SObg5MXzoeVbJLfBYpcKlzl2R5Q6LnMnFxxjxR7WAMmMRJWCAzgiIKECqIObI5A5iqAZMkd3cGHCCAD1uLL9oyc++vBhqZ1G6Pjay691rWi2+bxPPWxOm4DhaO5ATsHrhqsKQmAgSb2LeAbqxAEUHMyglEKMJsVA1keTbn+nmdQ4gvnRDsjtyeNXZrfydGsjzYFjQCRJiUMJUCrrPnR58ttf/rXf/Y1fv/j01Ue2cLPafOaph4rltP96E6vQllGMdS0pz974zm+8/MK3v/gn/4psXA5xdIyV4QM65ElDqOOd+t0L+lUc4Hi+T6sh910S/C64bmllnG1j8KDovFz44dNxAwcAWGGgAKzcs2dEi60CNbisL19thgCAbg6IaCs4KAIkAiH4zL/yrz37yU9/6e//F7/5a78+ev75yV67vj462ttxxqSABC7KpFRXqXA53Pv8w/j5R5hcv/da+dZbsa3Wtybdzz3iv/zxSw9fAKB0/TC/8UY+6myWa6a6JLfiyFEEOSgojG8b6nxc9Q9twl/63OgL8/zPn++euzX99e/RSzfCZz9cfeQCApbpyPBCdI7XbnRA5NqNmrqpx+NA7d7+x37m53/xz//lD3/s2e7gcGdnL5WuSzOs4oc+9rEnPvbJ0fYjkYhPFp4TwhJL+6S2YhjY41r3wQPyo5jUHyWdd/zfle3w3Kcn+PnHQAx4csEHxQin5IE5UDGoUF//5/+PV7/zqw9fuZjnNzpELbJ/e/ZPv/Td711rL1xcO1hIagv1R0o9sbMHRgwMWQqGZu+wfe7lW+vb7c883Uy3ahCArMiojsBciBxiodG1W0fTtaPp+pqacuidCo+qJLZ1cYv3/a23bgHxaDKuOKoCkcWKAdBRzRXchv4ZSBjCkvnQjRCBAdEJQ11xUzsyAwNSCMh9olmStcqKZaQIWFEVgDiVrEQUqlQUWCMxoRpIMEGIUrx2mu3vbta8MZrQk0/96n/3zbS4vTl9toAASAZiRiZGJDNEQDQZrW3Pp4/8n//r3/pf/YVfeHJ7vDvrsAno2KeSjPY6X7y5vzUKDIfFf0d6uPD0FzyOkWiJBvye+gm8W/Fwx0I6banexed+ynP49hTgQRvcd3Xenz5y+onPmrN3ngmrH3zfz7bE9zuDijX89SH4u+wJ4bCEAXR3inVW+T/+zb/98mvffeXF7+29+TIcaMqvj+oR5AIuwXlUNwI2bcax4majCnWFhFxFRa9q5AqpYmVUKOAZDczzxsWN0fRSmNREwcEChzQ7ig1wpIARCFP2LFnEJLMrRx6HKnowdbBe3FHMnNydmAO6EweiAuruDeCW+vq4eSjUlSSVsYzWjSYjG0+UR0QUQICAAYAIiNwBXF2RaRB9ruBIuOqttspVPrXEVoBXK/UW/YxB8M5Tcb9z9kOl80/8Q3muOy/6gBSqpU55rokJwGkeQgByk35356UvV3pUI0gqFGsrwSAGqriqAcAyGFn2FqETOUBZQ+sQwMDUUY0jTZS1FzqczRezg1JVYcQk2YtbMSuKQbIgSFFN5HFQENSsZCOFgOCGam6ipGbO7oTAbmBgZu6KkvP+fG7jZvOpJy5ffnrz0sPX3nw5PrHl87S4fvPgrZ2dN/uDWW6CdwEdlEAnVVVVbOiTaFsTliMTZAro4EDmZFnBkMbMCl5cN0ajToo7znKpp+PbR+1kZDiaUHRctD04ohEX9x5d10ZxMsYbB7M3X84f+8JHL25cQEBDzNohCtfBSzutK3b1kq/vvfx3/4v/05/9K3+jjCnGegmvtzSdz0b/T5UHLOfq9It77P13uk5Wi2h10O/b+L5f+uG4/o8vfvL3R7UZ4Nk3x5OAx+nswykEq7rWVX7V2T1ieZSAHB2AHJzcI1qsuHn00X/93/5ffvgX/sir3/6d17/33ed+81dv0Pq1wwVW1fxoHmMD7kV9tn/jmbF/7kkYb+LXXpSXdprRxfAzT+uz64tPXdL1C7izn968Jm/ccKJLaglQM6QswgGYuKk4VpCMWxq74lEfdt7KW408tBb+9FPxmW3+716aff/WeLYw/Vj40KOhCQuFvLa2sZWmXSvb01Fl2KbSNOMnnvjML/21f/fzf+LfQgAD+AgAA5hBQFh1MACApQvbEVexzBUulp8apKVv7Yc+kT86Ojv1ePaTd6S7jMQxNtgpG+But3ovoYCVSIahSLsodC99+Ttf+Xvbl9ZvHnR+2JWUmeoXX7v13CtHMLmIDLtv3jh69Hrc2nTiUDcKlXoBV88hYLPbL26XSlI4WNDuTDcYEihHjkDRkQlE0ghDZATTvl8wNRVGYCia1ZTINy5dWPRpb/9w0S6IAhIOyAshUFSUiKaipsOKElUOCAMOWyAiImZiIiJ3NSdmqkPV9flbr++8fH3+uQ9tf/zDF0fj2gpTCIpkLi6uTuiAogZCmBkQAFNqj4qQ03Q8Xhzt1qF9dGtyZfPq9194/l88d+tTn37GsnCMmgEoIwA4gwOajRf2kQuXr7/VvXbLtzcqAa2VpG+9GAFNm803r117OeZHHhtV3a7Y1200ufDwzyFHXoKB+FkHw/1O5bud+rt+66769v0/ypkIwHuXLkNd3PnDp/7i2bdvZ768g6B82weBk/3plKJ0gg6IA574aut3dHeLSFrR0x/5zFMf+QwB/Plf+fee++pv/Md/439969rrPllDX0yndXCbTGPdVKPpCBFirCiwkTp7XUdATFJCBELHEOpmWq9vCjbd3MDTdFIDoAmBE0ElAvNukQthjEANNXXEYAbZzUXNKRADEARGr9DRwEIARAdm5qqKNZqJKUjO2aoRTGKf8qxkG61di5tRoaEYVLW4oS+r+hGHLCjgpS4/2Em0yjQ+o7GcjNxSGJzxatzXRLwf9I/fh3S8uo536AdlBqycmLS6zck0LF3G7gjl8NoPeHGLylFssCTpO6pG4xAmaJWbAjEYI1Nkh9zPd2/71qU0a3FUg6ibuqmJmpImbw9mlMVyKhnIpLS9S865R86BUUsyCAYVDI4UMAIlB3IEADN242zGjB7ICB1JxaVISdl721i79NjlR24eienBfKZ9TlcefejCNP7Of/u6ljSOgBvVYsFdLibKDE3Do7pq+65i2BzXfScGjkU9RAUXAwBiZCInRFEpUrAUC5xmua8qaaCzfh72pyEwmWkGAnQ16bEk68vGCOZ7u2E80aO5zNt27yBMYo1ArjFUhJWrkcu4tstr4eCNV/7J//P/+q/+yr/njojVMpR8x1615JtTmuUd3r/zDo9jzjtt3J23Kk+bAufWyXvavd/fEvU794vzPqof3x6wBE46hmM6Np78uCxheLuSGWeMtVU99SAlHMB9gOMyIjTgj/zsH3riU58+eO0N23/j5pe+gYikFgIrqJnnebk4jZ/7xGh0wX/zW0c7svXEzz72yKZuyf6VmvaP5Duv4d4eQhhP1yepFcgL8+LqgZGLkSEBQNGAkUNFrk6UaHNmfHCrbfDw44+tPfHkY//o93Z/7/vyz55LB3392afq6ZhSwitXtxddnta5IU6ZQ3P1X/4rf+3hX/zvAQABsAM50ICMcUqzX2r8q3YbcJzfcyro+Ad2Oz+3TE9zrd/tFD/FOWctR1gGAc997TwvvCfdZvU9d0Qg1e/90/9PLOX6W7tVPQV0UjXoD/YPF4tsCmVeMAmkhbQeRpuaSnFBRpHSdj0YvXX9thbXXsust140m6IBeAxmWjCimzfE25sXmtG0mjJjRHeuiB2RedEfhmp09cojTGHn1m6b+xBrBFJRMQfHwCSB2dQMAMDM0JCICFeNs4fmHQSDngIUc+FXb/df+s6ROj37oZFo0KLubu5qwIQKJuau6mxuTmKqagSKRFwXLdbPuW5yOojFPvHpT/2Lrz7/G7/76rOf+YxLABiQu8DMzZSQ6hi4dB+/tP61nr719Vc+fHFEUbtZioxehCBUig1Wb+20083p5qStYffoza9NxpfGF55CZFj6F4YJetB9Re+5Bpb0/jWMsLzM+92s37n1zB0PetdT77AQ3oOQOy91Bp5ZbvrLTEZcbfuAQIA+lIWRKQASeyH+xKf/2N/5p7/9yg++87f/y//8u1/5Z1gvJgE1tVxXoQmByRmMKIbAVGVxbszMzGNdV1zHzY0rySFgPW2m7j47aNucppfW1qvNXELpPIStyXijyzhbCJOBLCgIEBEgMRRwN2ViMEcAJlZP6uZYiACcEMXLANviadZVESsH0fbW939n7ZE0vfqp4oVjQHNTY2ZDMCQHj4DuCkPgaqVSrECUzuDAn20mvTr2B1cKPAC6Y/d/17x5d3PYllGa0/bssW8OwNHASQ7mt78/6m5rPtrdzxIjx0akMEqIYyATqogDx5h6iYA7N48uXey3H+LS5eAagnvJ3veSUtv1pehs/4DrWNqSrGMEkT5rRpe6LxA6ZGKMTBUaMjJiBiNzRxdUURc3AAvmhIxIaA6mIMlB4tF8/sabL0w2Lh8+nza3rnzzuW9dfGT8xMMT2c011hqykdF66J19kau6dtMsBQhAndlHNSADA2ZQwShLQFONEKo6EqoiVDFodum9dC7JsO/n/WI/zdbWKiLlOpbOTEs3O7QiMfpobdRJurm7N7m8TXlto45gOpmsZcNWCgAIODi1i9mFSN/+xq89840//sinv8iNMvJxvdXgXoV76fCnWecOteAsbMGx+rxcDecWxb1W1XvizAcRp7o3vZ0580Oj5RD6OWF8D3iZU0rwefkyVHc7LDdMMAdCoOHEUOP0YmVJ02y6tnFrd1Y19f6i73OpwJ+8MtmI/pXfPTrC0SPPPgT7e/svvL6xTfJw01s029rY9P5wd37jcJFAXT0icVBHRgoGSESIqh61j0FBNVZexZFyw6g3dg4uP0R/5lMX12321TcX33hF1tfXn7wwWV/DtUl9dBRT0en2Nl/4+Cd/+S8+/flfgmo6oJqbA6MTosPw98zonIR4B4fPO+EP/0Ggu/3A0y5IOOvCh7Ov8ex3znEqvt379/iky83fDNP85rWXv1mN/LAnPNiPTYCSS8Gbu7O2M9dQhTq3bXuwd3GKmkKxVozcxUwghlzg5o2bi8PDzdGa5GQiknIgcsBMxiGgFqMcuVrb3ljbXIdQgLCk3rQECIqu4POUGm6mG2t9ST6bl2LupmrqrgBGSAHYyAQAnHFAhiAxdMVAiGjiBS24KkYmcmIYT8MvfO7SxvTyxx9Za6jLIkCK5lC8imDm4uDqqE7sPnRyMTDPZE1A6NMikDHyfD6TXDOPj2bp+y9ee/jRq6PKQ2zUUXxoaimioAYNRyq2f9SVfh5dAWNXVMBVkoitjeKbt3fXt+opmXV7YWu6+/rXx+tXpFrjwY38/mf3HN3P9c47/t/m7V3pJALwvh5+4JVzNsBp4XVXprrrTe+wn08PxP2MyN3k7ErlP7nekMM4lKYcl3QSOLhBBOCIBnD5sWf+p3/jfx909+/8p//+zg++Pt4MsarIAREYQ13VAYCJsfJ2sdjY3OKqoohr61vE1ZTqUqqjw/6tazepqR59+ulqsp5zQA6xqXOho92josSxkZybJhAxDF1N3cERyQmU0QCE3F0zuTpms5w6M0uRKDC7AzMhVAjajDx4O3/tdzXp5tMfF4MAyEzLVt6gKx8PwLH2vxyWu2QCnAZney/uvD/wkuNudErjuWO93w/dTdHDVX3RWVY69gU5gKml/WuNz8psj/JctJRESlU1nmKFbSehNgulHk1BEU3E2tItJPciOTSxQSAmJBNPbimXxe1bN0XbxX63Np0WS8LW9wvVQiiRo/ZdVcdQqZZccWSQZeGrO5gCiUrhwGCwRJlyCLFKtgiBpxtTqOpbt15/dDpZr+J3v/WNTzzz2NYjo9zurDVYb8TIDDMEhbU1VCA3MUMXZ3Q1M+1HMarJxrTpxI86RYfAzEaRoKnY1c19CCj3pWQtfZecpN3f7Wb0yNUtIGmaenDnltTnNkfmC2ujG/vl5u7BxcV8PNtvgk0nI+1biBWRE5MTQAkxhlTapzbX/qv/2//hf/YfPQvhAoQaYBVRXE3OSV7NaY/QOZ/E6Zd4zIF3lO+e9/Yc67UPRt6crM/3cLG7uVruecKPzHmwGvDjSThR+t/mAe444dSsHVd4H9cSLz8MiNPJWl0SG7BD01R9mZVibV82L07Q8BvfOsQJbT718Cuvd3zjxi99DJ7+0EaSaj7T2aI/3JulLmtsDgWTYelc1IwCupCXgBoD1jVOoiLbuAJ27UqH1CDGjfHkrd38+MX5H//sulXpyy+WL/1gLh/d+tTjdGGNti4/tnuQH/vULz77r/wPfPMqhmZ4YhtiGDh0RsU7BSseB8b9BP/nxxvF+eHT0pdy9ieed/DfocacPhNOBuhk1dxRd368Xb/nxzy+82pZuyPuvfY9mR11qerFI5uZiZT5vNy4tT9fZAXoyCBQLmVv77BZq5wpFQ1g6Fo6aVucL+YhAqJlgDbJWMEBRESthFgBEkRjwDgdIwenknLnrjEEACDAUZgCaM4pSz9dmzSj8Wye9vb2AZ0xmKqJuQMHAkQ1s+IAaDZIHER3JKy5qmIUF0AnxkD+1JWNjzz2UIQa8iEEJWQHHqJ05saARRUDixMaBiNgNDV1Q+iImlG13vWlABhyrP3q1Y3vfuUHr7326uNPXBHtB1mKQECIgJKlVckCk63Rmzd39mZ7j403uywihoBWCjHFysDkYHe/TKccABYt8fW093Jz6ZMQ7my48qAY5l4XucMoffvvvuOTPIAiYDjhCjz79i6s4mc56q4/44yi8y51z/MSc/nXVxvcGXP+eNKOteKhCtYQMUCYTkI2Q9p+9KmP+ux1zK1mQ4XJtK65jhYAi3lvnWysbRGEiGF9ugVWobNrfPW111965fWnPvyhp595wgvH5IFxdpRb65xi5KYZOWOKo5isAEUEQiACI3SEYnkGvnBdFO0IxFWAxDwzO2hRAlElCoXjQqGuR9BjFXGtym+89uvTKxdg9KQSEbiZ0SDJwBDIEQFWB1bD9E4Qg+/aU/gHWWj8SAnxFELkUiIf07Kto7U7r2m3A9R3870+pWpjDbT0i0LFJ+OLaD26QnHXGBiZhGXBZVFhbmcFAxlkLW2eH5kaai7dwsohli7NZwVNTNGFzCN5lBwlu3dOdT1aQwdVcc2rPVBNM6oGNLHCCKbGjGBcUQORbt/al6wByo3XX2yajc016bvX2sWYMTdTD4jMQRSgUxwRWpTsBuiIbZcIkJ0qhPVRNcsSI02IizghBoKaoTIzk6hYcWRG1oRap0U72miK+N7+bDQKa+tVd3RIBE0dwTX3HVlsQKpe8mF/6+U3NwMsSooX1ihi6ck5mKOSAXOI/eZaKF2a+O1v/dr/+2f+1K/YJAYkN0ekJc7FSoMCOMEHvJMZ7r2dnbTGuGOjPLH6limMD9w3+x7k1tucf97XjqeO/yjpfWpdy8lctdbzoUAWDBzBCTxLd2CQpMxdi1o5Wuh0fbJG1e0b+5cu1vHy5RdfWuxcP/wznx/9/KfXQPD16/naXt653WWNc2huHpZM1KkZYGQA8hotMDI6uQWycVSKVYUyHsPmWCkUDujUq4nfTJvb9Nmn1tt29tU3u6+T/sLPfXTriafrx77wsc0nJw9/stp6DAcRMAg7BFr9rpMS6dNa/ukQwLuq+PoDQefVJjy3kt9OEOLZc+6wId7X4j9jzYLjEG48uPb8IvdiiDFmKanr3fSoLfN5BypVFSODmbWLfjKp03zmoJHrrp2NK7Ki1sf5wVEFNgqsRQNj37UYBBjrqjIDx6DFTLTPYiMDkCYEEZKcAzESZE2qhmYOWLRkA4pxc/vi0d5RyYaAVaUlSymKgIFDpAgOQIjkbkruCEhYaVFErKqA7uwe0Fh6x8QsyHHpmXUicIIhwJCkUOSarUYlUyGgGGKnmZC8IAYs5r32GYisjOuY5otyNKtGtTsaGHEsyR0ZqFIG5bZueuDm1s7BpXV2qNgIEAmhlD4QTUd1N+9255Nq3EyKVT67+fpXnrzwtMMaLuE5hhnyJerkD5Nv7jBK4W526du7Zo7pxAB4v1vzORRcvNsjvr02fy9Bef8PdtdfPsjN4+qlE6l8Wj4PNcEnpoANwYEaWSDGEOvI7oCiEQOYEhuyOpm7xboKTUAIo7UN8zpQnYW/+dy3v/WNF774R77w9OOPQp9DGJU+3djfp2a9mqzHuo4cAEE9A4XAjRsiIBOyA2qPNmPbR52Bzsl7AiM0A4nkgVitAAIGR0BzYAQoABCwGQXKj16AvZe+tPZY5OlliIER1ZVWKBcr1X+laBy7b08h573TzHxA9yQ/8/9dG07nLreyXFfh+lN7y6CTAHr2bhfao4O9PWgX7tbN5zHWYIgsVlrkgly7GWEt2QIXl6J9J93cvUopi3YIEtj7LuWuQ4TD3b2GMlaoSIoIpiRKwSwgxBHTCDSZRHcFIMBBSwdQJRP37JJAOpc+sIO4iNTjZna42Ni6kCRfAknz1M5vi3RjG/e3S5/68ahp6nUnH02ltw7aXEcfjSpA6nsjGvfFcwZhEEAKMYiwmQVAw0AYGYMNQEaCjgG5QorgDhmoQWzadp56CyE7ZCLRRGSgajnnwFA3CKHukkfmspgfeYvEHiNXEZmzZVNkdKaserQR/Et//7/8+B/+szydACAhieuxJ+j07CGcxSQ4pxffoYD5Kj3xTP+AYQ2sWib5sJk9iITTY2/ie6zXeVufwenXfrfjP/G03C9POhn4UIgDAA5GBlBR4qBJvSe7Pe8EQ4mEENvD/SefWQeefvM7ebHo/ujnNn/+41Uq5Qev9N9+U24dmWroiu2V0gNJFnWoG1J0IMhMnbsYIkAwGAO50BrXbWcqfR1LFbEspFqboNvhzuHDFyZ/9DNbt9ON223a76rLn/zT5coXty9fNYgIhO629ICtIN7g1N+lSXm+w+Pvq4l6H3R6ca7Ar5ccBmcH6/yInNfD7k7vKYJ+t8sc7w0+uCpvv/7qPKdmNF0s5lVNJSUMXMzFnANV0dxLt5irTKVkLQCogqWOnFMCJ1HvkwJGwhADW05UsWanEMqQGc3qzA5qqotuXtfZEcHYKSi4FgVzcAMzWCoQQ4tEraoKQUHUFSjYUCHmQIGigyO6gSIwgjNTYAJCIgZwYkIiIDJic0cORMRI7lTERUXRJjG6ktEA1mUqjkMzI1Nwh6HxtQdwcg5ZePvq5VdfaObzjGBMYOaAmIsaMQCaKIEwQdM089S+tZs+/ARwUELKObmDa3Gum3p81OZbLV1cq6k7Gs/TmOvFwfXR5TVYKVDD3r6KBjxgX8cd0dTzn56n+7n9A0oBWoo6HGKMd0TQ/CybwX0rmO/hkd7RKXXytOfOPy2Xl648dFBzxJK6ZjTuLatL3dSOJAgBjInUoalHYr61vl5hrUZJ8LnvvfC7X/32H/mFn3/y6iXvSqzD7YP9RQ9xvD7a3mBqkKmAATqHKhVDREIK7FA68zmUI5IZyQy1A+wIChKAASIwVQBEjGbiJjGAOwy1vgZoPXXeYjUbY1m8gRee/TeKMrAzkOOpje30KJx297z3gf+Afnjkp6ftrIQCB3PrJe+jtWDlaDZ389F6jOCBjSRrbjFEE+EoIZZijmwp911u+3ZhQV079URY3N0NJNniSPdvzbYajzVZCMCOmsQKkGf0UI0ojNxrteyu4IjsNORhmlnJJn2ABJpYMmrp+9R3fU7igUdXthHp4cevSspp5/D2Gzfbo3Z+kNBHezMxnolZ6lLJFigAe7FUMpggAjESITA7ohM6sLOABiTAgAGBkZyQkIxAGJ2DI2ZwUinivujLvC0EzFTQulCxmatILhhrn240GeP13cPXr+9UUMYjXJ+ujzYaz2pi4LhY5NCwlWwl712f7RzZWy9++/GrjwIPZju5GQyuqjvp7bjpjNPxGDn3lPJxJlB5/9d9N/Rggwl3v9ZxeOQB3ulHRMfNhYd0PAM3cFbCzmA6f2UyHYnH3EufLcUQq1F7tPvJZyb1+sZvfX13N1W/+DH+/KV2LPr9V+Xrr5SdLrQWWu1nRY8yikEVgAlEVNQKkpmJuRkOyNV1QI5xSmWjqheTuN7QWilrFWsHoXEourt3+KEnp//SJzZ/7cs3vv/czT/+F5/auPKUGEQCNLAh1/98RcTwg05VRP84wjM/KXSnzx5WdvYpM/u0Eet3fPFedM4Ofg9G+yplZem4QzRwVCRznd+6oUAHh3uTpsm5DFuwiKlZIGACJ8igC03j1JpkcA+hzoGQUNw7tVkRDdirmCuAiiTvQ2jQwCE4EAMzO0oumZ1JkdkNBcnR3dXE0MTNzcDMTd3MYWgkFiAiOoKZGykiIWKMbIOn1Xhoz73SaxzQmJmBkMgxAHBAJ8gBAYkBayIHiFUd6hol95EJvDgwYFAwRnZzdHZ1QAFAdg6ABDCZRKBq0WFXXIsDIxG6gxv4sjZZjWA8nogtXtuZC05cOvKC4K6AyGoeiNho0elagiaIZAE5SEev1xc/wqt2YHD8/1QLnwdI99Ly/ZxCe7xi3/EpHkwK0PGjnN/l78o2px76DhfYD5HOyNrjRmGnE/UGS24ZFyBcBjW0VyiyiFX0UntTYghAaOhJcsVc1xW4j0bjSFXAIIVeePnVr37tOx/9yMeeePiy5QRxdHN3/6BU0/WHNi9eUYqGOBTxEyEYAbiBkhe0AnIo+QBlht6HYO7Z3HxI3nEMEEwDMLiCAQIEUQYjcHfJhklEsMLxuGEQ0jcO33xu9MjPe+Bl6jDCasNf/eoVvPM7+QB/emXD/dPxUj6JKN1p+b63y56KS8Hx/2MBBWadlTanbn40K6VoVg4tmiIChViSgY4EcpAkKQLFTGU232/bg9QdQDV27cU6047NpA+p72ZH7exwURUcCQMHR0FPDuIRQuSSWoqToIKm5gqGYObgbuomKgU1uSYvC8tdSW3ueyl5uj6ZdSKAxZGpglhh3VWTOmfRWbp5Y58YQ11zhSYW2ENkjdRnBQAKII5AhAi5mIAg+jggA6gZug7QXhSHfjOAbIhACAjKhFK6bLnPqZ13tVchJLeMBRFYck7ZFwtZzGymOFu0FWiF6dLFZn1tXt+ipgE0z0lCHHU59fPeqNrbny+6+Lu/8U+vfuoXmo11pwjAgEDneOTO3e3cVuer7ej0/J6JEwwr6JTG8cD5cIBw+6EGrVfbzO9HwlWLJwcAMDAIxSHJYmIH/ff+oUpbTzZuv3Q9TCZdcWnbxzfh8Ye3vvyNW3vSPPXk+JMP7V8Z45u30rdekYN+VDz3arudzQwKOLCLiykmtWwupsfiiQAMoFWQXhkgQru+qNZH4cK4ujLhsUBJFskMcONw/tHHtg52bs1vXn/jpe9uffqLDEaKQIintP8BxX/4HctUf8CzS+2nmM5G5053YT9tIcHdNK0zV3jgz2UGCIg4IIIgOKArckA52rvZ9z02VZZMHBysiLUpdTkbEIBzYAxgqqVPYIYESQULUlMlx1nRru9MFMgBVFVN1AG8EDmbKhIBoSMX0ZwxkDIruCuTmrspaAZTUFInM1QVEXdFcCcmBmBHosF5w4RQVTT0HjV1cxuiU0jAHAhhgIwgJHRANEQLgQkCDL+FQC0o1EmVw4hDUENXC+yIaO6mBhgNIKswM7K4QgW4PvKSpOux5AQxUFWR4dA6052YnN3VoK4rCOHNvb5THIG7gphIMXF0ImZ0sKNF3u5Rqh6UpV3kw+uS+jhqhpVgq27QiKcqwR4Q3csKvSPT4HS06T4jAA94zd7hZX8bDcjPnP7O9ID563S/29Xb4ZGWh9HA3Ai19OnwNuZCGMaTSelKQFLVEJCQELyqmypU7uKA+/vtd55/6bGrFz/8yBakBY23rh8uDhJcePjRON4o2LhaYHJxZmYPZs5kAMllpjZDOQzeVUFMspm4mRO7sxgABTMmZJE+YnDHyCEXjyE6OXAmTaXrat5o94VGNKr7vPONjaufyLZBhGSrzf84J+EknPiOjomfav/QfdJxArefhNrfG51RC1fdOGEVXTt2JA3pW4AuXdda32rXyTxFxNrV+l4oqC64AQzEoXIpwBWSGSQuJrPWFgfa9wTi1oPMtJikqF0PBrnX3sWzUhUcBVEQFZSljipFS0+aWGsyGPD/3QRc3QRNQZLkhaS59a1JIfMIaF1fIWNKo+kaGpZ50i7FBrcujYi072V+aJgoEiO6aEYuToRuDIMSA4DAFRJRMXRAQhqxi7qaOQAwUINq7m4EQODBMbo3AJgzlEwAklJisVBC9NTmIV69mCtDhQCL1g1HB3tpHKWiDAnXprGDAqh1E7quL4qp9azZABbdrN9/+ejat6vqwzS5Ik6ByE6a3/lJd7DzHpFTB9Hvwlv3dJXfsZ8+SI78gLXvSctgMDioFw5HCluzr934yt87ePn5uPPijZ19Ubu4FW52nS5sivDxD11+7dr+m4f91SevfDjsfHLNUuHnrqW3usYo9NYeih6JF6BRzWaYRGdZyjKNYGUkrqaaVuhSAlBS3ktld+56oVlj9VEZV9ApALaT9bWPP/voD17aef4b//xDv/TnxpOJR4rcrLR8XMq3E2V2aOkFP+1Tf4fv9L7pzqy2t2HGexy/H/Ydkj8J2Qxs2FSQCbTvFnh0resWWYGygkrdqJuWVFK3yH1xq3MvcVQ1ELggdhAiuhUkQzSUJEaUx9YWFh5gZ1VN1BgI2B3NFQCViYBRjZI4Fw0iiGYKauCuUgoakKO6FfUsqgquNiCqIAAoIiEHZCYmqJtlazk1VCM3AlsmSRITE4dARLRCZWF38hjUxQcjOUE3K8T28JWNTiwGJ1FCBiYQpxidojs6kAGbFHeLjE0wNcmi2OdYjxwHt5kDG7i7AZiEwBOwMfSqJjlRpb7Mu0V0NFVUJyupo9TnkhcybrDh+e2daZrrqGEYyrIGD+sKFf9Bw4LeS50+r2m/qwjAj0ixu0cO0xld5+3pgT/lKplu1XH1xKz34xABAFQOdnTEIIHJAN0tUkhFsGYOyFUIVeXIqiC5fPu7L4yqtSceudAEHI8nOwcHt1u6+PCT041NwDolqQK6FiICBBN1dSYzm0E5AJ/VQdAzu6GrmQA4AqkpEQOAWlZCJkQk05yKRh4RMQVSzG7a1O551tTbxR1cLjVt+8aXRk/+ksYJIbgbIA2lbCf71io08E6r9adbTtwP4RnJDQDv1QxYRWWWHRt82RTq+PrLJetg4KCaupKKp5z7tpQMCFpqpArNyBVVHFIVGdEIsvTiXkixdEXmM+UUA7m1aIkU3AI5oHFupdMeaw+mgMbBHdUIvKibgpupgJmbo6K7ABq4oAuYmGTpO0kdmRNAKcXFj45abpq1bZzd3pMkab7oZzPzVIcQIxPh5vZ0Ol0vXen7PTFDNzPjAAjYp8LIigaOHIiBh7rbGlHIdaiSZnIGD6RmKgaIjsABOKCKoiNhKEWLAagVESkDuLsiBlBmoj4VrmLFYW1SuYqZgVuMwd3BrApYVwH6jI6BWXvfeeF73/7Vv1tduPz0z/7xqx/7rAMjVcMM+QkyxPnQ2plgzl2yr8+/hVN7PJz5+z737lNuqiXq+53Ivx8QwGpAFCAcdbAdnv+9//TfKbdeaGWjXeRm80I9vlm1DCkcQf+xRy8pNd9/Yz557DG1/mOXw+Xt9V//Qfv8zghClUve7WwvWSteNTWFqmRpkyATLYtoDOEYom4oOEZE4AGW3yEZJqV0Iz28USuEbZQ1oht7NH5979I2feip7SbePNh5ZfT0xwe/KeGqCgBWPv+lFfCB9g/u93DTrgyl+0m6uDu3HB89Z134iZvg/gg9p0IU3HoOIIuWY4e3X3/5K/98dnizFI0hOFi/6IAwMAUmFVADDhjQgrlnxRE7GAVHcndBlSpEJnXEwJEZzU1ErA4AriqMBEyozsEQozlntUrNXYb0CHV3BVFzA3A3gywq4u7ogA4GTg6ISMxMjMwcIoWKhmSEAGDmamBqamDi7rZUuMmRiBwM0Yb2Nz6YE4zgVsCMkxKLgmlgFBJwJOCAdDTv9/cXaxcujeqQ2w5ZWdRSWt+YiFvX9dVkYignHnJ3dTBQL9IwkXWLLIvcbVbFAN0YyFXUAMUVuPStzhfd1joqhkVCgrJ/ey9uXmQtTkEdGcCdiHAVVn0A5OeWHJxdmadfv9s7PvgIwGm6Q2zd8fo0/RhlzjK8ezK06Cs0DxzWR+mbgCbetfMqxipWKSVDM2OKkUOl4E7GVXPtjdtH837rwoXJKNaT6qj0t/YPti4/uT1Z8wxAWqEzuWshYhMHd4pQUtfNd0cjrSISmqin3DMAgIEoA5EbugZWBUUKgWsAy1Kaag0LKuaSJURJ3o2qOpot+p3J2kO5U6j2Dw9/c7L9SFn/uMaK4ZT3eOVOftsgzQf07mhoOOrvezhPMYuvhDaCrQ774BlU0Awo2s2bEDKG9qCkoxIjGszHkzVuSiBCJBFRyYGcQzDlUsrhUVo76jf2DsOoyWTq2UvHGNywL/lotpi3iwpKXQUwR9RobIAgYOI4RJfVtBRzQEMHIXIgBRAwAVVULEnBFEAACQOub24cHswP3rxRUjExlQypI3JErSJduTKdHSUti15yhkQ1MVWs4NkoYjR3JWLWZftfL+5gqkDMToCOqORApmps4EbMtGpe52oAGJijmIqTi6kKGCBQKWBOkt0NOFIkx9JtTjaYuWloutY4ChNRBGIgCgxYSrx+dJh6mO3uv/g7v/nwk1e+c/M1W/zZRz//S0oVr1pDLjtsn9vV7rCzl+5evPMkwHOKwt32x/e9Z56RKXhy8AOCY6No4GlwNvNRaF/6z/6Dw2/9zjN/6LPffCndKpF0sh4mz8/2xZo1hK2rG6/evvlWKk2nF+3g8bXqey/ffP7NccF66tKK3E6ehdemIyBe9F2bpXMIyG6qZoyIBOADzhAOyM00uGgQwT0GKKILwGuHfZdDb/pUqAjh5s7hxe0t0Pls56W93Zcfe/bzg652XJW3dP8fJ92eMgV+aglPO//uQn7c4+l+6Q51/w5D4ezh+7kSAIIz13jr9R/gza/L7PqNF189uLmzu7t7/eatm4c9R4qOpk4EIZIVAHMHEFFGR6JiyagpJIDsaACKWhpiENWSnJwqYoIiqg5qZqRWlJ3YA4BjAfSQSlaBiMoqyMgQXFFMzUhNBczViwqAITISmjgSECMDObJDiFzFiDyICXdwJCQmFCRUM3QAA3QDFYOAw+fgIKZGgO7MhM2YJ9PxbJHUm+LgUsyyD1wCRACHi/LWrcNxz1cfvgAuaX4Y0RzdI5Ri/SKNp0mhJyBAXFYRozsKIjiC22Leznf3bz02Hqu6GguAsrsTRaMqAZhKMx5Btzis6+20uLbNLRYo0lqoqzhCMPfjqqH3FFq6P7rD3+9nV9n9e3EeZA3AXQnPvb6rt+s9D9LdQujvgo4zYGClWB0fBBgqGrzkmbIxUBBkJHclRhGtQmAiA6vHdZdTntv3v//C2vpFIt7auABg13f3L1y8PJlulpTrkaacObAVQ7CcelQvuQUv7WwftN+cbCJKKWJWEBDclr5fNDRHB9WsaGgEZAyGEEzZycTapqm0wPr0wmx+uw6xbprUzWO1rg6bEzu69Xv12rOGwECD0xgAVvVNS2fQB0L/AdDgUfN3LzbOXWjZpu3kumjoLhBQABTA+m6Ru4W0bTWJoDPGFAOEgLOUUidhvK7YAwSmEFjMnBkYFTTn1vpU5vN2Me/aw/3QV9W4Ei91cNd8dJQWi1nO0HVFK9WCBkZg6uhkkl1TAXVQNykFe3WIsSICcEczN3MproURafDxFB8CWUnA1XLbuQEzKDkyOno1aswIQMy8W5hDISQAV82IjIhqzkSiDiYBK0cspjTUvZupO1PgQIwgboRezCIyubkqWI0wZIgquCOSiDuBlsGN5YSVKPRdnz2YIld49er21lYTKp9Omip6qCogMxNwMZemAa64riq17rXX9y8/dGm+84bO57/+//rP/szahfEzn8NYLxMrYIUqdqZJ/N047a7+/uO/73ODe8eFdvJ62A9WyDD3Ov8PfmuoY1r6gdSNHEA9QUiv/ubN3/n/blzc3un8dupyr/PdtiKmEMusffSRrTfe3Hvz+my0vmGdfuQhffxC+OpetdP2481aDrougxMwac3YZjlseyKoYxB3N6hiBDU3BxiSPRzMApEBASgO6UDuFXE27RivLTRWcb2CKSyMYWffHt7C9Wjl4FUAIB56f63awK8cP/5BiOeY/CSseopOOoW+4zZ+Wvc6OXSXG51W2XyYFHhbqYurB1QwM3vtm/+k+95/693B7bcWB7vzArTftgddfzGQK4qVGIEoxICxrkIESujmAOZg5kUlIdVZxFTZDdzBqG01FzUvKkHKsrgFSwFC5ECmiDRgoHR9xwgVGatVZLZMEII+F0KS4mqiZEQYmN2NYyDipZGJhIAcQmAMwRzAwExsQE4mR0DSko+TEJgRCQk5hGhGMaAU8QAq2QDQsqY8n7Gje5QmuqZc17UW7fu0trb97Me39/a61M2qWnKfVS1lSCLslqVXKaZJHEOsVGAoRFYQIDCkVLp5zgfzvpRGzRHDYJabGZgreiFty8KpGtUjc3OQo4MbLVw72ns9rm88/tjTk6YZDAtA/JEx2flVepLc/U7f/aEbAO9ED2iM3vuWNog7dDhWiJeoe0sp7FC6VgS0T4EDAJppSikEAhcXXd9egyJ1qK6/dTOlgrp46umnA1e39m8ZRaDGHKsK5ovbo/Gaq5dcADAQaD+vQpnv3yj56MNPPSU5AaKRgROam2VEZwquxhQcbFis7ISqboXEY6XFreFxEEMEK2U62jBTAwjaa+vYjEcRFre+1Tx6HesnAR1P2zinnEH3gSz+gdR4B1qqfQ8soHJqwAcMP5J295W93Wu5dCGiKyzm7XR7fWy7KR903Z7HUq/BlcsPjybMZExZ8yFgT7GR3jmyG9bMyROHkLNImpEz0JjJ0FWSTeJGaVPOYO4OnnPGwgjuQUONzkA95z5x7CJXTIqIUAQDuhZAcc3W95I7KGJZrBQ3A7dB2tWT2lUdUU3NCasKCbNi3/WQUd0QvQqgxEUFHNCckNCxlAxIBspUTAEA3IdaMmQEHADgAAOCqlSMIhKYyRSt9PMekdE5p1RDGGAiHNGBxQxcRBwDSJIksF7H0SSE4IwFAUspqhqrQAxaxNxKLtW4WVsPFMHr9TcPFgeHeW1ajmTvS//w7/2pv/4pschLF+4dAduVUn/fPHSn4/+HwH94fq2+/Sbw07UBuCO4Aw/F5sya062v/v+otj1ff/F7Ry9cm10ZN5cfvjj/7o2FQKyqejp94/Xd3qEcHV7d8M8+Mb6+P/vewSSzjpl74oOSwHBUT9qUFiKAgIBq5oDEiISggIBrlV3dqNYDUPEi9MK+7EFwcARhAiYAJzdjpFuHecL06DqB6g/eKKCTi5rkG9/6zC9LmNa+LB84l5By2nn400z3iADgqSy+e331Dg5fHoJzRvKx0n+SbXRfg77KUnFE3X/9xdmrXys3X9yf9zf3eN7ZYlFe3W93U5k2oyqUqkJmZEJwr2sY1YwzG9JikLzv27oCLD03NQEhRDM0RQVwKGZAwIGtSM8lMDMhSU7OIXBA5L7vXTIgSG/qUjw7sxsiURLRUlSdiWPdxBBoGWcY6s8hsKuSmgKqAjBGc0TAEJeRUgrg5kDk5u4K4CoKFQViACTiPpVIrEUZKDKh20MXxtf29/eP+u3NerQ9DRw0Q2AWU0aZz3dGTNN6pE48nqLgG29cz/OuqcLRvK/Xeyau67pPXayrIeMOSEtK5g0HDHV1ME+GpGjq7m7kpjLYzcR15RyqsOZFvBA0o3m+XZ7/2uLWTvPQxW9df/MjP/Nz0+2tgESr+PM711eem/R3RctFeAeHn8sRutdlf5wGwDtk0d33ReCdxNbb0BnJfPoV+nHrYC1dLlIBtm2PHECMAGMMqharuqrGqo5Q3dy5XUQvXRipdEphISlOLsVm4u5919Wxzu0e8MjRg0fpepD54mj32qs/+JlPfhRkVtcjByVjAAJ0QDZLADpkcaiquTGTWkEDkcIUUlkw1+RUvFfvAofoFTJBMXBkJ8KgmjbrbLefw/HDxmG49Gr0j2fgfoBrf7pkxVAmcf+86ytpcraD8nsjvPONATGZt7s3XjrcfTME9liNx6NqPYqknLu+T4eHCxerQ0z9/NbO7sXtjVhxbGqRXLwjDtmEiN1C3xtBTG1qD/ZzRX27UJLJhOtqAmaEFOtaVEtRYzD3QEFBOYAhMbEW1ZIrcUM1hBAYzZmREA0gqVoRywXMEYEZ1Za+iKEh3ZAlysQIHOsYmJG415YAmYAIxAAJzd3MHAgpjkZ1ypkDmqMhDFgmg+FuBoQw4O+YOxEgopGjaSAyUQqec58SuSsCwSpBxwAVwMwGDE8KqOZu3qd+Ly3WprGpxkSq4F50XDVcszmgkWuOgZihd58X3D2YNXuZ6vUXvvcDKRnrCQwPOMSBT3dXfW9xtmMj/QHy3104/T6X60/XJgCDlekG7p14OPhO+c5vXLj8yAuvyPUj2jkMY6SnHqqaGpXJiH/w6nWwaASIYR0Wl6aj771ZXt2Vhx4al3mPMaCltcjJvXPviiKyD3WGasyE5oFwc0xPb9UfudRciXUDcunK9FoX/5tvvvm16+0KA1IDDsFca43fWoRqRGMQx8nrs3pn9+bj9H3SuXis8UT/hNN4n8fpnx/QXei45urECDg/WneNHJw6dNfI3bvQdPBENHO3s3f9Oy9OTN66Nr+2k9YubRfWm4f9LBtiQyjuEGKFAVA1VjRqQowWApp7KQoUTQHBqCgxExA5qkHJxVSQGKAY6RBqGKCiiMBMZenFRlI0k+QCJoTkDGAOxKWIqiEgEC193ujgwCEMdfM+tM6gZdIPABIS4rI6CgaH5DGGtBM4MhECmoq5ACLFqK7gCI5uTkRJ8vokkiO79b0j2mgyFlACtJxG0R1FZQFeoUPKeXt7bW1USQHDKhNViOrCRGAWiNWH1I+YhEJTjSakRk7BJRMRU5RSEFyKRowjRgIEa8h6dBfP3F2Phy99ZGva2d7OjXxwYXO8/fMDOsdxGP/+t/77XBx3LKkzCxFP/t8Pi//YDAA89/fH9Bi+mqQVLQN0y8gAgklaiFjDaIBWVHNp6qjFsKrq0VS9inX91vWb+4elGk+Q9fLVrWuvvhrrUTNZQw4qxd3VlRFykhAZvCVJeX74/CvfvnJx2jRBUgIYIDqNXFALQSZSVRUMgAzggQKSM6KZBWZwDJFdzbGAW0UjdenzoqlHTFFECYzcUufjQLuvfP3K1V8y3qSTBIXVABy/+KkT7g+SThy17w+o8VhVPJ4lBwB0U+raPvX7nnclk+NIDmbVeMxrF9nXGtoMOK6jICTNOh6tp6RiaqCBi8PY2JlMSVwFCkonFsQlK6GSCkooTEQhbpqbFmOIns3IkBHZkcBUQyAEGvZqNWVXUxcHEw8RDcWk5JxK34OaqQ6d5whQB4mK7gYIwCFQIEIKdcVMGDi3nXkBDIiICIhIDoDBtTLjUswAidnNA2EpMuSzkcPQ0H1AXiAEQAYEGjrSYABHLZZyFiE3C4zoBgBsCABiLgWQTBwcqBRd9GXeaqg0qYpwU4Ghm0FJxAgOqq45lT4FqqqD/V6Z0jytj+M44t68R65cFQgdaJB+S1fCscn9fhbWA6S7wAz53cIBHxAgGCgIVBSOjr7xd8rO9bfoibfeOvrB7cPbXXhowiWnrcm4wjYhShECRMDotIn5yqMX/uvfnfcWJlFvtN2eeawjQDwUK2bE6AYGYKKBA6AbQMN0pYmXYqn6DsCoxvlsb2M0+uVnJ13fPn+A6sFBkUmKc0QTnyfYn5cwDrfmvrfQui/NxT2yOeIFMzvV23eVdOLHxSkf7Ph3p1Ne1HcYohOewdPH4M4vng013B+nLTcNBZ73i97K4jDNtKFJfdTa3sFib95iqANYYA11DBEY1N2qwEQQCJs6elEyZAhanAYkHc6BIcbAiqYIwIhEgw6uDu5qigJODGzmbmCE7FZMSjI11UgM5A4WA5ZckIhpaOe1VCGQkGjpSEUDJ6cBv3SAyUE8hkpzHFKAgJ2dAI0Gs4sIB/gLHQLBS1sMAckAmLFy3ZoEVSCukIN5cDVyIjMgNTIDVhN19hAwCkJxA4OSS8+CXVGEEGODyOaAAQnIio8DV7JgayIF0ULA4BiAS84EFRiEXEKknDzGKAJVzd6/WnfXPDftfH5l6+q63Vy2IVu6fh5cGcCpnLG7O3Du+aW3ox8dCtBPJq3k3nk7f9C9HBxKnwBYDQg4S2rbjrSZjmNdNQMSf2yqlCEXvrq9vj4dg8ui37+0tVFV0Ry0CLIKGCMwV6hqqWCRG9deevH5737u0//64eHtrc2Lauro5oUkkSak3kxiGDlj1tSExs0QnTGAC3MRKQgMwdQzGFCoVMXNJGtgQgBHNV2YUdeL99etvSFxk9kRcJmYjCfRyp/qRXCOVlz77odkCKXcaZXf97dPxcRO5f84AhCC9p10C2mPFm3H2EziuPSNdXD54tqoHoPA/q1DlnS4uxivN+MpTtYjmJsiRRtPK3Qx99SZlNL3KXDo2q5CIo71uJ5OGzJS167rclY1cDMpMqw4HkqkwJwcEcx8aCGEACbZyd3dNElqJSVTRR1yD9Dclo0snJER0W0oagSMVRWq6AAxRnAydyREGJB1AQg8IzrNZvODwzKdNpNpDZaKqBOQMyEtEeQGXdtgqfoDkhMBg0MpSqSlSC4sCsTkLjR4dYnBjNlMURVEkGLISl0rG4FNsO8UDSC6gbkTA7hLSVKMDaqi6sCLrgscexVN7TZQ1/fjarQEaDpZSg+CsR4wc56NFq+OfOADOKahYNZXhdwLAXr9S/Pv/MMwokWJr+3uXzuQ3Zl8eCtMp2PUPVEr5ADgZoaMiOs1vv7a7URVBj86OAKEeS8jHiORqBU1dyAmNycGInBEMw8Bx0GjSRHvoJknl1TGHejs8I9+6srhcwdv7WcgG+BrTB0ABWRvpiP3jZHO5uXqxqQA9GIRgABppfUP3ll8r4GoP7B0d0/+Wbo3E7/jV0++f2IDrBTad7z6igz91TdvdQeL2xKPjsqs04Ou3U9V40REESQEcPOiWUVLGdCTLWJVIQYASSWYGjC6a851E4gcKEKokAIFQsYljjMw2GAq6gCtIG4AWjSX3AdCcIfg5Kzqprmo1FRzCCEwDR7+paf+2LV67Ep1PDYAlqPgAMvEKGZ0YwBzG5CvAIYWw+CI5o6MBMtaTXY3JHXwyJWAqnoRqaJHt1IcwgBK5Oag4E5oqBaUgLjSKlpkVzGkoTjNELAkBSaAOrddns9Bxl4KAyIwYjDpEdAM3dHNTGXeHsY1njaTUtpGFnT0+ls7pTCOwGCxo1YiHTvWHxyr4XKtHC+aOz46f7/7ufePvQbgx0+nlC10OFGJ3YHAAVRK6yjo2nb9vOukyyOKXI88kBOpYztfvPbSy089+lg/X1x8bHNxdHvUVE2MCIiOjGiiju5oHBBKT1Zms6PvfvsHl9YvSUohuAk6oJOQKWpCyuwSCcASuTFGFwE3dBTIjuAiwJilCxyGMJpZQVM0MCzFSqCKOJZ2HpupV7Ad8uK13xr9zEecaZX+vzSyP6DzNAiF9yArj12r76oU4PSpuLrMicmPCGaAGXlRuvbWmzfn0ldV0FAhV7DRPfn4MwfeLxbzg90DaTtLwJGtCGJkq6drDVXUtwt0QULQSotIATVXlVI8RgocNEtKuS00P5oVs1REGnO0GCsKBGTA5ABujkRMhOCmMqjdaG5aVJNpGdzfbj5UBh+HsQeYBQAg4lyKA3OoUC3nrJpTTkTkjshIQCCqxcQFoQ4UY1BAQmcEVhfCQBgQAEABhvDxCu3Eh5DAMANUxAKDG4sFRSkKgM4BwFGMVBkd+14UgjpVTVU3FWBSN1OSHJQMwJTEUZm49DlSXYrnDKkFKTrdmjYEh3uLarQ2bpqmCkgIiHfL+8TjKf2JoZ96FJh3oKGOzowCYLr1639rsfP6zUX9rTcPX905OsL6SHCewEjX1yIDlCQxoCSF0ciTT0bVGzulQA1gbVGqKjso03Ft2jMFNCSiAeiTncApIBVzVc/ZSh1apdxlbBqF6e3dvC5hNLXLVXULiiKBk6MD2NCDoxDePFLlwzVqNsYhjGw+39u69NRqIR57tE85uz4gAIC7lgCcyguGM/9Pv3wHzsHVP1wpuWeOnpYu7xhkkFFo2h7fuNW9sSizrmSDRdFMAZXNKlORTM5Bi6iVlG0JjmBWV2wmqiiBxKVyBAoQQ1IBBOMRcAyxAowqgEBugMsI0TJkZOqiKkVM3BgIQdUNTMWKigF4RCJGWhqXg20zpIOusHyG/oy+igsMNVIGAyD/yhhyGmBpV+OCfgzSikvgcgZAB0Ia7GV3AEJXSakoCGlEoADC4OigBpldghN7jjU2k/HW2lqDVRAi5aLAFQIAIUTiTpIJH+zNUufjZpxScmdwVXQg7/oWuOqLAqGUDIghRrdUV2vdjd1b391py/rmle3dnfn8+y8981n1ein7Ti+g01n674r/3v7klXF/9wXpZ1fs+UuFu57600en43h27BsfVphIT4SaJMYG+lyKciRg4DoaBeb4xssvLtr5uJ5tb24HDPvt3traeh0iEIs5urEP7lLHkkyy9PnGtVs7N/eefOzjslisX9hWSRRqVHKxIRKGiAolUN3OF814LYvGMDJAMRTN6B4qCMFcAQgQ2VRCiGZCDkBadMHYxFgxkgeqgbx7w7qFxymgATDCXTMBfqrp9HC8t6QNP7Xhn3TdvDfdlW/vIqIRNafnn/vO69/6fu2dmvS9pChA7fpkWhYHYJANY7O+ub5ZR0ZUkXY0qogQAbRkNXURYnJDFVdDcVZ1FvMimvpeVQRTrgHQgIqaDXEHRKKgltlJ1c0BBpxnVYfiBohoqABCbkjoRghUvCyxS5cJPQRDj3dTRCQiJAohAEDOKfVdKYUISlEAJEIKjGIIZGaT6Zirkbm5C6BHjgqmooCk5ma+rLkFBEMDxcAA4GhApKqoABAdgrtm1RjAzVRN3HMRN1fEnL3PlpIwcUeeCtVVzIUDKSN4IHV0McCoQOahCABRqGh9c137PowkjMaKEYlXNg/C0GkJTmcBvS3Azo+DzgcCPqA7SaFTXKPbN1/9Co0vPPfW4fN7ua3i3qEe9HQoYZ6IUJoKWEjUAwMxT7hc3qoPsxSL4Lk13JqEGmEaxQNYr0TkaKZKxIAAboTBXHqB3d4j+vaYp4hS+j7EIp5boxsJHCrCbgCnQ0NAoqF+gLNoVU0ur8eNkUyC6ewmwbEXdqAh2fkDn88ZutsOjPfUp84aB6e9Nnc/He98iwD32QXgRF90iJNNr6bzzo66rp6M28M5gINkcZ7N0jopQvJAPhTY2gBk7u5D0qaEGNwFkYHMAQAssBuISc8ogBUCLZu5mxEtE5ZUEUDdwERNl0qRqhkhgqmaG1IIy+AGEjjCkABHK9G39Pk7oC9Ds+4EiEPWD7qbwTAg6AgwpBYNnhJHNLPjlmDu4O4DMujwNcQhVGAUKLgzu4kZBiQCUHQzSIQUiGvAUd00dR1rrpiQKDKQA5MPDEjoDNC1HXGYjONkUrmLqhqzGuSiDiAluQNyBYFj1QRwlRQkTqrxb72ymOOYDq8/dmH6+MUUTOl4to9jPgPCmp9M/H22XHnHFCI/9/Z+bVQAGAyA4Ts/3fvCaVG4ktJL25SG0sOS9K3r+29ev/7I5a0+p9Csc0CObtLN9vfRiIkpsAJK9o31NYDKzHNJIJlQmR3BIRVwOpj5737rZZ7W060KpAdrFczNDAxJyV0AGaMWVKjX1i8cHszHF9YXPVTVqAj3/WwcgFFrEkcTqYgrZgRQQBQ1MAs1AqijqSOFzV4xdbujfNthzWG5MPFUjfpP9+wv6fQgvLdA+dub4/d567Mooss8SRHdublzcHRQlflRm6eT2KZZ6tqf295ac28V2ll57dVbTz95WXIXIqQ+iZWNtYqZi3buWoXAoe5TF8K4TY7Zur53N1WJ7AUy0kgsgzk6ibKaqaMoRmAAMiA3KVlUzdRchYlFHdDUilkGLIRuauDuYETBncyNmJwG8YDmiIgxVsdxNlV1A2KWIqUUUUcmRiBUE1Ej02GRioiIOmA9ZFoMnboAAFZ91x1cXdHMUYnY0Ytmg2AezaN6DzTk8ZsBmBZCSAU8VBigJFl0qU153WGNQ1MRI5oWLCkE4QoAoIqNiCGGpCpgsQlE3GWoxvX+In3q8sMCUBMMUZFh/z9VEQ4/kUz2QRDgPJ20yx00tRShfO8fr+HB8/OLe930oNX9BAetZdMiOc92a+3HbCyIAkZAjo80TPPuiNYCB5ZWPCbFWMWjXkYViriaEQ0p1wIc1c3BlCAj3MxqZhQiBgGRtisQgsXx/qzdORIDdEP0wYxGAgcKrBabuD0dPbSuk0AVRyodgRKyDW7UpR6yKmv9gN6R7sGsdz38rkbUT7SL+7o/Ydi88liYXDL8QVXTIkmXjANUAJL6ecuzINZpYFibVoQUDMLQOM48MDkUdXQAwhoEDDn1xoGJ2DOagmdTUaeQijITAIBbrNjUANEN1D0XIQB1N3NQJAQzQ8KKmIiIVysRiZBhGSheJe4vh4cAHFBX3pABmXYo4MKlZkyryACgqiEzmpq7qjIzIVgRIja3UoQjm2pgMvWIFMDFhxYI4DoExwxQgYE9xDCOselSijHkJKOaRRxAwUFMQohMcT4/qkbBoAfM6qGq4qxfiLlmdCyIXrIWJ7GQNGQhBx/lviy6GdSvL3o051g2juZWklVOBCftVod8AF8qWndmXr5LuofT8M5Pz4ucu94rHH/w0wXxfBc61SJr6bwEcyNiKe2oqg9Sd2O3u3Hj6PHHrpp75IDABJWB79y4iRhjYCfKoEJQNROwYJZMJSAyuVgmBM3zUE1vtf0rN/cvrxsRMFvJPXFwACZ2EAcBkq7LDa4dHJbbvpMXsh7q8dajaxceXuQg8dD0Zq8HllJENDMHASTDgmhODuRMwR3BpOu7aryxSLgRzPa+DdtPrPrKHAc5PqC70HtOlD3Z3E8rV+e49o4Dd/ME4DJHEgHdmULA+M2vfcuP9jQ0s9lhJCnSfeTZjyMhQtzd6xalun2gRzduTyccom5shZqAACmSmYJInzLheNa2vRMrdkkiAaHNDxcEigHaQlLEIPYCWbBPiiGKKkMgpD61MYWSC8dc6WjAxLGhz7pnRHW3IdUTEAYULSJGRAdydAMnJHVHRCml71LO2UxT6rUkUGByQ3BHFXMzYiSi7IbgYIUY2MHQcPAGAZm5O4ABIKgpEyOAgzl58RIGVQ7RhxoFJAMs6gBgCuagCkgIjlJExLNiHWIqWcAdoIgpGBEUg8rBDaT0gaqUU9eFrAp1uLl7MIrjlLA3+ON/+k9QjMN8DcFrH1CAjif2Jy3e5nDG0vyAlnTaAHdABITq+nOHbfvWgb0291d2Do6SAQdE3DlqMz5Uj3FzPV/EeP12xsnI+/jIQ3r1Qvzyy5mbgIVSdq2ZIhkxMccoXk5yRNw9cBQRQDKHXnHXyWZ5lmyjroj5YJGPhObFj5IbEgckR3cLiGAOAKMI08jTGg93d9HCBd+Yzw6urByPJzvNByHf+6TBe/1OZ92nMXWHlMUz/+Be+8JJBMCUY7V54dJ0PL61d1QShCaAaRFDrt7cWzQc64Yhu4BULIqMQIGcmYtITtK3VNUUWYuWYljEnCCG2LdKTsXUtYBayWJ1UNEQuRQJzKoGjnVVKxgAm6gvE3vIDNAthBBCQERVHSQfARMMlVwDFpovXfiIjh6AVx5+86VeTI6goAEDAqroIPBC4CIaA6ioWzBXY48Yck5OKGpt6qsY3RwZRYWcFEgcWdVVgNTNiCEX7ZMB4GhUo7mpcWAHR3L1AsBo2PcthiY0YTQNFzYnH3r0Yehvp1LM2H1oU+Y55SJ+62jfkT58de0IsBk1lvzwsC0+ihVzVEfok8ZYAd6pSx87FU5Kg4+xPu6xzs5/4qf+nl5Ofu6c+3c4heNb/SRo/z+W/ekkYrLa9x0MkWDQPCD1iz1wIGNCfviJJ7auXqm977u0feEhK97OFw4VEFPN8/ZgvHahiWM1DeisUpG5ACFWFLxkzaX07W/98+fao3Thke2jW7ef2n7Y+s6JMMRY1UDAyJLVtXKevv7Wq6/tvPbRJ56Oi8JjmbVCG484bLOu+/x636lYPx0Fc1nZb5HBmHGIkokDc4VJNyebDbbXXv7ti498ASfbw4/8QPt/93R/K3TVXu7t+0yeZIW8Q4zPESmO6o9/9hNf/cebz7/20t6BJOOFWkqyNxerR4edvbXT3jpwtb6iWrr00GRMHABizm65V5NxXXFd9SnN55DFOHvfa3QVtSk3SJi6lL1uW1u0AsgO2RANQipqmqJAxYxGATkiS99rEFFlBgBjMHQFGLA0gSkMSflMDIDqNizIQR4wETITEoBJhjzUFgCYGwChAyMrALn3JRNVAd0dxAyBTASQAamIGLiaBwAKSEQAaAbmZUhfLZpNsbhRdEB1N/fowGoiBkhgDgpD6M3UQZHMgThwqHIWqlndSLEOLGIALgJO1mVZZMuGpXdgV7eqGf3hP/SLn/3CHy7AQ3NR8OM5PTWxPwEb7B9QelByYxW9O3bSAjigacLD1zjwW7cXr+/MD2fz7BCBDK0VWvSVqa5V1SSWrpSNen33oGfHJ59+5B/83rVmxAVEVNHjkJ3A4COyGSxT6YjI3EVyCKyqjOQInUHONnc6cq7JivOtHvqCGCMYrDVBkmQd0qSBIExr36ixrsqUaWtzhCWlNg2oK7ZKpP5h0R9Em2JQ2R3OKEXnlfi3T7e4I8EDTylweOeJ9xxGdw/E4821j3zqZ1775m8oiL512ANyXWkFe4flYGY3algzQvAeuGbrxQ+TdaJBXbxyHs3n2iQbN1LVKRKoqwGYmWfXlLCuQC11XQo1kcYYVCRGSinFEFPKgWJFXHpDxFQyAVjFYB6rECoaAOIoEFMIRIBDHhIOVsCAFQHohgURwXjQshAZV05IB69oZKYKThTQEYdyMOCuS8h1caRozLTo++koJjEwRuPD/dna5rikMh2vZS0GQV0CEUBGBKhCVs1F51kkdVSmltTHrqqIaECAoCKEgcH7fjFvcx1497XXD69dWduiPvWAQRHUXMRcSdW6vgRkWbRYNy7myRmon88eu/TQYXubS1SMXJG6DvCnq1k/PfmnZ/ftEg3OH79rfsHbKBj3w5rhJGX1J4CRfyza/8mYnrRPW0ZK1UrQ+fzoVuCwfXXzQqavfOn73VweuVr/7M8+jQbdbP7iiz/IOW9duoBEKbeq/Sg2PMRaLYMbIpoDKqITWDg8Wrzy0hsueXMyXZuuHx4ebG6tk0CI6J4YSd3q8WQy2f72d1/+yu99r9msJttTc9nc2oQw6pUMq8LT9e2nFrtJ0l52i9SbJoQBCJFNFYKDKiOnolz6VELWg9nNoys2B9jys/mgfude9/uAHvhyvV/V/n5O9lUfwAFyaZULfroZzNvc94SlT8kZES8ddIsewecLVfZ6Y32yYeaJQF57/Y3do3534Z2ki2t4YX0tK3StQ+knU24mIVZs7t1Rm1KYHWEWpOJFQANi8a4rIaha1aesAuLUl5JNopSotaqiORkIGwKBGqibF3I1G55RARXcAA0BwU3dCZgIzW1oEQxEg4eIYGjjBYzESMUE3NwAwAjdCETUhmYBgMwBYYDwdwQwdAcHj+RGHIsYDpmnNhQrIEFQEwRyNx+a54mha+rNVNy4uJuBKRgiOKp41lJs2TlDzIFJDGZtFqMYPDKge10HdANkoApDJZ6TQ9vL9qULi14+8XOf+w/+o/+4F2tGwWGFA3sMA/oTS2dxOn4/04N6fjz5fyIVkDHkxVHm0fX9fCRsMXQLqccxqs6K99iMg03qOI3WIHhJCOXa7bxzMMtgi3kBjq5ZSqEQVE1yHpPHAFmcI5eizLEKbCZEaO5E5GYGOCvQiVRugdSQETwwMXODkAmzmDi6e81Sk5HkPLd6Um9tTT70sSdjHQHQwXDphTjZuB7geD3oa/2k0PEo+R1r4dQJeI+P7nq1dz7npFz7xCk8aMruppI/9ZnP/vbfr9s825pA7541CVfThqtx1WUvhxprzyp1xGJQDEMVgKzvShcAK6TiTA6QQwWxQjSrwygicMRCrmp97vtOwVgqHo0bNY8hmjsR5pLm89YUmMiIVNWyMmPDwW2oyaUV9AICkIMxMIAPGsYy5R8CIjgNjYF9lRG0Mn6AiNBNgBFWKZSIaFBlbXaP+tt7b25vXVyb1K+/8sKHPvyxGzf2qppiiKkt4/UREoOKSkmSFIlRA4ZIQzfXKFLYjEycuU8dcnBnA2JmE4eIVoC4vnFj5+VXdtcrLST7s0xESXtBVAcxPGoXzfpmzmlUxUkdNSeejJoG3zy6mfNh6gIhdzDeevyjBg0uAVZOagDuugTOsubJeXee9m5yzN7m5LtePOCpTe9HT6cZ7MdCvpKDy9V70hsLEAkRX3ju6y9/77vrBJVpe7g4avPBYpea7VGzbtKbWHs058CEFClKKqoyriK4Aymik/tQCkkAjqqKb711q/SLX/7lz1+easXuAF3fowNxXK8nOUkcjYvhazdu/N3/5letg08+/uytG7c+/JGP7+929bQglnEIucutlTi9QvXkYP/a1tqEtIhmjkPLDwdVdlYtVdVY6aiOChCmDUdSGMp8ht+5KlP8MY3/+6EfxbK58x7L9yeOH1/F8U4nehxL2xUgzEnY18++ODUTd7nb8V1MMVA9XtvdOZzN87jh3oZ2bxl0oXm/Wxwsui5hBepHPQQuTahHFSN6XqT5UVuNkNENAmBMvaUEoUERy8Uw0KJLTO5I6iNzdEBxMwMVl5wJkYAUjBG1aEklVkndQ+DBiYnog/N9CPAOPnBzI6QBmQeGQl0EQlqmaaIjONLQLgsGmAcDH9p1LbV5QjIAMrRjf1xAdBvCCYBugzUxVBijAzq4GQEiOJnpULXs5lk0ZU/Jm8hu6opIZApmWNTFQAzUHNxS5oN5qkkdceTgoEpOwISOrm1fFjm2nXWd1xdqX6//3P/wr/zV//G/3dfNdDTxY0gLXE7+T4Zf5R3p3umfvy8e/wHTyiZyADRwVizTzdHz+y2GLai6LMqRhi7UWbEri8sjmQTZGPO4gtylGvlmG65d3582/bUUmhGTQyldqKZ9EUWtEUcsquxAVRVFihajsKyXNLMhdoRM6tgVJ3cMViESOoORGiGbgRAS8ijyZKQbLBtNIF+srV3I0va5dSgI8bju8NjD9QHdP51m4Lv6bt7+i3D26297/slNTp0/6A4YmJ/5zM/+wp/4N37tH/xXD1nY3V+0pdyY58m43p4yGopAyrhYlBhJFTqBoTq8TxCigZMhSNGu0lCVqoa6qtyzQuQKCxAAtl2pEMC9T9KnMhpVVaNqxsRdn7s+c6xNgYhEVEDriobkHxosgEFbWj45ATjQyU/BZUdEG6p4V6D+CCusnKWUQIYBhwgA3MUMm/of/+rvpgxf/Oyzh2361d/43b/4J7/w7e9fKzzpdm5f2Bg//fjDs6PDpjEmEC3BWUpWNBwSuAFVtBRzB0EvBsERBEzNiVVggHevsdmd6awNezNNlHeO0mgrSCrOVSnFHBVpnlpJ1aJfrNXWW7uxNqlYpqPm1u5hCeNZqWnjoY/93C///L/2b2XnhhHuTLDwk6k+fehsLAnPfuH0qcs2o6fb+d1jvZ2+3ztaDuHHu8Hfi7V+tA+wfAofgKmOfXgAZnK0e2M84gsbNbR64/pOrOJoc7PaWOtENjEyoTkjsoiYltKL9AJjd3e3IRtCl5BtBOaGTTxcHF69NH3myYcujsVtpu4lFUTAVo5KHtXr1NSLPv2jf/Ll23v22PZke1zXGM2xilFK6fduAeFk6gqijk19EWuZ9benXCGoKYCbuZgVdambqJKZQ+nnPB1f/dRnrFlXH2zwVaL670+R8MCf+v4ueOdZqx3uhFvxjg9P9YFaLbY744Dnr37Kt7S0H91148rF6aWrN9+6WU+rMnNlktK7mOWU+y7WjaAB4FGnrjqOVLGntqtZYoAiTgAURLRfLEAhFPMspgFEsJi7O7EUF3VHgpQtC1WBinggdPBAaOZ9lxazOYDFqkIeGvAOJoMBKjggMSGJGvGA0AknMDiI7rb0cTmYmduQBQFIAOBE5DQY4ShKMCBqOhm4DQUFxKwkUlTMhkIxIgRDAIQAisu2MYAAaE5mrgpaPBfPAr0aB0BABQRngKGjGahhNi9u6nY4k0lgjlDcKmR2YnB1RkAVT8k61VbNR9AVeWjz4q/8u/8LCnEynZgWIvZlEwBcBRPfyb3zk0R3ecCf7Af+oZLjssMcFksFti5cTrntuuTuQKHtMpI5xBtHs09evRzevD2pRohgaBlwF/DN/X5rhK/vWYnUIKbiowiIIKqTEC82QRQXaqEK7OCi4GwA4K5gCEPdDCA4hRAwEGpEFHQtZWOrUWvmnRaAAHBxylsj36jrin1za1RM4nSkBKLCHJbm+MrN806Jxx8QwNk9+rSGdn7cziswb2MwvCttZ5mZgY6ORNHq9T/3K//bZ3/2X7322ksvvPhCJ+XQZJPk27/297tc5skPDhZqgM5EnM1dnRn6YrBIUigFrBAxlRChqmBUWcWQUhUZiiIh5V4W3ptFAPMW6q6vm+jqTTPq+tS18v9n78+jLsuyvDDst/c+5w7vvW+KOSLnrKysrHno6pmubnruRuCFmVoD1gKzkAXGFpgWS0gGg0BCy0vYsgTWEl62JGwZJCzkZYyMhVrdGNF0Nw1UV3d11pBVOUdkZMQ3vuHee87e23/cN31DREZmRmRGqXOvFS/u994dzj3DPnv/9jQc1Z0pskGVxIHIEvrw374AQM/0FpUceyWaiPviAHNjKLs42QJl9V78YJAT3By0lHOZLBeg5HTpysXPfuITX/nFXyqvXNlvoVJNjL/4Ky98+8eeNMc/+tWvXr20XY92bt6+sTUabA839g8PZk0y1oDkCF2y6WQ2mTTnLrkaTD1GzlnhRuRmxMTj2eFMxcnPXTm39+pLs2nCViCnNuWsOZtnp67Rzid7h/tbFbrcWagdeZb4yke+/3f95s9efOK5nUce2zx/JRRDEoHbPfnmLGV5OmOCHZsna1NnZR06OVvmv/qp6XqXprxvdQDed+z/FC0k4VXotsYgRaAYcW5rNEXz4Y8+fuON57tZd7A3Bmg27aisYhxkzZY5tTk32TMTSR8KKcJm83UAhknKnEzbH/rRz9allkNOU5u2UyOqvBgfNYPhMOwMB5sXvvmrL/7cL9946skPP/Xh81WshsPtlDAU4shCdOPmzdRYPZSMYpZpsHmF29BNpoNYm2dHZ2p9WSXNnYCEKLtBK8hlx3Bt6vXv2bsDORZxTw/ToNyR/A5s937d8F5p7i56ZxvK8ifHki/OLz1Tlz/epCV6R05Sbvyx/82/+4//+5/7ez/7c1/8R1866qZHB13Hw+kMljIhK3si6lIuYjGemqdJHbwWVBHOiAWshbNOW1Wwk6tJk3JjCQQRePKp5mlCUmsaTCYUyr5ir4DVBTl5RzqdzIQ9isDMiRAEZA512MLZiYWDk/VOyv3U6kt0Jc/kTNSHPprDiJ2ZhNjJiUhEyMmg3md+gzqoD/b1hcUqmzlT6tR751IRUjjc3dUsZScGgdQlmaZsSTUTdw51pLQseelk1Co65eSSXdvsRZRk1mUvCGVRhcCg3HRdl7SOwWDZ0ClNj5InmGKr3h7VpfVOdyy2sqYtRu3YVHkH0+s9ITqrtb+haQlOguAxsgwuhvh8VUnqMhxG5vDAaLK9ujudZBwlKOKV7eqrN5rhRtVO/Ss30mceq+PurOvqYVHP2ulggEGIKVsZi0u1NNbmxrvsBGZGVgOvzIimBgPIzQnMdRmE4JrM/fJ2lRX7u1mchsEvDqhmLYt6uLll3FUb585fuljXAzjDlylyl/DEB9L/W9Np6WodxT+97zwgYWYJIMFNQsTG+Y9/4cc/avhBV1GbWiNp7898+Ve+8ZXn2SxSNCbNpkJqlHOfXY1zq0m9IQvMoYyFSpF1OvUidM7i4JQtmU3bLnd5OutiGUDUtKloc2DqOp1Mm8m0g6SsSgC71cPAIhKEmUELmGfu+d/PMZtzwmPbI1kPaQELVYEYfTUMMjasjMMsjIZyg2gY/sIvfHmYipsv3Xrk8tWD2+3RUbcx3KiH5c2jyf/nv33jx35kkzfc42D3oN3bvTGbTmKsvdWNAdySo765d3Rrf3KpaWcTFwt9OjmOBUCuzJRJ29lUb928KfXgwla1OSy6yYxjSNnbLqecc1Jr9eDw4HB/ojsbVQxt03JV3ZjFp37od1/55A+4agFjMDOb2cqh5Nhg+skv5wjfmuJzliZwgu4uNdzJAnAnHeB9UwDO1IbfD960sqv0wB0WRoBeJa2qkknGB7drok985Klf+gfPv3j9TQ4bh0fjqpYu5cFwkK3d3N6qygEbp1kOHCwrl04gJnJ3ESKWpOawD33osaefvHjjlVdmnbNYWdXazo5m+53Tzdv7n7n6tMSt5MMcwnBrWA+KdtaFahtUd10zrGsJcWMrHN6+QUmMawQbbl8j6rjddBw51LOTeSQmAyVzciVWzUhuszRYSKH9jFvkmJnHq/Z5Qb+FzMT3ccK8rfsce+7dr1zqVD38to4I0xwLP6MdC9l/aSUkkMT6/LOf+okPf/K3/It/xNrZN19+5Rtf/seFvvr6G5OUOkZKiSwI2FTMg3Ao3XM2T+6Bc8owIMQCnLpshVEydB2U3IAywo26jJSRVMdtOph4yBo4UHQX1yBAL3OTZsuaggaWuMjR7PMM+ALzLBSJxd0Nij7TudE8wRtADAYbm2edxwoLGZMIO8iZyU1YlIyEezGMiInYDGp9kWKouTtEyNVJzLIDnFVzdicTFnMkpTa5siRnBZIiGJLCyM01ICajbECUTrMRZyMq2EEkYg5VU6hmmLplIwLFsk2OWFGXYlU/+vgTaiaxsBNl9daG72FfTPSBZ8gZtLZXu3rsystx+3yMb3SdBJakFrnw3CHbm/udU2ym07LcfOb8zss3rgcWZX2xwWe53CnbG1P1WkCFNd3mqNrvuMtpVNK5ii3I7cOkTpD5M2EgnssPDiMHS585JLq7GkaDjY2N0fRwtlGwmF2ssVmwBCSPk1RsbdfDzaqKUnMgBQTzuKNFWOsyCckHA34XWodRezrZYw8Sv1wPDV3MQzLvgXQwEEiIqOK6Y+xcfpx//VeDdlVgB0+Swz3leZ1PVVdizSykQl6QZ1vk2FdXzKxV76RhnUhqzcrCJDkJ6pJztsGwbqdt0+pk2inNhEJVhzanwiRIYBFgzvp7a1lflp2JrJft544Gi/50I2L0XkAAepWB5umS564I85gVZlhB8ehmc3jUfOE3fVfz2uu7v/rFT3/0Y2WQf/QPX/7C9z31zDNX/19/5W+bI462X761m49uF1Z8/auv1FXxkacfneVpbmlYluPZ4Zu704RwdDgdxwY5EjNJoDYRsWZUZe3t9NabR5qzzWYXNqigDqbNUeOx9myzgzEHcfXbt8cpkXguKUVjUpzbPBeKbQIqEVeAFnlIz0iw6Mf+W82ivpj9UkKY0xKSOXN+raDqZRTBnQT8u85SfxgqAa/bKe5ubrsvTzlNCz17WSZx3rPEDAokwdzablZUMVL8rs9/ovn5Xy/RNUfTiQzHqZnmdOXatdyBLXZNHh8cslOjHRURYAfcXV0LqbrDLsTRxz7/3E4YtwdQcliZWqMos9tdOdp6/vnrz3xmSDmM6urjO+Eirl86v33zVkPVJkmd2pS7SYihqos8qKcHtzY3qsh2ePP61Usb085idJhrUiFyV3ZxsBKKYiTcRIBiaaogIWZgnqRwGRC81Ml8ZZJ6IB1+f297vx70zu9zD1cuupYW7H0p2K+dsZj3tLBGrS9qBpEZcWmE7A4uzj+x8aGPf6odv/jf/fX/iOuRJk4zSJRKpHBjh2fPSOroEgpQdGfhZkqTJEcK6tC2IjAEdrfWHKAmGThk2LS1SZLgHlg8WlmA4MIeA8zMctbUei6doF2f8tkRjLh/ARYROIjJ0cfFupEa+qp1TMTGOn8tJziYQOxs/QbHboAREROEQGC4Gno7scON+hKoIgFMZg5nMzg8Kbrcp5JWNaRkOVNLPukUGppWmMyA5ACbUacgJ07qvWbjakURi8jw3Mxyoo6oh2cCu3emgcv9aZopMlMyeuLZ57xfTbY2mt9yTnXfOna/O9MDaL7DQMwcQHzhycaa88VE0I47jVVoWyvKsoXd2p/uHh5evbzVTO1wb3/nwuiFW4dbOzuTven1w+bSkPanXeMbXIe22We1jY36xsGRoi2KwTlCF2ymYdx1fVosW3AJApil1wXMc5caCFeCKxdqTrNRgc0NGRouDi1oKnNsUp6O9566sDWsS/PQZTVzwyr/wPym66bfb+0Rf+BEx4/v2F331o9vp7fP2hmY4CBy7t2UQQUH8MYjTz/56leHt/faw91sISKgM83Mmq0IDKhnNzDcnVjbnMRS5QLLEV2X2yk0eWfeRqgD5KzqrA4OARwlzVoDNw3Up8KsWppjWKOQaCkjFu7mxHMPH+oleO5zM5MzEdMSiyYiF2DhcdCznR50dO75fO82ylC4wezi5dHohgtmTvvf9z0fnlq5e3Twme8+933f9bHdoz0VPPbI1u1X9wcb4fWvvzkqN28d+AZ50mb3jdu+OZQNu3F9cvvWrCyGs8NuUlAEVI2Y6tFQLVuGtlMhSskMdLDfbFl+7RuvdZsFEXGpZoRErnJ0pNOG3LiAFBy65HUpRy++oJvfjB/5DAAm1kXM/V3xlBNWgZUP9km0nlZnrU+/k8gjrf15Wg1Ydf7qr+Xd6GFQAE4Y1N6Dp5zxSx+uOc/ePVdce1+0rmkJSCkdaZpN24985JHWfP/geiE07bqDadMkywGe4KQ5N81UUztxFjgxs8MBEbB1uR4U/7+f+0ef+vjlnSeqrc3izb1xCEWMPB43g8F2Er/+RvOVF8efeWbz8hOP/+gPffbLX/qlX/nSFz/1HV+YmHXN7MrWZtPNWkuDYpNzFvH9W68++ujT00ljjQjILZsmy9lNCZpzI5FbRYodkUeTpGXNslBRl3pqP2X7jYIW9rp3uzU8IHzk9A3PNCXdPzr7JWj9x3t69toyPX7+MTvAuu7VH/vqaiLpeUvvQrM5DJqVwrkLjz/1/N87gKsaw9EqmkyzRFJ4OXffZzhMXRwKP5x0yrFzn7QdyPt8ySWD3REombl7ytS0NmBp1QNDZ1lCVNIuW7ZoPWjhrpoJDFYpzL0PyHWh2HnDFGDUp/zM5mD0xfIIYHBOmXq3oGBuDrD3VjeoIwMQCUZmzjBiBHKoe+6B/nm/EYXQdX21GkpdkhCbLmUlJ+6ypezmBA9HqZ0mIHktIoGMOLuZg8mz9W79Nm1NFUUQB2fFLCmAKpBIX36Sknmr6FrfO2rGU4ThcNx0H/rIh71XdRZxQ7ww6i5Snj70tJhy3+L0jrv6jgt8bsVxByFsP50R65jKEC0QmUOYQgymM8g4Uyl1itIoUpeHm6ODZhpD9fXd/Kmrw83ycLdFUXkxiIfjtH1ehlLk3IFTRfFcFQ46Ii5nXUdOIgTIggnPsUEzN9YYigFlaSYWQ0SoQdWwPDdCdzjbGlE30S51m+VmGUJu89H+TcszQjWH/WneRbQM+nqQ4v+3umpxwrGnp2P6wJpwdo+vekdjwh3OXD9/bhJaJCftW6DubefndoaPPrLFhb0xnrZZWjeAzc3IkmlVcsrORAq4usNdM4MiUKTctTbueNapciCnQKltUbArXKFR2KwjMxDPOkwTp6Tm0ws7gysXIlmbW/igNBCv+oEZsvDu6ZvMRObwVZqjHvHnFcJtc4mZQLDeEcFcQM5Wxtl3f+6pf/zf/6JNb3//D31fe7sV6Pd91+d3hvHoMJ4byoBD0O7Fr7747R/71D/94ldzGHYWWue9/W5yZDsf3dqbTd448LJOG3XZJp9MLcaQum6aDspB0TbZ2i5w8eZems6yKTdTnTY6rVw1l0Zu1DWJwG0nXcsMrwaDlFQiqio3N944lxpHBqR3pqA7mFPpZFUgLC09vYK0yhJ4B3vsW+sUJ5n4on9PTbh1TeP9UQDutAZO6zDvEb47F7DIl1bSuZ1Ux/s3kRsuZTJppJJqSJcvlqN6y3InRSzr4e7eLc1djKHrGhHTbnJ48Ea1cUlTDlXkQAolQl1Sd3RUcP7QR5+a7n5j1rRRYp9/3AUZ/PyvPZ/VvvL81z/9Ez/OW9s/8Nt+4pEnz3/py79+1I53fFoMovO4ydq01ROXzh9+8xvoulFRpOYwd93RAZXWtd1UKFtOwgQYhLJpVY2yNwFtkMvVxWtmfam+ZWfTYp85sS3cNzPM/R3BM++2JiS/8zvj1M3fuuXv/MVWM/1YJMApTX9+3lJBZaDPK8WEefisjgI1tw8KJonsZZildHtmBLRmo8hEGtQGAjCamSGQJRISd1bzxBAGmNtk0Jw5q1qI7OSTVuvIdfayDAAyLJI5M3MZw4BRtm2ikKuqihLN3T1HDkRibswB5sS9R5BbgDsFLgxdH+pYBDKCG1IGk6uTmZiqwUFCIHMzeNbOVWDBjVSTZoUxmJK5c0gqTetZM0UiR+py05paaLIm51lnGexuXWZ1pqyzzl0dEgBSy04w9zb7RKklthCz26TVElRz8Cl1rFFyECIyJmsVUAUXcK+LKpSjb/v2zzB4HgO+UNjWGfj9EYPe5fy+O61Ps9+IdCdUd45YAhiA8sazl5762HM3di/+ws3XZlFsQkY609HGIDXd9f3DRwbbz7/w4rXLj1yf3Lo9tUGIrO1um8ZN+9hWOLo1Vq9lc5hkX9U2inJv2jHFUrBVCVFGpzEWs1aNqE+q5WoAnAwAAwWJwIUxm04Pwqj05vxoVLJyGm8MyzAYvvTabalx+epG2yl1eZCOPM9AO4t3nDt+9szkfiA8b79PvzVp2W/ra2R9y7hHOgPBvfM5WBul1ZB57zHjvV2HQVVFlDqfHm6wDar6zTc7V2b3qFxIEUwDhSw5JyjcemdLEjdS9SZzUh87NDCBrdOCpPCgROpdNi/rcDBtqyBVFTKXexOdtiFEzlMf7B1cvXQh1sIMIRYOzAKwOZzUiIQiEzmZIYNAcKLeCgGHkjODFi4XziCHGZwdAjZHUlNCLMvp0VEpxbd99iPTvTfG02bv4PCZjz5n3nzt5dcunn/i0x/9BFL7oY89vXv70W/8ky89/ey1N1/Yu7nXvvDKdKwclL9yff9rt6eHGOxIaOFHnbbqDg1l5OR7kxRCQepN097c75qWItOgrDT7ZKoSS23RtV1ORN7NmgxoYJiI1MXWwKjZmxyl7UcfI4RTThMnGepZBddp+UOv5y+l/7sLHie0Uzpl2TvxhDvOsPfRAnDvYtb9ApLv7Q7LnqS5R7Pm2dEuk+eMajToOju8vTuIjjqQYNLOvByo6WQyOb+1ZZol0mR8tLe799j2FRGCOzGYAXFiGg6KDz1x+fkvfumxbeQ2Cwq1vv6Rz8bT6WG6ePH8C1/5+i/+/V/49u/77tsH7dbW5Wc/GjqCp2nFW8zWznI12uZYdJ1CpYpV27RF5JyaEil1M8A0ZYVLgLlJAALcmsFGbGywWZ13ZlgPVvpS+TwB+q/5IN4H6f9+0Z2a4qdX29unsy5/oBKRr/U2CAsAeY46ruGyC97g81LiCwsCwQABsURobJscooSSppaZSENoXKMSk0ZGTiCBEZyELGTnpBZB2t/bSUnMvGm9I9M+66cwiSjRtNMiehkomwcmVzYnNdfsIuxQN3NFCFGFQO4gc2Wdx4CZWQ/3QJgcmo0c2bL3NX/FA8fs2YxNhQjk1BcBcHK3PpKMAQaZGxuQ4RmeHEAw50mTu2x1Mei6xgzTJNmoydIousyZkBW5A5EHtVmCKRDIjdTc2Mypy2hBjbqKgdyZuqTznS2WHqORO7ll7yBta1RWg3O1FYPPf9cXHFEC92NHWIaNYgHZ3Sftt98p/EFF5/wPSVy7f0To/a5hMNbRZVz60OOP/dpHLl7/2m6RMlsyCuY5G+yNo3Se25wIma9ty23VNw7GOxtFyvGV3eZjF4utynbbbpqqqtgYz9L2oDoXyqOmA1MZw8ipS17EQKDkxBLgcDMzA3tWJWI4UmrVNTMgGoS9nRhpParGjVx/Q9/Q4rue2KyrQimwGqd9bw+Aa/2b9Krpmiz5G1bfuydarQhfMtzj3/d/zkW4t3nPs+hM7Gl157XdeC2JRJ80f3hwlA/HR82sjGU5OexclcUjhWxgkSBGZAWFWeqYnZ2YyABAwGSeTN3YiN1MuwQjNnCCGwlMGJKmOplpl7M6d0m6A7qwzR7C3P2cuHfl7/1/mJhATH1qn7mW1O8AvogRmP9K5I5eL2DiBQ7JBBcBQJrzZj00gK0dbG92IWxub/zsz/3Sa2+8/Nt/4odRFqZHl8+NtjeKr3/l9ccevTBRO9w/aHX469/cGw25kjB+ZbZ35F3KedrSVjmdzmbuZTVMmcjV3VtmmE2n2qkQEyNLYE15f5ylEma4cpcpJd2ddW1KReBCii7pdNKM20jXPrH14c9mgOGYm3/7Nz5RW2Ut6/qJ0SafF6BdDPE6mn8mLnmGZLaOIa6feA/bz/ugAJxu1ZnfrP90J4z2ATSu18L6USHtcjPeC4BmxDIQZwlOrARr2nZ/0hg3s6NpMzrirS0Tr+pwYfNamnTT/XFZDc00cCAiwFRzGeTapdEXf+nXwvl6++IWkxUcui4NpEx2tH2uojFuXJ/9rf/kbwyLwfd87pnxNF999NK4O9zY2WnGszfe2KNiyFx/9YWXOrKtnc1Z6oxsa3MUBNRocHbtPBuE5nH5xDlZCJYT+faTGodCizyFtOQlC4FzBTPcZWTeBj2IkVrHXR7QHrbGfM/kyffltZY+I4v1TMcePD9pbhykxZ8LqZIwz1hL7h4GO48MRttHu1OkJhSiBCVPjqxGTAwXgzpU4MQeZGI68yQaleERKcPBmjiBZ44OpEbWuZfCwoC1WcWsK6kUYrCpqmX1EEDq2ThBApEQBfeO3QVEbM5wYibvHT7NMiCBRE0dNC8SaSFKkQNPbaJAwdFcgUzzTIjcVxBOlrusaqQKN4calAymTJ3xLAtRddhZ19mk8dYwS5rNlQiAwc2MySPQuhEBBlWYQZWNYMytkTLlbCQU4OyeNZMTWDlGJ3GoEsaT3IUwTcnrnTbH//lP/3Q9GsKdmObpK5b2NJ/7uN43iX1RYODB0QdqQE+LFb6M2CcCUghH8RFofGwrBSmOrHSZmRm1XYJ84/bhF56+RphMPGxudRt7R7O6aJN6LK53uj3ttgah7TptQ0dFVRRdN6kqtuxt26HAoIiqoYFlNUKAMIFhpmQEZ2FzE/NSpCLfqimawTSlbjAcqskhhRdu7Y5G1UefPl9V1OSmQBV0bLNdXzhXzN3R1hjYB8O9TneEkO7aTXcxpbzdfeKsneaYV8jaTRemY7jm/JHPfOff/S9Cmlmf9r51j0VwFiW0Xa5VGNlhIkESLMNJ3RUKILuzqZkht5SDE8M0J4PNH6yle0qqLLPOuhbCpmbNlKxTIWMm9CUYmYjnHjBExCLmxjTH+Jd1cGgeHtBvreSL9IME0nmJAO/r5jCxu7MUUC0Cxzq6c3S+nY4O9m4PhxuB6t2buxc3ho89euln/s7f70yvfugRa9pBxUd7E88+7RJpUkMoygo+Ik3jMQo4IaWGXYhMcw6lm9N4Zjl7EI4CCCZNEiJtxhKkr2Cc1KaaD7u8I8FyO711sHl5wJc+8l2/64/PYlUDi9zTq+E8ZQ44Pb8WcTlnTb51cXf99xPY/zuWR5YXvQ8KwEk1eu3gTiLdaRX8AWkCTovVRU4E06ZrJgQ4U0o5Z3VVkJmrdj4Zj0Mpns3a7GqBiyLU9Si8+tKrsbxZb47qwQhEwpbNXJgdG6PBM88+ST6JIn3901iU6LrhsKzqYv+wuXS+xqT723/tP+Xpj3/209817aZJ881bjTBdefxDkYv9SW6ao52LF9584w2Y71zYMEsu1jSHJTQ1LRGbWYBwCCRMQiFGK66Mnv4uCyPxec6/YwB0nyGaTu8M96GP7/tInTCB9fQuH3F67p2Kv7/f020BChzj6gsAYQUFYMEoenF/rgaYz1UAcpZrz378e37oR37t53/p1Xz9heu3FdKqi1MkrgtiDiIw00yeQbNsB601imiaHcmQ3NWSu6vI/lE6GDsLtjbLsuDcaUckkYKbeUESqLdn9e4JZEzqyM46r7xCAPfp/LV/RWKQwcnFWaHMDO2rdhkB5uQGbf2NG7siYWdzE1DDwve5R1UcXde1ycxDNlczgxNzzpaytp0ejnXffdpacmozWvM2W1YzUJ+bog8lNkVjRE5MUDM1h5AStebjzlo1NSixI5CIMDRlS8kTEVOXsxBP4V7UUgwvPfbUn/+L/7vz1y7HogTmpc2Widx8gSDQGot+t6vgwclrK4H3A6EQWCrkCySojwsThOGVj0+67lPP1PEXD2dpoyo4ZisCtR2Oxpi1s3qjeG2vefLaaJOPZoKZlE3yI6cXjvi5C3Fn6PvTJsHjxoY3SLN2VA/KQhoD3C6eq/fHLUimmdusTua9m5yaaSrIqxgGgUYsw4JT6pLlndEgK795oC8fdB38e5/dfurSsO1mGiS7d5omk8MNZ4L2VZZW77fGXT4Y8Z7u0YHixE9vecI7a8piH6YlLnf6pv22LRIf++R3PfLct7/+6/9gM9mN21khnjphtcAA2lkXBV1G9EyEwAgBRKAy5AxW6qamgME9IQjQB/Aa5nsMo1F00ImiUwhgCYMKV86PqlAwC8/LgPHc6b/P1oZ5eFdvEKY5EOLr+RaXWsF8CzR3NvRFZeaGBMCNewSJ4YQgcnFn4we/91NxNMRsmpu9Rx/ZEOncu09/6rmt2N1+4fWachnL/bZzAxP64pcDcXdzik32JmeiTKZMgFkJzUrThJTdCerc5TghCGfX1E6nRSgtFgeH04MWxjwZz5ipDPHa5Uflw7/ZNq4VLHAn5xN2teMa3WmI3hdj7Qs0dmEx8VUWidNyL07MvfXwrXsBRE/Ny/fZAnC27eL4r6e1HzwozkWrFhEAy92RaReCJLWcLSdlcmEelnXHOU27g9u7rtJUDVwpkBOaphWRZjabHh4FYZGaiIQMTgleFOHytSuHb75GnokAoxAGXW5qGQyK0daQo+dA7awb/8Lf+a9vfPWrH/7IRz/xueeyGMHL1EIntbVOzSsvviyx3hqOymCbUQ/2X/X2iBTEDrcQyEjVvJC6S4dlGVJ9zbeeESkJ5t6HJs/FylVW0AfTr/f9jidmy7qu/I7JTx0cu/uDoIV2f0YMwAKjW7D/hR16xUDn2ZfdiTjwsHz0I8+98Pw33V7vujaF0FcJNSMS2qxEweKcVLP5oaVxRgIcwajLjuySSdRtmtJR5yjYWqM2wTmbInBKihp1BfOQjLPBzB1qMGZEJkDVDA5mZhKHAcTsJGCACVmJmdkl5yQU5hn+s6k51HLK06nWNdzgTnAjYP52zgDcDY7+mIgIykxwV01EVhScDCBR81atNcwMxuwgoE9U7aqksJYC1Dhbn2QFhgRv1TPgQBHZDdmoMS+GJXFBhM6s65pWLQZOVBzu6s4TO//6n/uzjz37TKzqBba6sOcQGXxtCNe384eVTm02HxCw7A6GOyMPVfyRT7wartHhP/nCM1v/+RfNKGpqY4WqLMdH00kzHl7Yuv76fqj52sUL+y/ttxQGhZnyTOnmND29E9WaSTPtJlKGSDEkcChjSJa7WSSuBcwSCK1Qm0wJljWabTCJ2zBSGULkmNoMspx9mmii/kaTpq6ffbL49idHQ9FWBSHOWhTuu0eH5xPKchVSjKWFqqf1fJMf0PEt5F0qSO98P1oDj9cdwhfF3Jbw/zyrJo02v+3HfuvNV/8x3doVpcgkFD0rFIHEszoFYeq6JCRlFDgZG4gzLBmI2NWNOLO5OROpg4SEkIyn5Jo0AwncMRhBvHvsQvHE4zsmgUOQEIVZhIn7uo1zTcABMMGd56rAslscAHil1RBRX/Cif83+HxOBYIbe9OpwZ+/ch0PZHhaJ0RJcZWNUHM2ab/vchy+c3/T2KDBfPrf16q2DajDocifulo2CoaSOMO44iLQdQIhl8JQLoanpuMkUCmXkTpV4d5Zr9SqYEJkLhJvOuuTZLGd78sJWnk26vPnmLn3Pd/9Aw2W/P53yzlxKJavhWv23OovmOZBolRPp9LQ5MZdOIEp3wc3PoONwj7+PFoDT1o27nH9CE3hwYBWtzG1OpN30UMSrWCJR23Ug5uBFUTWOnFFV9ZVHHplNbP/mzTwzFi6q8nD/xnA07JruaP9gOCg9CsChJGfN6gQSRoyhmyWCF4FT7soQiMPlSxeGdXt4MIvhYJp4pnjxhS+/9NVvfOmXfumJZx7bGQ2GZUnUvXb9+mhna2tzxMGeuXYBOs7TWzQ7aCaHKMu6HohxiJwsc1kZIxQligujx7/X5fwcSF5tAf28PY0BPoybwp2QVD/rtPv97AeUKX1t+vsZnwsXhON43ZxhgEFgOAwuL7x0+A9+5YVxgkNM4qSdJRIXJ2Ij1ELIXnBwoSaEGXNmMuZE1MGVqYW3RmPjqampbw/iuZ3ajw4HRezz+zctus5zhpOA2MgcSiTM5KJGyiQQcultwQwGswsLgVOXcrKiqISDwXrow2BzsV4QC7p8ecu996RUQB3Sy9EZKZu796mEqFeInMnNs+Wcvawi6tLLkpMcXt+dJbeiMPaUVd2ZHAY3F0IkHKWcmdgM7iGwmyuxixi8YCJ4WVWZXUX2W60kllWhloSpHpEi5pl7XX7hJ3/8w5/8rJQlgXtLt8+VgDkvXxvbuQb3MC6nJX1gAbgTLauikFDWDvWHfvAPvvhP//53Pxr/6ctHv34EAONZasGXRsWFizv7b+6Xo60bB3r16uD84HYzTVJE1DKb+q2JDYt8blRySM3kCEMGR6HYF9GOgVLTRiYmsHlprqV02XJy03YjxtGgKosAICfLUGGxIt6e+m5rbUpPPTL6gc+f2ym6piMOZU1RiPO0mRztgmC9Ea1PcLHkY4vBvg+2qW9xmiOxvt4t75Ddv12A8k49T6vfV01ZVhh0zE3BDO5P+/xv/vF//LN/88btX75ITgc6nrZtTjAMSw4hGFSdnUM2iJG7w2Cep60mI8YcSmFhMhcmtd57B1k1mzPAAktsxHB9/Bx/8unBhSHDvCwGDJLQmwEWDkC08mkh4nnTHQ4yKC9dgPyYVYqZ+28XXBMgJ2FLSjAHEyEQSJGacSgKKaTYKuB0fmt4bmuzazWDLl3Y5mrw+t7k1b0cY8ht6+xEWbNrwbNM1rVFlKpiCX2wTZx0edwZm2mngUkCmyejmCFK1KbOWZtMbUYyChS3yuLWq7d/cerXnvtNqYlhSD6XopbBvP3LH5fz18G9YzOgh/d89fNJI88Zc+mOE+yOjzljbi0f8r5lAcJaO080+MQrnCnhPUi2tdBNzMaTvXJU+mxWlqWmTBEES6ntuvbgYNI0+tI3btx442hjq96dNZdHdT0qmmkEsZk2h5N2NK4LikX0TKEcZVA2r4YbAXnvzd3cNm1Kps7EyVEUvLlZxzLEgRxOuqPOtkU8F+3Mnn/+tUE1rKpQ1t3Vx84PdjYuXrhwfnvDjm5odzjZexMzLVCXRcFEUjKFGDxIMQC3QaoUPzS88HEQExTEfdWOeU/3qNAd59R7ujvcy8ieUIVPXPyOm7tm+jlr+cwhGFrsC/ejW05gBOvtOL6SF7VUaN00SAtmQ+Bk4cOf+37/W397ROVW1hffuG3uSp6ZZ05pkhidwKoYDVDmcWdZWMk7o0AOcMoYN90EGLcYRt8Yho2NcrS9s1UHbfPe/lFnuc2WkmpmAoswETMJA8LCIkQRzCTMIQBQUocCAuDg6HB8OL147mo9KCWEnBPIiEBiDO2mLYvt7NS5U207z4lg2aDKTkauDoCYyNTUQGrmMLe+2rqWVXU47mZdtzfFwVHqCLEi7bKqJTchMnUWIpGULAncvGB29eTI5gpNqlQHVS2kaFqlEFhipMhlNZk1gW1nMDhsmmS+ceHcd37H9/7R//W/kYWFgrn1Uc/LwVyVdME8gvttYDPvPS0xGAC/saXAM8gBEMHQY0HC5FJ+/Ee3P/VbX/2Zv/ndj1cvfvFgBgzKgpLQeDK9tbsZ4k5lL705vb4Xzp/bvjXe66Y2GLCF3GS6vu9hJz66PTq6fVtby11Lka3kEAMkpGyWCIJhJbV7axaFjeNoNAiuDPMuETgQJ5cm47CjI7gU9umd+MlHygtFmz2kzAWLswV01LSz/dcZLXkEwdCbzxZcbpVg4Df6uM8hv2MbDz1gAWP16Lf8BrRAzVcYEC2/JbKKWOvLP/67/mfXr//bR9+8frA3qcs6uDlQFJy7FIQlSEoJTE4xFEKwtkuAcqDI7MrkiOwOYmED+Txvp3cKIXCCqkngS7V96qnNpx6tKmqp2JTQe/swsWDuAsRzR/+FPwutTEzOROzsmFf87VUtYpqnt3BzkB3TU024TwxB5hwRDO3Gzlbbtl1KRQzgaE6zWVsUsa63z2lMfvTtHz3Xfung5ZtdBogR3QOgycqKu4mralWKqXXJck6TJrcJAVmIqiKw+SAUwWCZWsWs46bNjaJzRihK00sX6otbl6e285v+uX+5LWKBNfZ/ktmvZAqff95xN1iYeI5NgDtNvzPEpHWpZd3q8FZEoPfHBejdnPDgFqevDRiRw+1w7/b+7u1zNZzY+kTlZLEIEsJsMmubdPP25M03x3u7h5vnN3a2H60jjTY2928fbZ8/d7h3MJlOi5kMtrb6qqIQCSIewXUdBnXTTGPvnaZcF1U2LyKHiCBVXfBmlgYmLtbR9qVzKrR1fmtjFJzS5WuPIOXJ4ZucDrrxIdTrumKRTAZmNWU4x8olRjbTwYXnvm/Go5KXFbv75UfAyvHszp393tG6GrI+xGcer5/my98w12juMkXudOe3bhotbX33tVtotfhXFkBagj9nJZPvkeVFGUCR6sqnPvM7/qd/+C/+ub+gVMaidEjX5CkhO5dBTI2hs9bdHAFOwbMay1HXNYpsHYg7j9OcYh2qKmb31964/fS1HQ8yCtjfz8Ls8GRqjqxelJsSRCSWJYkQUXAmBCZmA0iInYiDSGCiUBWYNJN2EuvaPTPIwHAj5+xK4uYKWM5d1mRm7uTZ1CyrEoeCiy7lrNrXlmTi5NantDP13HVt60edjlsoQx2UFD73RU3ZmGCgaZtrZo6VpTRt0sbmsGtV6kCAtl0xqMe70xDD089+6MnHn4arzrqdrcE3v/YN6ybVZnG0uz8qN3/LT/3u3/u/+GNJwqCqbVU5b20GEtYq6r0dy+z7QvdPmf0fHi3ywS00OqIIzLz8/O/+X33za7++8eov/+i3PfnzX997/eBgUBfnNjlEvX3jzc1QVMiv77UfvjB89NrOK29Oumm3NazKSE1jrxx2szZd3tjcCPCcm3bWTr0cFCUXQdgh6u45ecoBrM4Bos1Uk4YQyjJy4MxEkMm4SY6CmmevbH72anl+A2aMULkXkUtQqRAR7Zoj8dYRaC7h0hLHwAdjfpqOd8s7BpLuhU6APHf+XLmI0CL5Q3+Dfo9zJ3IvQvXJ7/yxn/ztN/+zv/ofjyevSTfLzrOkwtKkfPmRxz7/3Z/5+z/z85Px4aAo2ty5daRaMJKZw+sy5s6Y3Ek1qwiVwjBPiWbZJZLBwRgU3aeeHj3z5FACYjmUetDmtDkYMgv30tKyEFjv8T9fP0zzLDfqtupkW4tKZ+aFRcBhgMPMmDlIMHTMIZkRs5oGkfGsAbGLJMsg1uyj0ZDYmeTchbC9WUi+deMC7R3SfseRlTI4ICsOj6bkKCV2TeYIl+JoMmsSlCCgAKSmKQWFDLRLzSTFqo4sbdbJLBejsgrllQFJkx7/jo/9nj/y55vyfBFrnBHDe0ISp3VesozpXk6XddH/HufeuvRyTAA6jZTj+H3PmofvtQKw3G7eze74gJgXzcWuXip2U21m043RwNMU8EFVTZsZByFGrOrtc1uHU2tn47oKg3rw8ldffvLqVvnItnIwk2mbi2q4dzDmAVezuhoNNRkLKLh1BmIpi7oeaJrCzdy61Jh5DGFQ8NZg2DVlp9KZoWthaXN7Guuq3tS6LtVYDg/IcpcOp0d7hYgVpKIkFITcTVC4BvUEJColXn4Wm58QqQnq4KXtdxHk9rA4gd5F/aVTZ+L4RJqL0PO4o9U1p2WbU0r62xN/HlQaxjmPXGuKL1GeZX4BA7EBQF9jfelb7sRQij/y234KOf7Jn/7j29tbk6OJhxzrqI7bh0fJ9cK5zXNbW5z95v5B15mwNE03Ni8jNIibNMmSUojMIe4eHdYFfu2bty8Pw6efOXf50vbN2wdF4CgSIpdVALSIhUgwc1cnznCwReEIMmbJDoByzlHCztalna1LBDYHOY+PDs1Mc2Z3WJ9vVyVI4Jg0iQsYyioM4WAeZ02CZ2aOgZO6m1uGG1xRFMWkSRnIoJlaa+AiZEcoo6ZMyQ0QEaYwqmOetbNZunLl3Oc++9nLV66ylN/23d+xv3/r//SX/s9HswPUePTaI//mX/gLn/z276VAOVkRw+uvvkZdbpojC7j26GP1xvksXhURq4qBC1R1ntQOS4zOj8fWPLz0sLfv/aE5b/HFHm1OpAOSdPljP/w/+TdefPn3Psd2dFBfu1S/eH129coOitgpIzUXt4ffeOXmS56uXT1XRWlTTk2qqiKrZcMbXW6m2Cxpo/DRdj0gqObczgLFrCqB3TzGaEBN0Z3aWbaCpRBUYZrtaNJyEbi0R4fxie3tK1vh0jlC0Ilq4TQgILXqpYAVosTJYyQB+sy6q4QsfupNP6AlvWfY/+k97vQnFrjkmhWg/3aZWRKBaeblb/6dv+/jn/vef/BzP/PC81/eu/7yK6++tj+d7lfp89/7k3/8T/2r1x75j/7O//Ove3PUJW6mqd6s27ZtW0xbY7Zxk8salx+/MJs1UeLkYMJKkyZvDWJWzJpUl/a5x4dPX4rbOwUTR66Y6lhEwAwGh4jIwo1HPRPJ3I/fbSn7Cgdz7eMYmHgubYHMnJlB1ucTMjO4weEOcxfzCAnEmZJ7FnZXjSFIqJpOi7LQ1EjBmrrIMu2a8zvDj32IX99/s70FZt6suSxwNE1OHBhFkKxZCulSJkJdchWY1WvgwvmaM9pWWfOF89VsNlODEUYRo2Cc20e2d55+5qmf+l/+6eLiY6GIWBTnOTW2vnbomGtuOCatr2ubtBzlXltYC5A4tVRXt/DlhXc9G3eb0ASE9x4CevfA2BlGkPtDq5Fzd4lVUQ+Su5u5KblJYDBE2KgbbY3OtXZ+P+/tTlQ71e7lF1/f2dlwKpxCl2xzNDw62NvfO6pGNVd1DCADuak7SMq6Dsjd2DVKbrIrCRlxYhJXZ6aqiLVwFeo6CkIORQQpmkMokmdLObESu2sCkIUUHpyECk002Cg6O5BY0ObTmx/+sVbOhTk2iYUu2ufgWmwKd+3K92Z+3PsjTiiQx5bU8Rudlv7pHqbfXVtyYiW/axB1gTD2WWNWzqerMekfdCxyb6HrYB4X5lxSlbX94Z/8bZ/+zLf95X//3/+FX/yHB0eH1x6/+uHnPjo9nA63Rj/0Qz+A6exP/4k/1WRljgao0swxPL+9tX3+5a+9Vu/U7eGMAo4mXfBQlcPkdgC8ejvtDGhnZ2NQYlTZYCAS57qjkYFB4iIcQkAQhxExej5OcOLsECEQUpuIxU2LomzbBj7PR0vG7pw767oMSAzRXQHv7VVCQsiBpUMmYpZ5qXUDu1vuC+mxdA6OIZqGQTltu6ZpUzLmMNocdk1quvZDH/vIM08/8fpXXv6pf/53/L5/6fePD5NzuHDl0v7t29dvHPzsz/634TH8wT/wL3/+C9+voXRBVHenqx/6EDMJyMicwU6ByNx5kfGIFtG/vR8nrcYSAJYRAWu8+mESt5aq88MDAzxstErVxYASmUlx6Tt+8g/9uf/r//Zf+yMbfuvqE0+mWfvouVJUZodd6kyiSVW82RrvT86fG4XA02amnReRI4lmHjeaE80qTJJuRalipZKJRFVzUgBQIyLzBCcjUUHbZWSAWQLHoJe3B1vRd2pIwO2p1XVZlnVGzOr1oE9LBfIgTpbMKwBYRmL6mokUD9d0fD/pOCz7HtFdrNx9Q+ZbAR3zHlmL3J6DQO4oJQB85emP/PanP8LE8M4st+20nbUyvIiy/hf/6L/2L/z+P7D3+qu/9qVfuXXrlZwnu7dutl3a3xu72ebGuSef/fgnPv+5ja2tw9u3/uv/8v/xT3/+Z452Dxulo2keBbm0E568UF7cHMBjUVYkRQjBuZfzvc/9jzXDxZyv9Cn/fWHMABZn9mvK0SP/8yI35ObEZO6mSiGAmTz2ErFqBsB9iVMydYN5jGKWYxSHh8hd6kZ1EXa2VIvv7AK+vvfK9YOmTVFQFJAgW6MSrR0cKhmboYhhNNp4/KlHb766a7P2M5955tL5c9/8xhssUtXxcG+PN+vpbJym7bUrV6+/tvvRjz/3R//tf6fZeTQUEZhLUafg7JUxuBe1lnlWlv6htJYQ6fhk80X92dNI5bEDWhwtC4afjaqfVjSPU28BeI8m/H0xiD/ghbq4/RzhsyrWzbitWdUtFiLE6PU+CdnToK4uXRp5zjev729sDm+/sXfrxu6VaxcNntJshLqqy+nRbO/NveFgEAbwUIgUxp41CceiGhChHTdBtG1mvJj87sSx8CjCgRiJTKjKmc1crYObIwu5uEuIULOcBQIFAbHgsqonOo0VHenw4hM/1o4+IgIyd+ZeyMS6yaiPQ6e7hSo+hJvEGXPprlrMXXXgd0AnFta76aEFCrAOCfjcGnX8nLk1oOeXPH/heRYad0QpILZ97dqf+rf+gnoyQywiBc5dBjEzDm/d2Lhw8fXdN1mYszddN9je/uf+pT/y237PT9144eVXX/vm//Hf/UsvfvOFKhZUlftNG0pRolfHKZaDbU6RdGuzHI24HoSiEA5EgURIJIgIsTgzC4iE0GfRJXJzsKKXoD13DbmzgyECjiRKmtEIuMlN03REEmIQ5RAUZGasagQQMzOZmSCQwL0vCubmbsY+n8MWmYnIshaIQejaE4//yE/+xBd+8w+w87lLl577+DOVxKIqiLnaEAohqxWjzT/2Z/7UH/U/ycQxFiYU+jhj6U1K8z1YMAe34Mv6NXOHsN52TccZ08o7aGUHnmt484rOD4Nh4MRm8gGdovmidCcYSGBasGcvtj76o3/6P/wbf+r3/55f+rWvV3kD+1PdPjfcOXf9tdvZ8+aw2jtqb+5NLPuoLOoQxu1s1iQCUxFRCYiaVpuZTYpYBS5iWUfmaARVVTOAHIFFJCuyewblZFXAoKSNQOci7wwj0CqMEJl6NzpzBgB3ZDUmNLOD3O4XoyHW2HsvYXwg/a/olLT1Hqjp6y4fd7IGnGgdrTmRO4zAq6qlhDkv6mucEzkCHDFsxlEOCObw0chHw8HVp6595nuLwF03Y7DBk2aCiUSSWgLMgOwf+7YvvPhrP//X/9O//It/9+8NmYuiunyhuHi+kJKCREA0hCDcRxCjz/OzDINdwFgrAGsOhPd8cv66fVIjh4FAxHMmKuTuZppV3d3dRQKYzeaQkPU3ZyE3U+UQADK4hGBqIoGYg/vWxfhRKg739w+u25Rw6dzguU998vzFJy6e2/jKF3/lF3/pV7iUwUb91JNPffcXfviz3/mdVdwIIVx87MqlK5ebRCGWObuqc1kJE0yVOncqJbZEdZT5RrzYf49D82eO2LGB7eWuhcuCL6WyeccshhTvbCr26BydmNR3IH9vg4DvBX99y2sf5OJcGwZ3uAfhi+e3Z/tvGHssg6smVXKKMUrohDEsZGtUdlvlhcubRwdHL7z4TS5oa3vntVde3/XdzdHAyCeH472bt+UiyppVJAwCM1vOHGLJNXmw3IFE2xk8uXuGCRu8U00K7zwzyhhYnCQywExlWBjQqE8SownkLEEkttpUg42Zhgsf+6185TshdXAYOWwZ+7vs0l4UWdUAuHO3PESbxZlT6O7tWzLZU9c+ZE4aa2r9ensXOZPpRE5JWgEKcJArlWUFB5lA+tGmWEhfgn2wffnf+yt/5b/6L//zrz3/9emsefzxR//Zf/b3PvupT0gVnnjsmWdv3f5nfuvvPNi79dN/6I/8w1/4+Vmm6XjypuMmYTab/ZbveGQrNnWdy4LLIhZ14UQhhliwlIGDODOFwELqpEhuoCjcVwHO5s7MXHCwZERwS24GDkxCJEzBM1LSwIFqFkAkAK6AKaFXJ1ZCNjnAHABkszz3CHIykHsMoYyFZf19f+D3/+F/5ac3z53fuLgpcDNWt75kZZ8/yR1BeDgawgEUBiPmHqfpVeR5aodjPp5zHH/R/7SEa1amG58P3MJ5ZIF20eJjARo9sNRSb4MW+NEHdHeaO844iZlGYqtqfuTTf/b/8rf/47/8v/9v/qv/27mY9vf3uwzzkJIJtK7C4TS9ut+cG9rVne3zVT2Vw2bWtKlRYYQYq8LNupzbWaZGiVwIgSGEvtoGZSc2d2RL5BQDFyVXQcqgbNmVOLIIEYQMogQ4tMu5sySMus1Gpl07rs/CBj8Y8RWd2hLeg85Zf8TpzXVlmZtHeq2xnHWpeu7Au5AynZYi5ZpSEeb1d53MKRIosANlUffsp/ReDgATXAHA2ePG9se+84f+lUef/quDP/XL/93fDTFf2AgDoSoIk88TM8giBI2wwDyWEDdRX9WrzwPk5PPkb72vaw/8Y80cteSKPUclYpgbVJ0ciG7O7OgzOvfJhpx5nmKInDyrBkCYGJIL3hgNWPwzHx5988W9rSc/9yf+5B/93A/+qGKLWSPr9VdvDDfqQT0oypJC4cSqSSSCGI5BBQKKtR5nCuoBAHOffhu9usPzZi/8d5edseL1Kwvw8eEF0JfoW/BeouW+QMfPuzudnKsLhr6GOx07+aRhgd6TIOD7KD+eeJ/7TYSFvQoAETXt0aybAh6YTZUAy0YszFLXFWWdBCtKqspoOQ+r6mD36JsvvP7kMywxjCdNCCEwpdTuH+wx+855MreSq6J0EXF35lCNytw0RVGlJmiapbbtU7+bZTPLXUesRdQ2OQwcJVRFCEEtcBHKIrCLpoQgzNZ1MwlmYXuSLj3x+d+Ztz5mMgoGkC6rlK696lJ6fEs55OHaL86Yx4uDe5xpJzTJh0O/Oflaq3m4xkX6VB5za8BqKyDuERees3oOcZGCEgCIyMljxc9+4pN/4hOfhDkIUKhmFGAKZr6xc94cm6H6qd//B3/hV3+law7BZaasZb2XlWI9HIbhhldVKusixmhQFuEoCMIxOIuTODOBU/JAAiPACEwMS9ndmdlUXdUchpSde6ydg0OUua9hye6ZyAGjeTyZzSsDEDtB3UBQWHbvMnImS4CCHSFyWRRd6q49/tS/+id/erB1KQ4qIQZAggDx3lPHe6NXv9pNmJ0g4GXyid6gsGTnq+lxnDcvgf85FDff+hbBb4soG1oYbRbY/0MEwM7L0D8ELXkYaaXnYbHqvPdRZhHEAo9+6A/9O//B93zPc3/r3/uzr+wf7M/ijDBVRGFYV5ZxluzGuL09fePK9minKrfrajpr267rOgUjxMKjJ7Y2qxsAJqU+1ZcwRFgI5FoIV0GiWAkLvWDlcDchYiNycufWnCgF82xmzaySQCBPU7IOwAJSmMslDxnfe7/pve2C031+J6x36VSz9kl+DNztmc4q1eZqN58XUVxlrvM5Rr+WpXMpqzq451oMMycGQYgHO48/+wf/xJ/5t268PL758qiUIpYUCnIjqCHPA0vmdyFg/qBerJ0frlZQD33M0/24rfamvi3MbGZuRsTC5CIMYeFsydwMqurJnJSMmAisXghRD9PMrQ3mZiaROJChiHji8vDHfuz7/oU/+R9effIpk6IU7gOTrzz1zJwv87xji1DawoFzLtYv4JxeTBJa6i6r8r2+2mJpAbovLl3bm7FW2MuXiNHic/XjYl9Ynwlva26uLlxMknU14IR2sbzkvbEA3AdWcxdV5v4yMsKioCdsfPBmN5uKt2UcmSNbcjUICKiqMpJrszk9agaDUA+Lo72Da49defX67t4vP//Rj3/4aDplbs5v1mR5cji1ZERha8eJ3JWKIpAwMQEc6gHBpWRNgWeFdr1LqJOpK4rgpGqddamNiGUVu7YbbFWxrong2VAUZVG2zYyHMmkCbz33xKd+dyovc7khDuJ+vZ00Cvkife27y3n2fm4i6yxk/SXuvU39mcu18Y7NU8du964uXtfQjv+0hBXWWPccSVkM7uJ6WqYU8+WP7vDebaXnxM5MLNHh2tflghQRTeZPfOZzR+NGyrLpOiM/alPpfvtwdm1raJhJGaWOoSxUtRhUUsAFJEQSlYMJCdcE5qCelNzNdF5M1Ty7gsHgsgyZS8/CTK4WxFgc4hz7Pc5ATgIAIQaFWb8e2dzcFE7UdLlN2impkdocTQqFkKetjeEnPvOZYjCqtzawUOgXrHmNMfc9xexr0vuiDxenLWwBJwbWV0lV5jo0zRXqRb8v9+7FHtHvGLQMGng4pK++mQ9FUx566mdIj30aHKBSiiO37Sc+pkXJMYUQgk+ZvG06V69CdKGUaZb99aPZ4dh26rouyo2tIWBd0qbt2i5BeFiV7siqpj1mSIH7cjEikDrEALfcJLMg7MJOrm4GdqiQupsZ9yWc1Mmd3a1rmqp01dbX8OMT8+6DQQfea238hPZ1gumf5DMnvju+WS+Cg22Zbh9YqQdEx+7SC+S+9qylhDs/hQhuc3m6x5c4lDtP/Jbf+Qf+5n/y52NQin1NdQYRyJ2MyFniwqds4e8yZ/ZORH0O3bkYPd+gCATiOVNeSwuEueTlTkRRAgjMBEQwubqawdwBF45BzFQtOxNFFmYinvuDUi6Eg7gUsX70kR/8w38al56RIkRQNiMnJpJVKYL5rrn67PcCWrBzmvP0nr/bMl/6QhWgxbstUhrRsSW23KpXNdxWCsNqwIDlDyek3LekE9qCY/Vqp69f/24p+TxYBWCtB4Djr3e31t2Blr164tz7t3jnDSQid0qT6dGtN+oY2ykhs7CophBiCFFhmk2ibF8YZe2KugSxtnz+/Ohg0n7pS69x/cbsYHJpowzXdoZDcmhKM7ebbulc2HSP1oXRqBQRogAnU6fAQrGgqGU2cCEhlKEuopDP9vb337w5m3S51Y3h9mBrU+ohxTIKccxGOafk5Wivq6urn3j0k78rhVEo2F375PHeM4iTPTb3RfZ1ZvG26b1gnHeaGnSHBbO++k5M+hN3XFkt37X0776Q894hHd8Ojm9La0mCfDGm8+oqcz1gwZmWzGjuGL+6O/uCCfduMPMUQwvG7GTZLLCMRnUhoZtOOScAISjUX3np9R/5ru/bHE275oBCpcLlsKZBKYEUCiZwEC4oFBKHoRqk5pC0cVe4masEFoaZKuBkILWsGpyADDiEiQeDWEZ2UTMldmEykCsDzuyBkdRN1YzU++QSDgKxeHAQwShIoGRd23z/D//AcHsTto6G9VXG1vp0mal6+e0KJ+nF9DmTPI2Rn8Bx5mK0L5Je00Jr6JfWfIvog+4XNmPyh0Hwfv9b8K1DC3Rtvusz3NRLYUlWkXo3QxZquyB1DsHVVD13KRBRIdmxa37rcDIouo0iDMtYh1BUVYyhy9lSIpCY9WX0grAULCEwkyVVz+pJApRZi5iEVKxjDiQFOTnEPcAJRuSuXSwGSXPwEh41JdwXaOM9od8Is/FOe81pFG6duyxPWsqNK6l+8dcaZrHGzhZy5bG7rD9vlcTG50D9HNoGgz1Wn/n+H/yZ//dfrtKuaio9BGIQBTcx5SCLhP+0REV6tIXnbv3LDWfl1QrvAynn8VS9XaLPDkREbisGbZqJuDcaBCZmBgXnkgjumt2cnLN5JhYWMicrQuwsZ3NiKjYubz3+bOLIrksPJPRWlJXcvaYbr3fQWQIrrTg/rZL1rA3JMoHHek+j376dfL3P12zHS/fQE5kA70UzXX/g+tRaxmDcSaNYXvKeWABWaUvuzInuYemvK68PhlnQakyIYM3k8JYeHUYRNzfXIEHN3DxEYWYyFMQXr5w3ntx45fVrVy5y1I2RcMRLrx5cvXzhhRdfHB9Nn/3oEyVZTtPbt2/tHx59JDx65dI2E5ppdq+jBGYxmBBLKFrvwFIWNRdltpwVDgqh3BjUkp0ZVcHCUtVVUtKUQa5GRbW9O9546nv+x3Hr2ax1CGJmxIKVVLqcTo65lj53IHy//ZDfmu5F+r+Xa1eXLFfmWnGvh4AWy9mXWPJ6kxf233Uf9Dl205+/xs57NWBpZp17tiyDkvrxX6l+vVJhDiOXwkeDAQ2r116alEAACTRzUe2cY+D8+TrllsmqzWEPufSpHSgEdU7qRcUxRFhq2qmbSxA1N4AldGpFGTVnSyYxuMLVQGCWeliTuGV3duJeL2WHtzpLOTPY3ZjEsoHEHTFEEeXkEpmIck5dq2o2qCpkv3jpsoPA8xxta07uawL7ArJa7pNzpukgWqb5nHfsyRmyxncXZdqwDBlYwT3LEVnbi9e4/Ps/7x7mGICHUxzsk732/dYjiXJ481zBNweDo1sp1ANr1Kh3yTNiJYPAMc91KJMmpTaPJ21gKyQUwmVZSIjuJAGAgajL6m3SactCqsbkgVEVYauOpkYuPQcgwMzBfRp1MjVXJzAHGXc5VgNVa452uVdDaSEyPoR9uqD3rWl04v/7RqdBqDuIiMfOxzH582wsd+mWhnWp/5j0v45oLKTMOVdbwESnlz4tBOT5+VJuXt06d7m9casoCoCJ2EDqCTCmAgAxr6sm823FCdTXa3QQA8YIIM/eCQSYF7WkxeTsTWpuzkwL4QQi0uWOPEhgBtiJwcmyuTlUmLN1KWUisEhmH1YDYWJLwS0MZOPK4431JQ36emOrl/S51dbp2BAtt0tgTVpf6EVLfWsRH7YWyLvK+3C8R1d3PCav0FmfZ4z2PU7IOVK1avzZFoDTRA9eAVghlzihiK6fcmKVnKkLL+hOkt873TDWF93c6ZeIDITUFsEwKNvprJlMhqMhwSUynLqkIQiTwOEkg+Hw3LlzozI2uR1GubSz9Y03msOj6+c3tr720mS/ff27P3d1WFTTafP1F26++vr+cx9+/KnHL1w8tznuxqD9UBSjwZBMnCGxpAxYQIqCSDBtkuSwOdyKHI0NLJPJLJHEonSGUXXjxu1f//WXv++n/vU4/JxDYyA3ZRJfV+7XDlaB+t9SdLq5d2Kj61+emBVrXLD/8751wlkpgd/xrVa4TD8pF2wHxzjOnIlhIXAupf+VnrD2+itxf+7GSKtIVaLeKQjkGAy3v+d7vvf//tf+syvndjbr4tatXQK9+kZroa43ttUPJMaqjEAIwYpI2bKbM8MdIRZlVYlE8i4fknAgdnEyJwq1tmLKyBwIaipZTc1yR442zVTV1cy8DxvwDGFOaVJG1kwcoG0uijhNLs6aAKWCOYGIwOwSOHDhmQZVce3yFZqnnzum5CxMvkteO+9vrB0tAa0Fv38L+XjN1N5bXXyxX4CWGE/PlBfPXgiR77+I6w+r9I/3vWvuQItVNXcLMIB0d2eo9YH3mQpLJhNC9janEApVbZOCiJ3IPIiYe+veZW4NnA2zqROYhAgMZyZCn/OKnIyJisBEAifvNLKFKEIWXFidyMjILQjIWZwILqI8jAWbdYf7z3/xFy9/9PvrejSff99qPP89osVCvO8L8rQUcwKXPWNvWjtesqHT9z2+uy0ErGOcbA2hmJ/b7wxL5HrJ7Xw5O3rcCMQOJzUCXOTixQs338gMyTA3SIwhspE33hRUsQURBub2ZnJmkmzJyYTAwu7mc5OqBFTuCvJFNWAmc4AMIDcmMBl6hwVnd3aJcLCC2cxVc2KUBOcgBi2IKRboU3Qxd8lzmhGbsNuslWIUpJ7HCZzo8LkQsHawlFRXmyiWcnR/1pq3z2IE6NhdT1IPFSyY/zHB9ZjMvviuV6AWSNQJofgudPYs8tU8uQs9aAVgXaHF2W90d+kfp7rprk+6E925K48v0l59BeBsuQmRLETDTGLhBCdYViKKMRARzJ1IQiwqGW5vWttKiIOB72yFnUm8fnt6o0lFWV4/Sr/20s3HtyvVmLT45jcPnv/G15569Pqnn7v2+BPntjcI0k6nTQiRC8SyEpCQAyGnxg2k5llnOScLWeM4caOaD8ddc3tv/+DgYJpSktGHNh79WIIXRGZOLO529uivxQk9pHvsHchPTaZ7oROv6Me/Pa17vmO6D7L/WjsW6sRa7mBa41CLeK5FjZFFBrY1nkbH3s7XPpdaEM11CZ8zSXcwcXb9i3/5P/gf/Y7ftXf71pd/5Zf/i7/2N1ibMMwyGsSBlkKz2VjKIpaFeZo7s5BnAweEIjhx0qSqIUbu4SZGVsQ4OHf10nj/NkvbNUmIQG4wEepy5/AQBEJdNhiFKFmdiU0hLGp5rpmLB6ZEAJwZQsQKZHM1luCuhCAcN7Y2fQ17OJGXDgsfqXWhaLkx9GL/MaPZ3eeHH8d+FvvF/L+1THDHIob7x5yth98v7eCtZzet73If0D3QigWRA320isW6kmj1Rnk4bTx3bgwshH5QEHYnJ/c+lmWRes0WCXyJyM2Yub8dYORwMxEULHCKRIFAbg4yJ2Eh5VhGQkcszqRQ4kAkEkktOWFyOI5S3/jKl76vm1o97Gc8Fo3/YLhX9D71xUKPPCn43OM+chcpaM62fMHnFqf3bIWOqfxLlrRCK1aoBxETJ4vlYNOEDQjEQQIT9T7SDO4TgbrPA9MBYpL+al7wUYeD2Y3hxO4gGJnBQQJiciMwaYC4enb0NZcI7hA2WCBxz+ZGEOb+PfpcCkSEPsuQADCLLCl1g6IUyhUHcYVrr8vMg3bpjI5aKEt9Arj13fLYyQttapFJ8d4E83UlYlUj/lQo8D3c6xidec3yywWA6Msn3eUB74EF4MSEO/7j8ru33ycnBuJd87W5vu0LZXo2vTUeH8is2drabFqNMToyS3CDmYkIEXNgcyrIuBpO9rSWinny2NVR5JAnk3HHznL7IH/xhaPXqvHl86NpR3sHaTLVN/emB5PusVfffPLy6JErm5cubAyqrDO1KsGtEIFUOTfMzAwzawyHU+wd2q1puvXmwf7tg5wsW3dxZ/jkI+cufeRDMookWEj/ZwB7C7FvsdQXouW76rO3ogfxgHvnkmdei1OX368Wvtvk7usbtPvxm60gmvk8XaShXyI8x1O8rsMaJz/XIIwVBNwzbQckRinij/6O39a19s9Xf+Dbv/D9f/Uv/R/2X/w1ompjFAQHHKUoSwoxa7LcELF70pyDgzzDE4w0tSCHOsTNPWcURc2DLT887PIMJODUO/ObGzGpm1AgJxFiYqdoailbXVZtyhLIwSF5lzIgbm7ZYCAEci+FCmEjyore+BzKYsWzF+6a84L0fR+siflnDQHW5shb2cpObuCLaK9TLG1lHzqmbeDUKqFjt33ntK6XnE1vuT18QCdoTVuab7Psk6pCZKsK2R0nEniX5v3KToa+KB4Zee/qwLysL+E2j8kHCG4kRDD0qUiA4CiAQiiyRkYUFwluoek4EIwgoSBh64+JmEFEGcYcpB6EopjuTifT8WDr4rqqub7ffkAnxYj7dMu3lGKWjz3Nok+cc8atF3SmaLWGcgA9/1vINot0EHTqdCwvWmNeZO5mqKsBw4MwMTMLExEzMTFknginn8TkxAw43Mjd2UDsBgaTihs53C27mCOTE4GIWFwcCCgURkRs2jvCwQNAAhWeKyOYRy2CAOtj4N1NQXBmIbhZYme3HtrKNt1nyotkJydFIl/17ynYbPH3QoEBcByruZfRpdX/S7htwT1oCdjNTflzSKGX10/y/9OPOvHnaTUSWGQsuMMdlvRe1gE41YYTHXoP1/tZf97LNnbPCsXiyPPk4OaoLrQLgSNcJ+PJYFA55gw75xyY3GDsKBAQYlUI88b2ADnnafvcE9vfvDE7UnVOt/bzgfvtcdslyjPjGFOSr70yfe2N6a/Vu+c246NXN5+4tnV+Z3DxKg2qmHJmmVo2dW6afDjtbu41r1w/ePm13Zv7LbtcujAaDofXrp6/dLG6dD6e39lyE+Zl/t0zRnxtdtM9aIb3hx7OPeZM5nf6z3d2z/tBDjq1qnt5fVm4ba4h9CZcP7EuQGfoA+t3W51La8jEPKsaQZ3Y6yK0XfeDP/aTP/GjP/L8L/x/efzl5LvuYC5iNaJYUmo7VQkE9SCAWW47S2MQPKcAGIxBbkROIQ7cpCjLWZMDAwQmTt4nVGGaF9YyIgKLGYgp5xzL2OVMIuwoSmsSnLUogpOQolGmRkOQkMnVCcQgy8Ygdzc3EV7tZv0+tWTqbzFgd5ojZw3WUifDSg9b4D6rDl9q4MeVAz92k/u/Yj6Q9O4rnRg7Mu/GLJItqZEjkqc+n6w7OZwBQ59WtldCiedh4QSQQXsMk3sXOgfg0ic6DPO0K4CZuwEQMaNZwrhNiWzIUgeBZZgDRMRE5J6BoJ4Hw6FI/NCzT8eyr1p6TLX9QOtb0QPoiBOa95lPoONs4YRsc0I9OHnZAry709pe/baWf2Y9veWJc5c8cu6uuHBZIXJQLsqSKBBx78/CvSLAMs8qtB4Pu0hKRwyHmzkReJ4EFACDnahPSkgrQcXd2R190iBjEBAYwfvM/LAlrELz/YmcnInccw91m1MEmJlidFWHGtp0cIso+1ybXllC7jxqa663a1G06yZiWju6G2Oltf9pfSb4YgvvlQIsP9cGd90LaNnyu9HpE5Ztfkux+j1TAM7Y3o61765vub5a8KAQ3IXm3MsIpEcHt3Zv7w7I8nhqhKIoqC81akbmzERCzq5dBhBDrIcVEbrcDjbLutDHL1au9PpRmsySgyTELtOksZwduR1shoZCSjhI+tpu9/wr4xhfu3ppdPXS5vaokhABb2fddJb3D5tb+03TakG+UctGxcMtunQem0N69GJx4eLg/E413BgQi581Lde6bjHnHEvF81toH1iuwHtQFe+VTnTAQ9Efi0acie5g5Si4YPN+8uT5TY7Tnd9rbU8ghi8CxojhHkRkY5Tb6ad/5Ief/29ez+lAPCTXwikghII1zRgE7Vj6PMxJk4JdrBNxUmIQiQQzTgncIY+jG3IiuLMwB5ABWkhhqs6u2dQ0pdzMurbVEEomEhJzY0IU1EXMFJmIFNoaQU2VhcTIzRgOcwIRi3vvZbHYL6n3o1qkPbpvdHy7Xxu+OfP2+Sj5W8/dBzH77nbP93+2f6vRKnE3Ae4CE52hL2XXKZEAieFGLjyHHZnYQc5mbg7q6366u8Po2MLuA0jgUAJJHxXQO0MY4KSKqeWZp1lSZVz1CszZFMbRHAY1MiM4pZSDUyH11uVrdVX1Jt8VJPze99rDTMtgn/fn4ScPTv96km3Mm3o3uZDWjuj4LU4FFSy0hP5o4T6yPImJYyyZaY7YMy/8cHo8mxayvBGBe50B6mbEjN5BCABs7ivU50twNiciNzKHEiNrArlZvyqCkClngzuZWl4kUcMi9pmEARjxvHQwgUKQQASwWw4gAYlnV4fg+MZ+l27ztXNO8PEzrr77lFlX6pZ5IRYFEhadvewRLD2O1hV1p3uYlyeEltOje/emvmcKwJmYNHBCFT7e3uVPfvy09cvXf33XMq2vtcqmR0ddl3IziUGq4ZCIifv8IMw8N3YRLEggEjOPoYAnDeKiO1t1nqVPf+rSk21ZfOnV20fT/aM87SyIECR1uZllKOoqSoxmZhwmnR292nzztSmbJWWKEgsODiaYyzBW50bx/CZtbMbRTnnu/HA0HF65srF9rh4NAgeo5iB22qt41UvrAaOLSJb+jHuaaA8NrU+Ad9ns05e/nzrA2rPvFqS9Om0JUCyQ5TsCR0taLbJjsNMitrj3UV54EVL/pKKqvG2UiuwoCGUsQyw6tRDJOAg5iXieW38DGdxcNWsKzO5OkMg03d+N9bQZH4ib5+yeXamvQNBDQixkBidSs5y1azNRgDuLsJmAxDmwMpGw99iPOuBGEOpxqR5AFSIhIXbw4u2Wrwcsjx7UMC9gpCXnWuvkZXP6P/0Yq3tAdLdXfSg03m8tWnEfNyfKXW6mmQsHqWWARAhEcOq3CCILfU4JFjd36zPYgvpQcAL37NhdqA9nBxOCoPf7LwUFexU4EKtRY7qbsytdQmRjcgeUHOwOU0LhcCKOxdAlGMg8qC5n/gd0Np2A3u/7iriLyeXd4FknxKH1Z2ENV14hEWc3YQl0H0djF7gSAzEUTNJD+Szz+BW4Ewstdh0Gg8BL93Pq7Qjz0ieYWwds7sPqWKi1CsCtLxNADALYFIZMRAZXMw4eetyG+sK1/RbmDjD1VWPQB9Q4hAmmnuFSFkURVlvAqsPuQrSmH52Ms367E2MuyZ4ce5/H3GG5Kldy6ypXxGqLWAF9d3r8mRNgNQ3uKhX7g1MA1ltwp3l+4tszx4eO/3T6Ze6uAN3ptDuc0t/BGSCIZkJWIoSy2Nze6pqOyImlLzrRJwZld4YISfaOCM5cDmKaTAcjDkOJlQwSP/toPZ7xS69PXrs5TZRboBihKKWKpSd0kyaKw3IIEOaSmAxlzVxFJq6YSsqDGLaHo0vbcediUQ7CxtZwc3NzMBgONwquIBtUbZFIolV47xk9vMh77qvDxUkPWgh4yOWMExr++9Ta9bFbcILTE33NxRxLXrHOuHD2QvL1S5bww/LnNbGmL7HeF9dapEozqsoLVy6kV78eICBS1aIojTQUQ88TUMjaEBv6Er3qwtR2nYQIZ7AJwW3SjfeiZXYiCVlJGSwmpH3NL3ciYoKZO1xcpagLMwtRTJ1BrEwsAFLqUqddRmpBREXB1Ga1LFL1jPLo6Oi896sYwDFvSOCY8nufqWfVfocVeOLc9UzS78vyWKmMDx3dS5e8P9223LsJSk6z/e7gRjbqkgRxpC4ECUFSygDgNk8pu8T9mMmsX2I0j2QEQXzhBidEgRCECuZCUHAuGLGACJMyQDFgEHi7LEoOADmUWEAgpwAPZpHYJcDdHE1qT2Fod5ElPqAHq4ivH/jxL+/lwtXfd96y6dTBamNZ5kE7yZaWKMVSBFp6qTn6rFQi1te+6GN2SXp7AJZOLfPIYMD7xSHE0HkCfvZ5cQETdnV3F3N3OMHcjYjdySwIFTC4zjg6HJYzMYjYnMhNQOgd6gDPyoHMrdczer+MzIbckbZuSJa9mc0Vi3vp5zU96RhrWf5Pq36iO6RvWF9jc7h/7ZyFw8+Jkafjj1n7z1dX4Q55/U+814mbnrr7GS8dHgQjPXXHtYl11/bdaZxOiPh30W/upPHc+Q1PntuPnSIU9XZRlFXBDulMldQVElz6qUfam3IJnlyzZiZ2U3Fk7aaT/c1ycHhr783dwwEVw0EsrtUXtqQcbtw6mu4ezDRrySkUkUPBsFa7NueiKIIZco6sw1pCKcOqHJX1dl2cP7+1tRHjgEMZRhvD0WhYVdWg5jCMoYRUG8wCMBa1vU5v76tsL6df+IHpAHcBP9493a/b3uNqeWC0TBK2HhW6ZDPHZ/v6kNLxz7syudPr8WzOSJiXrIKjL4EOJw/Qpm0bZgQJ5m5uSK1UEUXMFiABwuZK5gRjIc29QMRM4jAHYmA2VnNzdVNnyplV+whGZXIDMQVCDsKZrB6MJEo7awB3hrtn06zqDmEuInVqzM5OcJg6EVs2Dsg5vfC1rz/5kY/2egVOddh7Q33frnxKT3X1kk35KtLsfjdwMaOOBZud3LgeLmnw3jnGqb36vaDFOC28l8dv2HSvbZpx02Xtk3eBbO76T0zk5uA+9boQAcQh9MyYAe4LXhAAZyJ2L5gCUxEokAt7JC8jF4zAJuJD94ux3Ai4PALrVDsuKiIgq4kYWGfJQjUSeNdMNoYR7cHscHe4cX7VZ996+Z8fMK1BvQ/sCauD+/CUNSAHbzX5l1jR3AV+af4/1o6z29UrC0wQYXMPHPtyWmpKSlIwiOdRW8s2EalmJjJiV5cQLGeDucA8EzRnNxLTTCGY5iKqqZt6O5nWGyNi5ixJKcZo2YwQi9DMmrIaZFe4W24kFGqMbEwUI7mBmYuisJSFJTBnyxQ5kBEUPi9GvHjDO/bWIlXE3USAuctOL0EdyxJ0St3qhaxjTH1N/jpjCNYG7Nh08RN41Z2uW+0md3rDtSdgjXmGB8E/1+44d4Jd1wHWm/K29qLT2u3p8+80gMefta4mnPFMh6vRxvmLdVUiTXfObzmxc5lycoORrj2P4MSOwDWRE7E2uQghbl2eHk6mqR0WcaPYToZ2ervaLi4+tnN5Ut16cxydNqqQpmlvf+yRPQ4UVlXlQAqddcMa2xeGsZSNjUFVxkFdVGVZlhKqEAoaDgflIA4GpVBukTRL57FAyX0e8vkcXSmzWM6MM3n/fZX+jytjvaD5AHecB7H9vw8I2aKA7zH1deFJQos2ncTufAHpLAyvb++Zi8/TOsD8PwLc5kZeA3EMAcREzqnrQnBrLVaDshg0zRFxCO7ZNEjIKQmLeWDqw2mYAFNVNZYiWcNCrh4CQV0dveMyi2c1OGsGIU7G01hGJrgZ3F2diIrAZsGNxDmqh9yRQ5MRPAg3XQ5VEUL54jdfNjPmY8k/5322/or3nY7vzet02iZwrFDDfZhzJ1CRVXtOtu+OFz4U9Fas+63Pf+A0V6vYEaJOGTnGEGLM2hibMZhEnLJmAgQCJ+9dJhwAWGAO6nMTms09hVwDcWAKsEAogEgoAkcWAQpH4VoEVAXKMhaU6xLO4u6a4CzERWAhdxWfpPGoDHUVAlJoDsRmAFaRPg/RUP8GorsDt++AzkQ5zzxt2QI6+eC5KWGVQ2JpIljkCXKgR+hFBOYSWLPGGERC0izMTOQgNUev7hJJCJ6NIbEI03YC0kLKLuc+yUMHN1WG151d6wABAABJREFUA8pBjsYdcxGKONjYmE7HRQnPBNje4bgeDMtRpW27ORyOZ8r10D3pLBEMHEM0Ek9Zq1jEwA6LRfScKSAUgcFCWtTliQ6/W8/fi2FsmbcXK8z09GXz3qS1rG9Oc+iOliDfQixaYnHr+/EJ0W3tISd+PP1Sb2NKAPRALQB30XBO78p01ueZ1979y7e8CYCzRIKTN2VAXIeDwto4m06CVCSMnnWD3UHMfWk7AA5jIbjDJYSiCIVxt1FXUcpyIwyL0e39/brk5EBqt0oKW1IH5pyqYfHU1StZTNmlDuKwcWetXbm6PbqwGQSxjLEsUZaxKEIgKSQISYyjzVE2I2KO7GSWzRUuRljWITo5o98/zv8AJYwHcd/3sqNOJmbw1f8rO+PSQkBLoGLVUF8kL1jeZsnB1889+dxTfGRJC10Ra+6aIImxGEoo3Fp1EAXNyS0HiQCSkTuDRSSatk6AswPufa4G7pGYwKKaA0fPiQWe5kGS7soSTBXo5STKKeWUHF6WcR7LS3PLlpuai8KUDAQmMlN2CFMQKguZdfnXf/WrbscT/K+93YOmfuB87fgYre1F/SpdsP97lgoW3G1ehAF3fqulw9iJYgXH23uvz30P6QQQ9rbOf5B0bPCcgO4wk2UmBYUYKHXZLOsilyfgBrATnH0hEbgth4IZDBcGOwlByIUQmIQR2AMjMAIoihXBCvZIHEmZzPscKUzEZO6m1oduWiYP0aRqsnHkrp0dHR5uz9fwsfTjD7SPHsYpdQ/04Jr9VgLHu73nmXRK6/BFeZn5BCQsI34X0b9rmab7c7gPpmLRbOQWQ5zHtjhgcFmuCeqZtKkRkDw1s6aKVVXGw4OjUHI7PuQYuNrObQKNCUkoDEebalWTU9scMhIzZ4TJ5Oj8tUs3d98suzgMHDlKKH79xets3SM7g2pzcPtWQ+300uUdNTM3NZipkMcgIgyoMAUYxdINkOXr37HnT2NrZ3YmrQLkjkn/x0DPBT/21Y3X8P5FEPTaKXTsySfuSHfk2meO8jtYeg/QAnBc8Tr2Kide6y4/nb7t6S/v9NpvxezO/sX7hIFd9+pLX261hRkTnJSE4Ox9tlphB3pLgMF9XnaLmINzlhBYJGlXF2WIxbRLs6bd2h6q2fmtKlbFtJI0abJ2W5tFtVErsrttbA8DqDs6yp1deHQ4unTekYN4UVYIBQgwIIgF4jJKGd09pRkLCZhTR57cI9EylexcB1i913ti+10sDO/TdfV/fKtuCA+elhGpayx38XF6wOYmgeX4OrAc71WxweVVd3HwXl96J9R1P/Ys6u9uDhYQuaqRVCws5tPmwAKHWElRpdac4EEZlNUA8bkM3jsVgUnM3U37vxxgIRY3UgURs6uCiGAchTs3B8zm+eaQmUBEZq6e1azLlNSZIMwMhEhCFBiac1WNHn/6WijimQHxD34mrow5wFsYZtZ0PL+3Bq6P1XKYcSpJ9frhXTWEh5Xu0t4z++i9er/luptHeli7l7q2bdrUdvDevY3IQctTqPf158XCJcztUs5EvEqv6EQg9/6YiUiImIjB7MwgYiZA2BwxMvqweBYBsc/LBTo8EITNoCIhg1TTdDZxZ+K1oqZrSMG3HIDyrbiZ3AUPfTf37Onu8s/xP3s1cB5DNhdNFy2b25tXlbAWIiwIzH2Brz5LFTOjz+WJ9XJj/fwlJyJizzkWRdPlNitJ3NvbL4JI3PjZX3rl1s3dL3z3M5d2Bu1sRsL/5Mvf2D8a/9j3f3568Hrm8KWvvVrFotzUW2+Om9nkez77CVN8/fWX/unz3/zJH/hebQ5Uwo2bN/ZvvL61/cmqLkWYGSKsKTuglosgYrmX1Z2XG9nZ3T9njseDIu98Jk6cdkxYXaJ1K/F/Hrq8VjxkDXk7/Uw/fsdTLfK1z9OnvIM55u9lHYAHt3Tvctu7wkgnW7TQyJxg44NXX/jyL4/CPqd2MKqJKEok8ZzznKs7ORnIuC9mBzc4ubF7EOJCcs6mPG1nbWdwGxQxZd8cxFgIzdBWlsjKuiuCl2U5GA1GWxXnFC+M3rhxwL63tXkJoQqRirIEokGyZgNzGRACSQ7OagisnlwkiJCt/PtPoYrH/IwfIBf15aJa0rccw34vaYHRLsEX3MkzZCEpLsZ3+S2O8aV1xnBvO8+JK043EXCSPhc/QE4CYULyIOQ+NXeORRSwUm46AExkMAPIAIaTuylBmCJTdlcjQyaQmdutvYPIsQx9Agkz9EmEcuoaNtGq6NvmTMwkzEGoCJyMcs5ScJdImNlB7jFwM2m2BptPPPEIE/UKyLuY6/d+6XEM6EQ66TP7f+HZRYvzfGnLOUNPX98ZVoEii0pmZ1j3j82be1IqPqB7pWViEwO0OWIqPUfhmFJLElNK1q+TBbvt/eB6OYSwwBHBDBLqIwH6sJsFaLiWKpDIpU9K4X2SFEMvgcEckcDMzEx9OpQ+q1AIwUH9cimrEDgxrwGLp1jF/e+f92Q+vTfWjAdB682+L1rBPWnLtNpiaNWCOd/oDxfQ/yqrhPe2zKVT8Rz8diZ2YsNc3u8jgPu7mDqT9dcdHI7bLk8ms0uXNxy6ezD9yktvuPmvfPnr/8wPfXtZD2/dGo9nbZNmTW5HmztHbXrpxmuf/+Sn6lHZdRnCTW6KWDWpe+Ty+eGwNCp1lra2Ro9efC5GSamdtVZXsYqxKMJc0CaYZZfsbjzvA1/U1jsl8q1yatzbVDpTNF+/9CSitm5yeasRu8tt70AnTnm7a4EeqAJwvHEPMNXkvQzdvZyzJlp10/1XJns3pUhlkFdeur61WW9e3K6GNfFcDGKwg0h4Lra5gSBZWZO5wX3z3Oa0yUwUCqoKIc9FyVXFuWsjWzEqhhdGzWxaRGZoWVAsvChDPazf3MPs4BY1j8TNkZuAiYWJxZ2ZJBZRzQElZ+RoRM7FDFuFViEszbzHpcSTcsUD5Jnrt15nc99ybPo9opUwtxqvpfS4Sh/cf9/HEB1n4Qu+dlJbOHlwBzrNQXx5hMV+AHN3ZjaOIgELGJPJyRKpZB04xxA848jNidisT2E+bx0R9zWRaJ7xh0DGSjBcv3lrox5eu3g+K6kaGIEgoa+MZKZwODFBHQ4RKqLAQ6cQcTYWeBnD1DRymE6b4CHN0t6N3a5pirJcvskdIJW709uds2vjt4arna2CLbbbxSU+twOcvROtg0ZLncYXcNNSK1g+an3ZnVQkP6B3Sb247mQK5qMbOXcKItYQ3Dq4w0A215sXQ9QLJgtvv2M52MixqJ8EUL9q+pJLRGCCANSbyxjCJBx6mcLdnNzIncgJqpqyBXImEJC6NrKQ5/HedW2zlO/E1/edTZv3Rq94Ryv6vaYzO/COLPe+PmV58+VJS5fIXhM4xipwvBHHGsRQQHtkvy+wCHY4zDIgRDBehFuZmZm1SZ1QlSVY+lydTeMU+eK5c09e3tnbO7qwuZGn7Sx1u9dvnquqK1ujZrfZOL/ZzZpPPvfsqKzQ+VOPPp7Ep50b/LHLVz/86FAPZrlrti5thsv1RjmYNA3HYhAocm9tBhHclFiYnMnVzc1729ed6ETZxndPK1Pu6gHLxNAn4gbe6qGnfjypXJySr97ua7wXFoB1SPhBQND3hnKe+bjVdavaawB6j03HuXPbAxo348n0aLy7e+Px+Pjl8ipx6Gs8GtxgkYJDCc4gIgviHDx3rp5iXZXCg7Lw7M30yI3KojB3Yy8GpQhvbAzr4cApm3exEGJSUo7l5auPXH/p1enheDQsqY6dG8MYmRgkfZFT7VLLznCREJKHWNUQObbcjylf7ylYcmIJ9A8+wW3ucu3dm3rip/uIA70Pe8k6DLPIlrxsjK9pBXNR7sxXXcvuesY6eKu1cZe3XpQugTs853Y6kaxBiqQOArMIMWk3nR5aVYeiym0Cc+9CR/1RnzaOiMBqZp7d3RaVxhwWJVy6eEkWNWKYCQZ1xCCj0ajLORahS8bERgaQmcON2JjBZAoSoigibD065aYOz526nVgB73ienOCuJ3jYyYU2Z3YnNLJltPY6819esdgjluO7lvph7bf1vWqlpTmWONaxRh172ltKIR/Q2yAiwIkQkGc3XmiacWcK74hg5hDSDBADOl+zi6vmYCCtljPRvAJTXziAQEwkAhafY/gLDQ8LS0LvhmwAMcFhWR0OZyKBGgJZTpSzBDa31M1233zNTfvCle9fl70rOhNgve/0QHvnTB584st3rwncrQFLIWydTyxsiFgqq+sN6b9xV03Us/E5/uBqmowM7g6WuZTv7qp91h0vi8py3hwNrPaL5zfNkpCFlL7zY082quc3RLVJqfm2b/vUl3/1hUcef4TNctYo/IlnPtI102lzeOX8pVffvFkNRmR+ceNcpHLWHmqohXgYi5SaMrLBVZXcg0BNhYOBhIOECDdHWBU4u8OkeYdz6c6Xnf0QWgzAW5575wee+DyzIe+Azz9YBeDkrjSHre61cfdOpxXaM9tw9nXHe9ThjlBeeMzqTc9p6/KQBxvGurmxxVLAqddzHSAOhGBQCJHN91xiZ3YLpGJUMUd2ViSUXFRVZWDiIpYSAhA5cFSXGAspBA4uJLNWG4Od7XM+SzTxclQosZEZAIgwgcBBTJlJi0IK8WhUkAVTp9Db7Po80+sc5cFxljvR8uF92Yv50K+rg4uGnR6du0qld/vz3dD7IBLRGUd9rrEeEVxkAV0A/2fWb17afHped1JDukcFGThxUl+dCH0OTg1ihCSBUk7uZMZuTFLnrs2kO+c3qnPnD15t9ndn20UB1z7jYfZs8IBAIIM6SDi4OsjU3ayD48rF82rJu6TOFMlbzzlnQ1EGMAkLEXMQAkgBJgYFA5mKuy98JMTcPUuQYV1RJcOdQTmozJRZcFeOeQ9Edzi4AzvBQj5f8KNVWbBFdbX1MVlsv2tagS+8av24n9CJM9b3al+M2IrFHtvrTzucfisKg+89EzuDVlo4Czi3jbqAWIi0y96SCDFTNgMczgbr+3/uVu3L4QTNy/M6G4iZHYGJYNSnUwGRMcjQOwCZm5KKERARAgcYyBikpp47DSU5sRppStnHg+GQwM1kNnvzuuYk1LvSve3p/1Aoiscb8f63563I73CMUyLQOmteV/Df2bPO/PWE6LUCOheJgU/UBFpxKu+jv6RNyQDVHCUKSw+PzkO8qHBng4sTHMREzIVIWZeT8USYhqPSVFU9Z6WomwNcrEfjo/0u5IPJ/u2jW9eeuJytm+4dbJzbIM7TtMsSUIRb45vTyWHTTa9dvdJOxx5T683m1sZsNhkNB8IF3A2qlhgIEgMFAhGMYMQsFCSWvVbdL70znSuPf3HPXX+mFPL/Z+/fmiTJkvRA7PtUj5l7RGZWdVV1T3fPDTMYXBcLLnYhy5tAhLLkCx8ofOYDH/jjSCH5SKEsKaAIRXZFiBt3F8RFMBhgMD2DmelbdVdXVWZGhLvZUf34cMzczW8RkVmZWdndpV0d6W5uduxc9ajqUf10vriz0OioX8X7/P5fnU71gQdrevrru4sBwL0L483SqTT5YEcAO+kfoo28fvrRx3z5Yjtsvv0bnwwRLCUijC15I01MYeAApctFCZmSagBardYtuCty3NzdkVhfX18/ufZ+PdRUCuNQa806wHx9tbaeVZt+VbjC6sm1f8bhy+fmn0RUW1/NFqEpXgwwYzHidntTwTFt9eLHH2EjXTc/vYMTjSYo8O12+FFnHjK1wwjXthqxj7zfzePX5uxvZEv4GvaVmVXse2HWj/ZDt/Mi38f2Hs1o7svC7qB3J3Vin/3l4LXnK7TADZrA4SbIAwaQKTlpdCOr2FlnVp6u/ItPf/wJYrx9ftUVN46imaOpLALJREpAMgGRNBcjIUUoVcdtRjbF1UydF5qnD7e3m2qjhBaA1ipu5mlwF5iZWSNDkCIi0zDmuPn85g//1b/fbjar9WoHj7Tccb8aLXv7fHkHXO4cy+N8nfOWfDxAXIDITel4JOyPEXb6xPI5ziLmtIHvQtIeFeT2S0DvWwuq0K+vYN2qK32/Sk2OEaKZFTBAMWcIngOVcEILn7CtJGuBluCk97dgYCRnry83FKeRzuLeS1unMWXFEmE0RqVcyRg38BVSOW6JNG26/og7PJq+SRrwurS0SC5Nk0vee35HvmytvJ/OPsSTv8c1WB5RLUTKFtLbsgppvBlvX67W1+OYqzSYZWo3fUGwJbYzUjA3CFHr1VVXa4x1i5QizW0Yt+vVVTE8++CDm+3d97/3B+2gNtE9+fiTF5vnV+sn69XTMUI5qsaTqyt1T37++a3X248+skB88fz5k1URQjC4GRwUVCOz885owTEUhgl1l2xCNy75QBzwzzfHYHbpVxZWuXn8d3DfXM6L16TH2vYu1vPdKgCvO7cfKPONFdGmQEKgjfG0MDV2vRX3yj4UzKH546cgVLI5HhBojp/eGa1cbe7uNkN1eimFic661XW/XvVeCt2cIui+QnKbY1m596beVldPS5cZqVKvnq1KvVtf29DR+g4qDSiF5qBR5qtV3W7Xq9WYAxxD3ICDeM1pyu1iCqdO1zuXAM7OS87yzP0T4eyxwPKnX2raN2HREnEh9e0wG7n8dqHpOy5zUuJsdTgeiksdOPe5sJcYBRgEhYBMRSo6n3J7iarDrWJDrL/44e325pauEGU2ZhhtKiMltHwCRoJBZAPPMiEyht58myKQKcIkRR0Q6kuvTNMuNloGRCITZkYSMCFFmVODrJh3hYO6vnSlZKaZnWvgVyQdMt7d6Jz7fsqhF89N6+BQQePxgztNYC/bL37dL6f9s+3b7gBhubUdt39SRn7Z19S7pHldZEQgK8e763J1fU0WC0XSqhnAWjnN3GUHTxHBTWSaLxlIanJpE83NoBxhcKJjMzohIty9EBbRuQ1125cOYg/HOARVo+vL1VV3dVs1jlUi+07Ddru57VdPdyr019FnX5negLD08Bu+YvGXNqzlr6f6wBl6Lel/+RYtyufi777sOZ7o+N62Qy/ikzKhqG5KSOYvaxS36/WVRe26fhS6rtAZEZBKV4xGImI0o8PHcc4LlgRK0isUCUS3vTPr3Ff9pz/9zL378osv/+C3Pvrs5+MPP/vJhx+sPrnurz7s/8Uf/cW/+sM///3vP/0H/9P/tPO1ahSwbgd0XdaEIjQS1URnFitSuDsq6hDjZpw45nH3HHX2mzSNCkddv8P9PNl+dMiWT284oaOhxOHX15jAnMCKX5d0+OGoI8/WZlndN9LxZxt/WvID71rUSQQU44tPsXnpWeuooYasZbmYQPZJgUkm0w0FAmXOQhaR9M59DXMr7v2KpZTSQSZlZhhQx+1muE2qdN122Gy3tznmytfOtaFkjSdP1h9/5+PSr4RuTMkEo8wEpCDS3MzYdatSrvr+g65/Buva2TGmcZ2Ex2Pj4uXWvw06z+ZmX8LlPWdJJ39Pf31TdCynScKx7fyN0IV10RS3ex44+E0Xu0/QQvp/xQYcPrBQVQgD3A0EHDTQmSbvvFx119fdB89WH36w7nuDJRsuybzFqHksWwtfQYo1K21KWdccHMwbo0QiQZF0d6dJCWaiJQMDjdaZuxfvihdzWjECZgYzgjHGZhi6dd/wUfbuNzj48JXp1JDHgx93ly7N3Xl17hS35bkO2wjOD+q4hN1N2O0wO53xYMnsdAedlLGo6y+nSPi10S7HQ1d83N5YF8RNDrfEtpS2hSiVjQXvgD/nJxM4uO4TwIoIUHMeJskII0TBBIK0JvzXOg6xjczeVq5isCE2KFiV9dPV02Ict7dFeNI/WZVutVo/ueoK40iXfIW2vgdE/tLP0V0LjpgF7/36qnQkHR4VyMuWouN3zlYFCoAFFYBAJUrpu66DsXHsFlgyZbMhlRkZkQGo1hqZgEUScLPOvdtGrWabGj/44Y/+m//PP91W9c+e/NGf/ODP/vKnZfXko+99589++Jf/6B//85RVqHTlar26frL+je99u+t7N/vggw8A3g3bDFEGsZQOLILTTIR5AR1q+oaRppnVXjrLmgPSXqe3z/w9MwCz88+BfWa5M83qwau/ESdL9P6vp/SaJwDnUEz3rzwV+073wVeWTV6FTmt2r1o1OWOCAAxK5vbP//0///TnP/2NZ33f9Vx53VYvcDhT0eQhkvRgEk46cwrKUiaN/fUqM7uuSymV9GKljFGN43rVG62a9e5IrktZu1sCUZOVUt0GtoFR43bQNUmaO6blVhqGOhrAoikzZShXT7PtLgRl2fB998rtA+b/t8FdeVnHmxTZWcI54omPmRU7a8obpK9ri3m9914e0d0vPHX+eQRNAsgchzDbMUxC0Nj1RZluHS2lNPeEDTWG7UvUCoU8jchozjdU272lnApEWtJpMjNmIiePd7p5WpWZu9M5VNEG1QQNaJhCMrNaYxwVSUCilAn55FVknmN0nX3w9NqMmUka5hCsN8dtjtjbyUxf8vnlLfMH7QX4+Yed9a19W7oAHZSwKOie9szQ09Npwd5GcmwkOoQK/qr0GiaoXz6aOJeQhDMittuatQxhEa4IECYRFgnNcWFoYQB73WEqqrFAM86BH1PZzYJDTcnEDCDT6EYASSIVNbENdWC/6lt48TiGjDlUZ0YODvVc9TFsX/x8/ex7k544j9KjBut9cgB6n+ry+sTDz2ftA19lQV4y8B0P/Dz83P+zjBRqrGjCFOzXnVGWcue60CfbCnfxLDPO7WTDMlrW9M5rAimjGx1ArfX58y9/+id/8nf+079Vty8+eOrGzebm5ccfPPvOtz++vXv+k8/+o/nNh0/7jDv3Jxnjb3/3w+9++8MPn1xL6Fblbnt71dn16llD2kVAAic8Crq3CBpjcY5M5ezTfTH4ZcGqX3l68eTvdJ3HrHrx89LMgz04425EvsIkv+fRe5r3mgrAPRLlPfXgYVXeyIr+yoXMNdovCSDHv/jBHz7/4uWHXamb4Yo96dM+LxK0CWA2GyYcUWQZQBHdTG7JhAgzp1mEyDEjM9e+9q4vxYvXohi1gVQHp+jBUmxVOhOef/kLjJsP7COawzqjqwFBt8RtMnBMIjLT3Pxq9fQTWEMIgjAnl91190OH/G985+bJ11NOd0mAukdzeJfE17IKvFe0kyov/7r8dul+JZJ1rHVbJCBBb3w+hL5bx1hlDI2mwYtHECYza5pwOwkQk8aQJIGikWlOyxBhmamE0YxmSDNLM2JUJtDQJ8ikuXXGcYzUuB0jklE9MglrAZHelzqOXSmf/uiHqhVmB1vdvBG8oa49+3lBJx25W4g7BWKJ5rN3Vd2Ny1JMPFAmDgpd5ByYZMj2Zbqm88/NVT8DTvHa9CshoT2aDMKoGFAzakSoRtKomMIN91v95Paz08j3O01TCHYQ5bPEoIYYSsPeVCLNQ2mUIwPKcax9uSI8VGMYg1iverNVQEMNM1rkcPPyJz/58e//5t99D3jqe0kLPvg29sFDefvgRTp3G7DkD191zHZs/UgM1r7JOxS5GXFiZ5DOiR0ZAFgNWQeQcCiVIWtyk3YcRwANPqFZgcVLZQKepFJwlzRsti78/u/9lgSy3r344j//238jQ5taPMc/+Cu/9Zvf/yvX16sYno/jIA4ff+sjC8Y4qmjM6NgVZ1aQ5qULRleKmQKiVMyJBqOboKDUznKy79qTETro78dOAZ0M3L7PsbSQLwo8FowWQ7Ic9Qt09nV41Xof0leKATh95XIGn52+X2WBLRv55tYqgUPTGJFjzXqXEX/5559Fxvd/rzz71jPCp2ElTS4obSScBJStSiK8GGQ5ZguLpxu9G7YbMMD06G30riO7oip2rOOmlN77nualXxdzqMJydV2u+m6c0NJTMqAztIyOjBTlKe9Kn/k080NipZTmjBz77QQHDO5iF7x52uNTLl+kc5+XX3Xu68V3vD2x4/0Om9w3/FIX6AHZ7liQnMralc8dlAFh2t6hbgUNw8gCsghpVoqtxzoSIkZ3h2S0yCSdxpYjuzFE0o2KGAlIqjHWWodhZIpAqDKhiEREKIRECxgWKSfDUNxqwAgpStcNNZqzkBGUCj1DTlrp/+jf/BtpVPZmM8o6p/+/CXrE1rwTynfzmQvpX5y34MUS0ax0HiB+nsgF83hPAza/6OJCONrwv6E3QK3Tk3WD4UY5AB2USsFcNZpcRMwW0j2S1zRg0w3NmIQ5mLINkjWFgU5Yy4Axv7FtNKQET6ZkXekIUIpMZynFjbleXd8qom77J9cwifri858lNOFhzRPhmwkx0WXx7J28EzjHSl6bUy0Z04Hdb+cTenjb8ncsOI4AkplZ3J0laZaRqZCsKb9oh7pzuC2AyQG5hbgzxZopGMCf//yLL198+fHHH3/8nY+fPHmyuR2e9E+hhEMM1rsiPllx2I6llNXTJz//4he1bj948qRfXX3+818UGApvN9s6jB9+fL1+Uq66J8NQ63B7/ezKzNxYDO1wrGnZTjNzqHkbz6rMIWAyFtrL/GnHZB8bNLmU3oEF4z+/KR++AQte/oghvyQR7a6/xgR+AzEAh9PsQJQ46h3sTB2PE++OXnQspFy+81VJh1W0zr7z/U8++fa3KvjjX3z+xc0LZbNEGg1mc5J2mrGYFdqsXROCzMxXna87uJNevFv163698tJFxhBDEgGl5frZ1be/+51nH3/YX6/pLgqONMGK9dfoS3DMzAgpjXSwAAVwmNELvQBdqGR6pJpH3oHpeidpfB3WH53En56txT0XuZw8Or7hrbZJc8zl+0kLueDyLafL74T2u8Whzgg06aWJKGnYKDaKWkohGEhJpSuBjJpoMScTaqkaIhaNSQhMhahsYvjk5pxjHSNCmRk5uUc2D86pFk19bvtRQ6smAGUmQoCbm5lbMZDGYoZMVUBIxX/4o3//h//iX6N5rh628g2Np44/7gTxxbwk9tvIHoTuQC0/untpE5qTfOlkqjelZnmasVvix5jGBzcs7X7LD6/Eir8hAK23LGoMWxRPtGS8mFXmdgvnaQvORwKckVOajb85+jtZ6M6W7Its6bN3GCuYznGkliPMjQZaE8RoFMPcaWYwZKVV9+w69Q4bs7DEdmtLcLBlG76hxep67YVwftGdXDn90OgsU9qZdZdc/JHsizvTwAmjOqnb3q5wLEE23TTUKde+btCaZu5ejGZmBDNTOaWJnC5yzhpcvDaPOPNi63Fgf/XE3VrO96hBa5GMRsjdGz46gn/ygz/7R//sv//hT5//6MfPf/Ljn3tXfvazn5bCrvjH33n27d/42FQk/+lnP//siy9BtoTaRitezJ00FrdiMKMtMn0t/t3z4F3refD7DIExue0t2eoB/1503ZkePp0W+1Hkgaysc8UdFfJoDQGX6nOO3sAJAE+nzhkTmZbs57QT9zcd/qrFB540bCkmvp4CdPJuQQgjegfj4w+fuPHjZx9edeshAhPynsCQSBQjKaQYbdzUzsVopYgwOQHrvLvqvQhMsALWlT4zMod0bGkZlR2ve5dqNBjSrs9ufRcWnbm5s0QLZ2nxYICzz6zOPuEwrsqUPFKgNAcA8LBp75YmQW5xtnI0fGdH9ujD7uHdCSYO59VbbNb7Kvo3Wu4NF38+VATP3nhkAdprjJN4ak3YzJpRoyulg8bUFL1oKPKrVb/dDLBEJgiYZ7CYSWlsi8maq6ZAQy+AFn3pBkaw4Rp2Yx3VfOZg2dIeUDSYYLQAaPC0dEoV9Ey40YpLI8MoQZKpmG2HcQz9y3/+z//Of/FfANgHQhA4POp7A7QrbtovTrp3L963DE6TEwiX0HA7OZy7vwtD0X7olmaWOb77cGD3+o0WDGCXiIaThrDnljxT+rukr4MzfUVa5PPUXSAGmRqMf4MAnWM5SKg5Su8UgnnINJ3OTYjORpoxGyBoC9+YNF/CIGMiZUhFNm2caWIRXYwIp7eXZCS9MNmVdQwdr66vVqvVsw+uVr3var+QOn7Zev7tEI8/vka3nD5yVgK7VPIF0fy+ou6n84z//OtnTrB/cEKpJQjlePPZ81/8qFuv4m7b99513gDYGM1hM5bi8cROEiQVebXu6phu+cknT7/zvY+GYWtZV73BWMWUNuO4Kj27/m4bElGNvv7sZd5sr19syu//td/61//sn3z/f/bd/9Hf/Zu3492zj545NNzdPXvylCzPPnhqyn7VO1ljZGbXucHkKCr0UvrVvkqHmJt7UUSXBn2WXwBMMVnaIawsO07nHnh4eO4di4due7h4nJswZ8v7SgrAYvvbbyvLPVEX3nsk3i2v4/Di7s7Tx3Fy8+nXx7ZjL19KwDjk7c3Nh598sPpo9T2uAnNYrcHpSCRFFKNVjAWknEapEgk0x5+O3jns9uXzu7ubD5497VZPYDlsN91qDaMCbiUyrfPVugOxWq0yNla82Prq2YelXFn/VOWJc8WUuSlSVCgk9LAhtgFYuUaOzME4n/gdihV7GWIn170j4tLDDadC6aKOZyfrhS+LF7yhbex8Ie/3DvlAhc/oXBd1gKNCdlwPmFazWbH+qltdZX0eFGkCIgNjHbcv6+1LylLZ0ROyckVWozIrU+DktJaZYBHT6JFVilR9/vLLq74vpbhbRgqoSspTAgxycyPh5iGJ2RAUm2NESpmZUmSauXsmZe497SlXn3/2M9rUhqOGvTadORdeClPa3TbtqAswPUzuIJMHyE7NarvsvAOf8P/9Ve4K5qGb0EFdjpLd7GtyUObirmUVvw56j1fYWWo9l0jK3OqNIqHO0nLUEKqZsI7TuTrBnDOetJTYmAdD03QkQZjTWq6whpIlyYyg02xGL5FSRPO/SKVZg8niuvSAMkMdKnJFRK01qq2Kio9RO0Tzi27V3/X4L1vPvzVa9MnrcYgD0XLx+dSwtRCy93cese2z++Olr4/j6Y+5cxKAJlTzmUfQ8rM/+3d/+kf/pnfruo6wTLPCiATRdWU7BKaD/um4KgEjI4PWQtYjKMqyVmYSCUNmy5nhVhzO7TiUbg3vAmMkPvjwg+urXyjzP/75n37/d36jlNyOm+t1X4GMuF6tKUD1+9/5Tq0DJSnNrJTmLZeZOdTBECtrFvw5neYs/xz1/7kLCwy9RWLOeUCPUqedbK6HVqHzg3F025ER5qiWO0HuyIXrEZP1dFoe0ZuKAThu8fFmqYM968FZu1w2uDB9dXjnUa++GnGSk0lIedVb3N1pu+l7+Kq7uxstC1nIGgqqxSu6BGfJHEgYoxgYEFhD5jBqHO42mxvFBloTiKBz5SxOZkTpSr8qgOWI1VUPWd85EDXHhAlu3putcrSuWJonmQhLQEiF0fqy2ig245fd9vNrjYLP+JrHOtSbkpVfqUexmKhLle/ICnVmqi+ePcsuX8Mo8hg64MXvMHXaa9PBmJ5qWm3km1b+6MYsecyEHpk1WVgKI9GCdAGDQ6NyQwyGAvrdUOl9jVJh3tXMtCmPcPNgK6lqSjDhqMaErp8+7QJ1HGpWgwF0Fk37CN1sO47eW3PmaUlVjUSkWTGaJXrvt2HKvO689vbyZhhRxuDNi1vIdzL3snWvbVghuDPtHhshFvNy+ndp/NB8edpAZn6/c0k9qdCibC7YfnsBsVvSR9aQ5XpbFHW4yhaawjdi4CuSZkCpLdBt/uLZKkpmX3orNO8K/G7MESJdJJBkKgNEMUZEc56ASLOO6IhCUbVjw/5vmLYBhOBVYsgBIwvNGEYQ7FicqjnKUKvWXel7A9MVAIYw2WAattvb6PsY7uzLzzZDXe+PAb6hBb2drfF02zr9ygv3n7LqsyXcLx0dPX62kOM6TNlfJkyqZvO+u/kiaojqupVkKasjalQyLbqudJth23e9GQsdohkV2XersY4IuZkkNwMmlPJmTTcR0Kp41mrmUtSh1hzcu9/+7tUHT393vXpy1fOqT6q69xI7M/arqLWUrkYoKpXWnOZmpboKPUtXxOHOjGRD3Z2cIs52yyGdyheTuWXitYcjd16gfaQkuhzFozt19GXJ6ydV7XgDulD8cWEn9JViAI6quVBV2t+F/HZBnNJJZ+NEJz58xcGH03JefSEvdEOg+V7e3bzc3t4Ug0HK7Ppu1gAnz80EU0oEk4ZCg8ONHplDZAVyxiAvfXf19Onqat2V4u5WipcuU1ZcgDIFKBQZAmhOcxHBrBozQxkzgAQ05U8KIBpauhvdHOqIAu3gkg/0snbl6woCvDSUuDAvj7gSd0UcCjQPlvNKdH6yvf/i/6XZftyJy3ijh+l4k1BL3buOtIbVQ9FoDe3cZe5uRvOuX11fP/vw+7/9V5988FEwzU1kKnOWfw1UKpUKMN1pXXFzkmoZG0PRjENeCow5QZ8QUwQlmn3U3CKVMFHuJGUkMxmJhDnYTuJorQVHPOT1loL2/GXP03aF7iw4e8zyRZfvojF2TuFzCYfV4XH/H35tTubc8bqDF52bxGc3/uPSl4z7G3qI5lG1EO5+/Ee/+NlfZA7GcKM0RmbL/SsgEdOcMTRv/mJmJJQ7738CRBoSCiqLyTjlWG1nXaAmyGlMAHRTnCWSyBZALyAgp5WMPqMLrRydIm5uLdKBHJ87667239ABncbYHPz6qJVxtl+XBpmjD7uvRyLa0SI+3Pcujt79ykMTve5r41z2kR2CZAauP/z4g+/9xrbWm7u7CoQSkLtLGVEBdqUzJ3bJS4QGUgIglQCMnq0fDZMj5OT3hloT8BRyHJ3qzBi5Yn73gydPV3KMFM1LJIbISGWVWQEmJu/WcLJa1MEUlgBji5Asq1XLRL8zx+yG84xkvL/UGCIXvyyk/53of1TEWaXt9KvOXVzu1BdptzfM7Pxo1E8ePSskn155Y5mAOW9OC23lou57Dx2162y/XXj7a9NuRxdAyXOsAKKqu74eEl3xrJEgJzBOATYl12VLHAwzgG4oifHq6XVXisFUcn31bNV71zsoTzJ7uJubKCoS4UYrpGcoQTczel98cBM0KGt6b+aY1meII2EgUTwV7lf0rrv6aArCP0L8fDXZ783Tg+89K+7cr7keWT7eWtN0tObfDzpdTyf1O752Hgv0UstOVW4CcG9ZX5QBMGGCiIzMRBotkRHs4KExs9YIN2RISu6DGAVKSWUKWbzENiDdbe661TpCmSJNRiXM5gOIhiPUstITUrY1B9rkbQqkZOaKRCZTYx1qHZoRa2++OWndK9HsiXFwxLYDuprg2znJE5x3CO344k5mn31CGu6LuDNOXazaYpi5GxfOlYHOnPod3PaY1r3dpfSrRAKmMes2PzfDOHK7tWGQuWtII1wSch4vUmjeELsenqR/gpQpTTSi5cwgRbZAyTZ7NEcC76FF29YqEaKlHFnEklg7crRPB7Mcnq1vP/rg2wl66W1zy2GLbvWqu+SvyXy4V8Z4uA8WouIZS/Ou8F3nn+XgR5aye3bA+wdx/+vhffs23tMgtb1iYpcpmfP66QfPPvzgyx/GZhO2hhV3t0ggIGUxpwxIITVBFCInP02XcgpkJ3M6+GQLgyIdYVDzKFXxHOOuCTC04mZ0qxmSjIWdi0iJNAORaDDTMANl2inTpE0Quga4zdL/vtWPmdE8FKh3+8deMdh/PXew8EDZuMxql7LaxS3r3MNfYaGWN875F7NuD610v0h3dvaf1umsOvHVRP/TUpHKu9sv1+uSdxq2NUufEa6kswkzhFOUWgBwCHBYE8rLqmPHvvOMCvPSl96s703ISFkxZy8AUSPCkdZZ6Wnu1jkNgYSJjlJKO8AKxAISQi0haleYQIwK1fRBpfTXHybLcprvm/S+buxLA8l9gzgvilN7yfLxt1C/r8VH4tQYdPrT0ZWTR85ajSZjw14avseetAsNndxCAaQyQqnJrukd6aA3/isZ6eZlsxlutz+rGgrIDCgngRcEkIiYSud0miXd3d5uN+P6+mmto5mpOXVGgjAjY6pVKKUGomJANJUATWACSWSMNEcG6RLH7QCEYNQux9ID/fsQTaVotwnsGNBc1uJb2+c4/Q9L6840ElrCxCxfIyyvan/3ucGc96ADAfPotguL662kuf7VJwIQkdu4+9F/rNutcyWgHeXOM5QS51NXYn/ywyk4YDqtpWvWBFraUptmvU9W/7ZIJhQsW4wum8nJYC0harrToP6Pv+Q/+fOb66fjP3hytYqx53qdfPHF5zdffv7Bkw+hfGWR5VeeDmN1Tuix24umNX/pJQefz1pFdXLbPRVacpP7t87lU2des/x94pCT+aJB4LhfKTylGkHS2m00Gls+YKOlpIb5LAopSIqW/AsSzQibejnJlkZGBjgmqNskUgijW+kAJpQppeQQsOOUhGVWOnIas2Ri3l+odsgMQpoilZGzF3/rEO0wEs/1WxPsZ8n+wMhPYPGs9tvjA+N09uslU83Znx5D5yTmpSB9j0T9xlyAztF+yj3YMh2Ohxb/LS/i5Ov9qsXjaVFJ/ewvf3B780Ugb19sVA1qOYVEc2cxuDXXA4p00kgHLBOZ1vVPsFqVJz07pamyVtVE0kwtrhElouVVxXSEpTADnWzSjwSnyKTSJEYq2wmYmffderOtL778UqpCpjZiwFYNDx0XJtJ7uNXrbK1OjBb38MRD6esN09e0T/Jym+5p6yO7YWIF96ypo6uzw0lTBFr2u+aOEMzqzOb9kyyAe1cMdW1jx01BIuUwh5sapjkAJCjQaCYyUcyyim7Nh62dYWVGC95qG6qZTa5AkgHeVGGJlLUkwBRNqSjFu86KmdKh0hKWYWE5XXbEq9PEIXZwSbM5jYvIXjSNZLlfzHl/d6qBlufSZ6Twc0L8qUpwhqdfbtWFX/aKy3vIH95Pal1myM4ib77seiczapCJTAAtfa8TnICX2JA9Z3ceGOiAgw4Y4UYnWipTQ1sCbRLNrg2QcebuizPe5usgwwAM5KjuJq//4y82f/6j5/HSnoz2LeueoWAzqN7d3HwJYC/9fzPeOzoM5zmmR+tLO2vAhZfsl+39Bqz7lXZceMU9tVzuKAtLyOlduxdOH8xMyOuPvrW+emLUet1nKlIptmMpd+PkxjYFseckcJt2fHfih4KliGRJ9IEuYWEKzzQEMWhg8TbLjWaAlE1nGGtGzG6ks0VFnjAolYlIRaipHSlByoyUgIAqDtnbfRNfCwFqoRRqZvY7Z7HF9nhvv59y6lNp9ciuuZN6j0rmmU9vhN6wAnB5dj6W5Ux7/2lp9xbAR91139OTCQ10y5svfnr3/OXLL55fP3kmsfcOE9TzdL8INpBCAuZpTKnWKqOv15mkrPNOYI0MZSQTkFlVSPLiq9W66/u+64t7IjmB6LrBaQZz+SpLj9IRDV9IhEMlxlVuO086paxApbEBI6Z2UsXcD3O/vCdZbU9n9ZmlOa+EvT6uMwvn8N43Q+9HJ+3qoZOLlyr4+IofqwpnrQJnyo+RSNoEYq5IKQjAfAp4d4JwN6d62AxaktjjHZNqmVnM6GYmwt2ffevDq6dPQ5HIlkcMartG0qAUaRAJB5maMtQ0ecoIL24GNyPhjmKow+jFVterhlaKI1POK/bX+Y4hlnrFbDrbJ+DeK027oIA9h9o9uP/7YH1Ot5JX2gfuEU12DfiaNN5fJtoNU8LQ9auPPhqxCpn3vXddipoCxRMzes88/NMAzkJRO9Zt82OW7glBVBDNZbolwjMcTBGhCTi1qqVjRUJV2MLvgNtPev2Xv/3xP/hrv/PdJ0/qUDd1WzVa5+aTC9tOff2GJuIbm//36ADL8k9FwbMG2t1tr7Trnb35VMg8d/+Cm80sSoJCRl6vr7q+E5ttPhsGibLhVqHlm2vFtSMswxQq1pZBtpBJKRsCkDSFwRiEmqgwT/TN20FCUlAYWVMtIr6dAAtqrqHCbl01ib+lmbFWc2VKzKymBLDky/cJirM4ImCCVJ/7Y5amltrZYkgvBYrcv7kuBf3d3yP9T5cefsS77v1xV/AbiwHAoto8M8kevb44ge3jUvPPLTItfnlgt3uIsuaLLz53YdVfxZh+1W3vNte9R6QZ2kSGTya9UaOZy2xNvzIXqmViFEAvXYkxNTIlVbCjHFmtsHhnosHINGPfYB4mgTczEijOtdnTiq54yzET1MroUfPl55+5Dba+9uJKwFfwFWhGHU/Fna76XrL93XjNxtQTNrlfg/cJv1x8+Cqj/770z74eZ/jz3MCTaI9HV//++4QTF6CEhheIW2OUzocx6SxiRFAgrNBEyBSIiGoTcPLk/kKKZhlywpgOkhKRjGSUvi/GsW6F2k7B3EUg2tkup8BHd9YEEsY5F0akuRWY0Ywq7nUcSDD07MnqO9/51hyQpJ18/sj+eXQX7sQpzVrAwSRe8kMcDyCXcsAj33fKAr/abD/gFl+Rbf460MxERWCMLL1vt3c5lJKdQ6YsTXjfn/E0tX2nii58ENhC1OeZQAk2HXm1dBiEk06f1F5hcnpuko0jszm4OUySqo1ri7/7+x/2/knXy662Y78a4sa1+taHH1w/vQLAyXmBRx5l3xC+gvXnwX3nwp588U4+VObyhtes7r6o4zfM03bygB22N1989tNCK4UqdAeprOnFa4Y33EOjm09Z2Y0tl0UiW6yWEiJcHUBghEImQAZnWlIjRrALyOnGMiGdpNO9gjJWCnImHR5IeY4RTlAyGAHOyIwFMFQAZuR4qzpgte8x7CSN88rTrKUDmDyHdoBr2D/TGMASv+F+xMBT6WQp5Z9ODh4+e0nbOxWyD4b1AdrdsD8BeCPmT17s3kfqq5fVqeU77v3lbKc9ysZGCvLSfee3v/3sWx/c3W1/8oufR2q9WmeEkVI2PG8CJA3u7okMaVQdY7sdb59/+Ytxu7nqVxQygmRzE+q860oxZle6WltEewwxDFEToFmKonvpaJ6RhBvcWMCupYsRVEcNt/GzH//sF7/4wuhmblxBV8HScKTPd4n2s+69omNp/7LOfCpIcfEfTn795aaHJu65M81XajcvFHzymyZmF5vnqjeZY9QBioyQVKyQbtbNLpoCaOb0osmKlJkZiVRUjCPGGcxnOixOYBNDzbGjFba0vg3us+E3hBdrgffCtI5gZmaC3M3NM9MKI0YvHLfRtOV13z1dryeHa0zQ1m/hEOyeabv/YTeBdyN1yp1eddI+/OJXKuYbF6BH0y6dhCtc6vsOie3tcHszkJa1Auq8cIrf1awVaseFtbD9Y7oKAxwyNDnGncXhhoalnoBanGUqxHYyBoc7e6HLNADtcMxL9tdD7bcvVSNw3V8VOmps714C2G8Q30j/CzprZX888eTvI3Xp5So+a/66ZCO4dOXSSw+KPSvwH1/jrKWSmX/xx39++3y7Xj0p7kggVYxgkpiS2NElQtkEpEnFnKUwTXButOYtyWyuoEJKoQyfvSQBF3qxSG0TmVyMoFQGISHNEFGNLQLGoPbWVAanFClF1gkY734Rm5dzgxatP2eQPukFYWc4al+5d/qcLu+biOWn4xKPGL12E+4gTczBg6fP3iPcXP7pMZOwTK95oxzhVOc507/3C6XLNfQqtimdW054RAHEhBmyHba3L7al9/X1erVaibEJ9aWjzEhRBlKZFJBW6Z2NmSt2Rg6od5sXH1xdb++eu5FKVgpwd40hjjWHWgs8S9cZEApYCMyEl97dQtuUvFAW29jCeqORfc0MWrfyXjFqsCpWmhMqnXfmnjzbVQ8M7ddiCVq+75Il4zHmjV9Zm+V+KLmQW5cp9nh4L16tM3jAfO67cXJGNiIyBnMQ2eCAJoRPc8nNJSUFA0MN9rBHjCYkKEOiuU0gBSAyakYlJwbfdX3djiRqVEVKOdYxwzISQq0VsFpzHLM51mStDsuaRBnHQWFmjmgVxpNn1794efP5Z79AjrRuZ9BqHw5NN++Ozpp1AMx1+1oNsr+aq+jtkQDAQENZX1dthsTNxodUWXmVjEikGQETFVP2+BbGDqMl5m2eLHIakCMJA73QERTd4VRHdyvOlKIAxhYgSe9sDhsOhALeF+96g7rtOFYXtOIQMNZBL26+/PEP//Lj3/l7Zm2bwyTQfEMAHrClPpZOLbw49/X+x++p3qkwc1awxL376UNSogDu03oBoPn62Yuxo23Hl1lWxNqtU8ZApXvXGGoiaJMZvnlCKmlwUYlMSYaqKoNyzRTVUIOQLWhXpWQxVRkGbturDWbGRFCJrKRnBLouhb70Qw1vApZigsoFIwZoLOzM/Mq64YufITZzuDB2lvzlWOh+YxgWJwan3c1dUpDDbjwa9dO37n44Nf/fV49XIN034gdkO63mzRqBdPL38Jf580Vj54lV6lX09HPvfQQRkvq+M5e7lVXp+s4L2kQ1s1lkIUDCoXQvtVazrBrkCuX1k+vb4XaMTWoA5N513ap0PdwFdKWwJY1X0q3vV33Xd33f9SuzQtBMYtSMhMyMxpSiab5EKrq1/ZW//tsff/vjru+IcE/GhgjuwwxbU7j79H7Sab3Ocq57rryvLXtDpCUL2dtuLpguXrMzDpjiCR+YrBUCaXSHeaSJLigRgYiWuxRKIQkZrMUzEjQCk6fDbHokWnBXwzBsb6cEWTFOtiSaF/PmPjrZf4SGh5KgrME9W4sKzhYJKaDWWF+tas1xHOEs/aoOMTdq3gHeA1P3iZGPR4PwVl96Px0Mvd6H3nqvaGc/l8AEaowVQauFUbrSZr0SDRu3gd7uGPEh12oLK5u7RMttTaqdWTXP6syW51qAKHXmRncVI5vgI2bkGOOYNSRW+LbG3VAjQSFHKCjYWJMaXjz/rIXOA9P29c3QznRsFn+9xXjPU5ekkccPwSVzNe+97VIhJybC3Qfufm5rPxNaPfvor/y1DXiz2dI9U0iQk9d/Rox1qLVGTcomO0s7wWU78tIUsMWIrEgmp+PfBZROEmkTTAoAwSgqgYgs1q/L05WvVl2HDCFqDMW8FDOwdMXNSukEQGxrR2Ido+8KgUnEbVW53Of3dd20dy18SLX47Xyp947t0kC+vHPeph6oyUGtlg8elHTJtHpENpsE3qQ4dfTWE+Xo/G8XH7owcx987+uRskKRVe7FaMos5tHCrZpFNCVRYrFeGlelGJGWY2bXrTabzfpJ3z9165tZpgNLyCEVkxvMYMYa41i3Q2xr1pohCkRVHWOIrKBglhPwedsDSISQVeOTD558+OFHg8Y7jWNucnwJjdN9+654nI336yAt/sMhB8K5z/df/FWlx8DD3/fzI99y0um7Yg+AZ6wHu5SRRrcpufokIzZ0OEp0ujVHHQAQbUKCA9G02dYwwqwByc3h/kY2ub7Fw5OWDUWTDTDOmhfcVCxh9KaZgIxUZpr7MNYk74Yayb/6N/46yhzgtNSF5xOBr4uWs32nvL3z+hxaBy5YaL7xE1mS9v8SAhUY7mIcC2GqncOobJb+bJbNaapp99RUCkmblYnJ4dhaYDBaXMBMAJlkc66mG81bGhpNyYmYExYWAqmEkVIkKkuiA2Ibq65DDi9e/CxyO8MRvc+bw7un48X31RfjgXX5Mh0dFBxdvL9WZ5WKIyP1UWkPW1A1TYwJVbNBnHT2m7/9u8N2686aIYdMIjSJ6miKKkhJOaF3TjqsJmVWhjRlAY3BacNoyi+QEjIZYvOXBhs4qAvM0q0EqxVDjTFH9gETpKi1RqSiwX0WdxBAOksKyYwYQVnXzUgMF5u+78lLN80bsY7Hqa3o+dJSKxAPryy31cXQ7azvOEktf/ThvoqdGdd7JKsjMuDNHwZeFE3EAyvcsRi4SJdz+vwjKsnDux7drKUSpu3m9ssvfkGj0VarvtaRNrPdCZy2LRSlUg4hirnLel+7dZ989IlbGaNGuxsmc3ZGM2VGRKYglNKV0hfvzYt3XaZqjkKU0nVlVaxzOps1aDIRTjBxIUVGWuS4oVJRb29fIqfQyAO1qclmD/TYu94ITpnd6d9LtJBN30rF3it6i/XZ851DOu3Zxsdk1l3TOqVAh5rXwg7+cse3gUlsyV1c7OTnrN2ZMgG1DcAatLk42yUZGWPUqqqWEAbmVtoeQ8DdSW/6A2cNxNvipHkpICKy6/v19erv/Gf/yfzuZeu+fhCUs7P9ZLt426TF/8/bZB7iHL92tF8cSlHQyDogO6mH9YECa0l1soEBcdJQW3DWtFQwxcbM6ZGAhoAOYCf0A5gTp1LZpKnMKaKglZVtq8wWbMw0VMaQEciMmsOYkbHNqtKFRPrV9VVEPEYI/PWkx4jgj6Ej8eNoefFk4R/d+ZiSdaEQLG44+ovDBl58F4Fmk5mt2iRp9q2Pv9ut1xERNTgLvFOKalnjw9PEnNCAvDmv7jCCpvhEtameDU6xaaMTwPOUun3CdmuYuA0PMcAhas2gwUFz89L1/VXzkIisTfeQoi03AkoQSgqlTCsQAHTa/wc73jmteL5/3jaOR/RkJE+F7uOROIwlwPK2ufTHrFEuVvNXmLJvEgb0njm3l+nnMMD95f2YLPDxHrMmLtfh9PNDtK/VsLl9+cWLu5sNzM25Xq8j6k4JnCssJFrW90SJah2f3t6Mf/kXP8yqTHblagwbo+VIKmRnVtyLALR0YklLc3pnpbgbZQb3zlBKSzVAIllEm9DPjSyEd95drdYmK7Aic3K7rceB6vs2/dKw+7MmjbP3PHjbrwq91VZesE8t4KImjiSYJVZX5eoD0jMzQztcfzSf5OmQF9AEBq2WKLhBZjXdWdH4VQLZgunRbsjIrBE5bRcizGROmrlbiRqbzXaMoJkmGFEDJ5h1M29Y6kaPEOh1VFZ+8vF3uGsodm16j+ic1P2OX37eDvzrsbhemebdli0FteWm5NYRyq1xNAxAFWTNvqnmA7dUN6csYdjJ+gRIaYoIaFpBkpIl0NRazRISgTkXwORAR2hyuKalTIlIjiNqKBJhEZaRY9aR5PrJVSllVtp3ItE3NNHrihvHdFb8ODJ43v/Ug8TLe+X9TOTCW44f4hwkNduo7emzZyJqzmhU2uUJQyojlanMZsNuSNEtVQsgMskE0Qz+EIJsXkSTxbK5tE1W+gnkuR37UhTdMnRzezdmddLCmX2t3Zcvt953EKA0M0m7PEiSzLxVA7IJa0sHnX9pRJbWIu4+nS6WMzLuPCacu3SpZBw9f8ZKvbyksx+PaSn6P0Z4uvD7G1MAzk5HHX49+XT4JGfb5OuqNY/rh6O3AgcB3qrDdths6jjkGJvbLaBVv5JkMyjh5K7QIgJklizWbYbx//EP/1//zX/7T6N6363rkG7eMmVIQWSbkn1ZFe8EjHW8G++2MURkHUZlOs1BULXltZjcLIJIkrQCFsAjNNSsqQRraByrlRVoxyBAnG1O7ymJj53pE51ZNW+oJm+hzK9KettjxyXfWurppwMhymRr+NUEwKmMrBPQp1JMETSDTa5BqQmUbWbstmPBzf7RcrZkimyQ6BBaxt6WUMB22ZNI1IhhGBrWQ0tCg3azWTvkms2raDi4ZnZ1fdWvVzOQ3b5L3x+6XJl3Wc3ztqj3aiG8P7S3UwkCHBvEUAqAClWzME6ouS0rRZMGZqT/KSPFzt3WppRfmK2t0/EANCOwtN1GcwFYltOe43T6RRct6QFPqoHHdTQnOpPF1jR41EKb5JUZ3uRd9+B7T1995p+WsDfsvp2VpZO/l+45e1UzX97B2jQhfyHjpheMGY3/zpNULfN1ZExe95A0n2A1INzmC0SJljTBpZYSuM3DeYMwEtiFfJlhyolk7V+n4eb2TmEQTEVZXtzVP/6zP++6vi2PtlXsyqKZmfukA4SApmO/WufPCoOOMCPODPBh7y7He6dD7cT0I4F4yVPO0tkDi0sHQBdaOOv85+nNnQAsOuIBNfdo1zmW7F7fP5EnHx5xL/ZVJwgM2w0NpevubjelFKWU4W45qbQtvUXzYoZSAFP4/OWLl7fDX/sbf1tYbe8iMiMG6C7jTuMWMSozlS0CwKwU766u+lVvxblarUi6Owkni5mQNQaiuqohgISSKUyatnWlczd3MnH17BN4j/358Tyj3rMgvsP5z72j3DQfHqjsch29UXofBZ63WyfuerNNmgt4ZJizqAvsrsvqCrCcvOBq8+gnaPKizqwYnHC6Z0sgU3OXOZ1Uy3pNyowtTiAyG7Nv0k2AIgI5ZThq3g8JNuc3MMUWiJPTboQUQhEZUEOKUwaK+2plipHaBQG/d8TDXULzGDx+bl+yJj743pPvF81b39CSFjIWA7R8WTWMIABz0rIzuURkU3jJBaDKBAgK7dE/NW3mtJ06npp/mQdhlkMIzCmkm0INBBFtPE00NysdSgezBlfnEBDgaLat8fLLF9vNuJdldvrIO+q8Xw56U71xSaU+skDv7Jx8c1yKD33dv3r/WzuwXQiKS0u4ENtAeK2a56LlIkzdjOZTdha08HSllJkQlNQUykivoBiJyGYCQhPOp+lOtLOAOQ4GJFUMilivV/26o/UVReaB/Pz556t133ouMicHJJtWVAPbygzVaHrJkaH+fP8svsyO/XooPGthvT6wcGv/YSevHw3zwWxYim4n9zx4DnD2w7I6ix+PiryYCOyrINNxftN5sW4vpx9WbXcacnQCoMeuj6WMuE+Y9MDTBxWUtN3cFhMc6ryZXLbj9qpbWxN4Who6J5oTkFtWues3Pv7g//C//99ZUtr0V70XWlTl1qji6LsiBd2340gmaKurK+CO5KgkipUSGcEBGlHDMou3RVKlaGJak6tozadooDvTutJ1V59UlFa3ZT/sxu/9EYEOJfhdOIxOFsc39NbouJu1nDlHzGtni6zjuL27Wys7LwKCczqulrt39r5MwoKmEjEM4xYZRrjbtKhTtY4OU406DhHVWdrBVaZqpIQp9IWz/dRhhSW7UgoJQpkhAJIZ2eBFARB1jIasBYLJl89fPH3y0Tvp0NekpbXi0RzupIRXeXLJDSYWoUMm/A3dR0Sbx0QC9vyHyC3VZXR1bEGNQMbk+txs/VPAbutqgXAa2/RlJmwHT95iYwBJCZoANOR0i+bxg8nlrRlgmZQhBNRUB4fRYc2HQkLKhpSYzFhpNQx48fxmc7d5ul4BLV7zfeS4Z+dyEw9/GSfpfrObbV1H4tCBOP66o3FU5pG4dearJhlZh/3NA12z3d3UV6WUNTtvPFbNG7/mmKjFeu/KGEMT25tiYJhgrYA0GJiZGuIKvUPPVUe3VRKU4JqwQJVgIa3NfbgAy5pRt9fXq9VVTw61Bou55bMn5TsfPxuHTctGzwZTx0n+T6Yya42CGhkT4NVCwNZJz+9654QnXxyTuYQjS87MVbkoadnNy3fvqrIv48LrltW9R6S79KJl9cCdfN0ulaNblrV6PTrqRJzMwvM1XlZyLmXaotoF7dSyB159MIkvv2r5w3Ir/eKLz+9ub771pO8LhmGEYb1aR4R5kRI5T7kUmCLMFXFHcqxDV4p1ya40U6VllKue7nfDnTuxzVW3AuDF3GFYD/WusqIOq+JmpoS7Z5rJSHVdGa2Dd2j4iKKUmSayaoMQsl95uequzXy5os9xm6+BdDQixxXSPKbLNXGeHr7jG3okHa+E3WRpQvfOKjjhEpAUVNxVKzKaZdEIQJRClVSKLeV6RtLoxTMEaM5kZJiCBtJC43aLiLuXd0bAsqm2SBQwwYSR5qQhkDnGiAiHU9n8hpgs3itHM5BVojIgHzNpzlQpLnQ1/bSd76e98/Wl/9d69mAx/kovp9fr2PvKWxiW4md/Prz47On6quPGAnGHTqUvuq2DFPRCQRlCc3RuEPywDKASZlLn6EAnzCiklGZ0wJAEUxlpTssUvCQUGKVwWo+uGKEwyVFIAzHG1rtuBFUHs37FHum92Cuv6NdXvfcApCapTWr/+zUBDlTT3YJt+tIOReCXjYiH5RZ85XE4kmsPaNGhpypHE1qbWjunTt91OwSFxO6Kps4xjsN2u7W+FEfzgXB3gqvSNxw4SMUc1KCQiWaotOyDz/74h+O//cGf/C//y9/+6APWYeumrnSpSlrIjE60NJAJsB2Gdd6PMbCEpQyAZWirul11/rf/2u+Nm8G9pNLc23lEVayKGZg5mLvVsJatbG7TpX4792UvQ54ZwfMCFvc9u1NbdebB6cmzNWpM+R6tTifrBCfDr7M3nBQLcMIdeyM0Y24cKkQnd138sitj30FzUOAjXv5QM+4TLQ+revPi5WZzNw7jdlP7vqdZZLKJOZhAHOblNBtnyIqEZ3pN+pjouqdE33VrAWMMiTCRycysEUMdIyMz3AvlbkWCgsYCMKWhxlhr7mtoaCGR5mZevDd2lIuWYsoaJsSOQy6a83XKPDz5AOBwiSyv4HD+PkDvpzD3S0DHJoTdGeXE8vc3zntAm/ESJYSqmmvNBHNONPuNJofMkBIS6F7c3YvDGApNS8W6zlervnRdjSSRGbSmdrQcRwoqpvSnAhvAD9VcfTIBZWq2m8yRLoYQE7ZarVL48vnNMMa76c6vTpdsII+lV3zgeFWeRLj9UspZ5+gNNmQyjzahQBCs6zGobmOAtsZxvSpkQNkc83OWAJrHNJBsP5BTBi+izXFJmcIEbsvZEaJ5NGNC/pzDzzCZqsIAQQWGZK0WSVsVWkJJc1FjraBNgTMIMzgqm+lXM5t9z0b61F7Z+nuHMfaek+79+sinHvngQX/o3o3zctfNJoC9C/Su26c9gST9yYcfffzxRxGVxWlOMjW51kRU5XQGOzvzTCFZIrIlBAB/9uXz/+P/7f/9k59ruCvDpgXKK1OUS56AsxhtRrw1hxstFaXrKFqLKIYlEZQSTo6xSSXJiGTLcdFS0siUPqZSIzN0rmsu9fCx7HpOluX8VSec86Dvdgr2rv917ra9XXMnO58Uy8UjPLl4qT07reB4xz+ge2IAXmfNPfjMxcm9E8TnfWk3B7W44Z6XavH1EYvqaDTmq8oaA4C72zsaS1fMnE2Tm2KoJv4MADDLYuqM7i4xEETtMKw19IbVursqXmqOUniBmzKChIN1u91ub0hcXV9bg8xCekuH1HKOWYI5i1+UXDLQBJpZ8RVltC4TWTMjD3Zynvn0bmniBbg4nY8/PlzcxVK+oXdC5i3de0qzJINJkgF2jgpQzmtXEiI1hYxJQLOEMkHvihlFTxFwUGAIEVmjwSwyAWWAgJFARkuX0RSApn7sIEjJFBMWqXHQze3tdJS8p18W2JNXtXO+ghh3ZPyb/l2ESn+zpi7SqQnRakZkBg0sFoR31nJVmOQNDqg9OamoMMphxYob3azQzAwEJ+RQEJgiaybNYLaBIadllTQApmSQVPJ2xKc3w22og5kZ3QzehK+oERnbutmOw93t7eblrSbnhL3h5f0d8a+qFr+Bd77244dL7NTGeP62x1TjyMg7T0st1+/5x48qsZOyFpXRAipnZ2JBY/KGftUVL+alwbXlvCISE94/prTxkuRuDkAIZvi2rDe/+3vXf/WvPCs+RoY5QUoG72Q9rcBEm1RgknQDrMH7gGILnQRMhjC1VMKhlvmrVRGEqFRNVe+8dI661bidcxs80MOcSjm8YcclefyUDi6cs3DOvTibqQ5v2I39JVHtSHC/NCcuHRScK/JsTc8oAK+9DM5K3stfj3SY8zR1DXf86SC29fJDy7efdt1Jw+fbD2VUEqX4arUehmGS+2lmE5ItJyi2FukCJWyCyjXI22CrVkdqHIjoihmUNaKOEQOQRBZjKUXIYbyhD+6iMlF3aCoshlStQ9SBmDO+tEPQdujWopB9glevdet7neTSrPwaaK7AkWlZJ1cwqctn9YW5qDfVnFc4ZfjlpUc274ClLZjc4dAIkNG8J725+mjnuzXlxGObolJOEG5mMMomUQZgAoGUA+4tYXC3WqP5NCN9l6yFmjOWYkooA+QcWkYSsHYEkDmBxjndzRoI9c3N1go/+NaT+Sh516avfTU8il61lq/kF3GygbVPl1fdNzTRUlQTEgS8M5LD3RaZZlPiUyPN2pavGQILLT9qE8DM4MZC+gRbKMwBubMk07ynNYFsaUqvlBFSoolYCQkmH6P78Zf6j1/UsGLOTCnaesy2ZjJTIt3MRQSJCcjlvaTTamm/hicb6S8FnevfM/V//DAsLdHLp2ZtbhnAe6GXTmXQAyC4WUg9qFMT03V3d/P8xYtSihERkZFN8MjQzsbXwCSkjBREV2HSpJ5ZvH78tPuv/ud/73vffeY9unUh5XCSSlDFVLADMSRBNAzEFDjBnpB00DT9ikSaTbkgJRhb8gAz2AwzV8Exh7upiQ/19WTTP+if+wSSA13qSOSazuomGEdwoZ8dSag6Kn5Ry+OfLpv5z35+HPGsAvBVltlSUDuSvLX474xQfnLIwnmGXqrPqTpx1mpweVUcCgazstFiyK+fPiWYUtQxJZpN96jZYlrqCsCQKVUoKWI73t7e/nw7/KL0Q+bdGEPECKUpFYNU2waAzIwBOda6kZIdQdJbSHwCNC+dl1rHGqE5rCwzoQn4OTIyIiNCtW5eILRjMTsN/mtllwt+1+wKy4zZx8nzFkGou3of1v5oOZyujtep3zukd423cf/KOXPr7pH9olgwKxI075RqEG1N3oHMaEhMaY9igvdPQbAZxK1M5ht6kAEGDaX4qu9WXUQwFTHO/g3aJXMx+iTxS2inDpwKTSXIOobt0CIkMxDZYo6z5rAZdke0BzvcrzfpDOc9e+EbWhJ3kD6NEkCXfWe0zKyxrZFKybz51Go2+WNGIGlIt9N+NYkHKYNswi+c8ddnlkiR4g5yPdH0jhZ2ZoJXcQP79GXA1+tuTSAShCOhyMkuJRYrq/Waytvbm8x8jFDx/tCv2LR8sDmnW9/pAB3/+tq2sbmgY8PhJPc21wsZc9wOSg21RirGyMzmw9YOg7X7/8KYECEKBiVUs/am3/ved373d36Xshy3DTMoDYkUa9h2tpLPYoOAzNniM3F+GAHSjFTxYi2dNtv+RDO6N/hQulFZMwbFYAu+f1bDvK9/eLZ7MGn2Owl1/nn/qlnw38tkWozu8qlLY3fKqO8ZZc5qyImV/dQcvPxdRwrAV1lvRyLHUu7HYXN4tt8XFdT8935u9eBq4SVl42JDRXCs2/6qX61WZj6OIxuHBpy2e4PNh1UNDrcZKqPG9u7m7vaL7e2Xub0tlLICclpXCgRlRox0dp17sdVVZ57WyQ2lWFe6liJeAs0zoISZz8KYgAldlw0SlCUykbF5+ZmxQli6Sh6Evr9r0om8O5/D7UwGB0tlOWt2bOkM6zuYEjpYU4+nr6lTDixA72jfPdvUi+8+7ssD7iRaWYN0L2alieTClJFol/CI0xxFZkxiEyi0+BcBllIoq7LZcgRFZtZs06D5ldokbE1oKs2PGQLNWipxTrlk2qkxMiMjIJl5KV1Gbu7uMqM5Ke2tP78M0sTrKYqv8MzRIB+ZXb6hB2mCSU/cftE8bowaa2TGJBYImKJjaGzpjxozm/0jmh1HMoqQwya/zzk8ADtGTu2c/5uGQG/H0YCRXjZDdo7vf+vpVectTRPdCOYEjJh0kshah+1dxICU7Ty+dgLXe0ZfV5XOiyVvlO6RZ472skfWhMtPOrl4dKsOvx7eemAsEabwRrSU7EUsEsexAlMeRtIgHbFWEu2wSQpvR70C0zSAA3766Rd/8tNfDNkHDKLJiDSMUE7GaAOmo4CcxOuWFoPtMJmSIQ1gzRjqWKPOG0XanCYPgLI6cn117eurXMSQamaw57tXuPjTYbct2efSO2j/qp2FcynanNqnl4rBosijKp2nCz/x8D+c+7B7mkcKwFJYf1XaPXvQO/Ons9P6VdfbPQocD3vufr35wjUCJuUvfvbp7Wbz4nY7Zvb92uFOF5jGdnI7m2xcUGUErbqFrG41bLaZIzGMw0vDAKthNU1yt27CPwwpyCp5cS+gZY3ahJXm7ePmXSkdzZQOOovB0Y64SCnGepsxGGvHMAx1+wI2TjhzDzb6ndDBKfMsIN5nrphm6GICnon9PriyW3i6d2K8Q7r/nQcr4Ovcd4/ffaizHyiR+4FMKNVFBCcOmw2Os4X2egP2RxrT5hTAU64vhKbkv0nC3YlkttvkZkJDi8aEiI6WQSZq1iYxJZQpNUnKmEgvJRPFC2EpUOjczSYkov5qtbpaRSZ20WkHzXx/Sa35r/7g60+nx+0135CWR5SAoPzyF3cVmyxjbWDQtTN55sLut2PJMxIo2ppqwSsCWuR603TZQLMATBzT9pldZmtjix3w9oyBfRe/94l//yo6jEnCKTAZJFKMFJ0Attvt9uZFYZbiO+MaZsMSJtvS+zUBeO7rW2Wbb7n5Z+zQZ827p0bS/RjdUyge6p3TbXLWBA+26+XrNc3Mb33nu96VNl/M6EYgG7rbpE824XsSUWxyy2Rxc5cj+8xiLP/4H//Lf/Lf/8DKM0efCWk0C2AopMmdnakzTYnBYIQzQaEgXZUaCbXV5YFMRIuwr7UOdQQEhTJqzSFzqDV8xetv7cSPRQuPO/K8Pfoyb1z21sPThkuFeyej6aIs9MiZePLsKymQu6ff8AnA2Q+XXvHI150V6085wj3L6eRdF/uH0LC5efnF8zpua9QUxDrGoAbEQ9oEgQiC5gLDKEuzNI1JeF+u+n795MmVuwmKqgSTSCgUMhdXN9vxZnM7jJsaMY45uTVnKHOqW2SMY2wHR0cWTFqHwGqWxa1f9Z2X4lCM3XqNeac5bN/7Zd/hcs85omnanqnwYqCPDgCmvw9Os3dEonTPvLrc9ld4xdvYpHbigI5fof03ykv/rMUANN/7+R+SJlBIKp3ZTDSYPJdTAYQQMqCYW3MdQiZEsu87Cdvt9ubuNiJJayoBoULvbdXEp4wA1FLEtLCwzPTmiQT1xYq1PDYpy4j6/MuXP/3Jp1b8oJnvPXEpaL6lVyyU6/dK4FvS+1ixXZpTAkyM4/Ynf5ljVXrfr8wc1g+jhRTZgHGnIMlmz9QkurQ0R9AMagtF5m1qkAiaUpktsZ1cbnDMU4IkW1ZgTM5IEdsPn5Xf/s7VB1ejYaOsXencjPSIdEsSUj+OHCNvN7fb7TgtnwPb//7ra6yQVzJXv3F6U2vlrdb/jNR+uEvf04evV7HzT50dXZ18OLhfBER89N3vXF9d1WEwN0BGRuScv9HafzMcnCXTzBIijSiC0eEdHC+//WT8q7/97ac9TQ0m3d06c6PSCMInPbe5g5IN/8dkEhIRqKkKhVIFXtB13qUkyqy55biQtJaqIM3N1lc7P/JD6/a5Tlp2kS7+cnTxEQKtFnLKoUC6u6zlW9/AVvX4Ii4mAnvDNAP56qTLTrWre7qBJ315T1MvSYeLwhYvFMCMSGfpzC3GZ9fXZqCy966Gt1k4OWaiisbEyroaG8I0piVMnYGlW42CE5vbweHrfkVUy1yvnwwqm2G8vrp+9tRRP1+v1lZWWdUyY8sQkSahlFC8eH7Tf5iMRAkIlAuIUAFlpY5jpsz6J5/8VmLddLnDHn6oA94WnWhby5RfDz97UO3FE4d+uO8bcWcdbG04k0fvqyFZv7V0OMtaX+JhZtcffLz5SR/1NjPcO4O1VLuUsiWuroOoSEDZLJTZ0M1bGHFk5kCp0GnKsbZzACFTKvRxHKkGOGFiJJnMqVdpmSHLTIvImi0IrDMat2NHetddrfXy5Y156dxNuR3GiHT31qadavkom83XSW8d7Xy/4/DM9feBjjbi96Biok14I2zhvUU2fKntncuvr5zPK0o3IOXe9etxjHa/Wng8LIWkAhLhYKGbpSBDdjIjkqxEMToMyRRqpoiu0GmlJRFgDjXh5sVl5m7yMjILAirwfqgEuep83TlYI+8Qw9P1ulv1n4cGMGAtW1jLwkRg17vLTFWP7/AHt+C3Sm9kqeiNCV3niUf/PvSus6L4K7Gss/efT6M0mwO4YwiHT0qCmXlR5GrVj9LN7VBY1uuyHe5gFlGpQm+5IAPegiFdhkFKJCzZEMr55f/6f/W36E+BMcyNRpUhqsHN+i2qIyc/NyIRFuYoVdmw/IF0S3O50eBKdzczOUi1TJOTA1I7jl4FvKEHAc3FiPvEqHs54lLfPiYJ7lIQXa6aEwY7nZrv0wLsHjgeFc4nL4si9erL8lXoHhjQN0NtYMADZnHW3nCgC82ftegBvPpKuJcOi2xnsqnuerX+cO19GSMixs7LWEc6Z0i2ZtAxgrQE0spknAHYr7rVk5UXH8YhsrobHCRX3WrVrag0oTcvVmi9dVfkGtmBRWBkFZMOkIKx79T7MKE/VCGa+tuSJLU9gCaWrnvy7eSqzbGv1ySD+9/+cEaH2ca/lPqPP7za6cY77QpqYcE9ms7CfsId6PuvcPZ+YqP/qrQvate7R8Hj04hIlr4eF5BqUmJCPleiIfgLGS36imSDIJfaKYDczdoBsTMzM6Mqt7XS2XUdWoqNHXAKHanIGpnmboSZESblnF1VIYXSCLe2K+S6L067eX47bAcg7B5e894qAe9KmDrolQabMcVcfP30PjCxI5oRSlq+CotIsGZngdhub9yTqn3XkuaF2yRez0cGok0nAEI7y0qHHCiwQncWo6ydIU7JXzSb/i2hVCYiM9kC7HemAFkI8gL4nECgTqAjbt1q7exNQB07kxc0WWTS9+f3qLmdLcMwf52Ir3f28Wj66tP4VUt44ATgpLHEcms+3GYJgn1XkFEjIkCb8rqUrjMrc85fgpQ1lGcnPRVyyJkizZFJ1HWXnjc1b4HZ0mPm7IwFljNsjiQavG1EhQ30EM3RfzoAZoKVTKk2j7sWkBAxRkSxPoYYB9xuAmODRyFaBP7cwiPxfjcF9r1waiC53KO4pHTtP+pQXV1wuLYaz0zCo6dfbR488l69uxOA4/btNZpTuX/ZWO6n4leiCxqUsNPBBBDuZCQS66d915dV3yNrV8qQo7mxHVWpQb3JzMbcUk4YEDQCKg7kWHMweCmujCFr361lDe3EzMK9rZurGG2oY7dyM4XCW2AkE5T33frJdbdyXzVQ9ETj0qmEDJwzBFj2T8FC5EETFwv5HfP0BS+Z1tEss5/IuqfTeqfsTn6zB1vV/AE4fO79MBMuVvQZw0+TBfZ/F3c+su6cWfWZ+1+zB5Yy4HIhHg2KCNC7J4JLCRqgyJEMCQ22s8GcR4YiM5tvM9kchQRgwoyLDCzNLwRh7sULpUC2yHqxBQ1kZoBmlBsiRcmMgIJkUHWKHJAAgwkax6FbX334rVXXl51b3HKB7179vsyZQ/qaqtTk2rd++PB40uHwvGUr7cN0cPhIkalx646sGLeIaikoZc3lR3OAZDZAz4YgZwTYUiNNKY/UnNi8nd0qNXv+k9YkllT63g7WJIUE6GIBqTAlkuZJWtNQsiGok/ISloP5CmaixlG7nuSUeqYl01hy6fdnDrw7Omsdf0N0UPCjrblfRW3g4j1nCjz3du2SAC/3K5GQi7m5zYgIt+KdGwPemSFADuPQWxmjNvdOpGQadEcyc1DKDUy5EcneuxGTFz8anC1IGpAuShma3BgawMe045ulAgaaMxmRI4fe5W5tvbhZcSfSaFCC9H6lfGZdieEOV1jEFp7GSZ7pvcU/r0kn0uyE+LvLI966dx6kS7vRfGjwitI/Hl19vjMFYFkhnQg9OrmNJ38Xz37VChx9W3SvAEVUdzeR2YDI0+DGGc1VIlJMEBK82XYkSsN2yNx2JUspToLo3GWow93Ll3fFsyvoVwa6OMLMZA1KhWQixEzBaQ3ImX13vXoCNylATqEHCSlTFXWsdTDJXMY2iJowQucm7XxWv26ajsDOzOEDPbsJaKey54GGeKou4qE2vrON7ZwE9WiW/wqvWRR8eO01aWmeaJIOd/rWflfwrnAG4ZlAn5Uza21e/aEIpEikakN6hqgGXt68/4VUzaxSsOVAVTaLaXtby3ikXYhBcwAipV0uDoPCzVs6mAY3lFkFKTVsZX2s1t2qXy07ZzfRuJOk3oOF8bXTvNu18XzUwfc7oN0YvbEZ/pVpNjpMp/imjLs7jZFVGsEa7oVswSqAxCk7RgO7Ys7MzUjuwcwaYtYMosiUTBPQREOcCzWYuWZMmRBxmyohQcgMS6anm6Otzcb4W7qAUAxjRZ+9dx45ptK0X+5Ee+JA/H0/FeO3SlNgzJsu9gzrf0zP7oXVM1LLYyp5ZCA71gd45uKe3+/qjVk8Vbz47MchpMjElHvFCIA26b2DBrDzzoWkWkxwyawSMkH3qKG0QUON9NK7tVgUGTyzygBMjqJIyFpAjDktEWQlsi0JEA3qzbAhUwlzMxLM1KiMlfXKNGZhdHHj46eeFbbzviHahnSyi+7lDO5b/kpL4UhkXRguj/nY+UHU8pbDD69u7Hxk1fUOXIBOX3m2Zg9W942LcVPujMPejtryrSBSw7iNcWwoJEYQSWbLeDrhj4OUQzAYyMioWSMCQikrg7mhcxhjGF7W4UuzgTYCW2CDGDODQNd5KVOqMagDOsLUfumuIUXdIqslTGUKQU5AwUwkMyuQUOVk15mb9jXnAVhSQ8U71voAnMjzOvy3iQEnOsH85FJ1OG3sqVb5ddCR9nqJtOTAF+5YrIClq8ZXH+YjZXynCxwMB82d9MYgbRIaE80ZLiNjrHVQVjd21nG2eUznwhNTZcttmpk00FjM+1JWq47zeCpVa0wN3huC2IKPI6qAlpfDzJQJg6iGgZjKUtBf9eOYL56/nBB0LzT5vVkdXyfN66xt6++JkH284HXy950TZ/tdU06D2GK8wThCHCoETxi8JE2wWYTQXOOdl00rDM0S2AAOE8ym3k5aWM4pU9qg+LR2DLSWEdUTTDWb0JREOJKRmYqmkSdYwRpq2WKs89J1LUvGzDY1MZRzC+HXbWm8G7+3h9WAox3r5LZHVvPo6SNr9KWX89gkMkWFxLD9sz/5N2mqEZkZUTlnuoLkVggqI7I2W4zRi3VmdPfi7u6RzLSarFLpSzPTSy2Z45RJQNO+oBZB1gLmRdFRUWHt7n7clJ98trmrpFuNCkzac7akASKQVgKMRF2VHP7in8f2ecxJ4+eGnorYh3rXawmblxgUT29b5gbeD8k5Keas6PMIVvjIqhOwd7zez3TH4sM9VeHjbnuVqhwq/gKQEbWYVl1HggZ3urm5ZU52EwPZ+DDR0rMkIhCAuq7ruk5Sg6dtdhqztGJ9X1arsr5euxfIoo6Zm8iRnrQQMjMkkJ3UNzNNVGQosqotLYnpBp/AoEGDGU0yY8dpEz+Kdf+asd3md8+y3RlGq3NDOivJDYhY53Xms0+ercDXatM6u4L3n47+3oNS3HwYWx+Ke57xKFn2FWYBz3yeTIX7mCopCDXnfkjIiDrUYYgYldVsX0cpAU3Q0UY6vPjqatV1HelAtmWkzDm9CnbZ3Vumu4QSKSkis/3NTCVsmt41UlQi2fKwpmrU0vWTInF2J/z1M3PeRzM8w9cr+R3JH3vB7KFt8RK9wc1i8iabZYhMBSSlFN0KLEqkuWnKHb9zchCIXTaLhmc7GY44i/mTx48BNrPJ1GyInE9xDTKkGQwsCSY9SSQhTyKn07Vpk0xNOVrFDAshnTHcPZ8dpg96+vQo7NdqaezVNBx8eOCp+dmzbLzRJVHn4NLyv2W5j6/KQ/RIE1T79ThrFjHc3f7zf/KPGChdT5iEUKSSDf2BzStZzayT2c66mjAimmSgeylX4NOMq6jMmHCtJtTzGflYzbehZubkRyeFGuw/WrbHIMuf/fjz5xsy2umDpCTgpNPcPBFj1jAmYVZ+8N/9d/X5y5Z2DFOM2dwPh3rSbkPl8upr9fMjxu2hJXdGQTmkNzQ3pHd7AnBJGuLxcDzw7BviUE3OWNg5E0J6J1gtHbZ3tz//9NNSOqlhOuTkOOAJIiEZHQ6IyFSal1JWbr3oKRpXtK5ZTsu6dFdPa3TgNdCrpnIgQmoy09YQhubgn0gwYUCMQyGKAWLW5mPKYkbUzDEVUtQKs35OVsZ9R+monV8DLU6wHlOF01HdM8UHn+fi7lMW/LUKN2daocMJP+Ge3auqLEMg7uupsy29b8Gc65iThUowEjSnG5Bj3aYSSsWYOaZqKiKijrXWjNq0FME45zUympt5k3XcO4DDuL25u91uax0jIgXSiltx81ljTDTHODVLJyZAlYagWJ1iktHMqCGDOi91zKjxwYfPdrbORd9PW6ve8pT42oXpV6BTM8i7pQem7sJr95JodanA85aD86+5v8TpGHJ2lmcERI80ybuVi2kZJdJCBGB2JqyPzSVoWhrzP+0M2TklxmuIupqc0smEQSWzy/RMUxDhzM6zRKA2VSHc0k02HS4gIc1pIZWpzRDbzfDlT3509+KllomLWtt+aWbqW6ElQskjqbGTNhfOPvhYzZOHos9uA9/5Yb4WHS2Tx1jBNN1PHd6U0nbz8s/++AebzdaK0VJRI2rU2tRUN1fLWW1gM4uaZTQ3z+kEagz79PPx3/7Hz74IT1pEaFpRu0SRJlqKqRZe0ySgTKrGSCIyM6qDdL/Z6OZuLN61UwOnz46goIFA1K1B0jhsbot31vs+E4zQVJSL/p/3HJFc7ufTr6efjxSNcy+aL51lW5c0hK9GEyzxO6PTaj++IQ9qCK9OR/JBc1OBmdxQ6He3N3/8H/4kQ1GTTfmVZNmeIplZk9XY0k+TpJVS+vX11RMju2Ldqqf1RIfoay1j9GN19560q+6KZhkBxViH7XaMzMhUjoiqqC71nVEjoIazS7QjsxSQFA3KTHqiZZ0HdjsHppOur9hdX31zmGf0PQvuzGuXH09qwIN/Xq0m75pmmf24zucr07j/xS6fVgB3ptFZzDzQn89uHPcN40JL2gnKC/lgKpGguYEUFc08KUhmLTGkZaq4rbzvfGU0U0uWDXcjXWQiY8oOhnGIMSIbOhu9BsYqpGcoBcrUpBnS3ADWqprZ9grAmpPE5LKSNCukBVBT220tXq6vn3zw7AOzafYtfD6nJrd8LKdB6W+KXmUf+TrpSBj8Wqp9YWvb6SVzTvi9nebEbKqDv7sFspvOOsoafqjzPJI010skJRtHJrJi1a0AWijHKGTXPOVoaofIk+FxkpHYUHxSjYcnlUDKqtp52t4gPwURAIkMRCDmOLEQa6Aa3eBsSCpwwI0F8Al+VGZ0Ar35WOsYw90XP7n54qc8MjTo4DyA92hNv7r0GtL//aL/KxR4JCo2vvZ4F94TSwMXg7isDE+sTkdPAYAOveMBCOM2ajLGTVdMGZvhLjJoJSFInXtXur50pXhxa7lZinVCksyaStYs//Tf/If/y//zH/+zf/EfYOZUQ/Uh0fxDjShWnIW0FgnfEmUYrCt9imZupDHXXX7/ux8YRyKRbZ2HEVkDlBeaecQoBVLDFt/9m/9Z99EnYmmuLkKa2UHvHLR/2a0Pj+Gyn47KuPR5+YLln+Pbl4z4fhXzEea7++mdoQC9Aj2q+9/Ye6bYKhAhxnCn4SUBKp4+e2J9GaNaRxqREJkJgGFgsthV5mCwOm5o5qtizFKYWSNuay1Zn5Bu5YrK9fpZt7r+7Gc/ubn54jvf/rAUVkXf062ANKN7n6qGoA/ENnPwgPtVgqAZC8DEKG2Qg3sxbaGEWTYIXmDB1g/k5NfozFbAG8IF0eN2luVS0u7jhLx3r8L9IHd7y1vaxQk7D4Lmf+5Hm2ieGMelHX3fxejO/3IXvbmMmOby7/nDhSWzX8yc0/oLoJFJqGZkjF0xgLSSmRAB67pOm5jOyVwAkCRdCU2hYU5DV9Zj3ZLWobceGJPB7c0mU5Gj0ZRJoLAQtXi/rUHSaNsx2lu+vPkS9NIgqAHJuvX6xcthNL9LdH1Xa92OG2sp63dNmsU3LkTAS7v4N/QuSTvNl/PfHV1a9ot7tFz5TXA64hfHi+EYYuhxtAPxBhGFN9QdYjStg6VSg+xm5KaFt2OW3TNAGIhUgVHp5gYUiCFRMlYoUB1ZmjhEiApV0AoYObhRCTpoDIoWaRw4in1RWbGrqgklVj3dKDcnjZGRUQoUtyvvrp9dv/jiJz/94Z988lt/rdgBg913aVsov96L4v627ySGs7ftmOlyfj1q9zmargej8ugH7737SLA/Fi/3i0hc3EHg+tnT3/id7/cv/vz2dlNW637dJWxb1XcEsmpkzQb3VnNMZvGE3EtX2ymBqlv9gz/4zZvo/uD3fzMjYqwm90IXI8KYqWpmkoBaipt583UTmcnCrtbRrG459Nj+jd/5oOsMeWtuLFN+1L4rbpJqMV/bVa01a4e8vv7W9wfr1NxKJTqVDY13177F7tB6/tha9PAIHPTf4dfTm/e7zz1vWQ7SqaBz9PncTHl8G8p++c+f3tL6X9bptQWyr64bHFYjZ88ZAmlRX/70T3vbqLih/+Dqw7//9/++ucgWB0yAMlPbp1oiUhEUzTJlTiaG4W67vetLRmTWwq64l767SpTt2HBq3Yo3d6KG7BCJUlZm5jRkQBjGSqapAL3YXo1EzgI5jZ1YhMFpQKVVpU+1wTyce0/xV+bqb2gO7ER/YGlavm/4F6yJc6TavXef3+gFzNvwW6f7JHYubEa7D+ensQ4FeE2YI0djJzQckZ1uNP1/esPU462z2W6f/x7XblHJk4FqMynR4N4k5Xj3QjmQ1Q0Oi6xQAx8EgeIepdTYpqoSMx+RwIZ1IqWz+cuh+bnBYB0z4V2JDKGFhqWiIYomgDHGDCQgKLJmwlgSVpVJDjEmi8ik1dR2i+6KCcicpWuJwJpwuYArmrv3FbbZb+jtEw/W8qHaNk/Zy7xgJ5sfbIqLn/cb3HK4H7md7OUEEUyUDInagEFst7eWMruyro+KEVGtpVTI/RqYPrVQ3r1KLiiVTqNczERCMKA0ji/tZHUlwCbakzAmKdJaC6ypTZEAYN6OGEgzZJqMymG8Iermxc/2HLX1yIzKuFeN7uVRv+Z0SZo/KwVivohFfx4/fp+i8LjuXyrDh+/Coshjif+ozvt6U1Oq03bMa94/qeytOMWoYdYTTYRO92nqTKFXEzo5lFmzJltkilH1t7999dGzv94XGkd2XctlJCTZQHMFRvGCKE3I0uydnolAGimmE0oaK6QwSOr2CoyQ2baNSq6vfvMH//7TsvkFf/OnH//dJAwpUE0Z124fXh4Bcy7nFensMnlwZ9kJaMf2jqMPly7inGXkcNE+cv2WiQ8cHw2+eeK9Xx/50yvRpbFpvLfJRTvjqQDlzY/+w7/A5sXKVUDveqMjApNaT80pJVJGax4yJVUzzMwYCdXUaMjiNFNmZJW7KSPJ8fbu2VXXf/Kt7qoTkplkkRy0mgm5Q4mQKlpuCyJNILOBozPIlilmkm+RzKFaHbOGeeFkY246wM7ezLc5qvfRYt+ezWfH6+tQvd2zydlSuyhgcd8ZLnyOkb6rVu8qu+ejZ3n5RXVkXn/z7jy1V7OjyklJiy7VUYsXJwizCnH44jOVOGAbU5rQ6TQ4pxdZ1ritGDtTRmZUAqFwN0hQkGbmWdHQegib8xU1ZUU7XPMWMiakEKDRVVYF9BwjI4SsNVMROY5jVUSIZiVjlGQGTCihSCESAmtE1hxuN53DrQvpdjuMGQkBMizxbebVcX9/fK30LgUv3TNl33M6MZIdQPVfuH2hK09THbhk8lsso3lRmggwCeRWbEC243BTSy0lWSDlmBCS7SlhQiZpnjYTShup5qSPWY9PySA101Jbcc0FTpK3E2pIlHHy2JGB0xITKd9DhKJp1pmwlvQrqQQxjAZtbm8w8wPNhqLzjnDfiP+X6VQ7Ou0tndyPxywxznrY0hHoDQ3EqXpw+IsmuWj61nyIVVbdt7/zyWd/9EdjuoHrKlPtVw6YeUPngU2B7K3+KXlay9rSgoTHJ2arAhZaTfiEhWsNgYZANjmntoj3ae9pyWUgukkxxa6TJjMoI7zlYiUdUIgkAlmx8vWw6W7vVnc/07c/e/ldWqh5/thsTWtW20ng2BvY5pXxSrP/VOXD4ZXloGv54cjJ654XnmrkD/LrR8+d5qT4rjeA157Sr/Tg/V2aLdx8cjHlmMN/+Nf/5M//7T/tbewQ7oXJOow1xxbmIqrBN5jobFGJGVlb+kwjoo4ZddWt1uvrUoqzROYwbDd3N3W4jeGG2kgbQ9y8eFFjQ5NbKdYT1mAeYFZKt+quVt11V1bFOks3eNtLkkprifeMoALj3Z02t9jeeLFJQ5m0m9Z8zkA653vgbdN+XV1820IwXq6kueKT8nKYpOZ+Aa5N+hlR5t0pAYdL/oHXnphnuPvAyTwgHJVy/EW7lA/792qvOOy4GQ+4zhFplp60ZE773p6HkADqLWJrSmXWGKNhb0pCSFkzAumlM3e0VEcwwkUSMhhlLVQLbRHBjM0QxCYwtTzKkWkt67ZkZubFWnJsEvJMCoyclIUaqKnNNjabqGNrStSxklHWHb0kOCMBTcLXWSvde0VfS8W+RnnvwnvvEajOs5MD6f+hQjWvH168eaFp79dEWy/q4kUXYdXHMYYo4ddbsLZEvjoweggNyH+KemyCjSARDU8OaO7+EJDtuAzMlvF3EnoaU5ij9YRUZitQaIE0mCQpU7P+a3cnlKi1xjgUA1SnWumwH3nwb1sk7+0C+Xrpfu5xKqph8fVil+6n7qwVPnp7flBuxOLv+WosrNCal8Y+eZaVv/43/o5ow5jDGC9f3mw224gJ/60Fg9HYIiFBKhFKENMBGLOB5xpTCtksyKMlVC1THIt8eu+ULwazcXY67m7oEZRNETVoCSgJ0Egzy5CS5sWYf/Sv/vXm9kW36l/c3gpmbPlbpVROsWTzRglOgc/iST9d7NV7vp4dgqXc/jr0yMfOMfEHNU+b2cdD7X479Kpi6GuLrQd6WAv2nY5Tm6YaOQz/8P/+f/7X//K/vbv9Yru9pSqJzovBlciQMqWQIifc/RBGYTDImNvt3ReffX7z4jZFWheVSB+HUKiQGIc1guNtDsO4HZzo3Akbxhb3KIK11shmC+qplaIbB2Y6ACiraiIIGotbJ2Tpu48++haG289+9KOUoZ0HA02pxW4R4fy4voOxbnrLJKwuttr9q/eC8HztRFo94qSYJyrP/XR0/1ddeK9Jez4yKWL7Bs7VnH44Mg9MK3He+Q9Vp+MPCweg/XvnrV/z3yXIFXHCEA61q1YecxZhhARQoWrYMl/QqnIwY2jAhHiyiK8kO+vcillxWltcgGA0yiCw7QR0NzcYrIVyZWoc6jiO4zg0aP+mHwgyoxcTctqUoh0hcKgx1CBKpo2BoUYKq76MY4hc98U1KoNAmebfLhC0eSXdq5b+2tBy63vPOkPHS+bSXa9y/ZRLPDQNuGNPCyGZGJ9HbrIGFLIIjEKNqKRPKRvbrXsrBmebf074MbPNVFhEvU/4VM3/wQSCDtgOuqdlw9C8sBtyYpOOmiiWyF3prYAUaqBzN4t+XebAmEN2Mp9xzKzlfZsMb51eTw453V+44LBHFx9eYnvV4RDJ4RUrp5PPulzGQvZv03S/b7VnSim//wf/SdddhTRE3twM2yGGGlOW1Ha2u1N3Uw2CKiNaWHsmA5ZkTkI4IxQ1MygZ4EQRHQAn3Ii21AyTTZSauXVyZx8DABLJTGQiU5nGcB+IvLIn11ph+OKzz8NXk/crNWcvm9fyfsrPJrDH0SvJEmcH/awAcx8dzbZLVeE5BvcQlVe8/w3TkhG/vTosCtekYpIpsWUwhZCp7d2nP/pBbH+e9cWT64+ihrGQTBqz5cET24kXs2VnkcLMpOz7sr29ub19sd3aat0Vf6KKdNQaXWe9MzU64ZaStpvN6qo3UURmVVJMogvIwYgcc6h1a0Df9S2OBpaUSSmYYGSp9S4QL29vf/6jv/j85z/4g//FIcPZb2uaMb5P1P63POiTDbt5FLatba7XHtl/yRcv8NRThXvZnvuNK2+7jffR/t3nrEJN8tr5yBBYuOlz33vLEN8jD4ddsWc41/J98yuW/XSyvQjgzm5oJKA58wUTOcC3uf1F1u3kHkQAMpmm1Eg062ICHyeRgAkxmSmFmPWKdiisMWOsMY7b7ZBjc49oOw9p1nwbSGrKbcHUlAhsqFlb9mx0AgO5rTFUG9MJdf3VZjsY6RnPP/30O7/1+2V9BTKzwtxgEpY9/vpIe2+P5h48N2nextuwOH16r+gR0j8W3OMh8Yqn63DZ+As0e1Tu+KmmlRl3o6HSYJmSYlvSkB2QZmVeS/ML29lxS1m3/AWQ2BK9W/MQmpyD1A5vJaVoc2hPas5C2VbH3otHRieb2CS2ZDVmpCFFBjJbqg53m1u/OzfYSfsH/PfByfB1stY3TI9qx1F7l7uPLlzRuYsPvAOzvnl694Uev0cFPq3weZr2hONjoXlu0Li+fXEXmcNm6N1CXR3rMKLZcRp4OZokPpl7qOlwuGmnzWdTwnxg1eBvTVQBGEpOSTN8EhfakyaIKQFqILoJAZlCmbzYZoBeg4CIEckvfvHiO9++fvLdq+Fv/ebq9393UK6ndZWc0OtyJ36fdMvDfPfojgdnz1lG9joK9oNL7kimuiBBHdH7ggL0SG5yho+/cuECmUqapUR4Syjk/frbv/G3/+InfzrePlP/hL2PY8iaC4N6c2UKaknp2LD5VQ0dmCYr1pXS+dpQCsTMHMZqFk4oh8AI+qp0m+FujCFut90Vy6oHYcZ0NO9OZnNOG2mjpTHGruuUWZHtvLhmUmGBvnu2vf3y8589//kPP/28+7GU+0R3O4Gx7T4LieLILPEuiJhlrhnb+IAt6aReF4tZbvSPny1fG00jwPnk/8wWwBboO52478V7zSUcyDYHgutSx8PiuZmXT98nf/57gg/aiOyirQm0PI2kI7PW0bGpt58zXo6f/syGFNJI905ZOlPG1gSqJAVi1GjoM2VMKNDyHTUDPqVki4xMIBXjuFVUhUlWtxWQMunKRIggvXRjTQiZOdaQmh9nKGUoAUaMQ+Rm1BAo6+uaSljGeL26+tM//MPf/N0/GKspNla6j7///ewK6Wi6xVcUYN6C+KODf9/h6nwP1OQLW9TSnPXQLUc3Hj2xc6je/V2+/vTzQYnzQmyuCckMdOMXYyCzM8Nme7sZLVUgIMQCpYxGUYqcnblbli/KgJRBkwwuTnZ8miwhYxJMZct7YTRJDXEXiESmaFNdDIpEJBxgpmgscIOTLhHJNJM5wUyzsnMi2usghzYJPX4y/KpI/9hZRx4jk52Vqpcdd2nKPlD4kSypw3nJc/rAvYUdTfAHBmuu+iyq6qAm5PUHH1ghglFTEKWsocqsBksYU4CZCHMHHHBkzqtmUmUFZMBsiluXkkISDoJVYItHTaoh9QNiprHFwQsG1YYcCpiTMIZS3iJrTFSVMIx55aUUu3rW9bXWfi20uLG5pQAmm+jO+X/usEv+oTpeJyd3vNqgPOb68U2PfPGRPrq4dmlhvy8KwCmdrfHjFa/d/YubmzEm2VzQEgq5U5kRQb/67b/1937+Z/9M1t1u6tqzK11kRcJsYq8QMsTiAAiZu9GHcUyqW69+4ze/pww33m5eGLZ9twJyOw5VDNRS2Hv3wQffGqOa5dpXmQio5ihAzlrrulsBKuyYNbStsoJVQ4JOE2XuVsd0ItMy6FoPLzU+TVhicpPA7DzCRSTAZDJ6N6A4EzVNZBoE7tEFcMKfdrHKj6BXY23vBe1E8JPFvgThnkdnf8fM+U9E/Z1P0UPbCon9oC9tAppixCfhZOb5LRxRBEqOlXnncfPpX/7py0///Le+9wHHl1RNcIix6wwMKKE0dBCC26CaC4Q1V2fCplDg9Bb1ZVSmmyWBFECJ7g7Ztz784PbuzoyRWceo20GIVAqIZI2syqwky1C3NXMbdZTVVDt2EFhrCKhJkozhH/3D//pP/vDfXz15+nt/9bu3W3z43d/5r/63/5sR2Xk/Lw4tos4foOOb3sK0O9q2J43sXUjoX7uavDCSHUSj7S4f7N7nC1regpOVsT+DvFjYKVDadOMsjZkSqUwbiH7zU4xbD8+KGhxGSxQxaaaIzDD2RmvxJ5p04IRkZgJSafSpkfMBmKRgIjMbDiKsJdumQTARKZqUIlIGMzBpAhOoSkgZ8mKG0vosW14xMwg1xox+HKpmr98dQ5oZ8CstiF9Bekyjj7TFI1uk7v3pYX59SQWdWPR9VosThfdMoy4KVNQ+6njeoDU5qAlE6erTq9UQXe3TqRglMKpqjVI8hpQjOJqX1aor1qckxRw2aUojEJGwQnUpQkoNZqC87YKBhm2ibDMcAOgQ6ZkyMiPAdCfIJECn0sjIlgwMBjdD32PVr25vtj/88Zdf/vwvfu83nnvdwsCWe3tyjp7goWcesNwZcWYJvJ3lsJPLH6YjOwUORZ/jnePkkZMfl798zQrApYVx38TVK0iMSw4PAJjsK00rZGFN1oTYrXr/rd/65E8/XKW+3N6VitL3ffOsH1D7/ophlLM4EhUA4eqGsRbvb+6eszjDsta+2FVXasW4vfXeVqvO20lsZqqqp5mPwzZXvXlpjtHpnsjOi+/DiwtFoouUeRaowOQEtO662N5JuSrDDbZPPuw/+CvfNSDhs1oD0DCxDSxhYN4lb5+C7BeDMOMLPIopnrWg/FJuT7P/DsBjKWPun6lRp2271FrO4tJxJ84PLPInXHh+rhdz3mCASDOrScOG8elP/vh/GJ7/pOvLKr7Apr97+QOPL7s+qTRfKwpUIWtQ54k0kjSDAiCK1HJmYMKUE5QyQVkdqCBSCGVWZ9mMQ2YYHVLNcRi3Maab1xhqWo2GZ1iGrKBHDYPFNpCOJJJIETYOdaj1+noN108//cvPPv2MRmz+9qbiy3/933/8vW/9zb/3P+GKxTppNgMBpyckp/329qbc8l3zqO7woHj2zje9BN6LJTXN46WBZ7/+T+f5CS1/PP28ALic18eZAs4XSaRk04j0X3ZIPN98/u8z7xgdUuOoVAwhWG9eMVTS0ZIAAEIGGmSPSEaKRKFPeBKYsVA0iQMN4CqT1kynWQ3e0qMWM8ohQCa5YEggKIMLyJQlWSKrq2QFi5sjIouFW5oq6m3N7GhEzoeTgCYFhDz0P/s1o8c0ejk9cXj/WdFxR2eltYs3HejB8x6O+wx4p2WeqsvHD+/Y/v6ByfuGe9OTDYE/+8GffHG3vdlE8ULGy9utr8q6uy7lervZbLZjaBTTvcQV1l2ak13t3Ae1UADUSqp4sQopjQZ4qUiiiqSZsjT1oyU4pbyJCyHzwsy0pLxGJlj7hsiOKkW6CyYzS8PdxsltvdU26o3qbXK467yCHZL70BwklshwwOGRyzud/A+rhQ8+cFYNffTT79EJwP19sR+iVx2eCVYKnCVhI6PWmtH1q5q1ji+eP//yhz/+d//DP/2HHz17piCQ43Zr0rrvI4PGHJNGZ7bpOweiN922rqzLGooqhIiUImWGMaKDT1AMY6rY3XYDZuktmo+EhESxMsQoS5gpQcmM2ypPeQoRpZPIBERlqBS/ffGis6TXanLcAVFTvbUIgR2EzKQDtF7gQiR/B3SyY++w5wTMKuzl/WYp8Z+ld6/SfDU6K3ccePOcx+Ka030tDoJ1cLRy0NPzScPulctNZf9RACXNvlmz2YeoFcVe3vzo//fTH/x3q+Flyfj8pzfPrvjTL16o/uLJkxg2d6QNA9xdUjESNdrZgeAwTIBtMLjtDp+yGXjC6S1uzM0J81JyjJqxHcesgc5CkQFa6XsbR6y6Mo5jZkoms6FuayRpmdlg6oymSDNuqsYMkLeboVt1/+7f/vHv/M73vv+bn/zRv/1X3q2D5b/+v/6fhlr/8//xP8iexiJNjtS7XfVodz+6+JbouPD9Hr9XHB945A3Re7GUzggpR38Pb9a5r6eWg53lgQvOclLk0XKadfIG/RxKhsN48+Hw//3ip/9uU/X8rt4OxYyM/z97fx5025LdBWJrrRz23mf65u/O77751TypNLZGkACDkARN0xjREY5owsZ02w47jCN6inbjpt3RQLsBGzBEmMZMcggQLRqBJKSSSqpBNderevN077vzN59pD5m51vIf55zvO99473vvvqqnghVxv7vP3rkzc2euXMMvM1fiBIRUANbpdjGamVeTblQAECEyk8mv2VJo2A8POtsbhQo60Q0IaIAm22h0mppEGQGjslWdbp1REEmIgJOTlciwJkBr0HASIsOiHBM6Nxzt1KPStNpk9yGhQ0VPv3kSZOU9wA7fSnrwr32rI+U4P94/333GOUEmPSgdxBSFqRw+VBrqIT9jqhCmoQ4BBZRZjTPw4pc+nWLjDBg01hhOwAKjJsK4IQVWSBEYEAmUhDB4RE1iyLCA4jQUlShIAk5siKxFBAIVoemuMASYbBBQnYUQQkA0AMKMBhUQUNEAOkASCRycM95mACoszA2BFo5IkqYyt7a1mC2vPN5bvSjaIhJEmbYiygyU2odFcbZSFg6a+mx/7vR+O/vmg3bcPJ8cUu+npJ5/dIxfzma/b7MDcGLlz06jb7FpD6x/mAr0UEXSoDy6c+fOjeuvvXbtpVeff/XaK8+1cfDdT14wkCuIJglJUMVYxyGhn4bhRzGT6TGCCQMTIIIIgKABTQbAoiVkJmQEVkEyBGgMymSxGqsY8mgISFEADakmQmAVBSYkJNCJNc8KJIZAVQCZEwkqgpJqp92No1GsuR6k61/44lMf//Wlp38s2gJdZmkCKck0cpzq4XGvRwzDd5X2B9NUEB34Iw9Uh+NuwJF3ftfqqCmuM0HdEGcbDc9Ah060debEw31A/yMi7cAVm+63BcUqJEs7L33+Hy/w3Xy8lSvduL69ORhvWqDULPVstmI4NlmrsN5MpmpVWTGpArBAQgViZSRgDQREk9Dmgiyowjxd9gMiAJPt7GTQoCoLa4wqklQUxGiCxBwTyCQqopCIsgIziqAqpZQALSGJBCQLCDGlBCqg7VaOhFmr2NoaCAgZBzxYXVsdbtz+xud/jevxJ37gJ2xekLEzF0gP+02HGhFPasR3g+YszrnBcWwB8MOtwDxs9F4dSodcXMQDp3lipd7njcPY2CHA4VTUdP+5wkT0TgKOgCj2s43fqF/6x9XGzXpshv2UUuZ9EQOA8YDIAjgJszPbLbwfKxF0drbeZC+jEky2kk2XzAGAghBOQujSNESWEVRQNCAKU5dXgWBybCqBKiFNYokCAQt4Z0DBTKYgOJF1CEoIRgUlYLU13PzCwuPfE6JxVCDNjpWhKQoxM/zPOFDhO5ZOGwI6Q6vgFGP8tJsnC+wzaF7onGnlPFBuMx9u39XT2Q7y6XFGs42Bkz1qtB+kavrFBtSExKM3v/mlf/4/YY6dhUUByfOsqpoUQ1NGAvbOMickcsYCWUCqGkayAAYZRCbovk5igwonBRSOCmQMWFDg6TeSKqsqTPb6TsOZK6glmgwZQEFUIiRQg4jGC0AVGEAVohH2uSWLFt2obsTJcre7davfafqCEsEQkyBaBFWwBnB60tDsEID91tRZu+FskvgB6AyrdT/XE+3zI+jdfPpDGZ2Y6Iyy3wq9h2YAjtBpn/aWFrLPdjfqbCU21aMm1v3/6Z/8nc3Na8bq7u6mKt+9ttk1aIWYNTQiRpMIiCTCtrEKyKqGUVSREkxWzQmhChqKKYkk0MlpAdTENGEuQwBEwigTXuMJypKQUFREBZUAUUSBk7EOpmvTVFViigbAECEBM4MyoSAKqiZmRHaI3mO7RWG0vez05V/5m+2XPveBH/sTtPxYki5ZR/vruyfu/77Zf3BA2LtLR8ypoxFXcN7axSNP5umID/AetlTeKh31zPXYEJ8Gct2fITgw32cpZr08bc2ztovNy5yDWzM8BCVxYQbP//bP+9HLKYzHg/FGHd54s79TRqPiJL4eBx/5yNWVXgvZOHUJJEpCZAIBmR16CioiBgFVkKZBgGYOh04iC6mIigoLKiKYSRxQYVXVFMWgFdEkUgWOQeoAMbLIJIoDK09WcxKQQaUQmUEZqE4BgLw1ziA3jStyIB9FNwcJPS50O6OYeHP3tS997YUvPbd3d/AHfvZnFQQnVTwWJuvbyWDfWgf3bOTlPUCHFOU0GCYefXCU9LC8mP3F2dMDpE8PD6u5aATTQlARkZMYNAmNxs1X/snfu/XFf/qBDz6KtadGVEgkBaCGoyghKSpNQ84SKgsiminEOYlZgqAKNDuDaD/UlaAxhAAIPDnrdxp3jib7gFEVZvtzYOJCiyKRKIgoABgEmTgDqhoigwHrMjWoDEwxVKnrsrh1/fO/8Nc75z7ziR/96fUrH4kJWEgRSMFOtlfOI43fQaL2ndN9G+MIfI8nDeW3AP/jMcTncNoTaT7VfGQNncXSn747Ybmp5JtGjgIESAJoWWCyaC3Fiqo7m8//6rkL7bs7JQCxQGRGM2Feiokn01POWECYGEopSVS0QMLTGFYiKGpSgihsjWMRFvZA1kzPuWYVBKMACjQ5Em/mjU5i5iZCJBKDk8X8IIIqysxN04CmwlljhYwAojAaXwC6rb0wqrnafsFWz6VkNQZ0vRTZZQsNdU27sHPYx2Q6HGY20vyq6YdC98XkzqJ5OfZ2Sz/uYOxX6b3rAJxGx83GswfnxPoUAASsao5h8Nf+h//SY9Xt2sB1K8fxOBBFDiFzkPU6TSMxxBBqSOpTEhZnSTUHA0iohgFEIxCSApJhUZBEiKAsRpUlhRScUcoNAvA0PJuAskETQnCZTQokCGQA0AAaoElgrMlCaeEo3KiKz1HJC7NBVZ7ugSejxhgejod37+zt3O2t5ta73O+stW9vv/RztPi+5Sd/lPGyGjeZSjhs7U84e2qrfWsmeY+Vsh/dZm6G/JjKPmqUfafR4U7RQ8x8aMgeRQP2nx7s2zqEEZzacIdBUQRQFZ1wgyqQ8vDe67960d6OOkByd7arb75879pm+eadnUcur8bB3nB3y2WtT378ap4SRxYUEQYQICECMKBgJDIhMKdJvHKcAEqiLEpgVEUAJakyqAALsEhKEgI3Dcs0/ihG1hA1Bm0CC+MkViIogCjqdCIbkUQ0CoMhFiWDsUwUYG21tbC4VtaxIjuowt64HNUxo50L6ysXVhYGo6G1/pf+2c898+FnLn3g49ZnEz/5yOz4cV1+ysOHyaPztvhBn+/HzD2lW79jxsgh/j/r+cnPjqKtevjZXIrpWdAHowUOt/1+NXTa9iJIk6VtQzd87aVP//qrL4LrSBFTiAkzK5iECWKCNNnsi0SoMgFUJzJueg6wKpAi0nT7r6DSBPSfxmtQg0iIQgoghhAnMa8QRVVEGZAIJifs6STkumgSdQjMoqDG2Ciae6uEhlRimEQjYhR1HVpc6ZcNlFsbL37m2Xrz/GMfdktXF3rt9upqe2EBqMfQstN20QM76DuIx+5LJ37pERY5jY4nmPOlHgz+P+64nl2zM0vc776Dp5MoyDjFBKfR50CmJ6wzBmMbBePAyobc/ka6883yjRdf+tTnr12/HVuF1gMk2zABSK+VJQFMQIAiE38UjABiSgkArfeQjCGyVo0IJgYWSIITlWEEHIEqgZLwZCkmKBAgCeD+GdoGUDg5C0Q6OTDMIIgiqzYNM2gKaNG0LeUOTVIUAFUvttXpDeK41/W9/gu7v/mXeVRl0vcreTPYaXC598E/1jzxh6NdbCHiZDZu3tz/FkaHPgvFmE/0Dqx/OAahHiH7u26AP3iDTIL+6DRkGoUQDVZ//+/9pfOLWA0YkphUS1mZFK9cWO7vbOeZG5Uhd47QcpQUQuIkibPCKZAaC85OzloUBREGMk1gY0hZiUBZENWANjEaMKKCZNAQkSEiRIOoLMkBTsz+KU5gDNLkKHeJiTMkkSSJzWQ2jCfBnxkFWDiCEIAaO9revvnSK7eu3XXkVh9ZWbnQbXtG2C0HX997uexe+QFYeh9TYXGqiqbRuKabMWG67PRbQofY68AbmZN2M7wJDovBB5S8v5vphMmYQ+bL/p1DL01Dgc/lcjjRyU12RNpMQiIrTOx/CXHzBb75nFa3nNRvXn/99vXNW29sbO1Jb+HcvVt3ue5bSM7BoL+rVbWEC6LkiwKINAHZ6ToHFhFJoMlYMwlvKKAqANMIDKgqzBFUY0rMnGLixMoCgqGJhiCoRpaqakLQJEYBBFQQEieeRFNHjMpJEgP6zIcmNk2jAO0WfN/3f5crss997tlbG6PgIahNCEkgsIZbm3fu3ruylF1aXxvvbP31v/wX//xf//9Y5+dAsqmrekQaHnNepyjavl5/KBbSqbbCrKvnPOWHTt/+ETbfgIe4fdois765L+HEmz5mSM3YHI8o96nhjTMfUAEOgqURTKasTEqgypLt+fr2ze3q2Q2oX6wvt6NP2G9CWes4oDeZN9rnWshaaziJTs60VpgEMidVBSUy0zopAIAgoiorKqiZeAuTiD/ABFaFhVgVFaaBdRXQGMPMZCjE0Cq8oLARNN4girGEACkq2ZV2gc7VIfjCNDWYrHdrFzdu7/jYX15Yu/Pil7V/mw22TJXnrru6dv7Df3TpqR9XsAeW4+8yu+DbTMct9rcmJk6z+4/8PD2H/Zn9aar5g2UQD5Y7TiUKTl1UUCIFUVUXG3Bwrb72qWrzi/neRtre7UQzHGxvRW1GqYlVb6FdOBeaGGzy1hgiUDaAqqKiIESkdUyMGBIZ43yGGVASCBESEKMmYQJAxMlZ1iKTvYnTzWiCwKqqQoATi8koOIPWgAElAlVIwiEpIwYGQVcYsDYZI6DCqnVdL2YZaGh1TH+7PxzvLA7uLeXZqL85HHbzlu9KdetX/kr3x4ne/7MMYBBguvdhvx2PtfE7HghnZHDqIz1RH7wd2vfpT8z+Yc4AfLskxmmFzqsDjuIk/qt/9fe7rVDulb5lpKqRtZVlLW9Zkl/uGANNkxBNO/edxaWmqQGEVcZVDFGKzLdy7y0BiLAgTDYFkwqqIikDN0qKxgIaIqdCwiSEZIw1CIqi0Rny1hAQIdFkmxfR5LxHmYTAJYUkTklBSTCBoFGUZDT5JmoT0yheu7d959rNZjhqt1e63Ra5rBrGvIecErVCYW/svP7PVp78Q9j7iJjW1Ls++De3EB/gXe20fdBND+TfAW59olEzp6+P/t3v0+8Imn3Q3M7eeeN8lmTfHZj77oPm2JfmJ4zw08XYROZNz2RQBVBAy/27z2Y4LGMod7fb7eyxx1aqOGhvhu1yu12Mil56+on1H//hq8rVzsbGcLdytNi27VEY+JaTCEiYYiRljjUZ0JgUlJOwip3gntbSdCVzUgEEUWZIoAksZTE0wh7FJ9CUOIYmMCQ1seEUISaITMLIgKzEAs5l1ahBgx7dUk7nHn1kXNGXv/LKThN36tCoVTYKICqijEhlk9hQFNvfKauB9se8eW/jYqtDhgBpJihwvm9O5LRZoun/8xMHb2kg7W9CO9Qrx+D/ffaYv38U2Pvdb62d5bEeuz7NQ8N98XbEhZi9cNDcc8GGDrXedFZUpg9YAIGxUV9z6NPetZc/9ZvlCMT23rwVi9UWKX/hnrk9EBJZXuuYAnRYpqhBEMAqJzSABpEMEKKCpMCAqsmCEqKIoEFVNYigEyDWEBpFNJNzZYCFGwE0E1fEQFIh9dZ4RrDWJgCRuq5ClhMxG9DVpZaTprvQW15YTEB7VWBQlPDVbzzfO/dEJ/O93mpy7sZg8Nro+vbW4HwuXY/twn5AnvnEkz9hEFBnRxkf7pUzBsW/gTTPhFMg7wwb/r5Q1nEj74g4eAAw7CiUdOjnVOHOqjoNTasKRACiCR3YsrXz2c0v/QPde71TSDmqhjsw7LtXdk2jeT0Wz2CRTRFTSlJYRgqgGZElBCQWFlFjTARVxRQn/A0iGBkSixAgTTQOggUlEAUWRVIARDWskCZYLSoSExGBeEfWgsXJMTOTqTAAJAArKRmDxitZYRYGYoAIJmJeNsEQrZ5/PN41sY5b1dC2V++NcTm/VNdlYe7s/cZffOTx39P4CwYFJidBTVfmnSRJ3xbTHwE1Tnx6ltB+2CPtiBG1f/1wHIDj4+FdouOa7/QSJzNeMIFVlJtXn/vc3u3XIYY8c2XZABmWOAEsNYZW4Ui1vzNwBkuuV9bWOu02EDbVaLDbr8ZVagInV3hvDAEqAsU6EGaZt6CmSQ2iEDA6REARDjUTOUB0fsK2YgyJaFR26BRJSKbROmG2GYuliSE1jVVAxKps/GIetSHQVKfYH9549fr1F25UgVWw3Sq66x2XmXEYd1pdIWZOVoEMZ7y18+KvrLyvrQsfUDJG5UCOTGL+HoBq76JIn/HZvPQ65GofGFJzgk6PvjCf1Vvgrve2SXTIu58Ckcf9sgPXac4YnO3anb150KQPbgjOIA9ERFHh4Z5Luw7GJle/6Arvxi2ztvr+sgTI17sLreHevVauygPhaMD2+9Xu1nhvcG3t0tozH3iCLO3tbhFJSnXh0VjDLKIQJsv9QdCQJjEWuZEQowWTUgDhJkROXI/HCshI46aJgUW4bmJI2AgBWtGUWJXIWRfrhplZApDptm1vset9VgcehP7N17YQrBFc7Lb7/VIMiAKjRTAIaomApRxVUQfn1tYK133phWcvP/7EATaMh9ziMzCF+f+P+AMPQvs6eP/HYUdXDxWy7y8fdgCPXL8zVn+vDpQD0+dQ9U6s6/woOTW//e0eU4cAAOYOJwHVSbB/EFCrAqokXAlucf1K2Hh50Y5g4wVjwJKWO7u9iysjCc9tp1t1AbE8D6MuoUMV4KCkqIIYogiCUBJUAnLABtGBoACB4KzqTUqGZuGzDIpKUhualFlFIVYhTB7AGKNkqtDkWW6srcvhQi8vvBbU6nZ7nQyYxDrO8k6x0Ebnq7pkjd12t5NnLb+d5/L+D17avXnzmy/dvtlv7u3Vd++Mzi0UywvZ+546/1i+No5mwU9ii+LxSNvvSRb5ttEpzunpieAko++ox3848Xw+73SMzrzefXsIAACIJhGnTK3sx18Z/fbfLvpvbo14u0p1iLub/NUXdp690ZRsValMFAcNA0hMNoOutUpZBFFlMJiSqERjMkcYQ+OcB8EYmsiaBMhYUUAWskAW0RIAsQKIEioCiWiSKICIah05CwTijCkyB5BUGAhUUIVAScFERjLGOzUWIouiGjAiakzBIMg6Go5cq+cXz9/b2xzu7q6sZyhptHl7Z9yyoXzica5f+VV97I+nlrEgANMzC2Zi5CEsjzhuqR7nmbM69jjweSKfPHA1joOqE3o4DsADjYeHQfPe9hkO1lTMzxDSxGlnd/Nf/vIvri/ZiKopICQ0CioASbj2OUkIhLjUbQ+2d3vdzHJjyeV5rnYhU6yqceQY6jo2jXdeQK3LrHEpxRRiVmTW5+N+qamRXBETeer22rGprbGhTMaraswsIYIlIoPCEVQJRVTZAEpEVdUEzsQqhSaRc6tr53d3Kktmt98fbw9vvvLGrTc3NBjrM0vYkOkPal/g2oW1ot3a3rq3vHiOIFIhlJoO3By++osLH7vY0AoB4XQ/zbzB8O4q/mPsOisUcX+q8khg0nmL/7TKPUiND+Hj71E6wBwBAGahW2HqDep0BS7obEUizr154DLh/opmhWNrPu9PE4sTScZ7d8Pgjk970oxhOKhBWDlzhiwXWeZB1ek4DSXD/s4wA7+8uPLFLz13Z0sG33zF/+YbTz956QNPXlrsqJq4U4/QobUOgYz1SXgSwtYBakrOOOMLDoEFTGZy1cFepSChSeO6aWIAyFLUyNJEB2Q4EQeIISUQweAMFoVttZY7rVa7lYemScz9QcCY3nexbdvFMOjugKus98aNnWBJMhsUUCFVVW7gA888nhvkoIur3d3N25oSeAcTd2h/d8Gse+D0QXJM8pzgSZ8GT8yfyb2vcuawwznMf//X4ayPKAV8L7P5O6S5RVnHgVU8mvaoN6ZwaN5kBjjMbz3CWQzAyULJqfXPCI0BTBu6/QrtvTi882Wo7m5WYWezjyavx/1HH6H3Xc1f3amjNCGRtzoY1mOQruHFFhWFSamuqhhRidA7j84QuhTjoEkKGICA0BBaS6TokTKLKgKcYqwtiM9d7qwzYKw1KKTgvSFUa6G12DGGMu8toCFt513BYqOOexEuXOgiDzlhaGA07Jchtlq5iQ05c+XS0s5guHNnt1/xN1+43U+ujNwqelp071WDK9i0cLjsQZX3HU6dBcj9juWuh0QniIhDt04Xy0fALZj7OS8X5m+emd/k6an7meazgokQElAbDApU1z//z7t3X+4PdXeAiPnuML58Z/yZ1/u3ymxhtbU3HO81FSmUIBli6tdVw92aV5cKYywnUNEylACYWd92lgwlAQZO0hA54RKN99YlZjI43cEVEngvKkQUmEkZgHNvclJrwCA6R8IJdXIgjKpiYggM41CpYI7qCSgRehMUUKAwuXcZ0jiWe14EdenuCJ67q7dvmvNb6ZGizrOmhNb57vmRjsPe11rlJ8Q8oT5zqJNNorB/GufMAX4oRsTZ/Xa88094863Cn3McdHwUz1/bt5jtqfTWa/hOy5r7qYc1xbxenqb4xlc/u76yUA436zR0LqIFAoCozElFo4q3NqWQY2aNbeqmv7e3tLiAmilwkblOdyVxk5ogyk0MZRnrEFWMshhFKEkoETMlGo3ToBrEumwXWdFxS0tZNze9BdcuqN3p1XUlzNBU5FBQBQUthzpZ1F6nW4+lv1uFsmnKWgE27/SrMtTDcrA9lEqN+rZb8nnGHK136s1uf3h5ec1lth5ULVtAE4SH1Z6ysrWQ9l4Od7+kl36PkDWTGbRDjXaC1fIQad6Qmrtx0DVH/NtZrU7g1+PI+Bl0BqryXqKpfJnF7jzg3AOzXhGORCLDY1nsS6hZvOe32qHT0xE1capCM46xRGxiFcFD3SggJt6Ow2Gvt6ZS1zpaXO1BTdde2Rqz/8Yb91rnLqSRbjy78bWvvvLdH1h55sMXn3jmMdbUW1wAwCSgAFXTcGJMoQnNxYuXtjc3YixNO9+9t8mIdYJBJe3eOrom1WXm2s2gruo6JJDQKCdjUqvr2u3WYqeXtbzJLAKCCFBqFa6JNDnksZVb8P581mLK+qPosdktpSKIQPWoRg/ve+bKSg7trOgPq/Gw/zu//Tt/4Kd/tt3rGYc6Da6iR+YBjjX5WXR0V/3R6KJHWFuP8fj02OaDPWlHvJBj4Uq/8+iUT5ubKDnF5znemsfsqiNLpA8STlNPWleIFZnAjV5sbnxOr3897ryxdfvm9ubetVc3N/ohxOzienbxknULcXhtjAEdJE8aE5YMDJaiEWSnmqEutnwnc5m3ZEwSSEp+iA3LoOFRw5zII3Yy5zQkbXrdvCisdQUBGGID4izZzBBlKppSEo5JZJxK400V63O9ok544256eXvzjd2BI/7J73/8yUXjUxPSJoMJEZpmHHLfai+22p2kUvZrQfPEU4/c2dwZb29+9H0Xuktt8V20o5ef/e2nP/r7Fy9fBTCINDkq6VsWKOJ3NR2R0IcEyIS1jjPrfNIzGvhETXY/hOzQE5yvx0Hcy9ltBcUYIb355ebF50M/bqZ8MBhtbm3c2GteulPeGGsyiMDOQB1YEIZ1qAAjgAg2oZLICx1rs8wYZ5CaJEhJFCy4kCCJoDHGUWYNg6CyUVVmISLvnCURUWHVCAjGgjMmd5BbIAQyBhhY2aIBQVatGm5iiqKGJHe2IPDERIZZXeZ94XwSIlVrWqtLFN0Xv7b1C7/2/DXN9rbrHu891kqF4ace6fzhD3dcLUX9RrP7GWe9yZ8GAGcmMyO4jwmcCOvch860To5DS0eenmD6H3nzATzy00Cr06pm75fhe4v29eBxf2PuWvfTTCLrcEwvffMLLR/aGYdQxVBbCwQ+z0lRDXmNxA00JeedFuYhxhpdTpQFSJnHHGyAmGWmlRdImGIauNGoiuU4DIeDpixdnqGB3ObNSF69ubuxV9VNLMsgou0Ccgtrq93Hry6v9LYeubC41PW5V2upqWMMIQhxDFwONUlTN/29gbfaXihWz/eWV9pFm+5uDr3y4sLC3u6o0tJlsZXluzujlGR1fUWaVA4G7XYrluDWszy3AYLNO/3QdHq4+cq/uLj2MXbnwChMQqFOWhEB3l3hfjB+Dlnkx1yzed5+KFb7Qc7vRbY+BOPMZkMmDXWkN07tHDz4Dw9Os7p/652ipxAQgCAWLYJKQhAFLRZyJbDoiSiEJnfOsMvZhZL6e3vtbGG4U+8OK79cJKt7/fFYYtYubt3Yu/zIMgYGhPE45Yvddm8JjO2AGY36cTR0Cnb14kK7l1IjddNdGWkort/oP/e5V26+Mdgb82CkeR4sKAa9vOgvrxfdNhImX7SyvMi9F8OTiF7MGBiTiG3lq93eyjrtbA+aEKu6ViM2N088snB3O270h72lJbMeW4S9QrrSrHQ7eav7tZdvjXHRkSGaHZuHuB8y+CBe3uk+qh7j4fkO05nrpvtx1Q8HG51XwzjzxqfFTa3/OYN3Gkz1qHNypFO/A+iwkT+92veWJ3SK2XPoWucM/mkW80uk5w0vxUkow0l4HVWMRrLqi/rK3083nr323I3hKH3l+f69oXvtRrU5Sk+vu95CazgYPfuN8c6QCp/niQ1SrSExj9lElt1KC4uZy7JAoyZYCAIaWZgFrLdERgEThURsoI2ykMXzi1nJMuRU7QoR5l5awA7VZs5aErIpggM0SIRMErzgsMRBar26F17YGDC6Dtp6oNoiNUYBkXJy1KRmUMYgdQTPSXwB3XZ29ZGlc6t5J7969fK6ShpW1WDEr7/6jf/fP/wrf/rP/beJi8ICwuyUsX9L96MD5bU/t7TPvCcqoROY9SRn4Gxr73QTD0+4OTtpZrYEaBZS1w0jZOHazc/9XQzbm3XrzVHn+edvvXh9ey/vRG1lHSwEUlOlpkaOCtpUEBWFa9S8Noa5iNjDKjkLCSRpauVZbr2z0IQEAMaiByAEAUyxyfPckEFCZgEQ4TgJDFHkLve25Y3xSCpKJAhWowCrusDQMDRRYxJEdKK5JGfVWhWKzpnMIKWIKJxkWPLNW7ss7ptvyu1qdZNN3pLtnd3h5hgSDuPuB5fK9UtujXcLfDHGjsJKDSsGkECONNtbhrPPAjBORi7m05zYm2+1Km8JiFcA+1a/8QFr8C5JjhkPT2le5R4faxMbCRQiR5YyJQaTuA6uIG4iEQfR8ahJTUpV6u+Ol5aX1i8Uo91NCtzqdKy3wKyQyBElRANE6KzJvCc0vR5VVaiWOuV4jJaGg9He1uD29b290u31Q4gp63Y8mXI4LkPa2BrfvFXlWD19pejlkBteP7fqrW9CVVZJQ3luqeUtLq4vPPLIU1lmi157YbXVWTASG1eYW6/vbd4alQ0JZlu7u4vLq1m73ZQlUkuU7m2WPTZ5q9ja7S/7vNXOhJkbrqVasDJ889Pdx//IDDyc24D7bhrIB6ttZ712rGPm/5+3hI7kczBm3tI8wNkoybePDn3xRAbr8dqeWelDpudk7dAZ0f9PzWOWlU4jw4XAHrzN0JEnVAEloNQ0HOM4DIRzRqaINtLO1u6Lz10fDmyL8r3tgY1paalYWs/7/d0y1ttbm65lIdW1VopiMq8Mw/72zs1bnU6bPAeuAcULGZOGXP6jX/yNX/vCXszaATJOwM3Im1RIQ092PvyRq8s9TaFUsM55a6xtebSOrGHGmFRSEgVNWo+qzDpgBZQ6VN5nvcyUeVxevpQX7RCGg3tbYLL1i+dt7t58/kZgePLKpaLXESVCOnCGYDouzkBbHgCFme/mgzxPe+nAADik/vePvNpX7Lq/f/+9x9gPlw6NgzlmfdAP38ce5pwBnYU/nEs38fcAJgeTgqoQ5OlO+tr/fOdzv/Rr39z4ra+MN6O7fS+IdXVMYBzdq64sRlxqj2M9HNRdS9sSQ9IYOCkASBl4DDAkyJzx3mVgUFBUAQUNQDQGJIjUyskZ410A6XT86lrny9cGN8dhNBZv3dqiv9AGQkYj3iMKorekjMhEZK3x1iDaljeLGS8YTBwfWej2nGoIFcYsc8ZZUWGGFJqQmLKl3LgctR7vOKDeua7zWVAizMhqp2itrvlb13/n1//R//sn/r0/q5C96/vDvoMI56/OEMTHZcCJ7XuCPjiW+KTpw5NyOz7Nf+BQq2IAMLp947f/dnP9S2/e6r++62/UzZ3deqim3VtcXeg4UEVsQh3qsDcqt7cGSTQmBtW91DiHdc2cWwOYeYvOpKR1KDOtvPcGjXOoIqAACYnAOIOozFE4JgQEcBa8M85Rr5Xn3htSVQFVFJ2Evo1BItd15JoRkByhIzKoZFGQxJgILJEtkgBEFkmJfMdirynLR88vmrz9O1+/ubM9brccLSymIr9Zyz95fnv5409c8s7tPe9kO0CN6/9egq7fx37mAJoHnAQ7ZKUfgzHOcOL0cHfr8c59i4SHK3MagLV/86FFATrirsC7o6VOgX/2+2gf4Z61pKKADAa3ydQphEG/seKhzgZb/UHZv3l321qt+qOyKtfWlwuGL37jueWFbuHMXr90y1R4k0LIMswyJ6pIaJwHRZcDg6502ykthpg27m4Vud0jBjuOsVxdzrY2S63AZa6py3YGhuDKxeKJy6tPXO5cvLBGKu1OYS112u2Ne3u5DQttk7dsvtCjVlutYSS0OEqhbMpiedVu6a3n99oLF1dX8ru3Xq+hZU2rP9jzds+1GIzZ2CyffObyue7iQlY0m3t5uyVJDVhX0LB8UWVPYMUcBAM7tSUfOh1hx306Y5bqSHqde3wk0MEDugHvccJjFw+Yfv/37HxHeCtWEsLs/BcFJJsBZMI2z1vEjSZBTMKNskpdGmNq3gBrBzv9zNhhNWzqtHszFAt+KbFotY4m3tlaWzTjje0tFy48upoXKE1odpuslXFgHQxk9263fcGONkI1TKkiMCZSsymOJS9cPwi0BD0RuapCyujWMGyXTZahxri81LUm975Aa6ynJoaU2KMD60dlZdR1OkXmu3VVpiY2sRHj3LhGi4mTwyo4XHr04vq5lfFosDEY3dgb70Xa2Rs0dZW1urPdF4g4FfzHXc3jLfqWhNu+Fpnl9gBKRechjbnDb99BNd77NPsWPTjW+kRI4C3lqLMsJ78P9tofeBYzWUORxA9eq1/67Ob1zRs3Ohs77kakhqNFaSdcdP6RNl1ecr7o1KPoES4tyE6Tbo9UJsPPYkqKiAE0Ra4Sw8QKQ6IJdq/cpOCNKVxmDCaRUmlrKBeuLG/EMEwiNlVkNodohM53XaaJohpDk0NgAEFFOGGtpokBQZbAfOLSinBY77U6OdQSo6pkbIAnS5oA6m7Wq4zUkDyhMp8/t8YKNmvleSfUdcd531kwhXPef+FT/+BD3/t71p/42MPHBd/b9E4mn09nyaMb/E8QIidenI0Vw6FHJzgdhwqaqwNM5yim1ilCLOutb/yL5z79z2ySa2V3Z1zmbbd+vr3++Lml9Us5oLE8qBsxi00ZRqNmudvd64/7gzKlqGIkSaXN5uaWN94454uuojAHStIqRBksqct97jPnjLVgiUaVtDJqtXICRADnbKudFRkZYxJwSgzMAGQAE5igGhPUojWrdd5ZdIC5xTw3qCBgqiCgFkGCICgy+sy7uubl9ZVuL4tN/cRV8+Mf/cQXn33j+VduRAyVlTv39Fa19OytTvur9fm18uKVYXzzbvujH2nWv3vfNJqFx55gcw80Do75WKdaO4eUyxErZ77fjxR7Iv+cRHrK9fF6TujdOghM5/6eWPDbzvasrOY17QR3QyXAam+vv7O93G3FEIpiYatfVk3YuLv9+ss3v+sT73v8wtre3va5y8vWgLPZYtstdlreicRarLcGFcESKSl5w6qgapxFVRa21lqXX716KdXNuZWlJ66c37jXVwJBSIyxGj9yab1XYOHT5atriwvOW7ZFFmIyFn1uO0vLS9uDzKW63FPDjFkgQIPGWkW0Bs9dvbr5ynVuUtNgqN3rz21du76bZanoaFX7C5E07D5+9XzR9uVOv8/13p07S8v53qa019e965VlanSrKTeNXzEHgNhEGz7kWYDjUu64M4pnCrfTbh7xZc9Of7xK3yZ6oKm7I6LhbdR2yu8z838OxTijKNgHRic/hLEpa0simrIiN2TRGGYuB33glFINEId7eyppMEqS5NHH1nwXM+8KT8urV7LcWA8XLi71llyRi1ISjt4abMZNGKYqaYornVaztwdNxVKissmy3LSaYclVKEiLzEJWcOAgDQuPhs2Nsbx+fWMhX+lmXhIwQl2FrF3UTRBNk0ATTRNTYrQgymA0b/sAXHTajG5cj3Ksi1ar1/bsczZFfxzeuL33yu3t7UCc+XGK1llVAaJ93/JsCO++3XQ63LI/zzMbfni060/o2AMf4OA46CPuwztkbwU9O3LOt450/osPFjs9yOK2U+nQdx2RIrqfBicewGQ9tJqw8zqn6628fuacFtC8cBeHo5YmXl+Ajz9dPLpMbVPfHe2NbKhb0KZik/n2oCmMcS1fVk0DYBCVFCYBDgEnYjYlFoiiYB0BUEpsGa2z44bHloYVbA+qwOSsEmBK2kRiKAiRUz2JIAfTI1IpiaoiGQOSehmuZSRqi1wlhVFSBQaKniskBOGlhdWtQfPl63d3axvr8QefPP+JjvNQAYxLFQLMLBiTV1HJuyIPL33tt9Yf+5jSg5sc3wn0zrnsOFwFCNOFaGfgwEfU21tv9KMlHi9obuXgbG/RJBhnslx9+Vf+ceFMXztxoX1xbY3VVR0bvVMA5pSa5JyLop2W9566uR0Ps/G4G5hT1FFdlmWVgJMkYahHQ0UESUXmxhw0EYIa0SzGzDtUNYjkMPPY7XZybyyoaB451pkVEJmG+BEWA0qJrWKMzJAVxnusUGJEACLudT0EFW2KLIemscBFyyFA1mqHxiE7Fc6t7WRFy6KHwQ9+rPvDH/lgKzODBl95rf7Nz7xy9/XdL+3EH/rhRxf6ZsHV4dZLtP7dCkAH8vkAf3iQ3phh/7OlD3Mi+mgO90U0TivygbniCDedTQ/ZATjCgcddXHjHMuXET9pXtDA5R24Gb04wTkAStfdu9ynoopN723erwV6/v7l+pffkBy+9/9FVS2G0u9OUw8fW1kHRGlJkg0IQbGZC5ARgCy9KhtB4ssYoK05OOTKRY2hZXuo6vLhcXs4ICQBtK2+1sm43b+WA0DCoJSuiNitcgYoiypzYdlrYbRVVhzkktIgEYGzmyWKsRsJp7fHzN197c2ewNxosP//iDbLmsQ+sf/PmzsYek+23lRfeuPbIJf++c/zRp1Z63daokgtXH43YqoKBFhPvULyH8LiCP+iCb9X2Ljzl74PTxOiZP0lgP57HfBH7ied/vve118OorZ7YFGcWNX1xch8Vnc0NuqaqJSH6tm+1TLEAtk1FE9UR96UeopF2Gy1gURTdFf3wJ1cXut3lXrsMw1Ed0LvR7qDsm7vX99qdljXWeC3yzFjTVFyHhFGWllea0CQonLGD3WqvqevSWHZpq85sDQCcooTGAxnQHGGwFzbuVGMDTRc7XfLeCqcIFRqNKYZkFY3JSLFGBQsUGcjZKCmlpmVp8dyCMVaSDmPc3K5euH7v7ij0o2sCALoY7WBQLy7nqAcr9A+W2xxrpn3wHk5ah3NE+Z4I/B2cOHy4Kw7L6zlDeNY/+9bxcYH+QF7mWYQn7Sz4dtCkYaafMd0BP7mcNuz9vvDERpgbG0cmE+b2COC+A6gCyKmffOistt+Xw9OXwnc1+c7d+lyvI+Px2sqmGCxL9Q0UOeyWsD0qMehCVoCm9dWlmzfvKEBS5QQAOjmyF6bHbqAhMqqQFFFqZm/AWaMiTRWcRKojEjErWhHmUGLoOclJBDmqBUVENAogFgnIsCNCYE81RQAJnGw0RpGEkhotK7I2us5o7J+/Ofz1r27k7fXhOD5/7aWvPX/vj/yBDz2z3BXgJlSBxfQWqxEjy/mLq1tb10kjgn248NDbpt+tTggeuzgN7Dlqr7+1QvT0n0cKmkAIM0gBo/jxmK/fuNVpCZq8IVpdaIdKdG0llVEE0FiVzFjCpBySNblmcanV6cUkHDXpoKzLclTWkYxBRRZITZ35LM9tYEYPSqIEmSeLzAmIsI7MapPWBIAAdi8WhW/lmUWVxKpCqIwOgBInIOYk1pKlmgAMsBrMvR1vjoqinbXs7vb2cs+vLOUmg6WlBetaIpBCY8HE4IwrTNFxZNv9HWgGxbJ/7JEnHnmsf/WR5TBuOou4/OglNrY/vFZtbKxODkmdtM9bt1SOADInm/RndPrBnWNr2d869x+fgjiD3sUZgP1mPK60YPbordK8Wp37zok1O/XbcMbrE9wtMdR1LawpVrmham9zwVPk5qlnLvYrvHH9+uMXiktX15cL2N0SVRLygAYIOMXMWVAAZkEmAKtAKh5tirFpuBpXrcKTZWuwKse5tSBUjsYLiwuOVLnWyJ6cMYhonWsnSISI1htLwkyodYqSki/VgCRUm2WB2dpMnWdJPm8TD8e726sXuleuLPzab7z6xJWlj37vR2/du/P6jWqx8COJm3tldFl7iHdN/eEP52uPPmJb7e7KWr+qJCVjZHFhFRhVZApIzf69S/b/Q88UAQ6HLjirhPeGqpgfgN8KJwsPjFI4HbU42UACAEUlZxXUKHCqy3E0uQfXMoUv1lc6a0txtFlu38m6u6kadBfBGr/IPNgblaOxNKgoaDw0tNCydcPnzq0hsrFABMgSx5HrCBKJzGg0QgesqU5VMw7QUCjlsfMt+C7z5jaUKP29unEwTpwXuOBhvDN4ZTDoZGZ9udNbHLZa3jjNeyamJu9kncUlQdNUjUSWyJqACeo6FK1WURSFX7AMzLjd1Le3hq9vlG/eGQ4SBrRockO2LuvpLsc5CbV/eRxN2z9D84x9ffvSCU+6Oe2o07riSE4H2Ml+jWb3jmXxDpjsvWH9n0AHPtG8SkQ8/HuOTnfGDnbJHFLBiKD7EyCooIhgkVM5yn1b29ADt7Fbnz+38MQyRgl3t9rf2Kte36M7fe6PaTQy23vSr0JgzttFRo5iWF5q0bgcN5oARHUaeh1p6gNM64QMTAgA2ISQEg8i1FUUgKSAqMJsEGqWcYIyGg+OVEGAkBDYAiAYAiJFRGLRyRnCCCRCBkAFVDRxSiw7TbW52zd5d3VxAaxJyTTJvHJr7wvP3ry4ttTrFhKacaxH27sIhQUg49VlSjQ7LObb7wO8+xV4KOPoMB3w2VyW8wwKcyPvHbg4h13aAx4/wPcOTrqD6UrRCQyhwCxCoN1OwsISDnZGGVLm7agZt1uLBJQ0idoUG+OdZG40rq23CKkoctIsNaHVaY/HflhXKWiRFT5z0lSdlkcjrNLUKYlY54whVA0hoWIdknG+aipW7XQ6ElNh89xANS6F1RhAwsJb74nQihjm5DLKraubMissWY/M3ZXloshjCE888uRjly+NRtt521sLChSYbTurhmPnPdqMjB3XaSiKLo/UrrZHqa5s3pxf9QsrCwrWtNbGOzc51nQ44PLRKdq3Rrgvek52+aaAw9x5Pgfd+XbtsgOcaSok55TFWfRuOQAP+BVvqZHnvnFahB48mDL/1FDcD3cD4AysLrcuXlreCttabX/vd313XfGdW92dwQCSriyvfe43Xhx+LH3wA1cuPLE63NsOCVSdKBNibGqR1FrMHGGoKg0MhKEJMfKojlWTjCGuYn9nvHnrXqtwvYWVGN3N7WGnoKWV7LHzFxixiuMsN1lmQiMmy8mRoqIlQ6RKICQQQmrIkLFsuHZImgSBYywVGrSmu1T8wZ/+6JOPDV95eRP2xs//5kur59d+6Pve9xuf+SZzqx40i+vm+z/81KWLF1xnIV86tzXexmaEkHNreXvc6ZxbyylDUAXatxRPBCnfCeEp1++Q5ofliYW+tyAiPRSm/1jt3o3K6syynPD9vIl6BHM4qTKqgGqtWGRMJabasSlHb7ZXGq8kPQpFj1qrnYUnoBzGwVYz3NW69Nj0INdU514KZ1OKTV1prH1GximjAqomAAYCbbWNKqXAoKxJcu/G4zoFRtCFFp1f4szTSgeGEeDiKkA2HKW8g4Y5jMo4HHNkskjE48GAJS1Tp7PcQmf39kZJNVaNCntnnDWZN9123lvsWdfN8vz1F2/cuLP3tRduvrkX9mqqxUjmRUwKLFANdzchVagLgOYsYOZwe923B/GwmDriCUzT4NGi5kXZ9JyMkyzzI7ffOTMd2/LwXqRZPLcZt943/ZEfU0joyHFqOv/fNBWKl3TvZr95dbfjCUKW5xeHo97OqP+51/lzN8yzr0qkogFTN8pqRHTR1Re7YjwpwGjQ748iWswQkCEpIAEQCQIAiuj0r4ooEEBSVYEEZgS8W1WucKMGJudSJ9TMm90ytQgXPDgBsQYUDBsBAAVBNoI+I6PsFDPrhcHajCxE5FGTDGHw2Ytv7N7aHf7Yj/3gE3W2tzdSjuMxN3X52hsbG7t9dO0qVIlTp8itpsKZSNRZv8BC1iAcO1v2O5TmcLF3nsuETlRLp4IKZ2T0YHRI3s/wvYN89l2CGc+rIqB3qM0eJz13aT0jef3Gze2+GfS3F1fd+vl2GI6bqgbrrTd1jN57l4jDiFQK3/HGlxq3d4fW4tJisb01Hg0GC4sLC8utUDWoICF1Oi1SS9YSamrq3HhWabdzIFhGb32GRjLjYpOc0dZCbj0pigAQgiUxBpTRoPOaUjNeXGmTt0hYlk1Z16RtMrTcLjY3bikBOOOCakxRtQ7R5c5nmbGuHAwwwVqnaGU932t1uq0dSl5aBqpxOV5avpgS21aePJujqlFxGl/vbS2WOGb660kscUihnMgMD17K3IWe8PhUerccgFll3q1sZxj/fjFTGa46W9M5a4cQG0MuNJJ3208+fWmhk3Vy0/VFneKzL926du3m5q3+IFwfJXfu8tL5xaXMARGQwVhHACXjkNSRcRa4biQmQhFpBqNhf2esvPTyS69zKO7d3nAOz11O9za3s1Z3sLObd+IPlh9f6LiVLl04tzIsd32vJw0zJEAxhIgGhA1SVSciMKqpHiOrao1kJQWAGFJDJiuWVrIFw3vchvWvP3fvIx84r91er0gy3F2M8ImPnv/Dv+/Khz+0zMbWkbkpWWoJoei21Xe++eLej358XQSIJoe7HNGPM5nxjum43fOQ6aRMj1jZ33ZnYILyHZylc1Ss4Ely4B3SIUvyzEaaq+PsemJdMWsVKpMCJhFCAoqDvrDKaGwvXrWL54LY7sr5fHmxO+jHcsDN0C2MUhilelhjUqSQAlkEFaSkRAiAlpCw5Z0l04TgM1c1dZ5bVOwttIsib8bNWOr1Vb++4tZ3ygC2itSENLSBHIKxVeZTj4osyzIJaeSda7eyMvTjeLi+dL7T6rJgt3Wu025nmSUxYdyMRvVgVO9u7b15b/fVV+7d3qm399JY3IiFvAsMkZmTECaROJsTO7Zg8+Cc7KMtq++g+07k1VM88H3s9djcBMAs7tO+VfxOqvReNPJw7ly86Z3ZF+73woNXe7aeV/HQNNn0AIw5r0xBhBj7ff+VL9/7kY8/ZliNxnJcvvTm3i9/ZfeLg24f2lmskRkZCaiVmYsteep8HtWOkzgkQN8oWmYvkECYISqjoE7Oo0YUAESarTlTIOO8c03DTX2u10l7oYxBRVCxqbFR7oPaFmUIRpMjNagGITcmc7YoPBlWFURFo4UvXGaRNMtsVYck0jS41+gb22y/8EI3X1haXdjY24pl5by9tVn+2mee/V/8+CdWFpZT03RbrZiq/miwcu7ixfOPGPNe2Rjyu49OhBKOIJewP5yPqYi31+5zo2MmFubi2cxhaFO5hqAsopL7fGsgRSd8/JmrVx63X/7GzVG/GseIrUEvN2gwVFXWytGAcOq280hVqkNqmjGnjY3+zdtbq+uLvcL2d7e77QUR5kho8ywjV0AKbJCNcSpStDyrpKTWIABZQpc5BE2SvDOtzHMMoKogOBmugozBGyMpGK9ozOa4uvPm+M6tzd294aWVpd//w580HKqtN3fHO769WI59brXt2mqszTLrfdHrbW5sksZur0dgMmscCMQRcW04oKPlteU8y2Ig9ZmYzrG2nzblcUVwFs05eHPG/UlWwPF1u0eiP79tmp99eoC6v7sOwDzNDwGcqdK3moPOZTJn0RzEyJidpnMQxti67Lnn7/zdv/Ovnni89+S/+2OVUm+pOHepd29r43Jc3GmGN241z714bSA2fPYrV1fzD7/v0dXFVm9pIct9YTKVaA3FlMha24JYobK0FrqX8lY9eD0z2vZ+ENPCxbZB111sJw39Ubk56HdsO0D7pRdvmHL8oQ9zd0Ge+nC7qcYKYhDRgE4mbBEsJpVAaCUxTUI3RDKQVCIqKLooZDQtn2+5HFcuPL6zU+7slU3c+1/95KOrnaW19c75i9n2qO9b3aWFLlHToHYvX9a899WXR7/wSy/9yL9fGAQRRaJ5npxZqwed8lDoYeVzGnscN5veBav67RPChCPnUd0HXsP0Tgq9/8NDKgGAJnVTJRUlRWccC9RVMAhNKluQQEZN3DPji66zxlQIam2jWe6SX8ImtcVINQzDIYeYQ12PdkE1Kjd1o7EhVes0gFqABATKDWhsaqMGEZNy2YTRKMRxaqpaxhIa3h0kFqxH0RfeFMliJMemiPlStrjQ6xRtzHK/VDzy+NXMEiQFMnt378SqXw9lb6e5dWPnjWubt+6Ve7UZKo0DjhNFpigMjhIqA6LDpOy8BW/IZ6JAc4033Qp87Diw6dOpVJ8sSZv088lG/OT6xJ/HO+PQzamUxNmS9fnRqbOTCvahvu/Yc5omPsC+ljzynSd+82kSYM6Fwv04e3ogXWZokiKSYaWq88wvfAOulXd+5MNPLMbdtZbAuv/oxexWPa4a10JGgQS62uZLq3Qxw/NrrVHJrWDbBno+DSseB60Fq6RBEBGTIKsqAxq1MpH6asmiN4JIyjmkpcKea7XXPN7YqAc1+8yCSGapappd1pY3zlHLgDUmcyTEERk5OoM+p6LlfO6cJUJGTgrJOlXwOpZHl93eON+4s9G3o2yvvTuqfNsKYhPMm/eqGzf61IBDaUa1zx3Z9r2N+lLpVADpRC/439KphKcrrMNjft9aP4zJvJOGnoMvYE7rTIubAgUHpABoDAkV7W4NxWeffb3I8kcePSeZuXV946tff6kxReHw4mrHJlvXDWXOAnILyzEgZzc3hl977sb2Tr29XV25VP34j3+PX88Gw8G9nXG4Mc7z4srFzqXlQjlQRi4DQE+kGmPmbWzqFGMlMUuSu9y5gpxVaZgFrKoaVLVIBKoM47rOcr9bp6+8eOvrbwzGY6dR8vZyNP43v3Z9eTE7vwhdH1fb3hYtILx8+bLzmckKY/Ktnd1Wu+hkiyrQhFSDDsuhDZE5LK+sm1bLZC1jM+LdFIcBVGfq8Jgx8VZmAI4DOfv46oHFtd9DJ4U4e0t8cKKTedihOJ7wCL27DsARpQiHr98Gzx9Rt4cnOw4ZtPseWOSUdbIy0Re/9qbUv/K//dN/SNEPxmOX0eWLS5cuXfno04M7t/fe2Ni6ux2+8uXnb7z5ysc//vQH3vfM5YXzJDY2ogDe5aJM6KDIUgiC4AieeOrxcrD3+NULd+5tXXr8A2zy1169pmoKal+6eGVpecnZ4vU3rtNofOnqctRUDfdSU9oExjmTE4iySIrJGFIIUckYElUkQrQqkZukBESGGJpU58iIMcbQymX5arG00L1x90anbdBERbNy4UJQSI5Src6tRly5s2v/9P/hr77vk38QbAYIEw6Hw2vbDi7eOxb0jM4SqbMEJ15/G2kuBtUxbPUo1jN/fPXDKPn+CY5BEdO7aqz1PvNZ1qCmpoqAKskkLpCqwT3gptnY7LQWGRlzVefIOevaBAUg+nYPe8ZaWjSXkBAkskTSAMygjWqSGGNTE0gTGo4NKmRZjug4MgcVIU4UK0ByjB5FkVVDsg7BJcoUvaGMcusAiCFvkONwXG1vjfbKexvl7Wu37t3c3trRUQNlMmVye0MTrRkrR0VRq0SqSZBEkUXQoQingNbnopO5ihMa8cTWnAaGO3YOyYmW/Vvqm2MvHNc6uv9nluMBxvS2Geg9MmpOpOlJajM36P7pT7y7H1ZIdR5eO6I7dDZjpyB2/cJL44Uvfab/y8+/+qd+YOmHr9pVN/rJD3bPdeMvvSR7/ZgvaHfBP/P48jOX2+X2oN1pN5GZTVWHlJoqpHHgca2jqMNKhjFVAaJoCBpESb0QpiZYAwkEwOXYPH45R2v6/d2OtU9c7FZJo0pdxtDEFAStJeOsRec0I+scOi/eYZFT0aZ2z3c6eavXsjYDQBRNKbAE6/J1MUvn2wvLxa17g6g6DE2309amLlp5t1e879GLj1xazpzd2x16bxFMNaoEzCNXrkxgovc0czxMegjf+UBCHA/9d3D34alenJtkhgPZoEdSTIgQYkqjyrx2bbBcvP5HHjn39MXWk+ceHe9sbJaDrSjEcXWxx0ow5lan2NjsF2iV8PPPvfLcKztkHAveGcVvvLq7ubuzubmpSKkurbW2uHJhpZ23nffWe6eCQKIJRBKCkjeQVFAZgwcikDqUHNUYAlQwpKgIRITeeOMtuXx59Txcq8pY5b6lRWfo9KvXNy6Ui1gUVx87315e+uYLb9SNGN++8uhF8m40Knu9LkiNwlUTjM0AKAYGNMsXLi91V2q2iUIdhlTdhXHTurSKwAA0b67qUbn+YB2wTwow3We0jzEcjkRwmn3z4OxwesoHnyn9di4BmncDTpwsOZ7+hKd6aGgdmTsGAARdWuq2ukub9+qvfuXOFz79wic+dnVx0cQ0WF5eThx7z6x86P0XIxvWeO/Gqy6zxpncZ5iEkAwSM7MEBVAVIERjFITI+E6e2Z4BeOrJR7/yzVdfurn77Dde+b7v+Z7HnrwcUvzVf/6LUI5G26MPPHZ+eaWX+RSqmuvak0t1k0rOckuIDpVrRgnO5yDkgFTEEDA30AQ0qClxSKhmb1xWQXyvTeS1juPAnYUFRYe+g6aIIcvbHbFeWgCLiy/erv+j/+RvfP02/OClc4QJ2JGheebDw+bEfhjEbyOdYJ8+QLJ5ei/prH2+PnZj2tTv3nzAkSLhUMHT+wpTYEgRUIxjg8lZFQvGiAAiagSN6I1F5ZZHr+Px1hanspKEKs7l1ntl9e3CFgUULcxa4FqQZ5qQrQ8EagDJIqKxJqYaWYmDscRGFDhxhcgEEZuUMVCqjVYmMEaRJjpLwMBBYoqQlMdRQkh1bELa2ypffPbm9ZthZ5xV7HYGWaO+X6WSU0JNhKwxKQB5R15YFCAo1Cw+y5qqRtZur/jYRz5W5K0ZLoNHmulUHpt24nQt3YnJHoI+P2r978eWmyr1g7Of31lJ7z2v/2SadsqpxyHcnyZzNvN77ua6fDIDoEhoNF1eWrpY+C9vuy/fwZ1f3Xnpo8VHzruLXfzuD/rLjy1s39nJc+8WW0Wr08ulLgyyilq0NkYn4pJqnZiT1I2Oax7V9bjkcZLAGJKGBCMxonlouBxXlpqLS8XFKxe/fn3rlTd3vDO9Xmux8NpU3dxXSaKFTivPc+dJDIkCIlnncGHRLi3nRdflnZZxWdHrIHpDBgkUU4qVVcpQu8vZUsf3L7etySvJ86y3uzFoLXVWekgEaGWjvzkYjY0xd8e8269t6HSL3Mza/N8M2ofKv12O9H3ePm4o3gcam60fxIMfUzf60EwAqimyhbVLw+bF3/na3Vbx7Pd/4olOiz72iaf2UvbqyxuG08bWLvlWqGvaGqDHxXPLg6ra6ZfGEkssCtdU4XOf+yoQxRiLLM+LfGd7EKvU6XRUGAWszQ0SSw0WmzotdHJRUoGUGK2gTXXgBtQ4I6IGUVQimURAihxYRFCrJy/0uj/2oS9++aVr9wa7u7CzMY794fkfutDOVzpLFz77ldc+9ZvPXr365NJa08DtzFlIevH8xXJUgQoYz4KBOctbneVutrAYNYvVWHnQ37xjdu7Ukl/54Y+KGofTfRJv3xQ6pDwmyMIEWDh4fkLih0KH8f75Oeez6Vu3BOhB6OwaHwX+5ycXpvoB9ld8TtUjgjXEDfdHJbR8neAf/NPPDiL/8A88mdtsp7/X666SwSaMCpdxqp55/GIEGJZN7osUE2VGrSIb1oggiUE4IUDD0RkkQOO8B7uzO+qXzbXbG0vnr+yO4dY3XkhVee92+KHvX/ixH/qZ0L8Xm2F/c3e0fXtloa2h5awicRwJkLosK4rW3u6etzngJHy0JTRNU6oKc7A0cexdTKpIkRMkQCKGjC2Bd2xb7e5a1usyA0BGvaVf/cyz/+l/9fdf2gTMITRlqDlr54fmAg/jz297QuZEehBf7sS34IGHw36FTyzrLRb9UK2gwxj/kWJgsvF/hrtPFyJ/iyJtnAhMy8RlJptHMBaJvPdFFqNaQ4gqCCLc7Ra+3d65s8l1hRqxaSQ2gYZVjKlOLvdRky1aNu+CbzfMxmXorGl7kzlyFslaskAqoikm5yx5REwYK9SGUpCmiWUVy1JVwliaRkaDcWySMsQayroZj+tqVGsUCRCTLWv72qthdwzawn5s+mUSK0HAeKcEykRgUZNBK6yqkkSbBBEgNhHJFB1H6J547GlE2l94iXNreu7vYR7usyNM+La782AwHiAaJzH4vkJ/SJzzXnYDjn/jg1Z10pWTA4BxLp7NwTzO/kQxKCgigaoALqxefOLKpa9d32TRV3fN9ufqL122n3is+OEnXbejF6/mReYaq5BnQMZ6YBZmAUKvgpBYpDvdA48xcAxNrEMtEiM0QUPkvUAJsqZulNtLBbY7C1+5NX5lY7wLBsHc224WbN3WeGm12+m6LMtYxWjwoBagKFxn0S2vtJdWfG8pt94Wra5zWdYuFIzPMgBUg8qMkYkb19QWO0URyOYN+KrkpdWFRKZJiQG2t0dVUqKWzf2N2xuvXd98+tGVvLcgOtm3/MAo4u9uOhmZf0u0b/IdDTb7QCUfZPCAuvMMaAzgIAD63AzAlOl1zjhCpMh0+bGnG/m1ujL/8lMvjxm//5OPi9Lq0uLCx1dHG/fubNwqegujEcW6WVpdG4+Hn/vtr27fG3U7nTqkGIMmIYtGoJU5VqkbXllZuLDe41AykQUbNaqxIYQUIxCStxLZEAihIiUAMsYRCSdVikmQUIQFGBAy5wHVAmgYPtLLLv3A+zb6/NVrt15+9V6rt/jEo8vA+NlPvfKpz3753/0P/2Tv/OLP/ZW/+xM/+PQnvvfD1pndnb2mbIois8Yjmk6n7dueranGKUI13Ny48doLS0tLC+I391pXszW3H3V51pYPdOz6zL4/1JMwN7kOhxnikAO2//MYEv4gg26eVU5hm2//DMB9a/A2Rt1Rx2kfLMPpVvf9xbETAc9JEH1VB7ayqyKthX/0q1959vVbf+jHvu8DT50fDSV3TeHE4bjdAmUVcEXmRZPxwAhocnXi2IWytM7UdWmBMvIpiHG+TpXPssXVztqg13mthaZze2v4zW987ZMf/Mgf+w9+6tarX7h83hVSbWzcWl9bJg2EOtwbdtreWqsCISVXmFTV9ShinqHBOtSGqCjyPMtBuBw1ImCNB7DOqjUk4FRyRu9di1yWd/IsaxkfB7Brs7WYiv/X3/ylv/VzvzmovQHVJnayhayVH7TT3L6/d77hZL5T5jrk4O9bzeUsAXoSf8+XCKf8/NbT1As9PDd17APePtDwUGhf4hEZanVcvhD3AkLIc5NlgBZAKKK6ImOFGANzQgfIRM40QgYpqaQokDTFyOXIdFFNVW7vZc6HGESTcRYMpKjAxEnqccMMoVERqqsYG44RQwMxad2kcaUNQ2RQoJS0rKIiqGIUCYmEnSZRxKAuGqMWSluDUgChrldWPwmTiBqVvXVGTAIUUGZVxJhqdI4RY8Uas97i0o/8gd9L1k0sxAPl+zC6422PqqMTNAf57UMeCLOAkkd84LdHCJPAAG/3/W8NHY5Ged/vPTTVdWj3zUx17M8mwMGcwERrkLFu7eL7P/k9nS99vY6piSlo9sL1/sZGubPbeWK9e9XoardeXbC5GQhwVnTcYhdcniJAkukRi8wqworKwJJSCk3DGikmUElNgjriqBq2Fjrtbv7z/+rrX7pRl40zwojARFVIPgegxhvBJq0utvM89xAWF+zSemfh3GKv02m1MpdliOSyXIREFJGMiPeFICYNatRQjqYTU91xFI2M+7v9cjCqQmQgBAXfryAK1SFuvLHx4ot3y9p84GPvi7abTXbH7x+O8O5Iqe8wz+KdTccdVXtHsc7Tbx56S0+cyT/Q95OHUzcA1GX+R3/vj/+Pf+/v9uO4n+xv/s4bN27f+33f88laG+sbMOOlZXPl6toXv3SLAJ/7wtd6yxdWVy+ZV0epZGB0LjMZjJrKABgvkQVS85FHrz7z6LrFKsRQhtIHT0qBAxIgoNbsDAkiGJGUrFFHlBtf1ypoWJKCiiADqzKwGGdqFeMQtekV8fz62oc+eP7G9kVkUzgBY28OyqVzi1/+nS9rlm9tbQ+2Rzdfu7e6tpZ7s7q6lrc8kvXeOSxUpE7je9de3Xjj5czC+rnlASbNly9/3x+w3WUAASWAfetoPmDAfXgV5ztmf0mX7oPRJ2r/I+bX/u4kPJB3Dy7pDlfxLSGw39IlQGfw7oTOqPT+pIbO3ZoD8GaA//TGgdhHoouPXrpy9fzLr16zxkU1ic1Xnrvz2ov//EPvP//R9z/ygacuPX5l1RaYSJIwIPncxiiIJgEIK6o6Y9R7BGm1OzGmuhq38nZKybd7CU1TjZd6vceuXPjGy3ffvFf6Xme37lfSlKF549rNj33g8iKudrpd0ZjEIMh4jBYhK5x33oBPDed+EYBCRMQWKybICbLEQRDB2orRugKsUSQgi1S08sVWq+c7PTGCJCojg8vXNvQv/Xd/55/+yhuc5WwAORiFspEYgssKOC6k7ucvPiAPPZxZrAfO5bjfC+8NXXIw1qczUTDD/adG1mmu0bfkWLbjOPUMt1JgxnzpkXr3hVQJQtPpdNRwDEJkEb3P24im3W1Fk7ji2ETlkJibKmotwjaFILkhUxmCDDQMh6GqYwzOOUBo6qhsyzKlIDHBXr8R9aMyVVWqg6kDCdqy4ShUs0SGJIBAEZS8E4FRGZUYSBGIgSOyMZlGjEzWACuiEqAQGUAUUUNuEtuIjEXEqm7GHJEwxpRUU4J2YUndlSuPGTIwsRFhJjv0QIic0YJw0I77ENDBSzMZ9Lbndg6kl860yKTcQ8sbD0Tf2ypkWpK+7UU13zqai/AAD1DVQ073IWhu5gwcDiaqB2UIKNQ1PfLo453cbZTBWEDDqLob6Je/sks4uLToLnTtBy/bZ67ChY4uapNArG+My51z5KwopogEklsHojEAR+h1LQFxtKkpUwo+70Tt3t4efPHZN77wWt03bZvD2kJGZEeDOiVeXurmbel28wxCQeH8pc6F9db6SuZbhSkKstYbsq4IUQCNKKWoMYq1MsKERMYaibEaj+o6AXpmrRu23vR63VqHezujUMm4Gt8byI07O7t7o2EdYwLvitUL57zPAWB/On3fhXqY9F5nuLdFcx91ouF+Hzqslw9w5JPePS3DmYF/xObUiZ87jTq/b9kqAsBTTz29srDU3xmho1EdXnh+sHPzU+eurD3+2DlD1XKvGDXN8oXzXZ9dufJkWcXucHxja3h3u9zY3TNguu1u1/vRqCLETo8udehnft9HL64V/V2CxljUelQnFsyMioYUc5cDaJOStURonLcQkiNj8lbNYggjCxKpqCQIDRsWAB5XsbKqKwvOG4XYyrtxPN7Y2t0L5rXX7zG0x7f673v/8v/6f/8fdEx9YfUcMBQtn1QSAKqawCGNxtsbr7zy9f727cXcPvr447bTevVe+eLru3/8+z8oJjto21moh/leOdUuwsl0ytwb+9jfvmA56KsjNuy8Ot5/dLy0M+kknXRinU+jb/8SoMN+0Kl0ghs1u4Uw4WadD7eyL++JiACurK29/PXnQKnBOs+p1VvY2y0/98KdL79w69FzS48/cvmTn3jf04+tX720bkCtMz6HJtaELEnqhmuOiMoKrVZBse501+K4QQqDcVnkPZe3l1znmafo5ddfdc02krDQndvX8lZvNAjbW8OL55fBGFRnnGepTSszpJibuqoNo6pFAANGiJAyAhPFMhnKepRhIkholdpkC3I5eQvGgW+X6sRn1qU6jBBX/+VnXvrP/9t/eu3Wtu20UwqgrCI2NwsLHWvtxFLAM2XKaW1+3+47sSvfDt1vO9TUDJr7Ce+wxIdKB2w8Hc6zI8URDuLTHk45M2y+BR9xEn40tajU2A5nz1y7+6mrFx5D3ozEzmqeOYnIjTZlNJacyZWizZHrqKnKrRNU8mjVDWJtHApKNQrSJGVNCUMiMdQ0nILhBmPwg2EYNzoqbRlTWaWoUCeOzCwxCqQEAYAtJiZAHYfIsSEypmtFVTgJswKQIZEIZMnnSESAqohoQVEBRJABY8NkfVmlGnQck6AxxoIkJJsV0F0q/uM/92fy3M/CTd7HhNbDnHZI3iruz6fhXPqD5SVzBvoDAzqHuGMO/4f91aSTIEEPyzR774yg02ja8nrgDNxf1OjhLjnJ7YbprI/OkBEiBONgeXmp13awE1jMuNIWCLoqqiRIw37zch9+5/Zo9bndJxblY48vXl6253q27V3myLW87/SCMnBKQNY55xCNVvU4z7Pucs9SsTscCFpHlvewbHB5aaVr2KI4TlXVGIJEAMNGfV55ly/45VXXWewxKZOLaom8tQYoVbGsm2R8rpAlgiCxHtXOO7I4HoRmXMakSpZjqsfN5m7JTNvjuDVu7m4PNzbH47JONhuNGwAk4w2Ejg1L+QwSwFPQ5IdBOivioef8baT92M8Hd+Dk63nrbz7BEWTzCJ/r4ddPfBFPnojYVzHTxRE62fsF6oxTwx//0Eeuv/5GXZapTmsrvdsbw9vbo9t3ht0cr1690NvbQyLXNgjj3f69Ry5c/mM/+clh2bzw6u2dcSDAzTu3s6LbW+l+9GPv//DjS9vbN6N2lGV3c7i+st5d69Zl5awZj8arqz1nnTBT5BBKUSnrChXyjNpZ4Z1pYlIRYY1VNMY4m1kHLGyRhLk/aAwOCbKyQY3euNV6t+8pS4E/9uGr73/y0qOX1totk+emqSsPdbe9IMY0IW0Pt1569ZXh3t5CZi889oSLyr0r1/r1P/qlL5dm+X93+QkHCCCHOPLM8MiHUAXYx2hQQY/tQT3S23rs0UmJH8SQOpIlHn3y3nIAjphuJyZ421nvO7r7sW8Pll8rEGKn1/uBH/7BT//WZ+pxnZQjU1XvoqJFWzK98PrOa9cHX372zUtr/iPvO/ddH3n/xUtrvcVOVhgiFKdqDWgxHg9AU9U0wkJEvYXFcuTzleWtQZ9JFzv5eer+8Z/50Y17O+O6cUU71jUKuMTtxSwKiViRZE1hixZbI6hAjjqaGADBexIBFjQuQ7XgLBhDReF8zoYgCmDuswUgTxaBlbwDoQhh3C93tke//K+/8Ff+x399Y+gY1WrUmFyWgUlZ7tEgEu030Xx3nOiKzpMek1xn8NYD4Rxn0ZkWzRx2cYrHe3Kdvz00Z/MdtNnsjLDDBuHku3RfiLztMu/34UcF0NQ8BQRgUGwtPPmPf+nFR670/uCPPtODyFpCaojFGCpHA+fyopUZD5qMy7OMuxY4S4QAKFQUrahBQmJmEqiGlSo6X4Q6WZOVdYPJiJAqpMRlHSNYBhtZQkpkjQKoYoQEzgMAiyiapAKIkcFmmcZE1rJGMmTQiqoAKJIisTAAKqAgiKgQMSuTrUKqQmpIoqrzLjRJ0Rpni6L4mZ/6Ez/5Uz/d6rRgFqVh0nBHgJpjnXmoHafX80Cyzm3wmC5DhPlo/Q8i0o8VN+GYiSWG82N2ptLfHsfMQerviQHzYDRnkN6/ymd04UFex3WtGoN37mxwE1cW87v9YL2PseaoNIkSIphUh0qDPtwZ6Dfv9ZczXGvhes+e7+mVK359eZTnuNgxWbtrc09kyJPzkESG5Vg1sEUDEJqq26bv/sj5R59xKMGpjstRfxzGDVeNNqNojK01Li62nnj6kkYe7vZ3NmNrCQJAPymACpCykA1osphEY7LAEkglNTGWpeyN4lbJwwp2+83d7XKn34xqHtepiTFFQWCGpCC5d8wJAIxxdTUCjYB2iqm9C4wxp4LeW/ROxsFpuu8IwHvUUj/z+rS6HcnwRCsST7hxCKWeKSI1ZH7kR3/kF/7ZPw0hCsvdjR2r5Fr+jTvbXuX6rd0o8crV9ccuri90nIDZHZRNCFmefd93P4Uu7+Yd0CY0kLU6We612a51fbtfEsrauUuZz27evGmtW+j5xXOrQFqO6xij91m7t1SOq0F/15DWdT+2oiUrQYwzHHjYL4031tClK+cIzN7uYFwOLeL2vY1ub1mMv3fvRuHbqz4+9kznqauPPv7U5VarGO8NoSb0RbvTzoTHZbk1uHvt9deGu/eW19YuXjnXLbrQQErVV1++8zuv3d5gM6pCaMbWdUBoeu4X7jca3J8j9md/DyI0n0gPYhkdtsXO6NeTmOk0i+6+XP0tcgDu6/Qf93dP/IbjFzBNM9vUOrO5YIKRISoLkMEsHzVBEJWQkwKAQ0whIekYJRht5zKyen1vb/tzv5Mb6Lb9+lJ3bW1xdXWxu9ghY1qtLoJJMXZbPSStq7LTWulX46LlSJJyvVhAz9rH1s+RcxGKAEAu44odSZblwkQ0iTku3joAsM4JCxpymY91hcYiEGYOENVaZYxIUSBr5RYiKZA6BVEJJjZQNlJW/Z17Zdm8eGPwd//hp+7sxKDJGogNE3pRZBBAt7m51zSNz1ow2xc95xwd/D3Npj/+83jKEzvl7dD9h9tZ8vG9ZsnMcP9pKAA4WBc0qeo+MDOX/u3SAwiY/cynmmA6RhRQUTh1Lz6iVz75c1/49c8/f/f7P/DIT/+hD7U7taQhSQ0ckOK4rIkFhY23UBkBsK0MiMO4UU2ompoogSEhAAGRz7OkkliRbAQYh2ZQN7WiazthQ8ogYp0xxgKoIEBCImJBIFAEawyrWkMIaJAISY2KgNBkdQKpakqMEx8EkFWTYhBpgiSEmJRVYmSbubKurfU2s088/b6/8bf/1iOXr7Y7BRFN22E+rOeZ4MuxRt5PO1mAeORYrgPb/QH7VU/i8PuKvrdFB1ruOwuHfTCawUXTn9PLyQFrICkmm9fkpYkeiQyIoAEjSQCRQFDBSAAIgrAjdqN0L9eoW9I1sPRGWGqXPddc6vD6Sn9lobtcUCfDxS5S4TPHucNxnQAJWURlsYB2i4lTXXHHuU5HY8wacZykGcemDr3c9e9sW5sB5Dv90aAcUlapMQImiKSUBI2CSQx1w03kkCAEHVZxPA7b/Xpj2AyrWDcxCQsziEy+F+DgMKI6RARwHtXh17/xza2Ne6vnLr17whTP1DjfRnoI9Tk9i+Oq88Trfd/+OFw8//NEQXHC/QmuoXAg8/fH/VQ1IRq68uhjtsjHmzuYtNNrAwtZbxCaGJqgqNlXn7/94vWtwKHdyguXPXrx/Pm1xWI3rK0vNKOxyrjV7lBZGymWe84odBYXiswOdneXVhdW1t5/5/Zt0UAWQhOz3OQtb8mU4xJQL16+MOzvJWVbOEILTtu5x1Hp2r671ClHo/5o0MmK3kKxvN4txyU6ZOVuxy8880isy8WivbLkukUoy+vDYb7QyZXjvTvmjY2qHsTbN183FK4sdz545QJ6Lz7nhE3Fd2/tfun69hv9ZjQM1udWGVWBSEFpdpLayS175Ne+FgeAfS/gZDrFcjnQPUes3TlQ6kTP70jWc8jI4c6/P1d/C5cAzZ+NNKOzwbb9b7ivOJqdzDN/Ps/0FUHe2dz86pe/KYCimkJ03qHBGJMhW1c1khrTahd5t+icWz63tNButwxgBIp7dbP1+rXETVPVRdFx3nXb3XPrF/K81Wt1vfOdTqbjgNggpMwV1ueOGIyJ4MoESNZ1ckJIqkVeiAIRGUcGUBGRjAUCVWONeHTesygaEzmRWiK0aJpmCCFYSHE8ZoHYhKYccV2a1DT9QT3cY+o+/9ytNzfrBGAsGURFNNYAqPF2PKzzvC2sE+U2XQV4uKFP4asHpeMC/W1m9QCWyLzTC8eGxtuW4O+e5zBFgnG260phuhrzcLKTTP+3VqnTXKMz0k5xBlQFMsY3qflzf+Ev/PgPfu+Xbt97887481995clHuz/w/U8/cq7Va9mUgGPlSbMsU0kCRhIjK3NSlKyVBQ4auZ17jGrJBmEVlphCSImxiRCTGEeZs8jEAdEmo4hqkGyQJCJkSRAjME9CMjqjAGSNiCqiTI5qQUgsScQ4AjLCqgoKGEQCSxRtmAOrOkwASVIMYpgQbR3in/3f/On/4v/635CxrXahrFMdOOmkuWX8Rxr9RPQBZu/NG/vvfEnO2bb+w6IZvjQTl9Nzzb7jaV6B46Em1oNlu4DqyPzYz/zRf/Xbn/rNX/3VFZcNYxwl9V7JQkisAIqQFADAK5CwAY2JRWA34l4wr+9GEumgFC72srKbc89jt2WLTray0LHUAEm7XSx0W4iIKZKj3IvPMrFWQVWMtxkIi60H1e5uieO9puhacbYurTIIhqhaJymTlKEJAauGm6B1lKrWURUkQUrMIolj4ghwFHWf2C37axWmtqboYLf69V/+/Bc+85U/+Ecvv6uAyr85Pudb+tD93pm/M69bcQb5H7GLFA5NH+Ps5cMm0cFe/4MAKaAKfO/OTh241ekOdvbKqrYGjeYLi4u3bt6uq+CcbXWLKkRy+bBMm+VoZ6cPTSgKm2d2bXlxYSEr2sVCr726vNguHAJ5EzudPGstbA2CMQ0VGSm1ukXRgjz3RGgMVaVjhlbeGRSgAoCkANZhRrjUcavrPZ+5wU6LnLTbufctn3lLPnEITWBW73NvF1MaBZCRZqOdsQi9cWN3e3P7+Ve37+015851L3Xlh77vk1fPLd5586VSIKbadou7ZRhSFmyWRMmQcT40je8SHsRInYfkTnaz5g9ZnjT71NxUPEUPn3jzYEXnMS446KqjoDgcTXvELTx+fTZ9+/cAnEgn1v70rzrRcZi8AUTm1Vfe+OynP49gDQlYIyrcRGddTGKMFxVWJid5TnXTMHVst4UGrQHnTQEodYMRYqjrarwxHG1tv7q9t1WORkVeQIJ2q7XY6bZ7rQsXlovMLS90CBLZ5PMs99aBGWzvKqrvxLxwMbAIxBCLdpGCWGebJllCVY2JmMUSoqqIMgcCtBSqfo0IoSwxKjcxNQ3HoKRlv68sNfELN7bLBIyAhCpgjCHEJsTMuwblD/30H5yEh5u1xwny94Ftx1PpYaCSJ/TinI6ayrM5BP3UTN6q5nr39NHEOJxtwJpM1B3ChE9HG/CUp2eX9SCvTJe9zwzXCW4tmfXra+d//ud//v/+X/7X4wRLy4u/9eUvfu65b6y15bs/svrUpbVnnjzXWcRqNNQoBi2nUlJAUZ85qRtI4gwQKgKFFFSiqhpQaAKIcd4mwRDFoDrSCOIMiEBSUmPAsAol0QScRERRcRKgFDkpkhIZAVAgJEQGS8iAkUUMNcxNTE1iFmAVVogxQcQkbIxTBCBqL7V+6N/50b/w3/7lOoZWu5hOyEwPC5/Z/Q8ce22+racIzjFI5vhbb68f3w0bbD7DyRzpwy7hPU+Hm2BftEziJ1rSK48+/t/8xf/n/+0//Y8/++u/XlfRAGgSUTRIiNNY4aIaFSAqAiMAAVhQkpQwiUJpoBLZrhgq8tbKvYjAhWtEAqNmdizMRJJbm2XOYyILxjoAkxksCpN7HVc8Lhuf5SEy4GBcJ1FA8uMqCGCILKBJlBCbOimAqiBiiAEMTZB+QpwEuJITjEvFg3+AhDHpysri6tpq0WudqiceHr3XZmvfU3QaTjoP8B9NgEcTz35MpD1OXIcZ6IP77oECGuMwmaaqstwj6aBsIhBa7Pa6xoxJNY7Ha4tLdQxRpd1rpxCp1VFHw8TDu0N8c9xpZVFvZ4Ula7wvHIA30GrlSwsL1miegbewvNwFkW4vK1o+b2XVqG7lvo5p2Kg3llmsTRk6QMxzn4Gy6tqF9bu3rkOROW/qUKOpDUhIjYS0vTlaWV+oqtDfGw3H8eatnY2tOoQUUxpH+9GPPPqBp4pnLhQL6/kb9+7tbg8aKDbGuzXcuN33hvwO0zAqtgtnMwGm6Sz9oWO6jjT4YbfgoKGnG5Om/sPxjrpvVx+5PjbXcOze4Y4/6gYcz/ds+pY6APdtkiPeznH/aP/OSXMyeljQTawoFdbzFy+E2FjrxsMhGktIiigiCEpEohpiunVnG0JoFZ1hGfwodnqFM94iOkLIXSNV0V7wrm1AAblTdJpQllW1vdu/vTX42vOv7Y3HgGAU263CYXr00uKHnnlkocjWl3rNeMzAeWayIut0OqKSQqxyx0kWVxaqcUCUWAfvHZLJM1+VZZ7nMdSxrjOHoWlaHY9lMAJGSDWhMjcMCqGG3cDXbo/C9KORrI0xxiRZlnlnfvZP/fs/8eO/RxWIpt4qHKxKfqCzaM+W1Mdb/G3Tqe8eAlnvT1NU972EM+HM0poYi7P2nz6aJ4XDUTfela1yB/PABw1LONkS88GPfuJv/71/VJl8tZ3/yr/4jc/9+i//5j//J5/+4r1Pf/r18yv24rJ95pnLT1y92MoWtCZNjRE1EEkNm0wkaRIEbKAIbESZMiPBcSMxYQCpRERJwKgFEJyuSlBQ40lRTIgiogaMATSqmiKDkiEDaJOKGmSWyMKsUbVqUtkEdTaqJFVAQjQcoyKlKHmrLSpZq7Bk/8yf+bP/p//LfxKFO+2OTDZ8TuJpzkx4PUDJTsUSDon7Gbvr1HycWkwP2gMnnWh1ItDz0Pt+BnPDnPfzHpsAmBclx0Gtt285niKrDtp6pvIRQdK58xf/h7/29/67/+z/+I9//hfyUO41XLOiIWUFhclRuQQAANabEFgAAgApiAIASAQABmAAiKEBAGuIrC+rWgAAGwAERIAIWk3MMNAGAFDFIAGIEICIcVUM0RrDvM+uE3seCUBgMiEBlkwUnu1SUFYgwMnMxsn24uw/JFDRiXGYF+7Rpx59+gPve6fSU++fwXuJ4R4azbPnO//AB9R3U9J5zTIn0fbR6inudHT8ENDlq5e6vc64GZXDEQJYQ3VVbTUhyzyAsIIzblzWIjIcVegaUjQenPiyajLvl3rdUIWq4ZCAXIpcxSosdjpE1WtvbMcYOr2WsJIB1ZhnJqVA3kgTV5c7LrPjcbnQacfEBGwsiiZk8Zk3ls6tLG/fubuw0PJZNhiOkAgBvC36g9FwHC9cXd/ZGSpRM+LBKBibiWgT6iRact3xS9fu7D77xnhjq/rQ01cHw/K1N7fv3t17fU8uP3ZVfO5brRg5KflWi6cG0rRx5i3PfUk5bWQ4yR6dSz37A3PscFo3noHtn4l1P1QN8a47APNfj6f8PIPR8YRGPjHV8Zdm2tng+QsX/p0f+qF/+Sv/whU+hhRFnTXKaqxBBIdkjB0OYEPixQuSO2l76GbW5z53yBx824smRUVv9oYjh6SZU8y8pTXnl0voudZWf7i1M3Im392tRCSX0Sefyn1IBWg1HprMEEJdD1daNnKAOmQuG+yNNGPP6r3dHu3abocMdboLzWAIXC91229ubmcLrcwSpqgxqBplrss6hMQx1QFGNd7thzvjxAgWQURDCGjB566J8Y/80Z/6q3/trzZN7HQy0bnBfwjGPGjPI97rEU47g1tP75eHQXPA/9lsfyB8587eexB6l+CoaRsebt9pQXhUNsyudQbRHD/S+v5lvbXa7U9FTGPhgAEELVpF7ghF4Ht/6Lt+6Mc/OKjv/vK//LXf+xM/KaF89tVXf+e37plfvbXQNd0Cz/XaTz92fmlhGTlKqCA0LjM+zxLUDY8AQJjGsXLeJRDrTe5jYFVFowBNxCaisxFI+inWnNmMQ2pqViQgiknE+yiJATmkEDmpNDE2TQQiNCaJJkICVDQpJjIgiZkVDZncZe3WT/7MT/30T//Md3/iu9vtDhFlWX54tcvk02fNB3O9c3J7HUBp+zw5b+WchhgdBzUmyviY3X2Ct/fQOXPGfvve51HY6ttOOt/AB2uzZuv055vtFA/qFDoiPE6SbQoAqogEpshMzenP//d/6frduz//i7/SK1qcqqhGSVBAAFXVGmIBFkVEi8DzBzQczh0AmGVU1nO39JCQUtl/kqYvAABIEABIzLNk+/w6fWHSNlEYAGQuzcQ3gPtKZlECmHgV463huYX1dtF6h9xwRKH8W3rb9CBm3lHX7pD/MZEzR4Xe3HsIhI9cvXL1kUdu3bkJqk0drTWIwKANs4qCailRCawh9BYQQ0pOIjJ22nmIzbjes8a1FjJCYma1sHLp3HgwJAssqdXLooTQRCRD3g36wRgjFRRZ984OhBDKijs9GQ+HREZEmxCsM0XLcKxbLR2NarKNRmznLjYhpLB+4dKdzX7u/NjprTcHSyuLuzuDMoWLly+U4zQqYXe33/lG+OGPX7w3oF/+/PU37o0+fLO5tNJxxert8XAQYVSxS+IUF3tdgjYL7c/kzmkDPTKOZ/P3c32Bh9LpQQ7H7f6TRuFR4wAerMOPuphHNM5bHXHfzhmAeXf5vg1wliA7JGkOI0gTLAThL/8//vL1P/rap3/rs73FliWbEqNFY0iYY2JrDSqWIX3zpTeunl8HQt/OfDuHhMqYxg0SsTCzkLWs4myeWDiyI2cMF9avdjv9e8PFXms8aBJLL8tMqHqLWVNud3tuVFeGrC8MQvRWq6ZsKGqoJJTtVntnb9sbUa6GdVMsOFdgVY/IQnvBB2lIURiBSBVCnRQosogSIKGjzcFwWCcBSAIsKXOZb5m6bP7G3/zrf/JP/Mmqanq93gHSd8iLmpxEe9Bsx9dAH1cER9yDd4/mOeG4rj7NCYF92+atjIN3SUvNeSOK89b//NPDd/bjkx/20R60rLf1BuxbpDDhCQeZAoAu9joA7T/+J/9DcIs/9vt/ZHmt85//R/+FWqM2jsaVDuJXXr7xP3/61VaG3kGRa07UamXtTmFAjKTM5y7zhAgcQx3JmigSEgMaZk4piYBQLJsUIkQx4yrWUUJUsMQKTUxA1HBSBCQXYmIABWJjBTBGQWMUIVRBRQmNRaxD440VhZ/6yZ/58//1n7/62OMAqCiGDCLpdCXWBBhFmBlP85L0RJolwSNddkZTz9uYePgCFPRg28H0zvxe4eN/3w3Cg3L13S7rLdGBYDnwnA48oxmfHm7Z/UcPRPu9MV/m9MHMzQBUbbczwPZ/9l/9pRj+zwtd6fVaf+P/+4uRgBMIT3wFEQVOAHOaf74YOP3ng9CDyNj7wgTHn88x8HSKwJLNLD32xBO///f/vk6n+w4nHvfxl/cIRz04vRc8liODUQ8LkPlkxyHROcW+/zGnuWNTIUhAhPSzf+p/+fkvfNY7nxfFeDwiNEiYQlQAa4wqKEuS2T4ZVWEJxNEbTjIaNQSQ5c6oSZLKmPb6w1ZeZORTkrIcWO9UFBUoQN00CtBut4yzdVkq4uLygnE0HIkh4xyhsarIiRWASQfjst1pI2kQHYdQx6a8dctmxreLN9+8Ox6VO8NhE1gRx/UNZiXrItp+hddu7L3w6t1vXN/ZrnT87PWnzi9dunj5+r1xa2khqZrUUNYKAT/+0Q/lrQL3wbkD0TNtziPS/mi/nGwJHbFqT6HjECDMLco4+63DN+Ad8O277gDM68LjdLYpeaKuPdwTOpVjB+XMp5xuvix8ph395V/511/72lcZ0s/9g3/4d/7W32l3W6Dq2y1oa101qYnkXTkKd+7tGLLkrHVeuTBEIKKaDKIIQMNESCCeEIhY2RSu3AnYdqbnpM1rV5eagVlcscWiL5vSIRRFjmSRqClD00qZN8Z6A0Tgw4jbuZUGWz6TiIVvYaJUSWZyqRMmQ0D///a+POiyo7rvnO67vPe+/ZvRrJrRSKMZaaQBCaGFKDgBJxIi7JIIe6rYdxdVSSoYB8rg5E9cGFc5FIUd27ErkBiCsOwKxggDBmRQkEDrjCSENNs38+3LW+7SffLH7b63+9773ve+73vfNvNOzbzvvXv79u3ldJ/fOX36NDKQsZAxCZIJ0zncDWS4sNhckLUnT002m5IIJMD4+IgU7DWvvetzn/3s3r2XS4Th4QGShAwtTtXo0jIQGauDxS9g/ywihh4qA51ZeV3ByjoJgATcdci80DnpVLve3hlkDTJ9QBKBlECMOAK85NZbX3b77UGr6Verr3vNP/3oxz946rFf3nzrDSDx6SeempqbkDU/aIWiHotQSmgihnEUOQykXPAqTJCUIbg+MgAhKYxAAgACSEBEQERk5KCQUkghpGqIWAAiSAFA4HhcUNQKpePzMBIuIufcq3phKCjGSsUHZLVabX5mac++vUuL9Q999AO/86nPIDLmMAQGwImSTfDanExG5QtKb5GKYrSohZaOi9Ivejt48qlzVS2/ISfCpWSfJbAV0A8AqEgFOWBLYE7yBNpTrkOJ29aneFV1qtEQiRh2gMR1Nx7/71/9amvubBTO/t39P5qenF2Usg4AAIEEAGCgje29ppXmubzCgOn8knySg9xxmETcd/DgG9/yb99w9z3Jjsw1ckOXJ5luKVpdade7juaUkjOE5b7kLqa+jajDT+cKm8KmatV/7evf8Mdf+eOHf/EIxUII6TgOAjJAAorj2OGcgEshVVEYkgQpZSsgIuKMAbJWGEsZAxLjKCQs1JtyaYkhAyIIAikoibpGkoio0WhOwrTrOIDSc30pJRBJVwRLIefMr1YI4nqzPjM/U/ErQdByHLYYtOI4Job1etOJkDFHhFEg41YyCIFEI3JdxiR56ExOLs003VOzcn6m4Xq15lJzYpoHbHqu1arJ0bAeVcf86sDgWHXne979Xu54mC7t2i1vwqVMn0JlqFNYPT/kcsKhXa6mxoFmQiOGfVfUjZmg0+MrczVYLZnaaq55TF22+BQW0thB0/NJlO3BNu5JSYwhgIxjEUkRNpdecfu/uDA1OTA4AARSCiRqBgEReC73GNu7d8eunWN7d41ftnNkcMAFGXmcOUgkpRQhgPRczmQsZBy2gigWi4tLc/XF82cma0NVv1JbmJ4+srd224sOVrmAIBqsDQ6PVUk2gYHju0hChsgBJidmLr9yP/crM9PTY4O1ZhjwasV3vVZzkXPuuk6z3mQOE5GUFIsY45hRTHGATRE3Q35mYumRF+bv+/HTT05FvFqRzeDAgcs///nfv/OOO5nnDtR8BCalRMZSRVVHAVJcp04ESRvbaLVivyyraK7HVJib8vJz2PYhUmcN5eBdZkcAgNxYzjaorn/pilYFSpwIkvA7RJzxIAxACkT5xGNPVSp0/9f/+st/9OVGo1GpuPVmSAyiWEgi7rhxGDEgh7OIBCGBIMaoUqkQQRAE6ohRBCAWS+E4jhQicbCJ48j1XJAQC8EdhshlLLnLATgBAGcEEDVDEce79u6s+ZWnn3t+746dl+3Z+9q7X/PAd75/9uyZq684/Jdf+8tde3YjMoIkwo3egZ2RYU/ump86Jyy92+Zi4sudbgrPipEaLLpUAtY6FjT3UW663FKUDQ5MfxLA2vYul9c1HY1J3onUICGRsYWlhThq/fkXv/g/v/KVX505j563SFIwAEkiEtQGnG0YtQMBLNF5GSAkcbQQ9AHViDgyNhI2whfdcN3I8I4PfvD9d9x5p1/xHce9+E7p6oY6C7h20qedjWzthekaDmWUnRlunE2VSPaiqm/o0yIMopNPnbj3zXefOzfRbLRikolhhGnXeJKUabrGfIXIJEkEBJCSEBmSFCrCMgDnTAoJDKUQiOg6ThTFAMAYEknH8YSIhZCIIAkYAymBAXCHJ7NkLKTDmRCS88TogrGQTKlEKKUhKxEZAiIwdAjIRXn08J5zFxbnFuvA0Ods7+7dAqHeaI4PDw8PDu3ac9me3Zd/4t//pyuPHHFdztBwhSgM5XS3FBV6xQbrRR4pQbuJLmbKIz3tW0IpR5gqdTnovGZQtHEHgQEkrJi/Tm3qbFKahrR0tGNepZaNNOKi8RgAU3oDcs44RxH7/+e+b33zW1//2lf/lyDJHR4GodNYkiIeGPQxIuK4FDYvzM7GLB5suQ6nqudwJE5AUjCQbggeoziOCEQQtjyHDbocBj0pIlGf94KFfQNje4arAzXZXGx4Feny2K84EgmANesBI859Tjz0h5iQcRwvMcaFqLvEgAhlxAAiGTMOrUbdIRGHMeeuyythzEPGG7Ly2KnJR06eefDxc6emI0CXubhjePdn/8t/fdOb75GRcF0HAEhqTwPFKWhxHaXbZY3+SWQEZDcAConad1DPCQvfe/sWXd2NkHaZ1koAxoSsbQCUNXOiyerhvc5UNvKSE26ZWhJAzgHA9VyGfhRH1994o+s4w0O7rzpy7fe//71HH3548sIUoZg4fX5kuFobrMzOhLWhatAIWq1oaHg4WGxUfTcOozCOXdeVQI7PyWVLs63KYIUi6TDGGGPAhcuiSLiO4/quEESEwDASot5q7duz+1Wvvuuqq4+Ezdb87Ny1x649fOTwzOTsDTe8eGBg+LJ9u973ngvzC3OHDh0cHhxG02NE19JaB+tgdWhD5QmNWbjDIyaHJfOTRt0qBKVOl0LxNRSpe8KsGD3IbZ0oLzDQLPOqM+18lQBAEjIAAOQMgAaHhmNZffeHPhDW579+331zC/PxfBAybAYBA4jTpzaJcq9O4YLUk4tQaIkQkTGGDI8cPfrJ3/7k8WPHx8fHxsbHa9UqADqOUyKkLw3qJN30cS56ZSO/TtdzEdI5t1L0D2A782mclAgWc8hYmIkIgLseXXv99X/xP776nz/9yed+/eu5ubnJqZnkSWRMxAKVuTANnQZAgBwTMcU5I0KQElUCvWNHKtBKBASUbJIhIuVBF8Vp6BwAdUYFABKBJJkUWEgJAEIQY0xKCamF1zAIICCqBQ8QFBNRTPDMrycjIQmRhCDuMMclQcMDw261ynz3plv++Uc+9lvDwyOMMwP9JxWz8bVuxbTpzAgOZF5Skt3cgKi7CFNDhgo1lu9qoy/JfL/+zApoKgO9AEUbtAKQUlEEwworkMCnkgGobqQDNJ9KCokcQQIgCREj8MWlxQcf/PF3vvt3jz7+SBi0HMA4ihCoWnEZw4rnDA3Xqr7LQHgu44yRFIgkojhsNkG2gAmPcxmHO0aHIYzOPfWCX/WYx8Kl+VuOH3rx9Zfv2DkQBc1QRE7FHam5XMBSvVXxKkKIWIZTs9O79+2SElr1hYrDYkkgnOqgNzc5Mz6+Y35xoTY04nM+c+58pToYxhQKf2Imem6y8YvnJn/yy1PPL4RLIUjmterhdcePfeT9H/1373lnrVbjmV6asmiqYlqoJ1WbLKXeaLUVYqQ+tSdSQ03HnylHh5pWZgleB9IO80QEhCreCQARMEJgJIUkioUQrRaCaDZb9ebSmefPDAzWuIMLi4vcZc+ceHYpCiYmz5KhhasAACEASURBVP7g2w/MX5icn5qamZ5HgGuuu/qa644evObQD7/7U+bA4z9/wq/4jutOnp++8upDkxcmJ2YXDuzf84Y33XPFVQe++fW/qQxUbrn5lrvvvvfGl74EAFqtoFLxk1aTkQBGjDnJOnUQhZ7nQ24SBkhHgTX19KJp2wcQavuC4iOUPQKw8Z2+zcy966uum1ETk/+SAJEYMkmAUiJjjz/00He+c/93vvcPz58+dfqFMwMD1fm5Ra9WqdebQkhBwJJ5lPTG3vUnpttE2piQMy6k4MgESdfhUaw2Ex8/fvzP/+wvrj9+veMwEQvHdQDUeM/iA68DbZCt5eKldtAf0uupSSI51lbPMWTrAFaeagKQYRgvLSxOzU7/zqc+9Y2vf0MSOdyRCVoHBJKgl1J1wHFGWVA1kFIqPcFwbkFEIpnYIhnDxN6fqAEMmSTJkUuShhUEEREBGGOxFKADYjDGJEmgdHpMrABIJAGTVQFpzu2SoFb1CDEKo6rvXX5wfxyLgcHB3Zftfdc73/3Ge97k+p7HGQBIQchyaNS0rhvnuxv4W6lAdkd06hfVewip6gKqt5SzVtJulJ3qVVAj8hn2ZChttAKQUE4NWEVN2j+V3lFRgBR/S5A66DWRTFapJEkRx8jwzNlff/v/fuvnP//55IXzfsWPWyEJ4Tm8UvU95kgpKhUPSQZBAAhRGM5MzpEMg7ghYxG0GjuGhmRTYDNmjEkmUEaX7xs9duzA4cP7RoYrDoAzMDRSwwoFrVaDIzWX6g7KkIKR0UHuAEVR2Ii9qgthPDU9tX//3vm5+dpQtdWKmoux54/OLEZLIT3x3OT3f/bcw8/Mz0vZAk/yyoH9e+64647bbrr95bfeOjI+Uh2oJuMFlUqsxiBo/xMymzzPVmbMDUVm7/QUOF2qZDVvGi2v2MbpRL8JjZ1YWE2JoQcSqE3jyWRlwCOSBEAITOoKJRZH5vDFxUWf0dTEhSgMZqang2Z4/Q3HXc/lVSdohBNnTn/7r799/sL5mempiYnzd/2bO08+/avBoZH3vv99V1x9ddIOJGUcC8d1JQFQcmI7cIZkgR1KxIYk85wF0rJJm22KkRxW30p6e3dh1HT1uOHBaO/8Wk1ua6JeWNTXm2yjxHoqAHqNzhyc6cBMWCuKAYFajcb5M6fPnz9bbzTOTZyenJq+//6/fea5Zy9MTBFQCrV7S6n3DhGU6ReMIUNUdlMAAJAAbGx89NAVV7zqVXcKIZ9++ukDBw68461vv+Vlt0ohueOgrrX2H1l/briIpEiuKhtWs1LcabsA6XnE6OC2mEltEyAhpRQ0deHCK3/zFecnJ1uNRisIkSFJ4pyTlNrUnuBWSk/QUxarBItn7gWI5jIjUqIJqFjMjKlN6EiJr2ZSC844AUAiUxDVlJ6IGQ3BU3uOVGsSxFRKBCLHd0Wykuy5cRh5njs6PrZjx/jLbnnZ737ud0fGL3M5InJE/XiJF2QmlNP9AQSGELE1gbbYP99DGmcZIkplbEN/63M9uWprKQDF71Ro4azhEjCSLgqnAeMMn6pUbKTKAADojtczKQoRC4YkKX7yqcf/8fsPnDx5or40T0Iqy4okhiBEFEdR4rW2uFCHOJqdm5ufqzvcGRz0nz9xetfI4O79O6XDTj37AgLGssV9VvXQY2x8555rrxrfO+bu3bvrxS8+OuD7Nc8hkhXflTKQccR9X8bBwoWp2ZnZo9cfPXf61OBQrdViFy4snW/wv//hiUefOzsxs9AkV/Cxm2696dWved2tt/yzw1dcXq35koC54DBH6HZQn2lzq0GZ+htkJgKtqINxiF1bfFTEqn1aIemJWg86NBauzPbVY9Lk4Q0kYz5W+0YyeACZkDE0GjSKnVSOqZDlBCpcSmLaYYmJlBgAQBREnCEAcM4RKBQx4+CgJ0lwxpS0kJJxnsiwPNeR+S2bOdBu0UwT6KEWS+mQUvMKAmaC1NqnVHwuk8iQlVPFeTeKt2FYYhsN5XUsbbq/ACDTyyzNjLRKQIRAUhKR5K4r4zjZH/bDf/zhF77wBz/80Y/mZueTPDlHIYgzFIbL8ioIARljEpSynV3OvrPkJ+OeFGJ8547rrj/6zIlnd47veMe73vGhD39oaHg4iiIRhZ5XISDX4UYuWT7rDf/TNZaLg0rxSQ6o9GTiWRZklpVphQf96Um9vtR4/InH7r3n7gtTU0Er5IkjPkMCRiRT25COXYaUTPSJPgCQ2GgAQEVdUydXkF5S1ncIGEMppblHCwEYsmQgpsHaCAi0upGSBRQV7NEqBOdSku+73HXiIDpwYB8ifuiDH3zfez/iDVQ916F0VySU9kqqN0HJlxKEXuweUi2Ty93+WuzNdoi3CIA7dOCK2GxzFICE2oH7dimhWDclgcFUlsBaWy857gp1JD4yMyaQFMex4FwuLc4//PDPHnrowdOnnxdRgCSjoBU2gjgOCahRrzOGUT2Ynp5rNKP5pVaMsDC7uHdsYHx8pBkF3HXm662lVhM55wKiSLRC5jAZtUIUMOACl7Bz2D925OBNN14zNlK98qpdtaq/a8dlD//skR07d9TGBp89+dzZmfqvTs08ceLs01MLSzEePHTolptf8oY33n3bbbePDQ4SMu4yEcfccYQkxpg5hAA04FErdACgl5sMI0EBP+lPe84oMmKuU/q0MkrNJnnGNJMAAmyGbXa5XlXwB9GoRyksV1VLuYeyW8lttcFAGXLUWXWAIJPr6SQKoEVBfkrO5mn707ShG98VZu8J16brJCU91PEVpgJQvNNBc1gv2ogFhw4tsqxQ6z6rNRDpHsGMjShd/bdnPTJ+6zkWAUhIGbaCpXr9F488/PAjDwdBwBly7jz4Tw/+9Kc/PT9xAQEQ+cDwYBiEYRhzxpiLYRgBMCEkdzkiIFEcS89141gigVdxSMowCIWMAQAZBwLkiMAAUUbkuI7DeRCE4ztHR0dHWvWW6/u79ux76U03vP1db6OYrr7qqtHREUCs+J4QMrGSJvssTWMmYs+GRqdm1irWxaoAdFOtLhN3kgvLIM+MhXFFEwml7voEDL/xv7/x0MM/a9ab1xy79vc+93tLS/VWqxXHEUDiAkQAwBhnnMVRjAyZ2mhOycBJ1IAkP7VaYLhmpm52VHJoj6GOAiIqwSBJ5jBzCugQwdzUiACMsWq1wjgHxiq+9+nPfOqjH/54GErPd6U0Jm0yjS5FxQ3si2YNSg5zTGqUrZ9bjk1WprkXLIt7V0TtmKSUttwKQPJnRROEnqkt2amNcnbOasq2+iP5qdcEAICkjKUUJKPZ2ckTT/7y8Sd++dxzTzeWFqUU9aXGwvxCHARLs/X6YiNoBPP1RiA4iXj/jtqA5/u1oYnJ6aVGEzzkDq8v1ZshcN93KpUwjl3uecgoEhXGfMdxOTYbjeEhxoG5FXdhtnnFoX0LC/W5+cUA/fG9u3dctv837rjjN//Vvz60//KR4WFkTGLkOi6kyiUqPwyQhAxTBs14y5oe0PpKZa1cpq+WMmtfAVg1ZSpApxZEa+7ZPMqB6kxttuF4ll6tE6TCp8Apet04DbCQEGISSyLnFQPpUjZ0nNdKmkulWAdErfYFtlcDik+Uldy+mA7IDXQEygWkWB94Xci1XL5uNVpWfKqoCVIJjkQACSGkJM65lNJ1nDAKf/7/HvpvX/rSo48+VqtVRsfHfL/SaDafO/nCngN7ojiam1lwfX7mzMTUxLTjOo7n+K63VG+IKPKrvozjKGqOjI3VKjW/6sdBPDw6dODAwWPHrzn7wlkp4/MTkxW/+rrXv+ZfvvI3gkZYr9evue7Y6PCo53ucsziOGOcMGGXjMtnWYx5dYAywjWnTLURrKlAHJFPk724w3yremKFXC+Xo95bi20I51c/UK52ISAJi0Aqr1cof/sEffvozn55fmPcrHkM+Oj4yNztPAlphC4gQmeM6URilQyBZIWAJBiYF3xlToXsSdx2HcyEEGlvVs/Ko+S9ZJUhc/DHRgVNKcXuyDzg5GJsAGIDr8iASN9zwolfddacU+La3vfWaY8cqnsu5S9rnRz/fritW0D8IdkjQnEJm+1SXNv5KFYN2ZALaLa0AmNROinevW2uPzZT9VOo0rF47rs+UATJaQqeVJCXFJEUUB62g8cILvz5x8olfPfvsyRNPzUxPnnn+XLC4GM8tjI8Mzi42KRa7R90Br9oKJDLwHQ4iqPp+DDAzHzZiPHbjS69/6ct2XX6wWqvEIl6cn2OMgmYopAiDRqXihkKGgdy957I4iC6/4uDBg1cfvvqw7/sMOXLkDidE7RKHBABSWrAjjXOiTCyk1sSygZJ8ZC4LxrNl6qxNWOiaVdPap7+LhQoTdmq6Mfh2K9SX7K+Zjm3PXZihilT0FKcXvTaV7q5SlwuCKl3fy3uwtjOgr5I/VjPV5o0OoIfYqjk0xwxr6nZjc95yWbWJULvOtD0UgGXIEDwEAETIGOgJloCkkASSMSZiIYQIw3BxcXFpaXFxcfHC5IUnHjsRhC0hxbkzExLiubn5E08+yxkODtWa9aaQYmF+AQCA8euOH7vn3nuOHrnGcdnM1OzOnTsvu2zXzl07pienXZ83m82RoeFKpVqtVREgCiNg6DqpnwOYvp9aMIK1vHhxzaqbRTkYBzYUxDYXV/qKXG7WzzIol9k6jTGXTqgpiyS5ZNHJFEeDiOMoDhlz7vvmfc+fev7aY8de+pKbYxH91V997T/+h9/2K04cxtx1ScgojhhjQiiYzrgjhUzOmuNcHcaSqAVCyLT8nDMpiNQGm7zAQAYMWeL2RpAZN02bRWYmAqhUfGDs6DVHP/CBD7z9bW8fHRmNw1CSdD0vjRsp8/tsi9Cm/XhArfQbs36GuY1s9M+NXsTPimCi3K2sAPSKDK0OU5iSzXspu2d7nQDaDMWU1RIPZgmCiKQQyAikDFvB1OTkyRMnp86fnZ04NTt5/rETzzz7xEkezg/5njtQ8313pOL5HOIgkg6/bO/hl9/x6rve+FZvdAc4bvIGSZKETLa3A6KMBSAy5BIkEgoZM+4wROQJgyGpopJ9fFdacjV6rMGjlQC1aG3rmNpdGfLKgJmDDclyF1dHOsONPPFoi1OJzr/crq1NJS009EaBUjHXmcw5N81UT6va/KNZ3hjQ6ml78cpsvA3Dk9m24h74Tlj1IVOkGEK623LpNWhY3tNC2T00Ltxwfks1yK3I5l1Suh0cDDt6yh2k/YwRUZJEYAAKCnHGAEDEsSSanZ6pNxtSEhIhssXFRUEiaAVzc/P79u89dOjK4eGhSMQud+IodlxHxFJKSUSu5yJCHEecOVm8B2UJAgKZ2P5TzVzJxMRGZGKUNejP25wyDLxmoVYuMXNUlKcrfZH5M99xViHse5gNNstWnQJWuyGkpOQECbAMChBGEQFErWhmbub+v/2bB/7+u5NTkxMTExcmJysVf3ZmNmg2qwMDQNBqBWSa7ZNQ/7raiMneYpY4HqUuGIlDA0MmpDS8l1XtGGAu1BUCVmq+63mc8d94+cs/9vGP3nzzrZ5X8XzH5S5AFqoiiSWqZ8V0y4DhNpKGtzDzx1TVzzViof/0lWwJe+NDrBmvzvFWaUE2TQHIqctrbyV9miYUhlgS2EFrAW08XwDsDQS68xJuI5LJoSpAgMBFLIhAoOCMSQlRTNPnLoj63OzkxNkLZyYnT7eWZhH52O69+w4ePnb8xtFdu5FxDqyIUvRQJUBggNLmGEufs0AzGfgeMqxg7KbXvGovBhjZroh6qAZcilJmm5NpPAKA5Jfh49il7EueTKRMGw0nx1ipm7JpdElTdlPi7UCWSU4NZ71nZ6UihIw/Xa4AaAC4KQoAAGynrrIp43sCQJCSmPZHTlG1OlAsnedNvaysd9NekASJ94PQEVGUr75uNg1N1JpaKjtMI262tFO0M+i9cGUmiD6tgDpPfx0MJMu2ertb1rs6YKlUE8jgrob72l6qUK8Ne7LtgwQEpBWBzF0HEWIpg2YADISQURDWm43Tp08/9uijTz751Nz87MmTTz/66KNxHDWbzVq12moFfsVr1huMcylEpVYVIgZJUSwQABlDRBHr1QPtP08EDk80ASaT/QJqYlPAdXRsCJnzxte//sO/9bEjV17tMFatVZPcMDkHGbS6k1SfmfAIsni/2ZW8egFpDtlvyCXJvM8N0+amDKbU9T2nALSTBFt3BWB1zae7WnVBpqmRGaXD0ubaUTq7grGDBRGlSEdT4pUDUkIUS4ehFLEECoKliouxEJz7rl8jxhylRhckXlq69CgJWyIgmBxquVjo4ilkBGojPJplNVJ2Ac26IzO3lXaQKWigL2u2NeVGWnZ1WXbTcsfyF9IhV5QimxqjoExTuNhwihWpwGi8Ve0IXlFbJbPLJu7J3PYzQRqIEDWylyRVJJMMP5Ba7NVYwlw9ypQ1ldjIPQmCDiiJGEMikFIyhqn2rSOuaM9mE/0bbl2bYIncNtSDyWQF9g/bAmjuVDQxSZfi1USvudRty5MLQ0kKQABabzR8gTLIhKAiNCSvTUyiQsrEwCglgSQJkjEOgGEUzs8tTM5M/uKRXzz7q2eeePyJ8xfOPf7Lx4dGBq+55tq3vPUtP/nJT/70K39aGajUF+oAxD1HhEoBcD0PAKMwQIYIICUdPnLVtceO/sMD32s0guR0i5e/4vbJM1PDY2Nf+OLn9+86uP/A5cl5HUmVbNuUqSgbTYZpbGsEANMIU9Jbuf5p00Orw0U9JHO1pLR4+StbVgFYHbWXfkXF20qTawXLrgMJwM5C62q5CWAHkMUsEjmQRCOwSRKnVj2ZDvlEchhPq+Jk4sH6JDROrUt8e9IeJ5P3MFUMsjbolQJgtc9qH7/YENylSWTNriW321CGS8zBl4VgsTbzW5x7kTqO6Upa1esRaFt2qKUiflNG5TZWAEhrTya3qvhyqaCgHLJXim7W6GUdbeLC9ErmdKye0aYfbRA1VxbaNWmWc38K7h2tSAFICFNNr9BpKzarGfZ9M/9cCbP3Gl9K3pWtQdp30bqVGisYgjoewGDjBAUlgfvjOA7DyHWdWMRPPfmUV/EOHbiiOlCdm5v7xMc/8d0fPBA2Wo7nXX/82JlTZ5utYGx05Lbbbt27f//C3Pzc3Mzs7NzRo0fuuffNL3rR8T/7kz/5oy9/aWZy8vBVh195xyviAK++8shb3nmv71Rcz4N0SNpCKR2PlOrqGY5KFYDURaSkC22Lle3uX5Jy8xUAK957xyJZCsAGFH0DTXk6b/VXGl2GYMbDMcjWENOMiKm9I5hN4sUnjUFmRliw8y3G/9Yv0YA+bRK0U2eqnfaFyBLo/C3/4VTXz7VEd5NU6YxWOsFtXznSF4K9IdIxfyxPST3/AoC5IpXTdrNEl25/ZBEnoTBvbdh7N6H5c92/zcgy4RuWwhSIr0jY5XohpxVkFllQMMcE/dvhMLetSkbbrZr/cwrA8mpADnMZb10F+i99uBT2aQ4thwe5lKoWBSY2l60AgWTGmTldxrTFJ3tgpBCMMyJgjIVhSESnTp+WUo6NjlWHqnMzc5VKxXW9gVoNGICO7M84E7GMo8hzvZmZGWSIyIhEpVodrNUQGSjVGyw/CFXArCUI8rVKzkvKkKHpvlMg0/vOBNmZa2pvdoStifKT0lZTADaPEgecJOwsA2CaQQEK8q+oAIDh4pVcZIAKtCfXMQ0lDZq38tA5LQfkjJvtP82NzdkKgGZihJJQi10K1c7zlDmSrdw7Jl4FXdQsd8mRcm/IptrUBqPu6mUrAMNQo7n9EuUF89BlgI0fEhnU3IwOaGNJ2w5krb3a83bRp2I93r6J3XYRUQ8asivQ3yGp/Xpc4aig4oJRe5We7PzbVTlFPACGI4FpsEw5P4eMrfcAAiTea7qokDgLERBjjCRIEupUMVBnECBT2CwRGpLUBOlwJoRMjoZU+2GY8nKjQqsWvSdAb4PMu9ip0qaNVlhMKVD5CkBJJ6w7UaETicoUlfYFu9hcgDqSeXY6WzY1Wd9TnSpbXVFLuclFLOsNyLOFZeaxecja9afTZZkZC8BkZmtm0n5/81ooG1mF2aKzctk9bZYIW4OXRWlnX+pk6qv6Culp1ZZr/ZYzKLNCbmyz9ML6eanTRk4E/U7qMdl62tqbN9uC2fmlObJ3bXZfBrKls+kIVMAgVnq0ny3iE/PhUrM4QrYht03W+qSUVE1QZxbpbCHzntMuDQiZ1Yg0yDGCmzO1pR70m/PoVasl6XerWpj1uFm/fIvlQk204Y9cGxaTbxgVWt1msQ6aCa1WASjVYDuXbwsQGV9wpYXS4UOzXyawyfaYKJ7v6K2c5WXo1abfFgAY/J1j6GUjRNpKgTV6i/YAsJm4dFLoTFujc/u0BShnWdKnTqQ7fNs9dZH69m9xUnPDlpmfL37KaQvLtnzptJzNz1s6WvC2oR62X1Getk1R+lPTSnFkYd5tm0OphtAh23xdilzYps4mWgEAAiLKwvuozJQBDu2vyS3Sv9M358KZ599rWf0VtCLtMI2p3alQWLJ216hr9jbf9tC/qFltLpVoIx3FK4N8x3XKl/Q/ANA+NSV3yciTjM+tQJQpjSsrVNqGCJAEsVVKRMp/kHrmA0LHhSQVlxQUXyomQkAE1ByuPxN9Tnmq6VypTfY56J9eNPm+2CPF70W9Np/uIqKLtFobRFbraWa2+HN57iFcJkGf1oNModBv/NXQSlvNnNqhC7iAhqUK7evJH4QuculTJ8rkYU/GQNGClr+9XH+telhS4bP4s5i4A0JLGS/jQ4158pM62WyN5h1S5n0G6Z51ldDIJXXGSZYBEI1QESlUSi9i21FkLaSQBmNmTpRlkIIsVRZVkGXEUVGJKo7QjadiqVKs2IGQ0gMDjcdyjxQT2H/y6lPJazrd3FiyKrNCna1EIy7YOzu+0FQZu6fOOv2yhe3wYGdFNpdDh4ltC/XvJUlbwfZQQqpYnQSima5PfepTN7R1LI4XAfWwGZcX6x2Atn1hRV1cCkw6vCfFbubxACt7S7uX2QpQ7kis3Lb11GVUWfY7Q89EQShCLKOlDNt/x7azcZg+/QtzSbIaFQtThpk3dzx27v12eilS5paVJe2cu8Vqph9Y17TpjbV6KjGMr/jpUiUhRynmzuKOGs8uC+jbUW5mKXYrlr2rG9qWvQkA25cV10brWmsy/tpv6cC2fQLYhLbIwoFs6Gu3OW1wexUn7X5v9YT0DlpKDdxryq3zvRyUXI6HikmW5bpS4V6KGToAgA4vylew1OysszCjDBmBcZMGT1Nlr+rGUpl7m5XGqDx2HCSFWidB7BTgsmpRRl0qF+tBBYWoDaJTbaza3wypnStetgKQyw4K+eYuZkUA/WR76sxVfSqZEHKR0FeVW0LLjqtiAYpd31mp2Ka0FRT3i49shkl1gH5Lby1SEY2x70Pep0uZzChAPduL1FZcFmFWWZrs7IiVj83Ob1idyMvjzi6AnwUn7OZQmxvbWIbaYVywwQnk0uirqcrRuZIm1EmFlLnvIIXOuRqV1rio3K0HtdMG8whN3ygtf1ZOStIYLkCdEX+pvqhSQLeV7kuahEqZuDN1Zrvi9a61s66os8Fgm9J2L/9WJnNi1dTBaNI5QZ96STo0k4qZvdnF6VOfNokIAMk2Vfcgy7VnkS7JrdpE1Q0oW2W2bUDAus4j3RZ1VVXK7fg1c8r15lp6ZP1oWRMtlFmEkyfZshpdsZ6G5rSasvbJpFLsg/anqVx2A+tzqmrPORULX7YprYWT+9SRSG9zty6WptyQ8vQJAFRjJ5vpUB8/0O+APl2ilAbVgNTyu/Ys82J3FdkWcWfp9W7yocKVYrZdlkeBCtSVXCd4UUbrhf4BQPtZFJcd0levuv3Xm6jwpbQB1L5ngiRyDejN0IjAUvjffd1KUmIZr3X/+KVHJkY3RxcY39PP0jFc7HvzSwF7rZ7aTUYbRsX26VnOl9AhGBtIObs/5CSGlZSs/u13xzqTWnxXx5eQlNRv8z5dspSdFwvQ09mn8/J+V8iZSr52L3yxUIaVOGq0zdMql12xrgFgPnGX8n11CdrpP/nEbTA+2k23sVrP8mTZiI3QTOq6DlQJZvRI0j+TM3EJcnuA0wpbsrmTOrvCJtkibbfptNJJp1RDKH4pTb8WynXv5uKF3r4djbDEK5q/+tSBCElv7cL85GKkAgDIpqw+rT8ldiBMJQQhY/bNPvXpUiJ7/u8J5QRxKWok+0o7cNXZ8NdlSSA31a6Kyt0TMKtdOwNPhwxztV722eUTlKVo58/SNjd7FwjZvbalJ0m7bgjZBoCM37S3EOrIS0zdtwU1qroS5qxzueFS+tmxkZb1VboUiIx/3VOXrFzsk97Sxutv6/hGo4HW/hYyTsa4lMkI19yhVbME+l8PV636ZJOx2kjZ+gwmZ6NvKZtWn/q0cSQhMYdS7/i/iPXbmefare1rkKSkiYm7VgoYej60c3bA9YMZq6YVrSeYOlLpv5S2/vSYL6H29iGwYyJpMJ/cZfosKntbtl42UK2A9lIZ2JxlrkMsJ8RNNWEVIPjioM4js7PJtPiztAHN/HvYwumK2EaOh2L511gjSv8aB69BTyqFy5y7cSmQaS4gtZDYrscIzO5YW8degjNJt2SyOJKy6xAB2waCrU996i1lEw5TNlHtE9GDbDvL5XYP5l/dcWmgnfJQihA6VGotE2ZawK2mAxSR1bLN0hnPrLpb15tyRcoxAJk8bc3/6sjZ5NAEJJJABMjsxY5MZJsxVXNfAPRBEmRfLaVCG/dlTzsqNnh6vR2mRzvBxUdFFlt9TdX6FwkhOOdrzCzLlVZ6HsbFRh2mgWLDkP0Xy1P1qXdkTB+a/yXniRdQv+X7dMmQFqtCCM5ZEf+s32uxzZdc0bJ7GdIyrvQqWGmfClTaNVsaVhHkobnNNqmxP/8QghDCDAOqAoOqFComqk7bqUGWBf7dNuDWbWUAaFON1WmEJo4vDvM2L4fumzHHFaugLcX0ZH/FlYRss1OqJiFjaKS3yFB3c41njqNczDjKEi9Lpd2bBaHTtQN7rIHxqg3rk/y7DOmz6nwSWwHadWunzFrP5saLeS+1VRh9l3+2/ZjC0veV5gNA7Rkv6UFCO5OkKzXP5GpXLIk1HxS0qeKRgCvqDbLrgwASgNkpyGzD9lmXzv+r4o5Ll9baVmXyeDV5bhGgUwa8yGasnhStZAqx8E/PTgJYIxEAKgyWH5BtB1quH0sn1na6R7uu72DTWTkV8Y5ZtC6etlO1Q+qlVzpk1F0FzST5xzeXuuujVEqCZnuJwP4/rV48d/O1QTYAAAAASUVORK5CYII=", - "text/plain": [ - "" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "image_grid(stage1_imgs, rows=2, cols=4)" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "CUDA_VISIBLE_DEVICES=0 python exp_runner_generic_blender_val.py --specific_dataset_name /haian-fast-vol/code_debug/code_release/One-2-3-45/exp/01_wild_hydrant --mode export_mesh --conf confs/one2345_lod0_val_demo.conf --resolution 256\n", - "detected \u001b[1;36m1\u001b[0m GPUs\n", - "base_exp_dir: exp/lod0\n", - "Store in: \u001b[35m/haian-fast-vol/code_debug/code_release/One-2-3-45/exp/\u001b[0m\u001b[95m01_wild_hydrant\u001b[0m\n", - "depth_loss_weight: 1.0\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "[exp_runner_generic_blender_val.py:148 - __init__() ] Find checkpoint: ckpt_215000.pth\n", - "[exp_runner_generic_blender_val.py:483 - load_checkpoint() ] End\n", - "[exp_runner_generic_blender_val.py:555 - export_mesh() ] Validate begin\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "iter_step: \u001b[1;36m215000\u001b[0m\n", - "export mesh time: 4.015656232833862\n", - "Mesh saved to: /haian-fast-vol/code_debug/code_release/One-2-3-45/exp/01_wild_hydrant/mesh.glb\n" - ] - } - ], - "source": [ - "# utilize cost volume-based 3D reconstruction to generate textured 3D mesh\n", - "mesh_path = reconstruct(example_dir, output_format=\".glb\", device_idx=_GPU_INDEX)\n", - "print(\"Mesh saved to:\", mesh_path)" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "application/javascript": "(function(root) {\n function now() {\n return new Date();\n }\n\n var force = true;\n var py_version = '3.2.2'.replace('rc', '-rc.').replace('.dev', '-dev.');\n var is_dev = py_version.indexOf(\"+\") !== -1 || py_version.indexOf(\"-\") !== -1;\n var reloading = false;\n var Bokeh = root.Bokeh;\n var bokeh_loaded = Bokeh != null && (Bokeh.version === py_version || (Bokeh.versions !== undefined && Bokeh.versions.has(py_version)));\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks;\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, js_modules, js_exports, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n if (js_modules == null) js_modules = [];\n if (js_exports == null) js_exports = {};\n\n root._bokeh_onload_callbacks.push(callback);\n\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls.length === 0 && js_modules.length === 0 && Object.keys(js_exports).length === 0) {\n run_callbacks();\n return null;\n }\n if (!reloading) {\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n }\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n window._bokeh_on_load = on_load\n\n function on_error() {\n console.error(\"failed to load \" + url);\n }\n\n var skip = [];\n if (window.requirejs) {\n window.requirejs.config({'packages': {}, 'paths': {'jspanel': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/jspanel', 'jspanel-modal': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/modal/jspanel.modal', 'jspanel-tooltip': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/tooltip/jspanel.tooltip', 'jspanel-hint': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/hint/jspanel.hint', 'jspanel-layout': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/layout/jspanel.layout', 'jspanel-contextmenu': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/contextmenu/jspanel.contextmenu', 'jspanel-dock': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/dock/jspanel.dock', 'gridstack': 'https://cdn.jsdelivr.net/npm/gridstack@7.2.3/dist/gridstack-all', 'notyf': 'https://cdn.jsdelivr.net/npm/notyf@3/notyf.min'}, 'shim': {'jspanel': {'exports': 'jsPanel'}, 'gridstack': {'exports': 'GridStack'}}});\n require([\"jspanel\"], function(jsPanel) {\n\twindow.jsPanel = jsPanel\n\ton_load()\n })\n require([\"jspanel-modal\"], function() {\n\ton_load()\n })\n require([\"jspanel-tooltip\"], function() {\n\ton_load()\n })\n require([\"jspanel-hint\"], function() {\n\ton_load()\n })\n require([\"jspanel-layout\"], function() {\n\ton_load()\n })\n require([\"jspanel-contextmenu\"], function() {\n\ton_load()\n })\n require([\"jspanel-dock\"], function() {\n\ton_load()\n })\n require([\"gridstack\"], function(GridStack) {\n\twindow.GridStack = GridStack\n\ton_load()\n })\n require([\"notyf\"], function() {\n\ton_load()\n })\n root._bokeh_is_loading = css_urls.length + 9;\n } else {\n root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length + Object.keys(js_exports).length;\n }\n\n var existing_stylesheets = []\n var links = document.getElementsByTagName('link')\n for (var i = 0; i < links.length; i++) {\n var link = links[i]\n if (link.href != null) {\n\texisting_stylesheets.push(link.href)\n }\n }\n for (var i = 0; i < css_urls.length; i++) {\n var url = css_urls[i];\n if (existing_stylesheets.indexOf(url) !== -1) {\n\ton_load()\n\tcontinue;\n }\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error;\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n } if (((window['jsPanel'] !== undefined) && (!(window['jsPanel'] instanceof HTMLElement))) || window.requirejs) {\n var urls = ['https://cdn.holoviz.org/panel/1.2.1/dist/bundled/floatpanel/jspanel4@4.12.0/dist/jspanel.js', 'https://cdn.holoviz.org/panel/1.2.1/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/modal/jspanel.modal.js', 'https://cdn.holoviz.org/panel/1.2.1/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/tooltip/jspanel.tooltip.js', 'https://cdn.holoviz.org/panel/1.2.1/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/hint/jspanel.hint.js', 'https://cdn.holoviz.org/panel/1.2.1/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/layout/jspanel.layout.js', 'https://cdn.holoviz.org/panel/1.2.1/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/contextmenu/jspanel.contextmenu.js', 'https://cdn.holoviz.org/panel/1.2.1/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/dock/jspanel.dock.js'];\n for (var i = 0; i < urls.length; i++) {\n skip.push(urls[i])\n }\n } if (((window['GridStack'] !== undefined) && (!(window['GridStack'] instanceof HTMLElement))) || window.requirejs) {\n var urls = ['https://cdn.holoviz.org/panel/1.2.1/dist/bundled/gridstack/gridstack@7.2.3/dist/gridstack-all.js'];\n for (var i = 0; i < urls.length; i++) {\n skip.push(urls[i])\n }\n } if (((window['Notyf'] !== undefined) && (!(window['Notyf'] instanceof HTMLElement))) || window.requirejs) {\n var urls = ['https://cdn.holoviz.org/panel/1.2.1/dist/bundled/notificationarea/notyf@3/notyf.min.js'];\n for (var i = 0; i < urls.length; i++) {\n skip.push(urls[i])\n }\n } var existing_scripts = []\n var scripts = document.getElementsByTagName('script')\n for (var i = 0; i < scripts.length; i++) {\n var script = scripts[i]\n if (script.src != null) {\n\texisting_scripts.push(script.src)\n }\n }\n for (var i = 0; i < js_urls.length; i++) {\n var url = js_urls[i];\n if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (var i = 0; i < js_modules.length; i++) {\n var url = js_modules[i];\n if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (const name in js_exports) {\n var url = js_exports[name];\n if (skip.indexOf(url) >= 0 || root[name] != null) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onerror = on_error;\n element.async = false;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n element.textContent = `\n import ${name} from \"${url}\"\n window.${name} = ${name}\n window._bokeh_on_load()\n `\n document.head.appendChild(element);\n }\n if (!js_urls.length && !js_modules.length) {\n on_load()\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n var js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.2.2.min.js\", \"https://cdn.holoviz.org/panel/1.2.1/dist/panel.min.js\"];\n var js_modules = [];\n var js_exports = {};\n var css_urls = [];\n var inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {} // ensure no trailing comma for IE\n ];\n\n function run_inline_js() {\n if ((root.Bokeh !== undefined) || (force === true)) {\n for (var i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\n // Cache old bokeh versions\n if (Bokeh != undefined && !reloading) {\n\tvar NewBokeh = root.Bokeh;\n\tif (Bokeh.versions === undefined) {\n\t Bokeh.versions = new Map();\n\t}\n\tif (NewBokeh.version !== Bokeh.version) {\n\t Bokeh.versions.set(NewBokeh.version, NewBokeh)\n\t}\n\troot.Bokeh = Bokeh;\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n }\n root._bokeh_is_initializing = false\n }\n\n function load_or_wait() {\n // Implement a backoff loop that tries to ensure we do not load multiple\n // versions of Bokeh and its dependencies at the same time.\n // In recent versions we use the root._bokeh_is_initializing flag\n // to determine whether there is an ongoing attempt to initialize\n // bokeh, however for backward compatibility we also try to ensure\n // that we do not start loading a newer (Panel>=1.0 and Bokeh>3) version\n // before older versions are fully initialized.\n if (root._bokeh_is_initializing && Date.now() > root._bokeh_timeout) {\n root._bokeh_is_initializing = false;\n root._bokeh_onload_callbacks = undefined;\n console.log(\"Bokeh: BokehJS was loaded multiple times but one version failed to initialize.\");\n load_or_wait();\n } else if (root._bokeh_is_initializing || (typeof root._bokeh_is_initializing === \"undefined\" && root._bokeh_onload_callbacks !== undefined)) {\n setTimeout(load_or_wait, 100);\n } else {\n Bokeh = root.Bokeh;\n bokeh_loaded = Bokeh != null && (Bokeh.version === py_version || (Bokeh.versions !== undefined && Bokeh.versions.has(py_version)));\n root._bokeh_is_initializing = true\n root._bokeh_onload_callbacks = []\n if (!reloading && (!bokeh_loaded || is_dev)) {\n\troot.Bokeh = undefined;\n }\n load_libs(css_urls, js_urls, js_modules, js_exports, function() {\n\tconsole.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n\trun_inline_js();\n });\n }\n }\n // Give older versions of the autoload script a head-start to ensure\n // they initialize before we start loading newer version.\n setTimeout(load_or_wait, 100)\n}(window));", - "application/vnd.holoviews_load.v0+json": "" - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/javascript": "\nif ((window.PyViz === undefined) || (window.PyViz instanceof HTMLElement)) {\n window.PyViz = {comms: {}, comm_status:{}, kernels:{}, receivers: {}, plot_index: []}\n}\n\n\n function JupyterCommManager() {\n }\n\n JupyterCommManager.prototype.register_target = function(plot_id, comm_id, msg_handler) {\n if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n comm_manager.register_target(comm_id, function(comm) {\n comm.on_msg(msg_handler);\n });\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n window.PyViz.kernels[plot_id].registerCommTarget(comm_id, function(comm) {\n comm.onMsg = msg_handler;\n });\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n google.colab.kernel.comms.registerTarget(comm_id, (comm) => {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n console.log(message)\n var content = {data: message.data, comm_id};\n var buffers = []\n for (var buffer of message.buffers || []) {\n buffers.push(new DataView(buffer))\n }\n var metadata = message.metadata || {};\n var msg = {content, buffers, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n })\n }\n }\n\n JupyterCommManager.prototype.get_client_comm = function(plot_id, comm_id, msg_handler) {\n if (comm_id in window.PyViz.comms) {\n return window.PyViz.comms[comm_id];\n } else if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n var comm = comm_manager.new_comm(comm_id, {}, {}, {}, comm_id);\n if (msg_handler) {\n comm.on_msg(msg_handler);\n }\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n var comm = window.PyViz.kernels[plot_id].connectToComm(comm_id);\n comm.open();\n if (msg_handler) {\n comm.onMsg = msg_handler;\n }\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n var comm_promise = google.colab.kernel.comms.open(comm_id)\n comm_promise.then((comm) => {\n window.PyViz.comms[comm_id] = comm;\n if (msg_handler) {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n var content = {data: message.data};\n var metadata = message.metadata || {comm_id};\n var msg = {content, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n }\n }) \n var sendClosure = (data, metadata, buffers, disposeOnDone) => {\n return comm_promise.then((comm) => {\n comm.send(data, metadata, buffers, disposeOnDone);\n });\n };\n var comm = {\n send: sendClosure\n };\n }\n window.PyViz.comms[comm_id] = comm;\n return comm;\n }\n window.PyViz.comm_manager = new JupyterCommManager();\n \n\n\nvar JS_MIME_TYPE = 'application/javascript';\nvar HTML_MIME_TYPE = 'text/html';\nvar EXEC_MIME_TYPE = 'application/vnd.holoviews_exec.v0+json';\nvar CLASS_NAME = 'output';\n\n/**\n * Render data to the DOM node\n */\nfunction render(props, node) {\n var div = document.createElement(\"div\");\n var script = document.createElement(\"script\");\n node.appendChild(div);\n node.appendChild(script);\n}\n\n/**\n * Handle when a new output is added\n */\nfunction handle_add_output(event, handle) {\n var output_area = handle.output_area;\n var output = handle.output;\n if ((output.data == undefined) || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n return\n }\n var id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n if (id !== undefined) {\n var nchildren = toinsert.length;\n var html_node = toinsert[nchildren-1].children[0];\n html_node.innerHTML = output.data[HTML_MIME_TYPE];\n var scripts = [];\n var nodelist = html_node.querySelectorAll(\"script\");\n for (var i in nodelist) {\n if (nodelist.hasOwnProperty(i)) {\n scripts.push(nodelist[i])\n }\n }\n\n scripts.forEach( function (oldScript) {\n var newScript = document.createElement(\"script\");\n var attrs = [];\n var nodemap = oldScript.attributes;\n for (var j in nodemap) {\n if (nodemap.hasOwnProperty(j)) {\n attrs.push(nodemap[j])\n }\n }\n attrs.forEach(function(attr) { newScript.setAttribute(attr.name, attr.value) });\n newScript.appendChild(document.createTextNode(oldScript.innerHTML));\n oldScript.parentNode.replaceChild(newScript, oldScript);\n });\n if (JS_MIME_TYPE in output.data) {\n toinsert[nchildren-1].children[1].textContent = output.data[JS_MIME_TYPE];\n }\n output_area._hv_plot_id = id;\n if ((window.Bokeh !== undefined) && (id in Bokeh.index)) {\n window.PyViz.plot_index[id] = Bokeh.index[id];\n } else {\n window.PyViz.plot_index[id] = null;\n }\n } else if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n var bk_div = document.createElement(\"div\");\n bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n var script_attrs = bk_div.children[0].attributes;\n for (var i = 0; i < script_attrs.length; i++) {\n toinsert[toinsert.length - 1].childNodes[1].setAttribute(script_attrs[i].name, script_attrs[i].value);\n }\n // store reference to server id on output_area\n output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n }\n}\n\n/**\n * Handle when an output is cleared or removed\n */\nfunction handle_clear_output(event, handle) {\n var id = handle.cell.output_area._hv_plot_id;\n var server_id = handle.cell.output_area._bokeh_server_id;\n if (((id === undefined) || !(id in PyViz.plot_index)) && (server_id !== undefined)) { return; }\n var comm = window.PyViz.comm_manager.get_client_comm(\"hv-extension-comm\", \"hv-extension-comm\", function () {});\n if (server_id !== null) {\n comm.send({event_type: 'server_delete', 'id': server_id});\n return;\n } else if (comm !== null) {\n comm.send({event_type: 'delete', 'id': id});\n }\n delete PyViz.plot_index[id];\n if ((window.Bokeh !== undefined) & (id in window.Bokeh.index)) {\n var doc = window.Bokeh.index[id].model.document\n doc.clear();\n const i = window.Bokeh.documents.indexOf(doc);\n if (i > -1) {\n window.Bokeh.documents.splice(i, 1);\n }\n }\n}\n\n/**\n * Handle kernel restart event\n */\nfunction handle_kernel_cleanup(event, handle) {\n delete PyViz.comms[\"hv-extension-comm\"];\n window.PyViz.plot_index = {}\n}\n\n/**\n * Handle update_display_data messages\n */\nfunction handle_update_output(event, handle) {\n handle_clear_output(event, {cell: {output_area: handle.output_area}})\n handle_add_output(event, handle)\n}\n\nfunction register_renderer(events, OutputArea) {\n function append_mime(data, metadata, element) {\n // create a DOM node to render to\n var toinsert = this.create_output_subarea(\n metadata,\n CLASS_NAME,\n EXEC_MIME_TYPE\n );\n this.keyboard_manager.register_events(toinsert);\n // Render to node\n var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n render(props, toinsert[0]);\n element.append(toinsert);\n return toinsert\n }\n\n events.on('output_added.OutputArea', handle_add_output);\n events.on('output_updated.OutputArea', handle_update_output);\n events.on('clear_output.CodeCell', handle_clear_output);\n events.on('delete.Cell', handle_clear_output);\n events.on('kernel_ready.Kernel', handle_kernel_cleanup);\n\n OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n safe: true,\n index: 0\n });\n}\n\nif (window.Jupyter !== undefined) {\n try {\n var events = require('base/js/events');\n var OutputArea = require('notebook/js/outputarea').OutputArea;\n if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n register_renderer(events, OutputArea);\n }\n } catch(err) {\n }\n}\n", - "application/vnd.holoviews_load.v0+json": "" - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.holoviews_exec.v0+json": "", - "text/html": [ - "
\n", - "
\n", - "
\n", - "" - ] - }, - "metadata": { - "application/vnd.holoviews_exec.v0+json": { - "id": "0e47f56a-dfe3-40c0-ba14-c0213a1181f6" - } - }, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "064c673f5bc04fd096b014526ad8b0cf", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "BokehModel(combine_events=True, render_bundle={'docs_json': {'1f64402e-b820-4e34-9ad8-c743fa6bb32a': {'version…" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# show the textured mesh\n", - "# better viewed in MeshLab\n", - "# credit: https://github.com/google/model-viewer/issues/1088#issuecomment-612320218\n", - "import panel as pn\n", - "pn.extension()\n", - "\n", - "js = \"\"\"\n", - " \n", - " \n", - " \n", - "\"\"\"\n", - "js_pane = pn.pane.HTML(js)\n", - "\n", - "# only .glb is supported\n", - "html=f\"\"\"\n", - " \n", - " \n", - "\"\"\"\n", - "\n", - "model_viewer_pane = pn.pane.HTML(html, height=800, width=500)\n", - "\n", - "app = pn.Column(js_pane, model_viewer_pane, styles={'background': 'grey'})\n", - "\n", - "app.servable()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "gradio", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.12" - }, - "orig_nbformat": 4 - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/One-2-3-45-master 2/ldm/data/__init__.py b/One-2-3-45-master 2/ldm/data/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/One-2-3-45-master 2/ldm/data/base.py b/One-2-3-45-master 2/ldm/data/base.py deleted file mode 100644 index 742794e631081bbfa7c44f3df6f83373ca5c15c1..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/ldm/data/base.py +++ /dev/null @@ -1,40 +0,0 @@ -import os -import numpy as np -from abc import abstractmethod -from torch.utils.data import Dataset, ConcatDataset, ChainDataset, IterableDataset - - -class Txt2ImgIterableBaseDataset(IterableDataset): - ''' - Define an interface to make the IterableDatasets for text2img data chainable - ''' - def __init__(self, num_records=0, valid_ids=None, size=256): - super().__init__() - self.num_records = num_records - self.valid_ids = valid_ids - self.sample_ids = valid_ids - self.size = size - - print(f'{self.__class__.__name__} dataset contains {self.__len__()} examples.') - - def __len__(self): - return self.num_records - - @abstractmethod - def __iter__(self): - pass - - -class PRNGMixin(object): - """ - Adds a prng property which is a numpy RandomState which gets - reinitialized whenever the pid changes to avoid synchronized sampling - behavior when used in conjunction with multiprocessing. - """ - @property - def prng(self): - currentpid = os.getpid() - if getattr(self, "_initpid", None) != currentpid: - self._initpid = currentpid - self._prng = np.random.RandomState() - return self._prng diff --git a/One-2-3-45-master 2/ldm/data/coco.py b/One-2-3-45-master 2/ldm/data/coco.py deleted file mode 100644 index 5e5e27e6ec6a51932f67b83dd88533cb39631e26..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/ldm/data/coco.py +++ /dev/null @@ -1,253 +0,0 @@ -import os -import json -import albumentations -import numpy as np -from PIL import Image -from tqdm import tqdm -from torch.utils.data import Dataset -from abc import abstractmethod - - -class CocoBase(Dataset): - """needed for (image, caption, segmentation) pairs""" - def __init__(self, size=None, dataroot="", datajson="", onehot_segmentation=False, use_stuffthing=False, - crop_size=None, force_no_crop=False, given_files=None, use_segmentation=True,crop_type=None): - self.split = self.get_split() - self.size = size - if crop_size is None: - self.crop_size = size - else: - self.crop_size = crop_size - - assert crop_type in [None, 'random', 'center'] - self.crop_type = crop_type - self.use_segmenation = use_segmentation - self.onehot = onehot_segmentation # return segmentation as rgb or one hot - self.stuffthing = use_stuffthing # include thing in segmentation - if self.onehot and not self.stuffthing: - raise NotImplemented("One hot mode is only supported for the " - "stuffthings version because labels are stored " - "a bit different.") - - data_json = datajson - with open(data_json) as json_file: - self.json_data = json.load(json_file) - self.img_id_to_captions = dict() - self.img_id_to_filepath = dict() - self.img_id_to_segmentation_filepath = dict() - - assert data_json.split("/")[-1] in [f"captions_train{self.year()}.json", - f"captions_val{self.year()}.json"] - # TODO currently hardcoded paths, would be better to follow logic in - # cocstuff pixelmaps - if self.use_segmenation: - if self.stuffthing: - self.segmentation_prefix = ( - f"data/cocostuffthings/val{self.year()}" if - data_json.endswith(f"captions_val{self.year()}.json") else - f"data/cocostuffthings/train{self.year()}") - else: - self.segmentation_prefix = ( - f"data/coco/annotations/stuff_val{self.year()}_pixelmaps" if - data_json.endswith(f"captions_val{self.year()}.json") else - f"data/coco/annotations/stuff_train{self.year()}_pixelmaps") - - imagedirs = self.json_data["images"] - self.labels = {"image_ids": list()} - for imgdir in tqdm(imagedirs, desc="ImgToPath"): - self.img_id_to_filepath[imgdir["id"]] = os.path.join(dataroot, imgdir["file_name"]) - self.img_id_to_captions[imgdir["id"]] = list() - pngfilename = imgdir["file_name"].replace("jpg", "png") - if self.use_segmenation: - self.img_id_to_segmentation_filepath[imgdir["id"]] = os.path.join( - self.segmentation_prefix, pngfilename) - if given_files is not None: - if pngfilename in given_files: - self.labels["image_ids"].append(imgdir["id"]) - else: - self.labels["image_ids"].append(imgdir["id"]) - - capdirs = self.json_data["annotations"] - for capdir in tqdm(capdirs, desc="ImgToCaptions"): - # there are in average 5 captions per image - #self.img_id_to_captions[capdir["image_id"]].append(np.array([capdir["caption"]])) - self.img_id_to_captions[capdir["image_id"]].append(capdir["caption"]) - - self.rescaler = albumentations.SmallestMaxSize(max_size=self.size) - if self.split=="validation": - self.cropper = albumentations.CenterCrop(height=self.crop_size, width=self.crop_size) - else: - # default option for train is random crop - if self.crop_type in [None, 'random']: - self.cropper = albumentations.RandomCrop(height=self.crop_size, width=self.crop_size) - else: - self.cropper = albumentations.CenterCrop(height=self.crop_size, width=self.crop_size) - self.preprocessor = albumentations.Compose( - [self.rescaler, self.cropper], - additional_targets={"segmentation": "image"}) - if force_no_crop: - self.rescaler = albumentations.Resize(height=self.size, width=self.size) - self.preprocessor = albumentations.Compose( - [self.rescaler], - additional_targets={"segmentation": "image"}) - - @abstractmethod - def year(self): - raise NotImplementedError() - - def __len__(self): - return len(self.labels["image_ids"]) - - def preprocess_image(self, image_path, segmentation_path=None): - image = Image.open(image_path) - if not image.mode == "RGB": - image = image.convert("RGB") - image = np.array(image).astype(np.uint8) - if segmentation_path: - segmentation = Image.open(segmentation_path) - if not self.onehot and not segmentation.mode == "RGB": - segmentation = segmentation.convert("RGB") - segmentation = np.array(segmentation).astype(np.uint8) - if self.onehot: - assert self.stuffthing - # stored in caffe format: unlabeled==255. stuff and thing from - # 0-181. to be compatible with the labels in - # https://github.com/nightrome/cocostuff/blob/master/labels.txt - # we shift stuffthing one to the right and put unlabeled in zero - # as long as segmentation is uint8 shifting to right handles the - # latter too - assert segmentation.dtype == np.uint8 - segmentation = segmentation + 1 - - processed = self.preprocessor(image=image, segmentation=segmentation) - - image, segmentation = processed["image"], processed["segmentation"] - else: - image = self.preprocessor(image=image,)['image'] - - image = (image / 127.5 - 1.0).astype(np.float32) - if segmentation_path: - if self.onehot: - assert segmentation.dtype == np.uint8 - # make it one hot - n_labels = 183 - flatseg = np.ravel(segmentation) - onehot = np.zeros((flatseg.size, n_labels), dtype=np.bool) - onehot[np.arange(flatseg.size), flatseg] = True - onehot = onehot.reshape(segmentation.shape + (n_labels,)).astype(int) - segmentation = onehot - else: - segmentation = (segmentation / 127.5 - 1.0).astype(np.float32) - return image, segmentation - else: - return image - - def __getitem__(self, i): - img_path = self.img_id_to_filepath[self.labels["image_ids"][i]] - if self.use_segmenation: - seg_path = self.img_id_to_segmentation_filepath[self.labels["image_ids"][i]] - image, segmentation = self.preprocess_image(img_path, seg_path) - else: - image = self.preprocess_image(img_path) - captions = self.img_id_to_captions[self.labels["image_ids"][i]] - # randomly draw one of all available captions per image - caption = captions[np.random.randint(0, len(captions))] - example = {"image": image, - #"caption": [str(caption[0])], - "caption": caption, - "img_path": img_path, - "filename_": img_path.split(os.sep)[-1] - } - if self.use_segmenation: - example.update({"seg_path": seg_path, 'segmentation': segmentation}) - return example - - -class CocoImagesAndCaptionsTrain2017(CocoBase): - """returns a pair of (image, caption)""" - def __init__(self, size, onehot_segmentation=False, use_stuffthing=False, crop_size=None, force_no_crop=False,): - super().__init__(size=size, - dataroot="data/coco/train2017", - datajson="data/coco/annotations/captions_train2017.json", - onehot_segmentation=onehot_segmentation, - use_stuffthing=use_stuffthing, crop_size=crop_size, force_no_crop=force_no_crop) - - def get_split(self): - return "train" - - def year(self): - return '2017' - - -class CocoImagesAndCaptionsValidation2017(CocoBase): - """returns a pair of (image, caption)""" - def __init__(self, size, onehot_segmentation=False, use_stuffthing=False, crop_size=None, force_no_crop=False, - given_files=None): - super().__init__(size=size, - dataroot="data/coco/val2017", - datajson="data/coco/annotations/captions_val2017.json", - onehot_segmentation=onehot_segmentation, - use_stuffthing=use_stuffthing, crop_size=crop_size, force_no_crop=force_no_crop, - given_files=given_files) - - def get_split(self): - return "validation" - - def year(self): - return '2017' - - - -class CocoImagesAndCaptionsTrain2014(CocoBase): - """returns a pair of (image, caption)""" - def __init__(self, size, onehot_segmentation=False, use_stuffthing=False, crop_size=None, force_no_crop=False,crop_type='random'): - super().__init__(size=size, - dataroot="data/coco/train2014", - datajson="data/coco/annotations2014/annotations/captions_train2014.json", - onehot_segmentation=onehot_segmentation, - use_stuffthing=use_stuffthing, crop_size=crop_size, force_no_crop=force_no_crop, - use_segmentation=False, - crop_type=crop_type) - - def get_split(self): - return "train" - - def year(self): - return '2014' - -class CocoImagesAndCaptionsValidation2014(CocoBase): - """returns a pair of (image, caption)""" - def __init__(self, size, onehot_segmentation=False, use_stuffthing=False, crop_size=None, force_no_crop=False, - given_files=None,crop_type='center',**kwargs): - super().__init__(size=size, - dataroot="data/coco/val2014", - datajson="data/coco/annotations2014/annotations/captions_val2014.json", - onehot_segmentation=onehot_segmentation, - use_stuffthing=use_stuffthing, crop_size=crop_size, force_no_crop=force_no_crop, - given_files=given_files, - use_segmentation=False, - crop_type=crop_type) - - def get_split(self): - return "validation" - - def year(self): - return '2014' - -if __name__ == '__main__': - with open("data/coco/annotations2014/annotations/captions_val2014.json", "r") as json_file: - json_data = json.load(json_file) - capdirs = json_data["annotations"] - import pudb; pudb.set_trace() - #d2 = CocoImagesAndCaptionsTrain2014(size=256) - d2 = CocoImagesAndCaptionsValidation2014(size=256) - print("constructed dataset.") - print(f"length of {d2.__class__.__name__}: {len(d2)}") - - ex2 = d2[0] - # ex3 = d3[0] - # print(ex1["image"].shape) - print(ex2["image"].shape) - # print(ex3["image"].shape) - # print(ex1["segmentation"].shape) - print(ex2["caption"].__class__.__name__) diff --git a/One-2-3-45-master 2/ldm/data/dummy.py b/One-2-3-45-master 2/ldm/data/dummy.py deleted file mode 100644 index 3b74a77fe8954686e480d28aaed19e52d3e3c9b7..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/ldm/data/dummy.py +++ /dev/null @@ -1,34 +0,0 @@ -import numpy as np -import random -import string -from torch.utils.data import Dataset, Subset - -class DummyData(Dataset): - def __init__(self, length, size): - self.length = length - self.size = size - - def __len__(self): - return self.length - - def __getitem__(self, i): - x = np.random.randn(*self.size) - letters = string.ascii_lowercase - y = ''.join(random.choice(string.ascii_lowercase) for i in range(10)) - return {"jpg": x, "txt": y} - - -class DummyDataWithEmbeddings(Dataset): - def __init__(self, length, size, emb_size): - self.length = length - self.size = size - self.emb_size = emb_size - - def __len__(self): - return self.length - - def __getitem__(self, i): - x = np.random.randn(*self.size) - y = np.random.randn(*self.emb_size).astype(np.float32) - return {"jpg": x, "txt": y} - diff --git a/One-2-3-45-master 2/ldm/data/imagenet.py b/One-2-3-45-master 2/ldm/data/imagenet.py deleted file mode 100644 index 66231964a685cc875243018461a6aaa63a96dbf0..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/ldm/data/imagenet.py +++ /dev/null @@ -1,394 +0,0 @@ -import os, yaml, pickle, shutil, tarfile, glob -import cv2 -import albumentations -import PIL -import numpy as np -import torchvision.transforms.functional as TF -from omegaconf import OmegaConf -from functools import partial -from PIL import Image -from tqdm import tqdm -from torch.utils.data import Dataset, Subset - -import taming.data.utils as tdu -from taming.data.imagenet import str_to_indices, give_synsets_from_indices, download, retrieve -from taming.data.imagenet import ImagePaths - -from ldm.modules.image_degradation import degradation_fn_bsr, degradation_fn_bsr_light - - -def synset2idx(path_to_yaml="data/index_synset.yaml"): - with open(path_to_yaml) as f: - di2s = yaml.load(f) - return dict((v,k) for k,v in di2s.items()) - - -class ImageNetBase(Dataset): - def __init__(self, config=None): - self.config = config or OmegaConf.create() - if not type(self.config)==dict: - self.config = OmegaConf.to_container(self.config) - self.keep_orig_class_label = self.config.get("keep_orig_class_label", False) - self.process_images = True # if False we skip loading & processing images and self.data contains filepaths - self._prepare() - self._prepare_synset_to_human() - self._prepare_idx_to_synset() - self._prepare_human_to_integer_label() - self._load() - - def __len__(self): - return len(self.data) - - def __getitem__(self, i): - return self.data[i] - - def _prepare(self): - raise NotImplementedError() - - def _filter_relpaths(self, relpaths): - ignore = set([ - "n06596364_9591.JPEG", - ]) - relpaths = [rpath for rpath in relpaths if not rpath.split("/")[-1] in ignore] - if "sub_indices" in self.config: - indices = str_to_indices(self.config["sub_indices"]) - synsets = give_synsets_from_indices(indices, path_to_yaml=self.idx2syn) # returns a list of strings - self.synset2idx = synset2idx(path_to_yaml=self.idx2syn) - files = [] - for rpath in relpaths: - syn = rpath.split("/")[0] - if syn in synsets: - files.append(rpath) - return files - else: - return relpaths - - def _prepare_synset_to_human(self): - SIZE = 2655750 - URL = "https://heibox.uni-heidelberg.de/f/9f28e956cd304264bb82/?dl=1" - self.human_dict = os.path.join(self.root, "synset_human.txt") - if (not os.path.exists(self.human_dict) or - not os.path.getsize(self.human_dict)==SIZE): - download(URL, self.human_dict) - - def _prepare_idx_to_synset(self): - URL = "https://heibox.uni-heidelberg.de/f/d835d5b6ceda4d3aa910/?dl=1" - self.idx2syn = os.path.join(self.root, "index_synset.yaml") - if (not os.path.exists(self.idx2syn)): - download(URL, self.idx2syn) - - def _prepare_human_to_integer_label(self): - URL = "https://heibox.uni-heidelberg.de/f/2362b797d5be43b883f6/?dl=1" - self.human2integer = os.path.join(self.root, "imagenet1000_clsidx_to_labels.txt") - if (not os.path.exists(self.human2integer)): - download(URL, self.human2integer) - with open(self.human2integer, "r") as f: - lines = f.read().splitlines() - assert len(lines) == 1000 - self.human2integer_dict = dict() - for line in lines: - value, key = line.split(":") - self.human2integer_dict[key] = int(value) - - def _load(self): - with open(self.txt_filelist, "r") as f: - self.relpaths = f.read().splitlines() - l1 = len(self.relpaths) - self.relpaths = self._filter_relpaths(self.relpaths) - print("Removed {} files from filelist during filtering.".format(l1 - len(self.relpaths))) - - self.synsets = [p.split("/")[0] for p in self.relpaths] - self.abspaths = [os.path.join(self.datadir, p) for p in self.relpaths] - - unique_synsets = np.unique(self.synsets) - class_dict = dict((synset, i) for i, synset in enumerate(unique_synsets)) - if not self.keep_orig_class_label: - self.class_labels = [class_dict[s] for s in self.synsets] - else: - self.class_labels = [self.synset2idx[s] for s in self.synsets] - - with open(self.human_dict, "r") as f: - human_dict = f.read().splitlines() - human_dict = dict(line.split(maxsplit=1) for line in human_dict) - - self.human_labels = [human_dict[s] for s in self.synsets] - - labels = { - "relpath": np.array(self.relpaths), - "synsets": np.array(self.synsets), - "class_label": np.array(self.class_labels), - "human_label": np.array(self.human_labels), - } - - if self.process_images: - self.size = retrieve(self.config, "size", default=256) - self.data = ImagePaths(self.abspaths, - labels=labels, - size=self.size, - random_crop=self.random_crop, - ) - else: - self.data = self.abspaths - - -class ImageNetTrain(ImageNetBase): - NAME = "ILSVRC2012_train" - URL = "http://www.image-net.org/challenges/LSVRC/2012/" - AT_HASH = "a306397ccf9c2ead27155983c254227c0fd938e2" - FILES = [ - "ILSVRC2012_img_train.tar", - ] - SIZES = [ - 147897477120, - ] - - def __init__(self, process_images=True, data_root=None, **kwargs): - self.process_images = process_images - self.data_root = data_root - super().__init__(**kwargs) - - def _prepare(self): - if self.data_root: - self.root = os.path.join(self.data_root, self.NAME) - else: - cachedir = os.environ.get("XDG_CACHE_HOME", os.path.expanduser("~/.cache")) - self.root = os.path.join(cachedir, "autoencoders/data", self.NAME) - - self.datadir = os.path.join(self.root, "data") - self.txt_filelist = os.path.join(self.root, "filelist.txt") - self.expected_length = 1281167 - self.random_crop = retrieve(self.config, "ImageNetTrain/random_crop", - default=True) - if not tdu.is_prepared(self.root): - # prep - print("Preparing dataset {} in {}".format(self.NAME, self.root)) - - datadir = self.datadir - if not os.path.exists(datadir): - path = os.path.join(self.root, self.FILES[0]) - if not os.path.exists(path) or not os.path.getsize(path)==self.SIZES[0]: - import academictorrents as at - atpath = at.get(self.AT_HASH, datastore=self.root) - assert atpath == path - - print("Extracting {} to {}".format(path, datadir)) - os.makedirs(datadir, exist_ok=True) - with tarfile.open(path, "r:") as tar: - tar.extractall(path=datadir) - - print("Extracting sub-tars.") - subpaths = sorted(glob.glob(os.path.join(datadir, "*.tar"))) - for subpath in tqdm(subpaths): - subdir = subpath[:-len(".tar")] - os.makedirs(subdir, exist_ok=True) - with tarfile.open(subpath, "r:") as tar: - tar.extractall(path=subdir) - - filelist = glob.glob(os.path.join(datadir, "**", "*.JPEG")) - filelist = [os.path.relpath(p, start=datadir) for p in filelist] - filelist = sorted(filelist) - filelist = "\n".join(filelist)+"\n" - with open(self.txt_filelist, "w") as f: - f.write(filelist) - - tdu.mark_prepared(self.root) - - -class ImageNetValidation(ImageNetBase): - NAME = "ILSVRC2012_validation" - URL = "http://www.image-net.org/challenges/LSVRC/2012/" - AT_HASH = "5d6d0df7ed81efd49ca99ea4737e0ae5e3a5f2e5" - VS_URL = "https://heibox.uni-heidelberg.de/f/3e0f6e9c624e45f2bd73/?dl=1" - FILES = [ - "ILSVRC2012_img_val.tar", - "validation_synset.txt", - ] - SIZES = [ - 6744924160, - 1950000, - ] - - def __init__(self, process_images=True, data_root=None, **kwargs): - self.data_root = data_root - self.process_images = process_images - super().__init__(**kwargs) - - def _prepare(self): - if self.data_root: - self.root = os.path.join(self.data_root, self.NAME) - else: - cachedir = os.environ.get("XDG_CACHE_HOME", os.path.expanduser("~/.cache")) - self.root = os.path.join(cachedir, "autoencoders/data", self.NAME) - self.datadir = os.path.join(self.root, "data") - self.txt_filelist = os.path.join(self.root, "filelist.txt") - self.expected_length = 50000 - self.random_crop = retrieve(self.config, "ImageNetValidation/random_crop", - default=False) - if not tdu.is_prepared(self.root): - # prep - print("Preparing dataset {} in {}".format(self.NAME, self.root)) - - datadir = self.datadir - if not os.path.exists(datadir): - path = os.path.join(self.root, self.FILES[0]) - if not os.path.exists(path) or not os.path.getsize(path)==self.SIZES[0]: - import academictorrents as at - atpath = at.get(self.AT_HASH, datastore=self.root) - assert atpath == path - - print("Extracting {} to {}".format(path, datadir)) - os.makedirs(datadir, exist_ok=True) - with tarfile.open(path, "r:") as tar: - tar.extractall(path=datadir) - - vspath = os.path.join(self.root, self.FILES[1]) - if not os.path.exists(vspath) or not os.path.getsize(vspath)==self.SIZES[1]: - download(self.VS_URL, vspath) - - with open(vspath, "r") as f: - synset_dict = f.read().splitlines() - synset_dict = dict(line.split() for line in synset_dict) - - print("Reorganizing into synset folders") - synsets = np.unique(list(synset_dict.values())) - for s in synsets: - os.makedirs(os.path.join(datadir, s), exist_ok=True) - for k, v in synset_dict.items(): - src = os.path.join(datadir, k) - dst = os.path.join(datadir, v) - shutil.move(src, dst) - - filelist = glob.glob(os.path.join(datadir, "**", "*.JPEG")) - filelist = [os.path.relpath(p, start=datadir) for p in filelist] - filelist = sorted(filelist) - filelist = "\n".join(filelist)+"\n" - with open(self.txt_filelist, "w") as f: - f.write(filelist) - - tdu.mark_prepared(self.root) - - - -class ImageNetSR(Dataset): - def __init__(self, size=None, - degradation=None, downscale_f=4, min_crop_f=0.5, max_crop_f=1., - random_crop=True): - """ - Imagenet Superresolution Dataloader - Performs following ops in order: - 1. crops a crop of size s from image either as random or center crop - 2. resizes crop to size with cv2.area_interpolation - 3. degrades resized crop with degradation_fn - - :param size: resizing to size after cropping - :param degradation: degradation_fn, e.g. cv_bicubic or bsrgan_light - :param downscale_f: Low Resolution Downsample factor - :param min_crop_f: determines crop size s, - where s = c * min_img_side_len with c sampled from interval (min_crop_f, max_crop_f) - :param max_crop_f: "" - :param data_root: - :param random_crop: - """ - self.base = self.get_base() - assert size - assert (size / downscale_f).is_integer() - self.size = size - self.LR_size = int(size / downscale_f) - self.min_crop_f = min_crop_f - self.max_crop_f = max_crop_f - assert(max_crop_f <= 1.) - self.center_crop = not random_crop - - self.image_rescaler = albumentations.SmallestMaxSize(max_size=size, interpolation=cv2.INTER_AREA) - - self.pil_interpolation = False # gets reset later if incase interp_op is from pillow - - if degradation == "bsrgan": - self.degradation_process = partial(degradation_fn_bsr, sf=downscale_f) - - elif degradation == "bsrgan_light": - self.degradation_process = partial(degradation_fn_bsr_light, sf=downscale_f) - - else: - interpolation_fn = { - "cv_nearest": cv2.INTER_NEAREST, - "cv_bilinear": cv2.INTER_LINEAR, - "cv_bicubic": cv2.INTER_CUBIC, - "cv_area": cv2.INTER_AREA, - "cv_lanczos": cv2.INTER_LANCZOS4, - "pil_nearest": PIL.Image.NEAREST, - "pil_bilinear": PIL.Image.BILINEAR, - "pil_bicubic": PIL.Image.BICUBIC, - "pil_box": PIL.Image.BOX, - "pil_hamming": PIL.Image.HAMMING, - "pil_lanczos": PIL.Image.LANCZOS, - }[degradation] - - self.pil_interpolation = degradation.startswith("pil_") - - if self.pil_interpolation: - self.degradation_process = partial(TF.resize, size=self.LR_size, interpolation=interpolation_fn) - - else: - self.degradation_process = albumentations.SmallestMaxSize(max_size=self.LR_size, - interpolation=interpolation_fn) - - def __len__(self): - return len(self.base) - - def __getitem__(self, i): - example = self.base[i] - image = Image.open(example["file_path_"]) - - if not image.mode == "RGB": - image = image.convert("RGB") - - image = np.array(image).astype(np.uint8) - - min_side_len = min(image.shape[:2]) - crop_side_len = min_side_len * np.random.uniform(self.min_crop_f, self.max_crop_f, size=None) - crop_side_len = int(crop_side_len) - - if self.center_crop: - self.cropper = albumentations.CenterCrop(height=crop_side_len, width=crop_side_len) - - else: - self.cropper = albumentations.RandomCrop(height=crop_side_len, width=crop_side_len) - - image = self.cropper(image=image)["image"] - image = self.image_rescaler(image=image)["image"] - - if self.pil_interpolation: - image_pil = PIL.Image.fromarray(image) - LR_image = self.degradation_process(image_pil) - LR_image = np.array(LR_image).astype(np.uint8) - - else: - LR_image = self.degradation_process(image=image)["image"] - - example["image"] = (image/127.5 - 1.0).astype(np.float32) - example["LR_image"] = (LR_image/127.5 - 1.0).astype(np.float32) - example["caption"] = example["human_label"] # dummy caption - return example - - -class ImageNetSRTrain(ImageNetSR): - def __init__(self, **kwargs): - super().__init__(**kwargs) - - def get_base(self): - with open("data/imagenet_train_hr_indices.p", "rb") as f: - indices = pickle.load(f) - dset = ImageNetTrain(process_images=False,) - return Subset(dset, indices) - - -class ImageNetSRValidation(ImageNetSR): - def __init__(self, **kwargs): - super().__init__(**kwargs) - - def get_base(self): - with open("data/imagenet_val_hr_indices.p", "rb") as f: - indices = pickle.load(f) - dset = ImageNetValidation(process_images=False,) - return Subset(dset, indices) diff --git a/One-2-3-45-master 2/ldm/data/inpainting/__init__.py b/One-2-3-45-master 2/ldm/data/inpainting/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/One-2-3-45-master 2/ldm/data/inpainting/synthetic_mask.py b/One-2-3-45-master 2/ldm/data/inpainting/synthetic_mask.py deleted file mode 100644 index bb4c38f3a79b8eb40553469d6f0656ad2f54609a..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/ldm/data/inpainting/synthetic_mask.py +++ /dev/null @@ -1,166 +0,0 @@ -from PIL import Image, ImageDraw -import numpy as np - -settings = { - "256narrow": { - "p_irr": 1, - "min_n_irr": 4, - "max_n_irr": 50, - "max_l_irr": 40, - "max_w_irr": 10, - "min_n_box": None, - "max_n_box": None, - "min_s_box": None, - "max_s_box": None, - "marg": None, - }, - "256train": { - "p_irr": 0.5, - "min_n_irr": 1, - "max_n_irr": 5, - "max_l_irr": 200, - "max_w_irr": 100, - "min_n_box": 1, - "max_n_box": 4, - "min_s_box": 30, - "max_s_box": 150, - "marg": 10, - }, - "512train": { # TODO: experimental - "p_irr": 0.5, - "min_n_irr": 1, - "max_n_irr": 5, - "max_l_irr": 450, - "max_w_irr": 250, - "min_n_box": 1, - "max_n_box": 4, - "min_s_box": 30, - "max_s_box": 300, - "marg": 10, - }, - "512train-large": { # TODO: experimental - "p_irr": 0.5, - "min_n_irr": 1, - "max_n_irr": 5, - "max_l_irr": 450, - "max_w_irr": 400, - "min_n_box": 1, - "max_n_box": 4, - "min_s_box": 75, - "max_s_box": 450, - "marg": 10, - }, -} - - -def gen_segment_mask(mask, start, end, brush_width): - mask = mask > 0 - mask = (255 * mask).astype(np.uint8) - mask = Image.fromarray(mask) - draw = ImageDraw.Draw(mask) - draw.line([start, end], fill=255, width=brush_width, joint="curve") - mask = np.array(mask) / 255 - return mask - - -def gen_box_mask(mask, masked): - x_0, y_0, w, h = masked - mask[y_0:y_0 + h, x_0:x_0 + w] = 1 - return mask - - -def gen_round_mask(mask, masked, radius): - x_0, y_0, w, h = masked - xy = [(x_0, y_0), (x_0 + w, y_0 + w)] - - mask = mask > 0 - mask = (255 * mask).astype(np.uint8) - mask = Image.fromarray(mask) - draw = ImageDraw.Draw(mask) - draw.rounded_rectangle(xy, radius=radius, fill=255) - mask = np.array(mask) / 255 - return mask - - -def gen_large_mask(prng, img_h, img_w, - marg, p_irr, min_n_irr, max_n_irr, max_l_irr, max_w_irr, - min_n_box, max_n_box, min_s_box, max_s_box): - """ - img_h: int, an image height - img_w: int, an image width - marg: int, a margin for a box starting coordinate - p_irr: float, 0 <= p_irr <= 1, a probability of a polygonal chain mask - - min_n_irr: int, min number of segments - max_n_irr: int, max number of segments - max_l_irr: max length of a segment in polygonal chain - max_w_irr: max width of a segment in polygonal chain - - min_n_box: int, min bound for the number of box primitives - max_n_box: int, max bound for the number of box primitives - min_s_box: int, min length of a box side - max_s_box: int, max length of a box side - """ - - mask = np.zeros((img_h, img_w)) - uniform = prng.randint - - if np.random.uniform(0, 1) < p_irr: # generate polygonal chain - n = uniform(min_n_irr, max_n_irr) # sample number of segments - - for _ in range(n): - y = uniform(0, img_h) # sample a starting point - x = uniform(0, img_w) - - a = uniform(0, 360) # sample angle - l = uniform(10, max_l_irr) # sample segment length - w = uniform(5, max_w_irr) # sample a segment width - - # draw segment starting from (x,y) to (x_,y_) using brush of width w - x_ = x + l * np.sin(a) - y_ = y + l * np.cos(a) - - mask = gen_segment_mask(mask, start=(x, y), end=(x_, y_), brush_width=w) - x, y = x_, y_ - else: # generate Box masks - n = uniform(min_n_box, max_n_box) # sample number of rectangles - - for _ in range(n): - h = uniform(min_s_box, max_s_box) # sample box shape - w = uniform(min_s_box, max_s_box) - - x_0 = uniform(marg, img_w - marg - w) # sample upper-left coordinates of box - y_0 = uniform(marg, img_h - marg - h) - - if np.random.uniform(0, 1) < 0.5: - mask = gen_box_mask(mask, masked=(x_0, y_0, w, h)) - else: - r = uniform(0, 60) # sample radius - mask = gen_round_mask(mask, masked=(x_0, y_0, w, h), radius=r) - return mask - - -make_lama_mask = lambda prng, h, w: gen_large_mask(prng, h, w, **settings["256train"]) -make_narrow_lama_mask = lambda prng, h, w: gen_large_mask(prng, h, w, **settings["256narrow"]) -make_512_lama_mask = lambda prng, h, w: gen_large_mask(prng, h, w, **settings["512train"]) -make_512_lama_mask_large = lambda prng, h, w: gen_large_mask(prng, h, w, **settings["512train-large"]) - - -MASK_MODES = { - "256train": make_lama_mask, - "256narrow": make_narrow_lama_mask, - "512train": make_512_lama_mask, - "512train-large": make_512_lama_mask_large -} - -if __name__ == "__main__": - import sys - - out = sys.argv[1] - - prng = np.random.RandomState(1) - kwargs = settings["256train"] - mask = gen_large_mask(prng, 256, 256, **kwargs) - mask = (255 * mask).astype(np.uint8) - mask = Image.fromarray(mask) - mask.save(out) diff --git a/One-2-3-45-master 2/ldm/data/laion.py b/One-2-3-45-master 2/ldm/data/laion.py deleted file mode 100644 index 2eb608c1a4cf2b7c0215bdd7c1c81841e3a39b0c..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/ldm/data/laion.py +++ /dev/null @@ -1,537 +0,0 @@ -import webdataset as wds -import kornia -from PIL import Image -import io -import os -import torchvision -from PIL import Image -import glob -import random -import numpy as np -import pytorch_lightning as pl -from tqdm import tqdm -from omegaconf import OmegaConf -from einops import rearrange -import torch -from webdataset.handlers import warn_and_continue - - -from ldm.util import instantiate_from_config -from ldm.data.inpainting.synthetic_mask import gen_large_mask, MASK_MODES -from ldm.data.base import PRNGMixin - - -class DataWithWings(torch.utils.data.IterableDataset): - def __init__(self, min_size, transform=None, target_transform=None): - self.min_size = min_size - self.transform = transform if transform is not None else nn.Identity() - self.target_transform = target_transform if target_transform is not None else nn.Identity() - self.kv = OnDiskKV(file='/home/ubuntu/laion5B-watermark-safety-ordered', key_format='q', value_format='ee') - self.kv_aesthetic = OnDiskKV(file='/home/ubuntu/laion5B-aesthetic-tags-kv', key_format='q', value_format='e') - self.pwatermark_threshold = 0.8 - self.punsafe_threshold = 0.5 - self.aesthetic_threshold = 5. - self.total_samples = 0 - self.samples = 0 - location = 'pipe:aws s3 cp --quiet s3://s-datasets/laion5b/laion2B-data/{000000..231349}.tar -' - - self.inner_dataset = wds.DataPipeline( - wds.ResampledShards(location), - wds.tarfile_to_samples(handler=wds.warn_and_continue), - wds.shuffle(1000, handler=wds.warn_and_continue), - wds.decode('pilrgb', handler=wds.warn_and_continue), - wds.map(self._add_tags, handler=wds.ignore_and_continue), - wds.select(self._filter_predicate), - wds.map_dict(jpg=self.transform, txt=self.target_transform, punsafe=self._punsafe_to_class, handler=wds.warn_and_continue), - wds.to_tuple('jpg', 'txt', 'punsafe', handler=wds.warn_and_continue), - ) - - @staticmethod - def _compute_hash(url, text): - if url is None: - url = '' - if text is None: - text = '' - total = (url + text).encode('utf-8') - return mmh3.hash64(total)[0] - - def _add_tags(self, x): - hsh = self._compute_hash(x['json']['url'], x['txt']) - pwatermark, punsafe = self.kv[hsh] - aesthetic = self.kv_aesthetic[hsh][0] - return {**x, 'pwatermark': pwatermark, 'punsafe': punsafe, 'aesthetic': aesthetic} - - def _punsafe_to_class(self, punsafe): - return torch.tensor(punsafe >= self.punsafe_threshold).long() - - def _filter_predicate(self, x): - try: - return x['pwatermark'] < self.pwatermark_threshold and x['aesthetic'] >= self.aesthetic_threshold and x['json']['original_width'] >= self.min_size and x['json']['original_height'] >= self.min_size - except: - return False - - def __iter__(self): - return iter(self.inner_dataset) - - -def dict_collation_fn(samples, combine_tensors=True, combine_scalars=True): - """Take a list of samples (as dictionary) and create a batch, preserving the keys. - If `tensors` is True, `ndarray` objects are combined into - tensor batches. - :param dict samples: list of samples - :param bool tensors: whether to turn lists of ndarrays into a single ndarray - :returns: single sample consisting of a batch - :rtype: dict - """ - keys = set.intersection(*[set(sample.keys()) for sample in samples]) - batched = {key: [] for key in keys} - - for s in samples: - [batched[key].append(s[key]) for key in batched] - - result = {} - for key in batched: - if isinstance(batched[key][0], (int, float)): - if combine_scalars: - result[key] = np.array(list(batched[key])) - elif isinstance(batched[key][0], torch.Tensor): - if combine_tensors: - result[key] = torch.stack(list(batched[key])) - elif isinstance(batched[key][0], np.ndarray): - if combine_tensors: - result[key] = np.array(list(batched[key])) - else: - result[key] = list(batched[key]) - return result - - -class WebDataModuleFromConfig(pl.LightningDataModule): - def __init__(self, tar_base, batch_size, train=None, validation=None, - test=None, num_workers=4, multinode=True, min_size=None, - max_pwatermark=1.0, - **kwargs): - super().__init__(self) - print(f'Setting tar base to {tar_base}') - self.tar_base = tar_base - self.batch_size = batch_size - self.num_workers = num_workers - self.train = train - self.validation = validation - self.test = test - self.multinode = multinode - self.min_size = min_size # filter out very small images - self.max_pwatermark = max_pwatermark # filter out watermarked images - - def make_loader(self, dataset_config, train=True): - if 'image_transforms' in dataset_config: - image_transforms = [instantiate_from_config(tt) for tt in dataset_config.image_transforms] - else: - image_transforms = [] - - image_transforms.extend([torchvision.transforms.ToTensor(), - torchvision.transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))]) - image_transforms = torchvision.transforms.Compose(image_transforms) - - if 'transforms' in dataset_config: - transforms_config = OmegaConf.to_container(dataset_config.transforms) - else: - transforms_config = dict() - - transform_dict = {dkey: load_partial_from_config(transforms_config[dkey]) - if transforms_config[dkey] != 'identity' else identity - for dkey in transforms_config} - img_key = dataset_config.get('image_key', 'jpeg') - transform_dict.update({img_key: image_transforms}) - - if 'postprocess' in dataset_config: - postprocess = instantiate_from_config(dataset_config['postprocess']) - else: - postprocess = None - - shuffle = dataset_config.get('shuffle', 0) - shardshuffle = shuffle > 0 - - nodesplitter = wds.shardlists.split_by_node if self.multinode else wds.shardlists.single_node_only - - if self.tar_base == "__improvedaesthetic__": - print("## Warning, loading the same improved aesthetic dataset " - "for all splits and ignoring shards parameter.") - tars = "pipe:aws s3 cp s3://s-laion/improved-aesthetics-laion-2B-en-subsets/aesthetics_tars/{000000..060207}.tar -" - else: - tars = os.path.join(self.tar_base, dataset_config.shards) - - dset = wds.WebDataset( - tars, - nodesplitter=nodesplitter, - shardshuffle=shardshuffle, - handler=wds.warn_and_continue).repeat().shuffle(shuffle) - print(f'Loading webdataset with {len(dset.pipeline[0].urls)} shards.') - - dset = (dset - .select(self.filter_keys) - .decode('pil', handler=wds.warn_and_continue) - .select(self.filter_size) - .map_dict(**transform_dict, handler=wds.warn_and_continue) - ) - if postprocess is not None: - dset = dset.map(postprocess) - dset = (dset - .batched(self.batch_size, partial=False, - collation_fn=dict_collation_fn) - ) - - loader = wds.WebLoader(dset, batch_size=None, shuffle=False, - num_workers=self.num_workers) - - return loader - - def filter_size(self, x): - try: - valid = True - if self.min_size is not None and self.min_size > 1: - try: - valid = valid and x['json']['original_width'] >= self.min_size and x['json']['original_height'] >= self.min_size - except Exception: - valid = False - if self.max_pwatermark is not None and self.max_pwatermark < 1.0: - try: - valid = valid and x['json']['pwatermark'] <= self.max_pwatermark - except Exception: - valid = False - return valid - except Exception: - return False - - def filter_keys(self, x): - try: - return ("jpg" in x) and ("txt" in x) - except Exception: - return False - - def train_dataloader(self): - return self.make_loader(self.train) - - def val_dataloader(self): - return self.make_loader(self.validation, train=False) - - def test_dataloader(self): - return self.make_loader(self.test, train=False) - - -from ldm.modules.image_degradation import degradation_fn_bsr_light -import cv2 - -class AddLR(object): - def __init__(self, factor, output_size, initial_size=None, image_key="jpg"): - self.factor = factor - self.output_size = output_size - self.image_key = image_key - self.initial_size = initial_size - - def pt2np(self, x): - x = ((x+1.0)*127.5).clamp(0, 255).to(dtype=torch.uint8).detach().cpu().numpy() - return x - - def np2pt(self, x): - x = torch.from_numpy(x)/127.5-1.0 - return x - - def __call__(self, sample): - # sample['jpg'] is tensor hwc in [-1, 1] at this point - x = self.pt2np(sample[self.image_key]) - if self.initial_size is not None: - x = cv2.resize(x, (self.initial_size, self.initial_size), interpolation=2) - x = degradation_fn_bsr_light(x, sf=self.factor)['image'] - x = cv2.resize(x, (self.output_size, self.output_size), interpolation=2) - x = self.np2pt(x) - sample['lr'] = x - return sample - -class AddBW(object): - def __init__(self, image_key="jpg"): - self.image_key = image_key - - def pt2np(self, x): - x = ((x+1.0)*127.5).clamp(0, 255).to(dtype=torch.uint8).detach().cpu().numpy() - return x - - def np2pt(self, x): - x = torch.from_numpy(x)/127.5-1.0 - return x - - def __call__(self, sample): - # sample['jpg'] is tensor hwc in [-1, 1] at this point - x = sample[self.image_key] - w = torch.rand(3, device=x.device) - w /= w.sum() - out = torch.einsum('hwc,c->hw', x, w) - - # Keep as 3ch so we can pass to encoder, also we might want to add hints - sample['lr'] = out.unsqueeze(-1).tile(1,1,3) - return sample - -class AddMask(PRNGMixin): - def __init__(self, mode="512train", p_drop=0.): - super().__init__() - assert mode in list(MASK_MODES.keys()), f'unknown mask generation mode "{mode}"' - self.make_mask = MASK_MODES[mode] - self.p_drop = p_drop - - def __call__(self, sample): - # sample['jpg'] is tensor hwc in [-1, 1] at this point - x = sample['jpg'] - mask = self.make_mask(self.prng, x.shape[0], x.shape[1]) - if self.prng.choice(2, p=[1 - self.p_drop, self.p_drop]): - mask = np.ones_like(mask) - mask[mask < 0.5] = 0 - mask[mask > 0.5] = 1 - mask = torch.from_numpy(mask[..., None]) - sample['mask'] = mask - sample['masked_image'] = x * (mask < 0.5) - return sample - - -class AddEdge(PRNGMixin): - def __init__(self, mode="512train", mask_edges=True): - super().__init__() - assert mode in list(MASK_MODES.keys()), f'unknown mask generation mode "{mode}"' - self.make_mask = MASK_MODES[mode] - self.n_down_choices = [0] - self.sigma_choices = [1, 2] - self.mask_edges = mask_edges - - @torch.no_grad() - def __call__(self, sample): - # sample['jpg'] is tensor hwc in [-1, 1] at this point - x = sample['jpg'] - - mask = self.make_mask(self.prng, x.shape[0], x.shape[1]) - mask[mask < 0.5] = 0 - mask[mask > 0.5] = 1 - mask = torch.from_numpy(mask[..., None]) - sample['mask'] = mask - - n_down_idx = self.prng.choice(len(self.n_down_choices)) - sigma_idx = self.prng.choice(len(self.sigma_choices)) - - n_choices = len(self.n_down_choices)*len(self.sigma_choices) - raveled_idx = np.ravel_multi_index((n_down_idx, sigma_idx), - (len(self.n_down_choices), len(self.sigma_choices))) - normalized_idx = raveled_idx/max(1, n_choices-1) - - n_down = self.n_down_choices[n_down_idx] - sigma = self.sigma_choices[sigma_idx] - - kernel_size = 4*sigma+1 - kernel_size = (kernel_size, kernel_size) - sigma = (sigma, sigma) - canny = kornia.filters.Canny( - low_threshold=0.1, - high_threshold=0.2, - kernel_size=kernel_size, - sigma=sigma, - hysteresis=True, - ) - y = (x+1.0)/2.0 # in 01 - y = y.unsqueeze(0).permute(0, 3, 1, 2).contiguous() - - # down - for i_down in range(n_down): - size = min(y.shape[-2], y.shape[-1])//2 - y = kornia.geometry.transform.resize(y, size, antialias=True) - - # edge - _, y = canny(y) - - if n_down > 0: - size = x.shape[0], x.shape[1] - y = kornia.geometry.transform.resize(y, size, interpolation="nearest") - - y = y.permute(0, 2, 3, 1)[0].expand(-1, -1, 3).contiguous() - y = y*2.0-1.0 - - if self.mask_edges: - sample['masked_image'] = y * (mask < 0.5) - else: - sample['masked_image'] = y - sample['mask'] = torch.zeros_like(sample['mask']) - - # concat normalized idx - sample['smoothing_strength'] = torch.ones_like(sample['mask'])*normalized_idx - - return sample - - -def example00(): - url = "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/000000.tar -" - dataset = wds.WebDataset(url) - example = next(iter(dataset)) - for k in example: - print(k, type(example[k])) - - print(example["__key__"]) - for k in ["json", "txt"]: - print(example[k].decode()) - - image = Image.open(io.BytesIO(example["jpg"])) - outdir = "tmp" - os.makedirs(outdir, exist_ok=True) - image.save(os.path.join(outdir, example["__key__"] + ".png")) - - - def load_example(example): - return { - "key": example["__key__"], - "image": Image.open(io.BytesIO(example["jpg"])), - "text": example["txt"].decode(), - } - - - for i, example in tqdm(enumerate(dataset)): - ex = load_example(example) - print(ex["image"].size, ex["text"]) - if i >= 100: - break - - -def example01(): - # the first laion shards contain ~10k examples each - url = "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/{000000..000002}.tar -" - - batch_size = 3 - shuffle_buffer = 10000 - dset = wds.WebDataset( - url, - nodesplitter=wds.shardlists.split_by_node, - shardshuffle=True, - ) - dset = (dset - .shuffle(shuffle_buffer, initial=shuffle_buffer) - .decode('pil', handler=warn_and_continue) - .batched(batch_size, partial=False, - collation_fn=dict_collation_fn) - ) - - num_workers = 2 - loader = wds.WebLoader(dset, batch_size=None, shuffle=False, num_workers=num_workers) - - batch_sizes = list() - keys_per_epoch = list() - for epoch in range(5): - keys = list() - for batch in tqdm(loader): - batch_sizes.append(len(batch["__key__"])) - keys.append(batch["__key__"]) - - for bs in batch_sizes: - assert bs==batch_size - print(f"{len(batch_sizes)} batches of size {batch_size}.") - batch_sizes = list() - - keys_per_epoch.append(keys) - for i_batch in [0, 1, -1]: - print(f"Batch {i_batch} of epoch {epoch}:") - print(keys[i_batch]) - print("next epoch.") - - -def example02(): - from omegaconf import OmegaConf - from torch.utils.data.distributed import DistributedSampler - from torch.utils.data import IterableDataset - from torch.utils.data import DataLoader, RandomSampler, Sampler, SequentialSampler - from pytorch_lightning.trainer.supporters import CombinedLoader, CycleIterator - - #config = OmegaConf.load("configs/stable-diffusion/txt2img-1p4B-multinode-clip-encoder-high-res-512.yaml") - #config = OmegaConf.load("configs/stable-diffusion/txt2img-upscale-clip-encoder-f16-1024.yaml") - config = OmegaConf.load("configs/stable-diffusion/txt2img-v2-clip-encoder-improved_aesthetics-256.yaml") - datamod = WebDataModuleFromConfig(**config["data"]["params"]) - dataloader = datamod.train_dataloader() - - for batch in dataloader: - print(batch.keys()) - print(batch["jpg"].shape) - break - - -def example03(): - # improved aesthetics - tars = "pipe:aws s3 cp s3://s-laion/improved-aesthetics-laion-2B-en-subsets/aesthetics_tars/{000000..060207}.tar -" - dataset = wds.WebDataset(tars) - - def filter_keys(x): - try: - return ("jpg" in x) and ("txt" in x) - except Exception: - return False - - def filter_size(x): - try: - return x['json']['original_width'] >= 512 and x['json']['original_height'] >= 512 - except Exception: - return False - - def filter_watermark(x): - try: - return x['json']['pwatermark'] < 0.5 - except Exception: - return False - - dataset = (dataset - .select(filter_keys) - .decode('pil', handler=wds.warn_and_continue)) - n_save = 20 - n_total = 0 - n_large = 0 - n_large_nowm = 0 - for i, example in enumerate(dataset): - n_total += 1 - if filter_size(example): - n_large += 1 - if filter_watermark(example): - n_large_nowm += 1 - if n_large_nowm < n_save+1: - image = example["jpg"] - image.save(os.path.join("tmp", f"{n_large_nowm-1:06}.png")) - - if i%500 == 0: - print(i) - print(f"Large: {n_large}/{n_total} | {n_large/n_total*100:.2f}%") - if n_large > 0: - print(f"No Watermark: {n_large_nowm}/{n_large} | {n_large_nowm/n_large*100:.2f}%") - - - -def example04(): - # improved aesthetics - for i_shard in range(60208)[::-1]: - print(i_shard) - tars = "pipe:aws s3 cp s3://s-laion/improved-aesthetics-laion-2B-en-subsets/aesthetics_tars/{:06}.tar -".format(i_shard) - dataset = wds.WebDataset(tars) - - def filter_keys(x): - try: - return ("jpg" in x) and ("txt" in x) - except Exception: - return False - - def filter_size(x): - try: - return x['json']['original_width'] >= 512 and x['json']['original_height'] >= 512 - except Exception: - return False - - dataset = (dataset - .select(filter_keys) - .decode('pil', handler=wds.warn_and_continue)) - try: - example = next(iter(dataset)) - except Exception: - print(f"Error @ {i_shard}") - - -if __name__ == "__main__": - #example01() - #example02() - example03() - #example04() diff --git a/One-2-3-45-master 2/ldm/data/lsun.py b/One-2-3-45-master 2/ldm/data/lsun.py deleted file mode 100644 index 6256e45715ff0b57c53f985594d27cbbbff0e68e..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/ldm/data/lsun.py +++ /dev/null @@ -1,92 +0,0 @@ -import os -import numpy as np -import PIL -from PIL import Image -from torch.utils.data import Dataset -from torchvision import transforms - - -class LSUNBase(Dataset): - def __init__(self, - txt_file, - data_root, - size=None, - interpolation="bicubic", - flip_p=0.5 - ): - self.data_paths = txt_file - self.data_root = data_root - with open(self.data_paths, "r") as f: - self.image_paths = f.read().splitlines() - self._length = len(self.image_paths) - self.labels = { - "relative_file_path_": [l for l in self.image_paths], - "file_path_": [os.path.join(self.data_root, l) - for l in self.image_paths], - } - - self.size = size - self.interpolation = {"linear": PIL.Image.LINEAR, - "bilinear": PIL.Image.BILINEAR, - "bicubic": PIL.Image.BICUBIC, - "lanczos": PIL.Image.LANCZOS, - }[interpolation] - self.flip = transforms.RandomHorizontalFlip(p=flip_p) - - def __len__(self): - return self._length - - def __getitem__(self, i): - example = dict((k, self.labels[k][i]) for k in self.labels) - image = Image.open(example["file_path_"]) - if not image.mode == "RGB": - image = image.convert("RGB") - - # default to score-sde preprocessing - img = np.array(image).astype(np.uint8) - crop = min(img.shape[0], img.shape[1]) - h, w, = img.shape[0], img.shape[1] - img = img[(h - crop) // 2:(h + crop) // 2, - (w - crop) // 2:(w + crop) // 2] - - image = Image.fromarray(img) - if self.size is not None: - image = image.resize((self.size, self.size), resample=self.interpolation) - - image = self.flip(image) - image = np.array(image).astype(np.uint8) - example["image"] = (image / 127.5 - 1.0).astype(np.float32) - return example - - -class LSUNChurchesTrain(LSUNBase): - def __init__(self, **kwargs): - super().__init__(txt_file="data/lsun/church_outdoor_train.txt", data_root="data/lsun/churches", **kwargs) - - -class LSUNChurchesValidation(LSUNBase): - def __init__(self, flip_p=0., **kwargs): - super().__init__(txt_file="data/lsun/church_outdoor_val.txt", data_root="data/lsun/churches", - flip_p=flip_p, **kwargs) - - -class LSUNBedroomsTrain(LSUNBase): - def __init__(self, **kwargs): - super().__init__(txt_file="data/lsun/bedrooms_train.txt", data_root="data/lsun/bedrooms", **kwargs) - - -class LSUNBedroomsValidation(LSUNBase): - def __init__(self, flip_p=0.0, **kwargs): - super().__init__(txt_file="data/lsun/bedrooms_val.txt", data_root="data/lsun/bedrooms", - flip_p=flip_p, **kwargs) - - -class LSUNCatsTrain(LSUNBase): - def __init__(self, **kwargs): - super().__init__(txt_file="data/lsun/cat_train.txt", data_root="data/lsun/cats", **kwargs) - - -class LSUNCatsValidation(LSUNBase): - def __init__(self, flip_p=0., **kwargs): - super().__init__(txt_file="data/lsun/cat_val.txt", data_root="data/lsun/cats", - flip_p=flip_p, **kwargs) diff --git a/One-2-3-45-master 2/ldm/data/nerf_like.py b/One-2-3-45-master 2/ldm/data/nerf_like.py deleted file mode 100644 index 84ef18288db005c72d3b5832144a7bd5cfffe9b2..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/ldm/data/nerf_like.py +++ /dev/null @@ -1,165 +0,0 @@ -from torch.utils.data import Dataset -import os -import json -import numpy as np -import torch -import imageio -import math -import cv2 -from torchvision import transforms - -def cartesian_to_spherical(xyz): - ptsnew = np.hstack((xyz, np.zeros(xyz.shape))) - xy = xyz[:,0]**2 + xyz[:,1]**2 - z = np.sqrt(xy + xyz[:,2]**2) - theta = np.arctan2(np.sqrt(xy), xyz[:,2]) # for elevation angle defined from Z-axis down - #ptsnew[:,4] = np.arctan2(xyz[:,2], np.sqrt(xy)) # for elevation angle defined from XY-plane up - azimuth = np.arctan2(xyz[:,1], xyz[:,0]) - return np.array([theta, azimuth, z]) - - -def get_T(T_target, T_cond): - theta_cond, azimuth_cond, z_cond = cartesian_to_spherical(T_cond[None, :]) - theta_target, azimuth_target, z_target = cartesian_to_spherical(T_target[None, :]) - - d_theta = theta_target - theta_cond - d_azimuth = (azimuth_target - azimuth_cond) % (2 * math.pi) - d_z = z_target - z_cond - - d_T = torch.tensor([d_theta.item(), math.sin(d_azimuth.item()), math.cos(d_azimuth.item()), d_z.item()]) - return d_T - -def get_spherical(T_target, T_cond): - theta_cond, azimuth_cond, z_cond = cartesian_to_spherical(T_cond[None, :]) - theta_target, azimuth_target, z_target = cartesian_to_spherical(T_target[None, :]) - - d_theta = theta_target - theta_cond - d_azimuth = (azimuth_target - azimuth_cond) % (2 * math.pi) - d_z = z_target - z_cond - - d_T = torch.tensor([math.degrees(d_theta.item()), math.degrees(d_azimuth.item()), d_z.item()]) - return d_T - -class RTMV(Dataset): - def __init__(self, root_dir='datasets/RTMV/google_scanned',\ - first_K=64, resolution=256, load_target=False): - self.root_dir = root_dir - self.scene_list = sorted(next(os.walk(root_dir))[1]) - self.resolution = resolution - self.first_K = first_K - self.load_target = load_target - - def __len__(self): - return len(self.scene_list) - - def __getitem__(self, idx): - scene_dir = os.path.join(self.root_dir, self.scene_list[idx]) - with open(os.path.join(scene_dir, 'transforms.json'), "r") as f: - meta = json.load(f) - imgs = [] - poses = [] - for i_img in range(self.first_K): - meta_img = meta['frames'][i_img] - - if i_img == 0 or self.load_target: - img_path = os.path.join(scene_dir, meta_img['file_path']) - img = imageio.imread(img_path) - img = cv2.resize(img, (self.resolution, self.resolution), interpolation = cv2.INTER_LINEAR) - imgs.append(img) - - c2w = meta_img['transform_matrix'] - poses.append(c2w) - - imgs = (np.array(imgs) / 255.).astype(np.float32) # (RGBA) imgs - imgs = torch.tensor(self.blend_rgba(imgs)).permute(0, 3, 1, 2) - imgs = imgs * 2 - 1. # convert to stable diffusion range - poses = torch.tensor(np.array(poses).astype(np.float32)) - return imgs, poses - - def blend_rgba(self, img): - img = img[..., :3] * img[..., -1:] + (1. - img[..., -1:]) # blend A to RGB - return img - - -class GSO(Dataset): - def __init__(self, root_dir='datasets/GoogleScannedObjects',\ - split='val', first_K=5, resolution=256, load_target=False, name='render_mvs'): - self.root_dir = root_dir - with open(os.path.join(root_dir, '%s.json' % split), "r") as f: - self.scene_list = json.load(f) - self.resolution = resolution - self.first_K = first_K - self.load_target = load_target - self.name = name - - def __len__(self): - return len(self.scene_list) - - def __getitem__(self, idx): - scene_dir = os.path.join(self.root_dir, self.scene_list[idx]) - with open(os.path.join(scene_dir, 'transforms_%s.json' % self.name), "r") as f: - meta = json.load(f) - imgs = [] - poses = [] - for i_img in range(self.first_K): - meta_img = meta['frames'][i_img] - - if i_img == 0 or self.load_target: - img_path = os.path.join(scene_dir, meta_img['file_path']) - img = imageio.imread(img_path) - img = cv2.resize(img, (self.resolution, self.resolution), interpolation = cv2.INTER_LINEAR) - imgs.append(img) - - c2w = meta_img['transform_matrix'] - poses.append(c2w) - - imgs = (np.array(imgs) / 255.).astype(np.float32) # (RGBA) imgs - mask = imgs[:, :, :, -1] - imgs = torch.tensor(self.blend_rgba(imgs)).permute(0, 3, 1, 2) - imgs = imgs * 2 - 1. # convert to stable diffusion range - poses = torch.tensor(np.array(poses).astype(np.float32)) - return imgs, poses - - def blend_rgba(self, img): - img = img[..., :3] * img[..., -1:] + (1. - img[..., -1:]) # blend A to RGB - return img - -class WILD(Dataset): - def __init__(self, root_dir='data/nerf_wild',\ - first_K=33, resolution=256, load_target=False): - self.root_dir = root_dir - self.scene_list = sorted(next(os.walk(root_dir))[1]) - self.resolution = resolution - self.first_K = first_K - self.load_target = load_target - - def __len__(self): - return len(self.scene_list) - - def __getitem__(self, idx): - scene_dir = os.path.join(self.root_dir, self.scene_list[idx]) - with open(os.path.join(scene_dir, 'transforms_train.json'), "r") as f: - meta = json.load(f) - imgs = [] - poses = [] - for i_img in range(self.first_K): - meta_img = meta['frames'][i_img] - - if i_img == 0 or self.load_target: - img_path = os.path.join(scene_dir, meta_img['file_path']) - img = imageio.imread(img_path + '.png') - img = cv2.resize(img, (self.resolution, self.resolution), interpolation = cv2.INTER_LINEAR) - imgs.append(img) - - c2w = meta_img['transform_matrix'] - poses.append(c2w) - - imgs = (np.array(imgs) / 255.).astype(np.float32) # (RGBA) imgs - imgs = torch.tensor(self.blend_rgba(imgs)).permute(0, 3, 1, 2) - imgs = imgs * 2 - 1. # convert to stable diffusion range - poses = torch.tensor(np.array(poses).astype(np.float32)) - return imgs, poses - - def blend_rgba(self, img): - img = img[..., :3] * img[..., -1:] + (1. - img[..., -1:]) # blend A to RGB - return img \ No newline at end of file diff --git a/One-2-3-45-master 2/ldm/data/simple.py b/One-2-3-45-master 2/ldm/data/simple.py deleted file mode 100644 index a853e2188e4e61cf91c3e1ca0da3e4f0069dbcee..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/ldm/data/simple.py +++ /dev/null @@ -1,526 +0,0 @@ -from typing import Dict -import webdataset as wds -import numpy as np -from omegaconf import DictConfig, ListConfig -import torch -from torch.utils.data import Dataset -from pathlib import Path -import json -from PIL import Image -from torchvision import transforms -import torchvision -from einops import rearrange -from ldm.util import instantiate_from_config -from datasets import load_dataset -import pytorch_lightning as pl -import copy -import csv -import cv2 -import random -import matplotlib.pyplot as plt -from torch.utils.data import DataLoader -import json -import os, sys -import webdataset as wds -import math -from torch.utils.data.distributed import DistributedSampler - -# Some hacky things to make experimentation easier -def make_transform_multi_folder_data(paths, caption_files=None, **kwargs): - ds = make_multi_folder_data(paths, caption_files, **kwargs) - return TransformDataset(ds) - -def make_nfp_data(base_path): - dirs = list(Path(base_path).glob("*/")) - print(f"Found {len(dirs)} folders") - print(dirs) - tforms = [transforms.Resize(512), transforms.CenterCrop(512)] - datasets = [NfpDataset(x, image_transforms=copy.copy(tforms), default_caption="A view from a train window") for x in dirs] - return torch.utils.data.ConcatDataset(datasets) - - -class VideoDataset(Dataset): - def __init__(self, root_dir, image_transforms, caption_file, offset=8, n=2): - self.root_dir = Path(root_dir) - self.caption_file = caption_file - self.n = n - ext = "mp4" - self.paths = sorted(list(self.root_dir.rglob(f"*.{ext}"))) - self.offset = offset - - if isinstance(image_transforms, ListConfig): - image_transforms = [instantiate_from_config(tt) for tt in image_transforms] - image_transforms.extend([transforms.ToTensor(), - transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))]) - image_transforms = transforms.Compose(image_transforms) - self.tform = image_transforms - with open(self.caption_file) as f: - reader = csv.reader(f) - rows = [row for row in reader] - self.captions = dict(rows) - - def __len__(self): - return len(self.paths) - - def __getitem__(self, index): - for i in range(10): - try: - return self._load_sample(index) - except Exception: - # Not really good enough but... - print("uh oh") - - def _load_sample(self, index): - n = self.n - filename = self.paths[index] - min_frame = 2*self.offset + 2 - vid = cv2.VideoCapture(str(filename)) - max_frames = int(vid.get(cv2.CAP_PROP_FRAME_COUNT)) - curr_frame_n = random.randint(min_frame, max_frames) - vid.set(cv2.CAP_PROP_POS_FRAMES,curr_frame_n) - _, curr_frame = vid.read() - - prev_frames = [] - for i in range(n): - prev_frame_n = curr_frame_n - (i+1)*self.offset - vid.set(cv2.CAP_PROP_POS_FRAMES,prev_frame_n) - _, prev_frame = vid.read() - prev_frame = self.tform(Image.fromarray(prev_frame[...,::-1])) - prev_frames.append(prev_frame) - - vid.release() - caption = self.captions[filename.name] - data = { - "image": self.tform(Image.fromarray(curr_frame[...,::-1])), - "prev": torch.cat(prev_frames, dim=-1), - "txt": caption - } - return data - -# end hacky things - - -def make_tranforms(image_transforms): - # if isinstance(image_transforms, ListConfig): - # image_transforms = [instantiate_from_config(tt) for tt in image_transforms] - image_transforms = [] - image_transforms.extend([transforms.ToTensor(), - transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))]) - image_transforms = transforms.Compose(image_transforms) - return image_transforms - - -def make_multi_folder_data(paths, caption_files=None, **kwargs): - """Make a concat dataset from multiple folders - Don't suport captions yet - - If paths is a list, that's ok, if it's a Dict interpret it as: - k=folder v=n_times to repeat that - """ - list_of_paths = [] - if isinstance(paths, (Dict, DictConfig)): - assert caption_files is None, \ - "Caption files not yet supported for repeats" - for folder_path, repeats in paths.items(): - list_of_paths.extend([folder_path]*repeats) - paths = list_of_paths - - if caption_files is not None: - datasets = [FolderData(p, caption_file=c, **kwargs) for (p, c) in zip(paths, caption_files)] - else: - datasets = [FolderData(p, **kwargs) for p in paths] - return torch.utils.data.ConcatDataset(datasets) - - - -class NfpDataset(Dataset): - def __init__(self, - root_dir, - image_transforms=[], - ext="jpg", - default_caption="", - ) -> None: - """assume sequential frames and a deterministic transform""" - - self.root_dir = Path(root_dir) - self.default_caption = default_caption - - self.paths = sorted(list(self.root_dir.rglob(f"*.{ext}"))) - self.tform = make_tranforms(image_transforms) - - def __len__(self): - return len(self.paths) - 1 - - - def __getitem__(self, index): - prev = self.paths[index] - curr = self.paths[index+1] - data = {} - data["image"] = self._load_im(curr) - data["prev"] = self._load_im(prev) - data["txt"] = self.default_caption - return data - - def _load_im(self, filename): - im = Image.open(filename).convert("RGB") - return self.tform(im) - -class ObjaverseDataModuleFromConfig(pl.LightningDataModule): - def __init__(self, root_dir, batch_size, total_view, train=None, validation=None, - test=None, num_workers=4, **kwargs): - super().__init__(self) - self.root_dir = root_dir - self.batch_size = batch_size - self.num_workers = num_workers - self.total_view = total_view - - if train is not None: - dataset_config = train - if validation is not None: - dataset_config = validation - - if 'image_transforms' in dataset_config: - image_transforms = [torchvision.transforms.Resize(dataset_config.image_transforms.size)] - else: - image_transforms = [] - image_transforms.extend([transforms.ToTensor(), - transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))]) - self.image_transforms = torchvision.transforms.Compose(image_transforms) - - - def train_dataloader(self): - dataset = ObjaverseData(root_dir=self.root_dir, total_view=self.total_view, validation=False, \ - image_transforms=self.image_transforms) - sampler = DistributedSampler(dataset) - return wds.WebLoader(dataset, batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False, sampler=sampler) - - def val_dataloader(self): - dataset = ObjaverseData(root_dir=self.root_dir, total_view=self.total_view, validation=True, \ - image_transforms=self.image_transforms) - sampler = DistributedSampler(dataset) - return wds.WebLoader(dataset, batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False) - - def test_dataloader(self): - return wds.WebLoader(ObjaverseData(root_dir=self.root_dir, total_view=self.total_view, validation=self.validation),\ - batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False) - - -class ObjaverseData(Dataset): - def __init__(self, - root_dir='.objaverse/hf-objaverse-v1/views', - image_transforms=[], - ext="png", - default_trans=torch.zeros(3), - postprocess=None, - return_paths=False, - total_view=4, - validation=False - ) -> None: - """Create a dataset from a folder of images. - If you pass in a root directory it will be searched for images - ending in ext (ext can be a list) - """ - self.root_dir = Path(root_dir) - self.default_trans = default_trans - self.return_paths = return_paths - if isinstance(postprocess, DictConfig): - postprocess = instantiate_from_config(postprocess) - self.postprocess = postprocess - self.total_view = total_view - - if not isinstance(ext, (tuple, list, ListConfig)): - ext = [ext] - - with open(os.path.join(root_dir, 'valid_paths.json')) as f: - self.paths = json.load(f) - - total_objects = len(self.paths) - if validation: - self.paths = self.paths[math.floor(total_objects / 100. * 99.):] # used last 1% as validation - else: - self.paths = self.paths[:math.floor(total_objects / 100. * 99.)] # used first 99% as training - print('============= length of dataset %d =============' % len(self.paths)) - self.tform = image_transforms - - def __len__(self): - return len(self.paths) - - def cartesian_to_spherical(self, xyz): - ptsnew = np.hstack((xyz, np.zeros(xyz.shape))) - xy = xyz[:,0]**2 + xyz[:,1]**2 - z = np.sqrt(xy + xyz[:,2]**2) - theta = np.arctan2(np.sqrt(xy), xyz[:,2]) # for elevation angle defined from Z-axis down - #ptsnew[:,4] = np.arctan2(xyz[:,2], np.sqrt(xy)) # for elevation angle defined from XY-plane up - azimuth = np.arctan2(xyz[:,1], xyz[:,0]) - return np.array([theta, azimuth, z]) - - def get_T(self, target_RT, cond_RT): - R, T = target_RT[:3, :3], target_RT[:, -1] - T_target = -R.T @ T - - R, T = cond_RT[:3, :3], cond_RT[:, -1] - T_cond = -R.T @ T - - theta_cond, azimuth_cond, z_cond = self.cartesian_to_spherical(T_cond[None, :]) - theta_target, azimuth_target, z_target = self.cartesian_to_spherical(T_target[None, :]) - - d_theta = theta_target - theta_cond - d_azimuth = (azimuth_target - azimuth_cond) % (2 * math.pi) - d_z = z_target - z_cond - - d_T = torch.tensor([d_theta.item(), math.sin(d_azimuth.item()), math.cos(d_azimuth.item()), d_z.item()]) - return d_T - - def load_im(self, path, color): - ''' - replace background pixel with random color in rendering - ''' - try: - img = plt.imread(path) - except: - print(path) - sys.exit() - img[img[:, :, -1] == 0.] = color - img = Image.fromarray(np.uint8(img[:, :, :3] * 255.)) - return img - - def __getitem__(self, index): - - data = {} - if self.paths[index][-2:] == '_1': # dirty fix for rendering dataset twice - total_view = 8 - else: - total_view = 4 - index_target, index_cond = random.sample(range(total_view), 2) # without replacement - filename = os.path.join(self.root_dir, self.paths[index]) - - # print(self.paths[index]) - - if self.return_paths: - data["path"] = str(filename) - - color = [1., 1., 1., 1.] - - try: - target_im = self.process_im(self.load_im(os.path.join(filename, '%03d.png' % index_target), color)) - cond_im = self.process_im(self.load_im(os.path.join(filename, '%03d.png' % index_cond), color)) - target_RT = np.load(os.path.join(filename, '%03d.npy' % index_target)) - cond_RT = np.load(os.path.join(filename, '%03d.npy' % index_cond)) - except: - # very hacky solution, sorry about this - filename = os.path.join(self.root_dir, '692db5f2d3a04bb286cb977a7dba903e_1') # this one we know is valid - target_im = self.process_im(self.load_im(os.path.join(filename, '%03d.png' % index_target), color)) - cond_im = self.process_im(self.load_im(os.path.join(filename, '%03d.png' % index_cond), color)) - target_RT = np.load(os.path.join(filename, '%03d.npy' % index_target)) - cond_RT = np.load(os.path.join(filename, '%03d.npy' % index_cond)) - target_im = torch.zeros_like(target_im) - cond_im = torch.zeros_like(cond_im) - - data["image_target"] = target_im - data["image_cond"] = cond_im - data["T"] = self.get_T(target_RT, cond_RT) - - if self.postprocess is not None: - data = self.postprocess(data) - - return data - - def process_im(self, im): - im = im.convert("RGB") - return self.tform(im) - -class FolderData(Dataset): - def __init__(self, - root_dir, - caption_file=None, - image_transforms=[], - ext="jpg", - default_caption="", - postprocess=None, - return_paths=False, - ) -> None: - """Create a dataset from a folder of images. - If you pass in a root directory it will be searched for images - ending in ext (ext can be a list) - """ - self.root_dir = Path(root_dir) - self.default_caption = default_caption - self.return_paths = return_paths - if isinstance(postprocess, DictConfig): - postprocess = instantiate_from_config(postprocess) - self.postprocess = postprocess - if caption_file is not None: - with open(caption_file, "rt") as f: - ext = Path(caption_file).suffix.lower() - if ext == ".json": - captions = json.load(f) - elif ext == ".jsonl": - lines = f.readlines() - lines = [json.loads(x) for x in lines] - captions = {x["file_name"]: x["text"].strip("\n") for x in lines} - else: - raise ValueError(f"Unrecognised format: {ext}") - self.captions = captions - else: - self.captions = None - - if not isinstance(ext, (tuple, list, ListConfig)): - ext = [ext] - - # Only used if there is no caption file - self.paths = [] - for e in ext: - self.paths.extend(sorted(list(self.root_dir.rglob(f"*.{e}")))) - self.tform = make_tranforms(image_transforms) - - def __len__(self): - if self.captions is not None: - return len(self.captions.keys()) - else: - return len(self.paths) - - def __getitem__(self, index): - data = {} - if self.captions is not None: - chosen = list(self.captions.keys())[index] - caption = self.captions.get(chosen, None) - if caption is None: - caption = self.default_caption - filename = self.root_dir/chosen - else: - filename = self.paths[index] - - if self.return_paths: - data["path"] = str(filename) - - im = Image.open(filename).convert("RGB") - im = self.process_im(im) - data["image"] = im - - if self.captions is not None: - data["txt"] = caption - else: - data["txt"] = self.default_caption - - if self.postprocess is not None: - data = self.postprocess(data) - - return data - - def process_im(self, im): - im = im.convert("RGB") - return self.tform(im) -import random - -class TransformDataset(): - def __init__(self, ds, extra_label="sksbspic"): - self.ds = ds - self.extra_label = extra_label - self.transforms = { - "align": transforms.Resize(768), - "centerzoom": transforms.CenterCrop(768), - "randzoom": transforms.RandomCrop(768), - } - - - def __getitem__(self, index): - data = self.ds[index] - - im = data['image'] - im = im.permute(2,0,1) - # In case data is smaller than expected - im = transforms.Resize(1024)(im) - - tform_name = random.choice(list(self.transforms.keys())) - im = self.transforms[tform_name](im) - - im = im.permute(1,2,0) - - data['image'] = im - data['txt'] = data['txt'] + f" {self.extra_label} {tform_name}" - - return data - - def __len__(self): - return len(self.ds) - -def hf_dataset( - name, - image_transforms=[], - image_column="image", - text_column="text", - split='train', - image_key='image', - caption_key='txt', - ): - """Make huggingface dataset with appropriate list of transforms applied - """ - ds = load_dataset(name, split=split) - tform = make_tranforms(image_transforms) - - assert image_column in ds.column_names, f"Didn't find column {image_column} in {ds.column_names}" - assert text_column in ds.column_names, f"Didn't find column {text_column} in {ds.column_names}" - - def pre_process(examples): - processed = {} - processed[image_key] = [tform(im) for im in examples[image_column]] - processed[caption_key] = examples[text_column] - return processed - - ds.set_transform(pre_process) - return ds - -class TextOnly(Dataset): - def __init__(self, captions, output_size, image_key="image", caption_key="txt", n_gpus=1): - """Returns only captions with dummy images""" - self.output_size = output_size - self.image_key = image_key - self.caption_key = caption_key - if isinstance(captions, Path): - self.captions = self._load_caption_file(captions) - else: - self.captions = captions - - if n_gpus > 1: - # hack to make sure that all the captions appear on each gpu - repeated = [n_gpus*[x] for x in self.captions] - self.captions = [] - [self.captions.extend(x) for x in repeated] - - def __len__(self): - return len(self.captions) - - def __getitem__(self, index): - dummy_im = torch.zeros(3, self.output_size, self.output_size) - dummy_im = rearrange(dummy_im * 2. - 1., 'c h w -> h w c') - return {self.image_key: dummy_im, self.caption_key: self.captions[index]} - - def _load_caption_file(self, filename): - with open(filename, 'rt') as f: - captions = f.readlines() - return [x.strip('\n') for x in captions] - - - -import random -import json -class IdRetreivalDataset(FolderData): - def __init__(self, ret_file, *args, **kwargs): - super().__init__(*args, **kwargs) - with open(ret_file, "rt") as f: - self.ret = json.load(f) - - def __getitem__(self, index): - data = super().__getitem__(index) - key = self.paths[index].name - matches = self.ret[key] - if len(matches) > 0: - retreived = random.choice(matches) - else: - retreived = key - filename = self.root_dir/retreived - im = Image.open(filename).convert("RGB") - im = self.process_im(im) - # data["match"] = im - data["match"] = torch.cat((data["image"], im), dim=-1) - return data diff --git a/One-2-3-45-master 2/ldm/extras.py b/One-2-3-45-master 2/ldm/extras.py deleted file mode 100644 index 62e654b330c44b85565f958d04bee217a168d7ec..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/ldm/extras.py +++ /dev/null @@ -1,77 +0,0 @@ -from pathlib import Path -from omegaconf import OmegaConf -import torch -from ldm.util import instantiate_from_config -import logging -from contextlib import contextmanager - -from contextlib import contextmanager -import logging - -@contextmanager -def all_logging_disabled(highest_level=logging.CRITICAL): - """ - A context manager that will prevent any logging messages - triggered during the body from being processed. - - :param highest_level: the maximum logging level in use. - This would only need to be changed if a custom level greater than CRITICAL - is defined. - - https://gist.github.com/simon-weber/7853144 - """ - # two kind-of hacks here: - # * can't get the highest logging level in effect => delegate to the user - # * can't get the current module-level override => use an undocumented - # (but non-private!) interface - - previous_level = logging.root.manager.disable - - logging.disable(highest_level) - - try: - yield - finally: - logging.disable(previous_level) - -def load_training_dir(train_dir, device, epoch="last"): - """Load a checkpoint and config from training directory""" - train_dir = Path(train_dir) - ckpt = list(train_dir.rglob(f"*{epoch}.ckpt")) - assert len(ckpt) == 1, f"found {len(ckpt)} matching ckpt files" - config = list(train_dir.rglob(f"*-project.yaml")) - assert len(ckpt) > 0, f"didn't find any config in {train_dir}" - if len(config) > 1: - print(f"found {len(config)} matching config files") - config = sorted(config)[-1] - print(f"selecting {config}") - else: - config = config[0] - - - config = OmegaConf.load(config) - return load_model_from_config(config, ckpt[0], device) - -def load_model_from_config(config, ckpt, device="cpu", verbose=False): - """Loads a model from config and a ckpt - if config is a path will use omegaconf to load - """ - if isinstance(config, (str, Path)): - config = OmegaConf.load(config) - - with all_logging_disabled(): - print(f"Loading model from {ckpt}") - pl_sd = torch.load(ckpt, map_location="cpu") - global_step = pl_sd["global_step"] - sd = pl_sd["state_dict"] - model = instantiate_from_config(config.model) - m, u = model.load_state_dict(sd, strict=False) - if len(m) > 0 and verbose: - print("missing keys:") - print(m) - if len(u) > 0 and verbose: - print("unexpected keys:") - model.to(device) - model.eval() - model.cond_stage_model.device = device - return model \ No newline at end of file diff --git a/One-2-3-45-master 2/ldm/guidance.py b/One-2-3-45-master 2/ldm/guidance.py deleted file mode 100644 index 53d1a2a61b5f2f086178154cf04ea078e0835845..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/ldm/guidance.py +++ /dev/null @@ -1,96 +0,0 @@ -from typing import List, Tuple -from scipy import interpolate -import numpy as np -import torch -import matplotlib.pyplot as plt -from IPython.display import clear_output -import abc - - -class GuideModel(torch.nn.Module, abc.ABC): - def __init__(self) -> None: - super().__init__() - - @abc.abstractmethod - def preprocess(self, x_img): - pass - - @abc.abstractmethod - def compute_loss(self, inp): - pass - - -class Guider(torch.nn.Module): - def __init__(self, sampler, guide_model, scale=1.0, verbose=False): - """Apply classifier guidance - - Specify a guidance scale as either a scalar - Or a schedule as a list of tuples t = 0->1 and scale, e.g. - [(0, 10), (0.5, 20), (1, 50)] - """ - super().__init__() - self.sampler = sampler - self.index = 0 - self.show = verbose - self.guide_model = guide_model - self.history = [] - - if isinstance(scale, (Tuple, List)): - times = np.array([x[0] for x in scale]) - values = np.array([x[1] for x in scale]) - self.scale_schedule = {"times": times, "values": values} - else: - self.scale_schedule = float(scale) - - self.ddim_timesteps = sampler.ddim_timesteps - self.ddpm_num_timesteps = sampler.ddpm_num_timesteps - - - def get_scales(self): - if isinstance(self.scale_schedule, float): - return len(self.ddim_timesteps)*[self.scale_schedule] - - interpolater = interpolate.interp1d(self.scale_schedule["times"], self.scale_schedule["values"]) - fractional_steps = np.array(self.ddim_timesteps)/self.ddpm_num_timesteps - return interpolater(fractional_steps) - - def modify_score(self, model, e_t, x, t, c): - - # TODO look up index by t - scale = self.get_scales()[self.index] - - if (scale == 0): - return e_t - - sqrt_1ma = self.sampler.ddim_sqrt_one_minus_alphas[self.index].to(x.device) - with torch.enable_grad(): - x_in = x.detach().requires_grad_(True) - pred_x0 = model.predict_start_from_noise(x_in, t=t, noise=e_t) - x_img = model.first_stage_model.decode((1/0.18215)*pred_x0) - - inp = self.guide_model.preprocess(x_img) - loss = self.guide_model.compute_loss(inp) - grads = torch.autograd.grad(loss.sum(), x_in)[0] - correction = grads * scale - - if self.show: - clear_output(wait=True) - print(loss.item(), scale, correction.abs().max().item(), e_t.abs().max().item()) - self.history.append([loss.item(), scale, correction.min().item(), correction.max().item()]) - plt.imshow((inp[0].detach().permute(1,2,0).clamp(-1,1).cpu()+1)/2) - plt.axis('off') - plt.show() - plt.imshow(correction[0][0].detach().cpu()) - plt.axis('off') - plt.show() - - - e_t_mod = e_t - sqrt_1ma*correction - if self.show: - fig, axs = plt.subplots(1, 3) - axs[0].imshow(e_t[0][0].detach().cpu(), vmin=-2, vmax=+2) - axs[1].imshow(e_t_mod[0][0].detach().cpu(), vmin=-2, vmax=+2) - axs[2].imshow(correction[0][0].detach().cpu(), vmin=-2, vmax=+2) - plt.show() - self.index += 1 - return e_t_mod \ No newline at end of file diff --git a/One-2-3-45-master 2/ldm/lr_scheduler.py b/One-2-3-45-master 2/ldm/lr_scheduler.py deleted file mode 100644 index be39da9ca6dacc22bf3df9c7389bbb403a4a3ade..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/ldm/lr_scheduler.py +++ /dev/null @@ -1,98 +0,0 @@ -import numpy as np - - -class LambdaWarmUpCosineScheduler: - """ - note: use with a base_lr of 1.0 - """ - def __init__(self, warm_up_steps, lr_min, lr_max, lr_start, max_decay_steps, verbosity_interval=0): - self.lr_warm_up_steps = warm_up_steps - self.lr_start = lr_start - self.lr_min = lr_min - self.lr_max = lr_max - self.lr_max_decay_steps = max_decay_steps - self.last_lr = 0. - self.verbosity_interval = verbosity_interval - - def schedule(self, n, **kwargs): - if self.verbosity_interval > 0: - if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_lr}") - if n < self.lr_warm_up_steps: - lr = (self.lr_max - self.lr_start) / self.lr_warm_up_steps * n + self.lr_start - self.last_lr = lr - return lr - else: - t = (n - self.lr_warm_up_steps) / (self.lr_max_decay_steps - self.lr_warm_up_steps) - t = min(t, 1.0) - lr = self.lr_min + 0.5 * (self.lr_max - self.lr_min) * ( - 1 + np.cos(t * np.pi)) - self.last_lr = lr - return lr - - def __call__(self, n, **kwargs): - return self.schedule(n,**kwargs) - - -class LambdaWarmUpCosineScheduler2: - """ - supports repeated iterations, configurable via lists - note: use with a base_lr of 1.0. - """ - def __init__(self, warm_up_steps, f_min, f_max, f_start, cycle_lengths, verbosity_interval=0): - assert len(warm_up_steps) == len(f_min) == len(f_max) == len(f_start) == len(cycle_lengths) - self.lr_warm_up_steps = warm_up_steps - self.f_start = f_start - self.f_min = f_min - self.f_max = f_max - self.cycle_lengths = cycle_lengths - self.cum_cycles = np.cumsum([0] + list(self.cycle_lengths)) - self.last_f = 0. - self.verbosity_interval = verbosity_interval - - def find_in_interval(self, n): - interval = 0 - for cl in self.cum_cycles[1:]: - if n <= cl: - return interval - interval += 1 - - def schedule(self, n, **kwargs): - cycle = self.find_in_interval(n) - n = n - self.cum_cycles[cycle] - if self.verbosity_interval > 0: - if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, " - f"current cycle {cycle}") - if n < self.lr_warm_up_steps[cycle]: - f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle] - self.last_f = f - return f - else: - t = (n - self.lr_warm_up_steps[cycle]) / (self.cycle_lengths[cycle] - self.lr_warm_up_steps[cycle]) - t = min(t, 1.0) - f = self.f_min[cycle] + 0.5 * (self.f_max[cycle] - self.f_min[cycle]) * ( - 1 + np.cos(t * np.pi)) - self.last_f = f - return f - - def __call__(self, n, **kwargs): - return self.schedule(n, **kwargs) - - -class LambdaLinearScheduler(LambdaWarmUpCosineScheduler2): - - def schedule(self, n, **kwargs): - cycle = self.find_in_interval(n) - n = n - self.cum_cycles[cycle] - if self.verbosity_interval > 0: - if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, " - f"current cycle {cycle}") - - if n < self.lr_warm_up_steps[cycle]: - f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle] - self.last_f = f - return f - else: - f = self.f_min[cycle] + (self.f_max[cycle] - self.f_min[cycle]) * (self.cycle_lengths[cycle] - n) / (self.cycle_lengths[cycle]) - self.last_f = f - return f - diff --git a/One-2-3-45-master 2/ldm/models/autoencoder.py b/One-2-3-45-master 2/ldm/models/autoencoder.py deleted file mode 100644 index 6a9c4f45498561953b8085981609b2a3298a5473..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/ldm/models/autoencoder.py +++ /dev/null @@ -1,443 +0,0 @@ -import torch -import pytorch_lightning as pl -import torch.nn.functional as F -from contextlib import contextmanager - -from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer - -from ldm.modules.diffusionmodules.model import Encoder, Decoder -from ldm.modules.distributions.distributions import DiagonalGaussianDistribution - -from ldm.util import instantiate_from_config - - -class VQModel(pl.LightningModule): - def __init__(self, - ddconfig, - lossconfig, - n_embed, - embed_dim, - ckpt_path=None, - ignore_keys=[], - image_key="image", - colorize_nlabels=None, - monitor=None, - batch_resize_range=None, - scheduler_config=None, - lr_g_factor=1.0, - remap=None, - sane_index_shape=False, # tell vector quantizer to return indices as bhw - use_ema=False - ): - super().__init__() - self.embed_dim = embed_dim - self.n_embed = n_embed - self.image_key = image_key - self.encoder = Encoder(**ddconfig) - self.decoder = Decoder(**ddconfig) - self.loss = instantiate_from_config(lossconfig) - self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25, - remap=remap, - sane_index_shape=sane_index_shape) - self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1) - self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1) - if colorize_nlabels is not None: - assert type(colorize_nlabels)==int - self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1)) - if monitor is not None: - self.monitor = monitor - self.batch_resize_range = batch_resize_range - if self.batch_resize_range is not None: - print(f"{self.__class__.__name__}: Using per-batch resizing in range {batch_resize_range}.") - - self.use_ema = use_ema - if self.use_ema: - self.model_ema = LitEma(self) - print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") - - if ckpt_path is not None: - self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys) - self.scheduler_config = scheduler_config - self.lr_g_factor = lr_g_factor - - @contextmanager - def ema_scope(self, context=None): - if self.use_ema: - self.model_ema.store(self.parameters()) - self.model_ema.copy_to(self) - if context is not None: - print(f"{context}: Switched to EMA weights") - try: - yield None - finally: - if self.use_ema: - self.model_ema.restore(self.parameters()) - if context is not None: - print(f"{context}: Restored training weights") - - def init_from_ckpt(self, path, ignore_keys=list()): - sd = torch.load(path, map_location="cpu")["state_dict"] - keys = list(sd.keys()) - for k in keys: - for ik in ignore_keys: - if k.startswith(ik): - print("Deleting key {} from state_dict.".format(k)) - del sd[k] - missing, unexpected = self.load_state_dict(sd, strict=False) - print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys") - if len(missing) > 0: - print(f"Missing Keys: {missing}") - print(f"Unexpected Keys: {unexpected}") - - def on_train_batch_end(self, *args, **kwargs): - if self.use_ema: - self.model_ema(self) - - def encode(self, x): - h = self.encoder(x) - h = self.quant_conv(h) - quant, emb_loss, info = self.quantize(h) - return quant, emb_loss, info - - def encode_to_prequant(self, x): - h = self.encoder(x) - h = self.quant_conv(h) - return h - - def decode(self, quant): - quant = self.post_quant_conv(quant) - dec = self.decoder(quant) - return dec - - def decode_code(self, code_b): - quant_b = self.quantize.embed_code(code_b) - dec = self.decode(quant_b) - return dec - - def forward(self, input, return_pred_indices=False): - quant, diff, (_,_,ind) = self.encode(input) - dec = self.decode(quant) - if return_pred_indices: - return dec, diff, ind - return dec, diff - - def get_input(self, batch, k): - x = batch[k] - if len(x.shape) == 3: - x = x[..., None] - x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float() - if self.batch_resize_range is not None: - lower_size = self.batch_resize_range[0] - upper_size = self.batch_resize_range[1] - if self.global_step <= 4: - # do the first few batches with max size to avoid later oom - new_resize = upper_size - else: - new_resize = np.random.choice(np.arange(lower_size, upper_size+16, 16)) - if new_resize != x.shape[2]: - x = F.interpolate(x, size=new_resize, mode="bicubic") - x = x.detach() - return x - - def training_step(self, batch, batch_idx, optimizer_idx): - # https://github.com/pytorch/pytorch/issues/37142 - # try not to fool the heuristics - x = self.get_input(batch, self.image_key) - xrec, qloss, ind = self(x, return_pred_indices=True) - - if optimizer_idx == 0: - # autoencode - aeloss, log_dict_ae = self.loss(qloss, x, xrec, optimizer_idx, self.global_step, - last_layer=self.get_last_layer(), split="train", - predicted_indices=ind) - - self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True) - return aeloss - - if optimizer_idx == 1: - # discriminator - discloss, log_dict_disc = self.loss(qloss, x, xrec, optimizer_idx, self.global_step, - last_layer=self.get_last_layer(), split="train") - self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True) - return discloss - - def validation_step(self, batch, batch_idx): - log_dict = self._validation_step(batch, batch_idx) - with self.ema_scope(): - log_dict_ema = self._validation_step(batch, batch_idx, suffix="_ema") - return log_dict - - def _validation_step(self, batch, batch_idx, suffix=""): - x = self.get_input(batch, self.image_key) - xrec, qloss, ind = self(x, return_pred_indices=True) - aeloss, log_dict_ae = self.loss(qloss, x, xrec, 0, - self.global_step, - last_layer=self.get_last_layer(), - split="val"+suffix, - predicted_indices=ind - ) - - discloss, log_dict_disc = self.loss(qloss, x, xrec, 1, - self.global_step, - last_layer=self.get_last_layer(), - split="val"+suffix, - predicted_indices=ind - ) - rec_loss = log_dict_ae[f"val{suffix}/rec_loss"] - self.log(f"val{suffix}/rec_loss", rec_loss, - prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True) - self.log(f"val{suffix}/aeloss", aeloss, - prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True) - if version.parse(pl.__version__) >= version.parse('1.4.0'): - del log_dict_ae[f"val{suffix}/rec_loss"] - self.log_dict(log_dict_ae) - self.log_dict(log_dict_disc) - return self.log_dict - - def configure_optimizers(self): - lr_d = self.learning_rate - lr_g = self.lr_g_factor*self.learning_rate - print("lr_d", lr_d) - print("lr_g", lr_g) - opt_ae = torch.optim.Adam(list(self.encoder.parameters())+ - list(self.decoder.parameters())+ - list(self.quantize.parameters())+ - list(self.quant_conv.parameters())+ - list(self.post_quant_conv.parameters()), - lr=lr_g, betas=(0.5, 0.9)) - opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(), - lr=lr_d, betas=(0.5, 0.9)) - - if self.scheduler_config is not None: - scheduler = instantiate_from_config(self.scheduler_config) - - print("Setting up LambdaLR scheduler...") - scheduler = [ - { - 'scheduler': LambdaLR(opt_ae, lr_lambda=scheduler.schedule), - 'interval': 'step', - 'frequency': 1 - }, - { - 'scheduler': LambdaLR(opt_disc, lr_lambda=scheduler.schedule), - 'interval': 'step', - 'frequency': 1 - }, - ] - return [opt_ae, opt_disc], scheduler - return [opt_ae, opt_disc], [] - - def get_last_layer(self): - return self.decoder.conv_out.weight - - def log_images(self, batch, only_inputs=False, plot_ema=False, **kwargs): - log = dict() - x = self.get_input(batch, self.image_key) - x = x.to(self.device) - if only_inputs: - log["inputs"] = x - return log - xrec, _ = self(x) - if x.shape[1] > 3: - # colorize with random projection - assert xrec.shape[1] > 3 - x = self.to_rgb(x) - xrec = self.to_rgb(xrec) - log["inputs"] = x - log["reconstructions"] = xrec - if plot_ema: - with self.ema_scope(): - xrec_ema, _ = self(x) - if x.shape[1] > 3: xrec_ema = self.to_rgb(xrec_ema) - log["reconstructions_ema"] = xrec_ema - return log - - def to_rgb(self, x): - assert self.image_key == "segmentation" - if not hasattr(self, "colorize"): - self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x)) - x = F.conv2d(x, weight=self.colorize) - x = 2.*(x-x.min())/(x.max()-x.min()) - 1. - return x - - -class VQModelInterface(VQModel): - def __init__(self, embed_dim, *args, **kwargs): - super().__init__(embed_dim=embed_dim, *args, **kwargs) - self.embed_dim = embed_dim - - def encode(self, x): - h = self.encoder(x) - h = self.quant_conv(h) - return h - - def decode(self, h, force_not_quantize=False): - # also go through quantization layer - if not force_not_quantize: - quant, emb_loss, info = self.quantize(h) - else: - quant = h - quant = self.post_quant_conv(quant) - dec = self.decoder(quant) - return dec - - -class AutoencoderKL(pl.LightningModule): - def __init__(self, - ddconfig, - lossconfig, - embed_dim, - ckpt_path=None, - ignore_keys=[], - image_key="image", - colorize_nlabels=None, - monitor=None, - ): - super().__init__() - self.image_key = image_key - self.encoder = Encoder(**ddconfig) - self.decoder = Decoder(**ddconfig) - self.loss = instantiate_from_config(lossconfig) - assert ddconfig["double_z"] - self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1) - self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1) - self.embed_dim = embed_dim - if colorize_nlabels is not None: - assert type(colorize_nlabels)==int - self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1)) - if monitor is not None: - self.monitor = monitor - if ckpt_path is not None: - self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys) - - def init_from_ckpt(self, path, ignore_keys=list()): - sd = torch.load(path, map_location="cpu")["state_dict"] - keys = list(sd.keys()) - for k in keys: - for ik in ignore_keys: - if k.startswith(ik): - print("Deleting key {} from state_dict.".format(k)) - del sd[k] - self.load_state_dict(sd, strict=False) - print(f"Restored from {path}") - - def encode(self, x): - h = self.encoder(x) - moments = self.quant_conv(h) - posterior = DiagonalGaussianDistribution(moments) - return posterior - - def decode(self, z): - z = self.post_quant_conv(z) - dec = self.decoder(z) - return dec - - def forward(self, input, sample_posterior=True): - posterior = self.encode(input) - if sample_posterior: - z = posterior.sample() - else: - z = posterior.mode() - dec = self.decode(z) - return dec, posterior - - def get_input(self, batch, k): - x = batch[k] - if len(x.shape) == 3: - x = x[..., None] - x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float() - return x - - def training_step(self, batch, batch_idx, optimizer_idx): - inputs = self.get_input(batch, self.image_key) - reconstructions, posterior = self(inputs) - - if optimizer_idx == 0: - # train encoder+decoder+logvar - aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step, - last_layer=self.get_last_layer(), split="train") - self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True) - self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False) - return aeloss - - if optimizer_idx == 1: - # train the discriminator - discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step, - last_layer=self.get_last_layer(), split="train") - - self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True) - self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False) - return discloss - - def validation_step(self, batch, batch_idx): - inputs = self.get_input(batch, self.image_key) - reconstructions, posterior = self(inputs) - aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step, - last_layer=self.get_last_layer(), split="val") - - discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step, - last_layer=self.get_last_layer(), split="val") - - self.log("val/rec_loss", log_dict_ae["val/rec_loss"]) - self.log_dict(log_dict_ae) - self.log_dict(log_dict_disc) - return self.log_dict - - def configure_optimizers(self): - lr = self.learning_rate - opt_ae = torch.optim.Adam(list(self.encoder.parameters())+ - list(self.decoder.parameters())+ - list(self.quant_conv.parameters())+ - list(self.post_quant_conv.parameters()), - lr=lr, betas=(0.5, 0.9)) - opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(), - lr=lr, betas=(0.5, 0.9)) - return [opt_ae, opt_disc], [] - - def get_last_layer(self): - return self.decoder.conv_out.weight - - @torch.no_grad() - def log_images(self, batch, only_inputs=False, **kwargs): - log = dict() - x = self.get_input(batch, self.image_key) - x = x.to(self.device) - if not only_inputs: - xrec, posterior = self(x) - if x.shape[1] > 3: - # colorize with random projection - assert xrec.shape[1] > 3 - x = self.to_rgb(x) - xrec = self.to_rgb(xrec) - log["samples"] = self.decode(torch.randn_like(posterior.sample())) - log["reconstructions"] = xrec - log["inputs"] = x - return log - - def to_rgb(self, x): - assert self.image_key == "segmentation" - if not hasattr(self, "colorize"): - self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x)) - x = F.conv2d(x, weight=self.colorize) - x = 2.*(x-x.min())/(x.max()-x.min()) - 1. - return x - - -class IdentityFirstStage(torch.nn.Module): - def __init__(self, *args, vq_interface=False, **kwargs): - self.vq_interface = vq_interface # TODO: Should be true by default but check to not break older stuff - super().__init__() - - def encode(self, x, *args, **kwargs): - return x - - def decode(self, x, *args, **kwargs): - return x - - def quantize(self, x, *args, **kwargs): - if self.vq_interface: - return x, None, [None, None, None] - return x - - def forward(self, x, *args, **kwargs): - return x diff --git a/One-2-3-45-master 2/ldm/models/diffusion/__init__.py b/One-2-3-45-master 2/ldm/models/diffusion/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/One-2-3-45-master 2/ldm/models/diffusion/classifier.py b/One-2-3-45-master 2/ldm/models/diffusion/classifier.py deleted file mode 100644 index 67e98b9d8ffb96a150b517497ace0a242d7163ef..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/ldm/models/diffusion/classifier.py +++ /dev/null @@ -1,267 +0,0 @@ -import os -import torch -import pytorch_lightning as pl -from omegaconf import OmegaConf -from torch.nn import functional as F -from torch.optim import AdamW -from torch.optim.lr_scheduler import LambdaLR -from copy import deepcopy -from einops import rearrange -from glob import glob -from natsort import natsorted - -from ldm.modules.diffusionmodules.openaimodel import EncoderUNetModel, UNetModel -from ldm.util import log_txt_as_img, default, ismap, instantiate_from_config - -__models__ = { - 'class_label': EncoderUNetModel, - 'segmentation': UNetModel -} - - -def disabled_train(self, mode=True): - """Overwrite model.train with this function to make sure train/eval mode - does not change anymore.""" - return self - - -class NoisyLatentImageClassifier(pl.LightningModule): - - def __init__(self, - diffusion_path, - num_classes, - ckpt_path=None, - pool='attention', - label_key=None, - diffusion_ckpt_path=None, - scheduler_config=None, - weight_decay=1.e-2, - log_steps=10, - monitor='val/loss', - *args, - **kwargs): - super().__init__(*args, **kwargs) - self.num_classes = num_classes - # get latest config of diffusion model - diffusion_config = natsorted(glob(os.path.join(diffusion_path, 'configs', '*-project.yaml')))[-1] - self.diffusion_config = OmegaConf.load(diffusion_config).model - self.diffusion_config.params.ckpt_path = diffusion_ckpt_path - self.load_diffusion() - - self.monitor = monitor - self.numd = self.diffusion_model.first_stage_model.encoder.num_resolutions - 1 - self.log_time_interval = self.diffusion_model.num_timesteps // log_steps - self.log_steps = log_steps - - self.label_key = label_key if not hasattr(self.diffusion_model, 'cond_stage_key') \ - else self.diffusion_model.cond_stage_key - - assert self.label_key is not None, 'label_key neither in diffusion model nor in model.params' - - if self.label_key not in __models__: - raise NotImplementedError() - - self.load_classifier(ckpt_path, pool) - - self.scheduler_config = scheduler_config - self.use_scheduler = self.scheduler_config is not None - self.weight_decay = weight_decay - - def init_from_ckpt(self, path, ignore_keys=list(), only_model=False): - sd = torch.load(path, map_location="cpu") - if "state_dict" in list(sd.keys()): - sd = sd["state_dict"] - keys = list(sd.keys()) - for k in keys: - for ik in ignore_keys: - if k.startswith(ik): - print("Deleting key {} from state_dict.".format(k)) - del sd[k] - missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict( - sd, strict=False) - print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys") - if len(missing) > 0: - print(f"Missing Keys: {missing}") - if len(unexpected) > 0: - print(f"Unexpected Keys: {unexpected}") - - def load_diffusion(self): - model = instantiate_from_config(self.diffusion_config) - self.diffusion_model = model.eval() - self.diffusion_model.train = disabled_train - for param in self.diffusion_model.parameters(): - param.requires_grad = False - - def load_classifier(self, ckpt_path, pool): - model_config = deepcopy(self.diffusion_config.params.unet_config.params) - model_config.in_channels = self.diffusion_config.params.unet_config.params.out_channels - model_config.out_channels = self.num_classes - if self.label_key == 'class_label': - model_config.pool = pool - - self.model = __models__[self.label_key](**model_config) - if ckpt_path is not None: - print('#####################################################################') - print(f'load from ckpt "{ckpt_path}"') - print('#####################################################################') - self.init_from_ckpt(ckpt_path) - - @torch.no_grad() - def get_x_noisy(self, x, t, noise=None): - noise = default(noise, lambda: torch.randn_like(x)) - continuous_sqrt_alpha_cumprod = None - if self.diffusion_model.use_continuous_noise: - continuous_sqrt_alpha_cumprod = self.diffusion_model.sample_continuous_noise_level(x.shape[0], t + 1) - # todo: make sure t+1 is correct here - - return self.diffusion_model.q_sample(x_start=x, t=t, noise=noise, - continuous_sqrt_alpha_cumprod=continuous_sqrt_alpha_cumprod) - - def forward(self, x_noisy, t, *args, **kwargs): - return self.model(x_noisy, t) - - @torch.no_grad() - def get_input(self, batch, k): - x = batch[k] - if len(x.shape) == 3: - x = x[..., None] - x = rearrange(x, 'b h w c -> b c h w') - x = x.to(memory_format=torch.contiguous_format).float() - return x - - @torch.no_grad() - def get_conditioning(self, batch, k=None): - if k is None: - k = self.label_key - assert k is not None, 'Needs to provide label key' - - targets = batch[k].to(self.device) - - if self.label_key == 'segmentation': - targets = rearrange(targets, 'b h w c -> b c h w') - for down in range(self.numd): - h, w = targets.shape[-2:] - targets = F.interpolate(targets, size=(h // 2, w // 2), mode='nearest') - - # targets = rearrange(targets,'b c h w -> b h w c') - - return targets - - def compute_top_k(self, logits, labels, k, reduction="mean"): - _, top_ks = torch.topk(logits, k, dim=1) - if reduction == "mean": - return (top_ks == labels[:, None]).float().sum(dim=-1).mean().item() - elif reduction == "none": - return (top_ks == labels[:, None]).float().sum(dim=-1) - - def on_train_epoch_start(self): - # save some memory - self.diffusion_model.model.to('cpu') - - @torch.no_grad() - def write_logs(self, loss, logits, targets): - log_prefix = 'train' if self.training else 'val' - log = {} - log[f"{log_prefix}/loss"] = loss.mean() - log[f"{log_prefix}/acc@1"] = self.compute_top_k( - logits, targets, k=1, reduction="mean" - ) - log[f"{log_prefix}/acc@5"] = self.compute_top_k( - logits, targets, k=5, reduction="mean" - ) - - self.log_dict(log, prog_bar=False, logger=True, on_step=self.training, on_epoch=True) - self.log('loss', log[f"{log_prefix}/loss"], prog_bar=True, logger=False) - self.log('global_step', self.global_step, logger=False, on_epoch=False, prog_bar=True) - lr = self.optimizers().param_groups[0]['lr'] - self.log('lr_abs', lr, on_step=True, logger=True, on_epoch=False, prog_bar=True) - - def shared_step(self, batch, t=None): - x, *_ = self.diffusion_model.get_input(batch, k=self.diffusion_model.first_stage_key) - targets = self.get_conditioning(batch) - if targets.dim() == 4: - targets = targets.argmax(dim=1) - if t is None: - t = torch.randint(0, self.diffusion_model.num_timesteps, (x.shape[0],), device=self.device).long() - else: - t = torch.full(size=(x.shape[0],), fill_value=t, device=self.device).long() - x_noisy = self.get_x_noisy(x, t) - logits = self(x_noisy, t) - - loss = F.cross_entropy(logits, targets, reduction='none') - - self.write_logs(loss.detach(), logits.detach(), targets.detach()) - - loss = loss.mean() - return loss, logits, x_noisy, targets - - def training_step(self, batch, batch_idx): - loss, *_ = self.shared_step(batch) - return loss - - def reset_noise_accs(self): - self.noisy_acc = {t: {'acc@1': [], 'acc@5': []} for t in - range(0, self.diffusion_model.num_timesteps, self.diffusion_model.log_every_t)} - - def on_validation_start(self): - self.reset_noise_accs() - - @torch.no_grad() - def validation_step(self, batch, batch_idx): - loss, *_ = self.shared_step(batch) - - for t in self.noisy_acc: - _, logits, _, targets = self.shared_step(batch, t) - self.noisy_acc[t]['acc@1'].append(self.compute_top_k(logits, targets, k=1, reduction='mean')) - self.noisy_acc[t]['acc@5'].append(self.compute_top_k(logits, targets, k=5, reduction='mean')) - - return loss - - def configure_optimizers(self): - optimizer = AdamW(self.model.parameters(), lr=self.learning_rate, weight_decay=self.weight_decay) - - if self.use_scheduler: - scheduler = instantiate_from_config(self.scheduler_config) - - print("Setting up LambdaLR scheduler...") - scheduler = [ - { - 'scheduler': LambdaLR(optimizer, lr_lambda=scheduler.schedule), - 'interval': 'step', - 'frequency': 1 - }] - return [optimizer], scheduler - - return optimizer - - @torch.no_grad() - def log_images(self, batch, N=8, *args, **kwargs): - log = dict() - x = self.get_input(batch, self.diffusion_model.first_stage_key) - log['inputs'] = x - - y = self.get_conditioning(batch) - - if self.label_key == 'class_label': - y = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"]) - log['labels'] = y - - if ismap(y): - log['labels'] = self.diffusion_model.to_rgb(y) - - for step in range(self.log_steps): - current_time = step * self.log_time_interval - - _, logits, x_noisy, _ = self.shared_step(batch, t=current_time) - - log[f'inputs@t{current_time}'] = x_noisy - - pred = F.one_hot(logits.argmax(dim=1), num_classes=self.num_classes) - pred = rearrange(pred, 'b h w c -> b c h w') - - log[f'pred@t{current_time}'] = self.diffusion_model.to_rgb(pred) - - for key in log: - log[key] = log[key][:N] - - return log diff --git a/One-2-3-45-master 2/ldm/models/diffusion/ddim.py b/One-2-3-45-master 2/ldm/models/diffusion/ddim.py deleted file mode 100644 index 5db306d8dd82ca8868e34cddfeb4a01daf259c08..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/ldm/models/diffusion/ddim.py +++ /dev/null @@ -1,326 +0,0 @@ -"""SAMPLING ONLY.""" - -import torch -import numpy as np -from tqdm import tqdm -from functools import partial -from einops import rearrange - -from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, extract_into_tensor -from ldm.models.diffusion.sampling_util import renorm_thresholding, norm_thresholding, spatial_norm_thresholding - - -class DDIMSampler(object): - def __init__(self, model, schedule="linear", **kwargs): - super().__init__() - self.model = model - self.ddpm_num_timesteps = model.num_timesteps - self.schedule = schedule - self.device = model.device - - def to(self, device): - """Same as to in torch module - Don't really underestand why this isn't a module in the first place""" - for k, v in self.__dict__.items(): - if isinstance(v, torch.Tensor): - new_v = getattr(self, k).to(device) - setattr(self, k, new_v) - - - def register_buffer(self, name, attr, device=None): - if type(attr) == torch.Tensor: - attr = attr.to(device) - # if attr.device != torch.device("cuda"): - # attr = attr.to(torch.device("cuda")) - setattr(self, name, attr) - - def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True): - self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps, - num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose) - alphas_cumprod = self.model.alphas_cumprod - assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep' - to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device) - - self.register_buffer('betas', to_torch(self.model.betas), self.device) - self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod), self.device) - self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev), self.device) - - # calculations for diffusion q(x_t | x_{t-1}) and others - self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())), self.device) - self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())), self.device) - self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())), self.device) - self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())), self.device) - self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)), self.device) - - # ddim sampling parameters - ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(), - ddim_timesteps=self.ddim_timesteps, - eta=ddim_eta,verbose=verbose) - self.register_buffer('ddim_sigmas', ddim_sigmas, self.device) - self.register_buffer('ddim_alphas', ddim_alphas, self.device) - self.register_buffer('ddim_alphas_prev', ddim_alphas_prev, self.device) - self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas), self.device) - sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt( - (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * ( - 1 - self.alphas_cumprod / self.alphas_cumprod_prev)) - self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps, self.device) - - @torch.no_grad() - def sample(self, - S, - batch_size, - shape, - conditioning=None, - callback=None, - normals_sequence=None, - img_callback=None, - quantize_x0=False, - eta=0., - mask=None, - x0=None, - temperature=1., - noise_dropout=0., - score_corrector=None, - corrector_kwargs=None, - verbose=True, - x_T=None, - log_every_t=100, - unconditional_guidance_scale=1., - unconditional_conditioning=None, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ... - dynamic_threshold=None, - **kwargs - ): - if conditioning is not None: - if isinstance(conditioning, dict): - ctmp = conditioning[list(conditioning.keys())[0]] - while isinstance(ctmp, list): ctmp = ctmp[0] - cbs = ctmp.shape[0] - if cbs != batch_size: - print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}") - - else: - if conditioning.shape[0] != batch_size: - print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}") - - self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose) - # sampling - C, H, W = shape - size = (batch_size, C, H, W) - print(f'Data shape for DDIM sampling is {size}, eta {eta}') - - samples, intermediates = self.ddim_sampling(conditioning, size, - callback=callback, - img_callback=img_callback, - quantize_denoised=quantize_x0, - mask=mask, x0=x0, - ddim_use_original_steps=False, - noise_dropout=noise_dropout, - temperature=temperature, - score_corrector=score_corrector, - corrector_kwargs=corrector_kwargs, - x_T=x_T, - log_every_t=log_every_t, - unconditional_guidance_scale=unconditional_guidance_scale, - unconditional_conditioning=unconditional_conditioning, - dynamic_threshold=dynamic_threshold, - ) - return samples, intermediates - - @torch.no_grad() - def ddim_sampling(self, cond, shape, - x_T=None, ddim_use_original_steps=False, - callback=None, timesteps=None, quantize_denoised=False, - mask=None, x0=None, img_callback=None, log_every_t=100, - temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, - unconditional_guidance_scale=1., unconditional_conditioning=None, dynamic_threshold=None, - t_start=-1): - device = self.model.betas.device - b = shape[0] - if x_T is None: - img = torch.randn(shape, device=device) - else: - img = x_T - - if timesteps is None: - timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps - elif timesteps is not None and not ddim_use_original_steps: - subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1 - timesteps = self.ddim_timesteps[:subset_end] - - timesteps = timesteps[:t_start] - - intermediates = {'x_inter': [img], 'pred_x0': [img]} - time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps) - total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0] - print(f"Running DDIM Sampling with {total_steps} timesteps") - - iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps) - - for i, step in enumerate(iterator): - index = total_steps - i - 1 - ts = torch.full((b,), step, device=device, dtype=torch.long) - - if mask is not None: - assert x0 is not None - img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass? - img = img_orig * mask + (1. - mask) * img - - outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps, - quantize_denoised=quantize_denoised, temperature=temperature, - noise_dropout=noise_dropout, score_corrector=score_corrector, - corrector_kwargs=corrector_kwargs, - unconditional_guidance_scale=unconditional_guidance_scale, - unconditional_conditioning=unconditional_conditioning, - dynamic_threshold=dynamic_threshold) - img, pred_x0 = outs - if callback: - img = callback(i, img, pred_x0) - if img_callback: img_callback(pred_x0, i) - - if index % log_every_t == 0 or index == total_steps - 1: - intermediates['x_inter'].append(img) - intermediates['pred_x0'].append(pred_x0) - - return img, intermediates - - @torch.no_grad() - def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False, - temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, - unconditional_guidance_scale=1., unconditional_conditioning=None, - dynamic_threshold=None): - b, *_, device = *x.shape, x.device - - if unconditional_conditioning is None or unconditional_guidance_scale == 1.: - e_t = self.model.apply_model(x, t, c) - else: - x_in = torch.cat([x] * 2) - t_in = torch.cat([t] * 2) - if isinstance(c, dict): - assert isinstance(unconditional_conditioning, dict) - c_in = dict() - for k in c: - if isinstance(c[k], list): - c_in[k] = [torch.cat([ - unconditional_conditioning[k][i], - c[k][i]]) for i in range(len(c[k]))] - else: - c_in[k] = torch.cat([ - unconditional_conditioning[k], - c[k]]) - else: - c_in = torch.cat([unconditional_conditioning, c]) - e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2) - e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond) - - if score_corrector is not None: - assert self.model.parameterization == "eps" - e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs) - - alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas - alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev - sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas - sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas - # select parameters corresponding to the currently considered timestep - a_t = torch.full((b, 1, 1, 1), alphas[index], device=device) - a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device) - sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device) - sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device) - - # current prediction for x_0 - pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt() - if quantize_denoised: - pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0) - - if dynamic_threshold is not None: - pred_x0 = norm_thresholding(pred_x0, dynamic_threshold) - - # direction pointing to x_t - dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t - noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature - if noise_dropout > 0.: - noise = torch.nn.functional.dropout(noise, p=noise_dropout) - x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise - return x_prev, pred_x0 - - @torch.no_grad() - def encode(self, x0, c, t_enc, use_original_steps=False, return_intermediates=None, - unconditional_guidance_scale=1.0, unconditional_conditioning=None): - num_reference_steps = self.ddpm_num_timesteps if use_original_steps else self.ddim_timesteps.shape[0] - - assert t_enc <= num_reference_steps - num_steps = t_enc - - if use_original_steps: - alphas_next = self.alphas_cumprod[:num_steps] - alphas = self.alphas_cumprod_prev[:num_steps] - else: - alphas_next = self.ddim_alphas[:num_steps] - alphas = torch.tensor(self.ddim_alphas_prev[:num_steps]) - - x_next = x0 - intermediates = [] - inter_steps = [] - for i in tqdm(range(num_steps), desc='Encoding Image'): - t = torch.full((x0.shape[0],), i, device=self.model.device, dtype=torch.long) - if unconditional_guidance_scale == 1.: - noise_pred = self.model.apply_model(x_next, t, c) - else: - assert unconditional_conditioning is not None - e_t_uncond, noise_pred = torch.chunk( - self.model.apply_model(torch.cat((x_next, x_next)), torch.cat((t, t)), - torch.cat((unconditional_conditioning, c))), 2) - noise_pred = e_t_uncond + unconditional_guidance_scale * (noise_pred - e_t_uncond) - - xt_weighted = (alphas_next[i] / alphas[i]).sqrt() * x_next - weighted_noise_pred = alphas_next[i].sqrt() * ( - (1 / alphas_next[i] - 1).sqrt() - (1 / alphas[i] - 1).sqrt()) * noise_pred - x_next = xt_weighted + weighted_noise_pred - if return_intermediates and i % ( - num_steps // return_intermediates) == 0 and i < num_steps - 1: - intermediates.append(x_next) - inter_steps.append(i) - elif return_intermediates and i >= num_steps - 2: - intermediates.append(x_next) - inter_steps.append(i) - - out = {'x_encoded': x_next, 'intermediate_steps': inter_steps} - if return_intermediates: - out.update({'intermediates': intermediates}) - return x_next, out - - @torch.no_grad() - def stochastic_encode(self, x0, t, use_original_steps=False, noise=None): - # fast, but does not allow for exact reconstruction - # t serves as an index to gather the correct alphas - if use_original_steps: - sqrt_alphas_cumprod = self.sqrt_alphas_cumprod - sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod - else: - sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas) - sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas - - if noise is None: - noise = torch.randn_like(x0) - return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 + - extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise) - - @torch.no_grad() - def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None, - use_original_steps=False): - - timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps - timesteps = timesteps[:t_start] - - time_range = np.flip(timesteps) - total_steps = timesteps.shape[0] - print(f"Running DDIM Sampling with {total_steps} timesteps") - - iterator = tqdm(time_range, desc='Decoding image', total=total_steps) - x_dec = x_latent - for i, step in enumerate(iterator): - index = total_steps - i - 1 - ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long) - x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps, - unconditional_guidance_scale=unconditional_guidance_scale, - unconditional_conditioning=unconditional_conditioning) - return x_dec \ No newline at end of file diff --git a/One-2-3-45-master 2/ldm/models/diffusion/ddpm.py b/One-2-3-45-master 2/ldm/models/diffusion/ddpm.py deleted file mode 100644 index 6a6d5017af4f84fdc95c6389a2dcc8d6b8a03080..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/ldm/models/diffusion/ddpm.py +++ /dev/null @@ -1,1994 +0,0 @@ -""" -wild mixture of -https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py -https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py -https://github.com/CompVis/taming-transformers --- merci -""" - -import torch -import torch.nn as nn -import numpy as np -import pytorch_lightning as pl -from torch.optim.lr_scheduler import LambdaLR -from einops import rearrange, repeat -from contextlib import contextmanager, nullcontext -from functools import partial -import itertools -from tqdm import tqdm -from torchvision.utils import make_grid -from pytorch_lightning.utilities.rank_zero import rank_zero_only -from omegaconf import ListConfig - -from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config -from ldm.modules.ema import LitEma -from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution -from ldm.models.autoencoder import VQModelInterface, IdentityFirstStage, AutoencoderKL -from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like -from ldm.models.diffusion.ddim import DDIMSampler -from ldm.modules.attention import CrossAttention - - -__conditioning_keys__ = {'concat': 'c_concat', - 'crossattn': 'c_crossattn', - 'adm': 'y'} - - -def disabled_train(self, mode=True): - """Overwrite model.train with this function to make sure train/eval mode - does not change anymore.""" - return self - - -def uniform_on_device(r1, r2, shape, device): - return (r1 - r2) * torch.rand(*shape, device=device) + r2 - - -class DDPM(pl.LightningModule): - # classic DDPM with Gaussian diffusion, in image space - def __init__(self, - unet_config, - timesteps=1000, - beta_schedule="linear", - loss_type="l2", - ckpt_path=None, - ignore_keys=[], - load_only_unet=False, - monitor="val/loss", - use_ema=True, - first_stage_key="image", - image_size=256, - channels=3, - log_every_t=100, - clip_denoised=True, - linear_start=1e-4, - linear_end=2e-2, - cosine_s=8e-3, - given_betas=None, - original_elbo_weight=0., - v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta - l_simple_weight=1., - conditioning_key=None, - parameterization="eps", # all assuming fixed variance schedules - scheduler_config=None, - use_positional_encodings=False, - learn_logvar=False, - logvar_init=0., - make_it_fit=False, - ucg_training=None, - ): - super().__init__() - assert parameterization in ["eps", "x0"], 'currently only supporting "eps" and "x0"' - self.parameterization = parameterization - print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode") - self.cond_stage_model = None - self.clip_denoised = clip_denoised - self.log_every_t = log_every_t - self.first_stage_key = first_stage_key - self.image_size = image_size # try conv? - self.channels = channels - self.use_positional_encodings = use_positional_encodings - self.model = DiffusionWrapper(unet_config, conditioning_key) - count_params(self.model, verbose=True) - self.use_ema = use_ema - if self.use_ema: - self.model_ema = LitEma(self.model) - print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") - - self.use_scheduler = scheduler_config is not None - if self.use_scheduler: - self.scheduler_config = scheduler_config - - self.v_posterior = v_posterior - self.original_elbo_weight = original_elbo_weight - self.l_simple_weight = l_simple_weight - - if monitor is not None: - self.monitor = monitor - self.make_it_fit = make_it_fit - if ckpt_path is not None: - self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet) - - self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps, - linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s) - - self.loss_type = loss_type - - self.learn_logvar = learn_logvar - self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,)) - if self.learn_logvar: - self.logvar = nn.Parameter(self.logvar, requires_grad=True) - - self.ucg_training = ucg_training or dict() - if self.ucg_training: - self.ucg_prng = np.random.RandomState() - - def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000, - linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): - if exists(given_betas): - betas = given_betas - else: - betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, - cosine_s=cosine_s) - alphas = 1. - betas - alphas_cumprod = np.cumprod(alphas, axis=0) - alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1]) - - timesteps, = betas.shape - self.num_timesteps = int(timesteps) - self.linear_start = linear_start - self.linear_end = linear_end - assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep' - - to_torch = partial(torch.tensor, dtype=torch.float32) - - self.register_buffer('betas', to_torch(betas)) - self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) - self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev)) - - # calculations for diffusion q(x_t | x_{t-1}) and others - self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod))) - self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod))) - self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod))) - self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod))) - self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1))) - - # calculations for posterior q(x_{t-1} | x_t, x_0) - posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / ( - 1. - alphas_cumprod) + self.v_posterior * betas - # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t) - self.register_buffer('posterior_variance', to_torch(posterior_variance)) - # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain - self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20)))) - self.register_buffer('posterior_mean_coef1', to_torch( - betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))) - self.register_buffer('posterior_mean_coef2', to_torch( - (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod))) - - if self.parameterization == "eps": - lvlb_weights = self.betas ** 2 / ( - 2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod)) - elif self.parameterization == "x0": - lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod)) - else: - raise NotImplementedError("mu not supported") - # TODO how to choose this term - lvlb_weights[0] = lvlb_weights[1] - self.register_buffer('lvlb_weights', lvlb_weights, persistent=False) - assert not torch.isnan(self.lvlb_weights).all() - - @contextmanager - def ema_scope(self, context=None): - if self.use_ema: - self.model_ema.store(self.model.parameters()) - self.model_ema.copy_to(self.model) - if context is not None: - print(f"{context}: Switched to EMA weights") - try: - yield None - finally: - if self.use_ema: - self.model_ema.restore(self.model.parameters()) - if context is not None: - print(f"{context}: Restored training weights") - - @torch.no_grad() - def init_from_ckpt(self, path, ignore_keys=list(), only_model=False): - sd = torch.load(path, map_location="cpu") - if "state_dict" in list(sd.keys()): - sd = sd["state_dict"] - keys = list(sd.keys()) - - if self.make_it_fit: - n_params = len([name for name, _ in - itertools.chain(self.named_parameters(), - self.named_buffers())]) - for name, param in tqdm( - itertools.chain(self.named_parameters(), - self.named_buffers()), - desc="Fitting old weights to new weights", - total=n_params - ): - if not name in sd: - continue - old_shape = sd[name].shape - new_shape = param.shape - assert len(old_shape)==len(new_shape) - if len(new_shape) > 2: - # we only modify first two axes - assert new_shape[2:] == old_shape[2:] - # assumes first axis corresponds to output dim - if not new_shape == old_shape: - new_param = param.clone() - old_param = sd[name] - if len(new_shape) == 1: - for i in range(new_param.shape[0]): - new_param[i] = old_param[i % old_shape[0]] - elif len(new_shape) >= 2: - for i in range(new_param.shape[0]): - for j in range(new_param.shape[1]): - new_param[i, j] = old_param[i % old_shape[0], j % old_shape[1]] - - n_used_old = torch.ones(old_shape[1]) - for j in range(new_param.shape[1]): - n_used_old[j % old_shape[1]] += 1 - n_used_new = torch.zeros(new_shape[1]) - for j in range(new_param.shape[1]): - n_used_new[j] = n_used_old[j % old_shape[1]] - - n_used_new = n_used_new[None, :] - while len(n_used_new.shape) < len(new_shape): - n_used_new = n_used_new.unsqueeze(-1) - new_param /= n_used_new - - sd[name] = new_param - - missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict( - sd, strict=False) - print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys") - if len(missing) > 0: - print(f"Missing Keys: {missing}") - if len(unexpected) > 0: - print(f"Unexpected Keys: {unexpected}") - - def q_mean_variance(self, x_start, t): - """ - Get the distribution q(x_t | x_0). - :param x_start: the [N x C x ...] tensor of noiseless inputs. - :param t: the number of diffusion steps (minus 1). Here, 0 means one step. - :return: A tuple (mean, variance, log_variance), all of x_start's shape. - """ - mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start) - variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape) - log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape) - return mean, variance, log_variance - - def predict_start_from_noise(self, x_t, t, noise): - return ( - extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - - extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise - ) - - def q_posterior(self, x_start, x_t, t): - posterior_mean = ( - extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start + - extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t - ) - posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape) - posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape) - return posterior_mean, posterior_variance, posterior_log_variance_clipped - - def p_mean_variance(self, x, t, clip_denoised: bool): - model_out = self.model(x, t) - if self.parameterization == "eps": - x_recon = self.predict_start_from_noise(x, t=t, noise=model_out) - elif self.parameterization == "x0": - x_recon = model_out - if clip_denoised: - x_recon.clamp_(-1., 1.) - - model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t) - return model_mean, posterior_variance, posterior_log_variance - - @torch.no_grad() - def p_sample(self, x, t, clip_denoised=True, repeat_noise=False): - b, *_, device = *x.shape, x.device - model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised) - noise = noise_like(x.shape, device, repeat_noise) - # no noise when t == 0 - nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) - return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise - - @torch.no_grad() - def p_sample_loop(self, shape, return_intermediates=False): - device = self.betas.device - b = shape[0] - img = torch.randn(shape, device=device) - intermediates = [img] - for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps): - img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long), - clip_denoised=self.clip_denoised) - if i % self.log_every_t == 0 or i == self.num_timesteps - 1: - intermediates.append(img) - if return_intermediates: - return img, intermediates - return img - - @torch.no_grad() - def sample(self, batch_size=16, return_intermediates=False): - image_size = self.image_size - channels = self.channels - return self.p_sample_loop((batch_size, channels, image_size, image_size), - return_intermediates=return_intermediates) - - def q_sample(self, x_start, t, noise=None): - noise = default(noise, lambda: torch.randn_like(x_start)) - return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + - extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise) - - def get_loss(self, pred, target, mean=True): - if self.loss_type == 'l1': - loss = (target - pred).abs() - if mean: - loss = loss.mean() - elif self.loss_type == 'l2': - if mean: - loss = torch.nn.functional.mse_loss(target, pred) - else: - loss = torch.nn.functional.mse_loss(target, pred, reduction='none') - else: - raise NotImplementedError("unknown loss type '{loss_type}'") - - return loss - - def p_losses(self, x_start, t, noise=None): - noise = default(noise, lambda: torch.randn_like(x_start)) - x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) - model_out = self.model(x_noisy, t) - - loss_dict = {} - if self.parameterization == "eps": - target = noise - elif self.parameterization == "x0": - target = x_start - else: - raise NotImplementedError(f"Paramterization {self.parameterization} not yet supported") - - loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3]) - - log_prefix = 'train' if self.training else 'val' - - loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()}) - loss_simple = loss.mean() * self.l_simple_weight - - loss_vlb = (self.lvlb_weights[t] * loss).mean() - loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb}) - - loss = loss_simple + self.original_elbo_weight * loss_vlb - - loss_dict.update({f'{log_prefix}/loss': loss}) - - return loss, loss_dict - - def forward(self, x, *args, **kwargs): - # b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size - # assert h == img_size and w == img_size, f'height and width of image must be {img_size}' - t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long() - return self.p_losses(x, t, *args, **kwargs) - - def get_input(self, batch, k): - x = batch[k] - if len(x.shape) == 3: - x = x[..., None] - x = rearrange(x, 'b h w c -> b c h w') - x = x.to(memory_format=torch.contiguous_format).float() - return x - - def shared_step(self, batch): - x = self.get_input(batch, self.first_stage_key) - loss, loss_dict = self(x) - return loss, loss_dict - - def training_step(self, batch, batch_idx): - for k in self.ucg_training: - p = self.ucg_training[k]["p"] - val = self.ucg_training[k]["val"] - if val is None: - val = "" - for i in range(len(batch[k])): - if self.ucg_prng.choice(2, p=[1-p, p]): - batch[k][i] = val - - loss, loss_dict = self.shared_step(batch) - - self.log_dict(loss_dict, prog_bar=True, - logger=True, on_step=True, on_epoch=True) - - self.log("global_step", self.global_step, - prog_bar=True, logger=True, on_step=True, on_epoch=False) - - if self.use_scheduler: - lr = self.optimizers().param_groups[0]['lr'] - self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False) - - return loss - - @torch.no_grad() - def validation_step(self, batch, batch_idx): - _, loss_dict_no_ema = self.shared_step(batch) - with self.ema_scope(): - _, loss_dict_ema = self.shared_step(batch) - loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema} - self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True) - self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True) - - def on_train_batch_end(self, *args, **kwargs): - if self.use_ema: - self.model_ema(self.model) - - def _get_rows_from_list(self, samples): - n_imgs_per_row = len(samples) - denoise_grid = rearrange(samples, 'n b c h w -> b n c h w') - denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w') - denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row) - return denoise_grid - - @torch.no_grad() - def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs): - log = dict() - x = self.get_input(batch, self.first_stage_key) - N = min(x.shape[0], N) - n_row = min(x.shape[0], n_row) - x = x.to(self.device)[:N] - log["inputs"] = x - - # get diffusion row - diffusion_row = list() - x_start = x[:n_row] - - for t in range(self.num_timesteps): - if t % self.log_every_t == 0 or t == self.num_timesteps - 1: - t = repeat(torch.tensor([t]), '1 -> b', b=n_row) - t = t.to(self.device).long() - noise = torch.randn_like(x_start) - x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) - diffusion_row.append(x_noisy) - - log["diffusion_row"] = self._get_rows_from_list(diffusion_row) - - if sample: - # get denoise row - with self.ema_scope("Plotting"): - samples, denoise_row = self.sample(batch_size=N, return_intermediates=True) - - log["samples"] = samples - log["denoise_row"] = self._get_rows_from_list(denoise_row) - - if return_keys: - if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0: - return log - else: - return {key: log[key] for key in return_keys} - return log - - def configure_optimizers(self): - lr = self.learning_rate - params = list(self.model.parameters()) - if self.learn_logvar: - params = params + [self.logvar] - opt = torch.optim.AdamW(params, lr=lr) - return opt - - -class LatentDiffusion(DDPM): - """main class""" - def __init__(self, - first_stage_config, - cond_stage_config, - num_timesteps_cond=None, - cond_stage_key="image", - cond_stage_trainable=False, - concat_mode=True, - cond_stage_forward=None, - conditioning_key=None, - scale_factor=1.0, - scale_by_std=False, - unet_trainable=True, - *args, **kwargs): - self.num_timesteps_cond = default(num_timesteps_cond, 1) - self.scale_by_std = scale_by_std - assert self.num_timesteps_cond <= kwargs['timesteps'] - # for backwards compatibility after implementation of DiffusionWrapper - if conditioning_key is None: - conditioning_key = 'concat' if concat_mode else 'crossattn' - if cond_stage_config == '__is_unconditional__': - conditioning_key = None - ckpt_path = kwargs.pop("ckpt_path", None) - ignore_keys = kwargs.pop("ignore_keys", []) - super().__init__(conditioning_key=conditioning_key, *args, **kwargs) - self.concat_mode = concat_mode - self.cond_stage_trainable = cond_stage_trainable - self.unet_trainable = unet_trainable - self.cond_stage_key = cond_stage_key - try: - self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1 - except: - self.num_downs = 0 - if not scale_by_std: - self.scale_factor = scale_factor - else: - self.register_buffer('scale_factor', torch.tensor(scale_factor)) - self.instantiate_first_stage(first_stage_config) - self.instantiate_cond_stage(cond_stage_config) - self.cond_stage_forward = cond_stage_forward - - # construct linear projection layer for concatenating image CLIP embedding and RT - self.cc_projection = nn.Linear(772, 768) - nn.init.eye_(list(self.cc_projection.parameters())[0][:768, :768]) - nn.init.zeros_(list(self.cc_projection.parameters())[1]) - self.cc_projection.requires_grad_(True) - - self.clip_denoised = False - self.bbox_tokenizer = None - - self.restarted_from_ckpt = False - if ckpt_path is not None: - self.init_from_ckpt(ckpt_path, ignore_keys) - self.restarted_from_ckpt = True - - def make_cond_schedule(self, ): - self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long) - ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long() - self.cond_ids[:self.num_timesteps_cond] = ids - - @rank_zero_only - @torch.no_grad() - def on_train_batch_start(self, batch, batch_idx, dataloader_idx): - # only for very first batch - if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt: - assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously' - # set rescale weight to 1./std of encodings - print("### USING STD-RESCALING ###") - x = super().get_input(batch, self.first_stage_key) - x = x.to(self.device) - encoder_posterior = self.encode_first_stage(x) - z = self.get_first_stage_encoding(encoder_posterior).detach() - del self.scale_factor - self.register_buffer('scale_factor', 1. / z.flatten().std()) - print(f"setting self.scale_factor to {self.scale_factor}") - print("### USING STD-RESCALING ###") - - def register_schedule(self, - given_betas=None, beta_schedule="linear", timesteps=1000, - linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): - super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s) - - self.shorten_cond_schedule = self.num_timesteps_cond > 1 - if self.shorten_cond_schedule: - self.make_cond_schedule() - - def instantiate_first_stage(self, config): - model = instantiate_from_config(config) - self.first_stage_model = model.eval() - self.first_stage_model.train = disabled_train - for param in self.first_stage_model.parameters(): - param.requires_grad = False - - def instantiate_cond_stage(self, config): - if not self.cond_stage_trainable: - if config == "__is_first_stage__": - print("Using first stage also as cond stage.") - self.cond_stage_model = self.first_stage_model - elif config == "__is_unconditional__": - print(f"Training {self.__class__.__name__} as an unconditional model.") - self.cond_stage_model = None - # self.be_unconditional = True - else: - model = instantiate_from_config(config) - self.cond_stage_model = model.eval() - self.cond_stage_model.train = disabled_train - for param in self.cond_stage_model.parameters(): - param.requires_grad = False - else: - assert config != '__is_first_stage__' - assert config != '__is_unconditional__' - model = instantiate_from_config(config) - self.cond_stage_model = model - - def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False): - denoise_row = [] - for zd in tqdm(samples, desc=desc): - denoise_row.append(self.decode_first_stage(zd.to(self.device), - force_not_quantize=force_no_decoder_quantization)) - n_imgs_per_row = len(denoise_row) - denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W - denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w') - denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w') - denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row) - return denoise_grid - - def get_first_stage_encoding(self, encoder_posterior): - if isinstance(encoder_posterior, DiagonalGaussianDistribution): - z = encoder_posterior.sample() - elif isinstance(encoder_posterior, torch.Tensor): - z = encoder_posterior - else: - raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented") - return self.scale_factor * z - - def get_learned_conditioning(self, c): - if self.cond_stage_forward is None: - if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode): - c = self.cond_stage_model.encode(c) - if isinstance(c, DiagonalGaussianDistribution): - c = c.mode() - else: - c = self.cond_stage_model(c) - else: - assert hasattr(self.cond_stage_model, self.cond_stage_forward) - c = getattr(self.cond_stage_model, self.cond_stage_forward)(c) - return c - - def meshgrid(self, h, w): - y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1) - x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1) - - arr = torch.cat([y, x], dim=-1) - return arr - - def delta_border(self, h, w): - """ - :param h: height - :param w: width - :return: normalized distance to image border, - wtith min distance = 0 at border and max dist = 0.5 at image center - """ - lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2) - arr = self.meshgrid(h, w) / lower_right_corner - dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0] - dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0] - edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0] - return edge_dist - - def get_weighting(self, h, w, Ly, Lx, device): - weighting = self.delta_border(h, w) - weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"], - self.split_input_params["clip_max_weight"], ) - weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device) - - if self.split_input_params["tie_braker"]: - L_weighting = self.delta_border(Ly, Lx) - L_weighting = torch.clip(L_weighting, - self.split_input_params["clip_min_tie_weight"], - self.split_input_params["clip_max_tie_weight"]) - - L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device) - weighting = weighting * L_weighting - return weighting - - def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1): # todo load once not every time, shorten code - """ - :param x: img of size (bs, c, h, w) - :return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1]) - """ - bs, nc, h, w = x.shape - - # number of crops in image - Ly = (h - kernel_size[0]) // stride[0] + 1 - Lx = (w - kernel_size[1]) // stride[1] + 1 - - if uf == 1 and df == 1: - fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride) - unfold = torch.nn.Unfold(**fold_params) - - fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params) - - weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype) - normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap - weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx)) - - elif uf > 1 and df == 1: - fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride) - unfold = torch.nn.Unfold(**fold_params) - - fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf), - dilation=1, padding=0, - stride=(stride[0] * uf, stride[1] * uf)) - fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2) - - weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype) - normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap - weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx)) - - elif df > 1 and uf == 1: - fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride) - unfold = torch.nn.Unfold(**fold_params) - - fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df), - dilation=1, padding=0, - stride=(stride[0] // df, stride[1] // df)) - fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2) - - weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype) - normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap - weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx)) - - else: - raise NotImplementedError - - return fold, unfold, normalization, weighting - - - @torch.no_grad() - def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False, - cond_key=None, return_original_cond=False, bs=None, uncond=0.05): - x = super().get_input(batch, k) - T = batch['T'].to(memory_format=torch.contiguous_format).float() - - if bs is not None: - x = x[:bs] - T = T[:bs].to(self.device) - - x = x.to(self.device) - encoder_posterior = self.encode_first_stage(x) - z = self.get_first_stage_encoding(encoder_posterior).detach() - cond_key = cond_key or self.cond_stage_key - xc = super().get_input(batch, cond_key).to(self.device) - if bs is not None: - xc = xc[:bs] - cond = {} - - # To support classifier-free guidance, randomly drop out only text conditioning 5%, only image conditioning 5%, and both 5%. - random = torch.rand(x.size(0), device=x.device) - prompt_mask = rearrange(random < 2 * uncond, "n -> n 1 1") - input_mask = 1 - rearrange((random >= uncond).float() * (random < 3 * uncond).float(), "n -> n 1 1 1") - null_prompt = self.get_learned_conditioning([""]) - - # z.shape: [8, 4, 64, 64]; c.shape: [8, 1, 768] - # print('=========== xc shape ===========', xc.shape) - with torch.enable_grad(): - clip_emb = self.get_learned_conditioning(xc).detach() - null_prompt = self.get_learned_conditioning([""]).detach() - cond["c_crossattn"] = [self.cc_projection(torch.cat([torch.where(prompt_mask, null_prompt, clip_emb), T[:, None, :]], dim=-1))] - cond["c_concat"] = [input_mask * self.encode_first_stage((xc.to(self.device))).mode().detach()] - out = [z, cond] - if return_first_stage_outputs: - xrec = self.decode_first_stage(z) - out.extend([x, xrec]) - if return_original_cond: - out.append(xc) - return out - - # @torch.no_grad() - def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False): - if predict_cids: - if z.dim() == 4: - z = torch.argmax(z.exp(), dim=1).long() - z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None) - z = rearrange(z, 'b h w c -> b c h w').contiguous() - - z = 1. / self.scale_factor * z - - if hasattr(self, "split_input_params"): - if self.split_input_params["patch_distributed_vq"]: - ks = self.split_input_params["ks"] # eg. (128, 128) - stride = self.split_input_params["stride"] # eg. (64, 64) - uf = self.split_input_params["vqf"] - bs, nc, h, w = z.shape - if ks[0] > h or ks[1] > w: - ks = (min(ks[0], h), min(ks[1], w)) - print("reducing Kernel") - - if stride[0] > h or stride[1] > w: - stride = (min(stride[0], h), min(stride[1], w)) - print("reducing stride") - - fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf) - - z = unfold(z) # (bn, nc * prod(**ks), L) - # 1. Reshape to img shape - z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L ) - - # 2. apply model loop over last dim - if isinstance(self.first_stage_model, VQModelInterface): - output_list = [self.first_stage_model.decode(z[:, :, :, :, i], - force_not_quantize=predict_cids or force_not_quantize) - for i in range(z.shape[-1])] - else: - - output_list = [self.first_stage_model.decode(z[:, :, :, :, i]) - for i in range(z.shape[-1])] - - o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L) - o = o * weighting - # Reverse 1. reshape to img shape - o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L) - # stitch crops together - decoded = fold(o) - decoded = decoded / normalization # norm is shape (1, 1, h, w) - return decoded - else: - if isinstance(self.first_stage_model, VQModelInterface): - return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize) - else: - return self.first_stage_model.decode(z) - - else: - if isinstance(self.first_stage_model, VQModelInterface): - return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize) - else: - return self.first_stage_model.decode(z) - - @torch.no_grad() - def encode_first_stage(self, x): - if hasattr(self, "split_input_params"): - if self.split_input_params["patch_distributed_vq"]: - ks = self.split_input_params["ks"] # eg. (128, 128) - stride = self.split_input_params["stride"] # eg. (64, 64) - df = self.split_input_params["vqf"] - self.split_input_params['original_image_size'] = x.shape[-2:] - bs, nc, h, w = x.shape - if ks[0] > h or ks[1] > w: - ks = (min(ks[0], h), min(ks[1], w)) - print("reducing Kernel") - - if stride[0] > h or stride[1] > w: - stride = (min(stride[0], h), min(stride[1], w)) - print("reducing stride") - - fold, unfold, normalization, weighting = self.get_fold_unfold(x, ks, stride, df=df) - z = unfold(x) # (bn, nc * prod(**ks), L) - # Reshape to img shape - z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L ) - - output_list = [self.first_stage_model.encode(z[:, :, :, :, i]) - for i in range(z.shape[-1])] - - o = torch.stack(output_list, axis=-1) - o = o * weighting - - # Reverse reshape to img shape - o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L) - # stitch crops together - decoded = fold(o) - decoded = decoded / normalization - return decoded - - else: - return self.first_stage_model.encode(x) - else: - return self.first_stage_model.encode(x) - - def shared_step(self, batch, **kwargs): - x, c = self.get_input(batch, self.first_stage_key) - loss = self(x, c) - return loss - - def forward(self, x, c, *args, **kwargs): - t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long() - if self.model.conditioning_key is not None: - assert c is not None - # if self.cond_stage_trainable: - # c = self.get_learned_conditioning(c) - if self.shorten_cond_schedule: # TODO: drop this option - tc = self.cond_ids[t].to(self.device) - c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float())) - return self.p_losses(x, c, t, *args, **kwargs) - - def _rescale_annotations(self, bboxes, crop_coordinates): # TODO: move to dataset - def rescale_bbox(bbox): - x0 = clamp((bbox[0] - crop_coordinates[0]) / crop_coordinates[2]) - y0 = clamp((bbox[1] - crop_coordinates[1]) / crop_coordinates[3]) - w = min(bbox[2] / crop_coordinates[2], 1 - x0) - h = min(bbox[3] / crop_coordinates[3], 1 - y0) - return x0, y0, w, h - - return [rescale_bbox(b) for b in bboxes] - - def apply_model(self, x_noisy, t, cond, return_ids=False): - - if isinstance(cond, dict): - # hybrid case, cond is exptected to be a dict - pass - else: - if not isinstance(cond, list): - cond = [cond] - key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn' - cond = {key: cond} - - if hasattr(self, "split_input_params"): - assert len(cond) == 1 # todo can only deal with one conditioning atm - assert not return_ids - ks = self.split_input_params["ks"] # eg. (128, 128) - stride = self.split_input_params["stride"] # eg. (64, 64) - - h, w = x_noisy.shape[-2:] - - fold, unfold, normalization, weighting = self.get_fold_unfold(x_noisy, ks, stride) - - z = unfold(x_noisy) # (bn, nc * prod(**ks), L) - # Reshape to img shape - z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L ) - z_list = [z[:, :, :, :, i] for i in range(z.shape[-1])] - - if self.cond_stage_key in ["image", "LR_image", "segmentation", - 'bbox_img'] and self.model.conditioning_key: # todo check for completeness - c_key = next(iter(cond.keys())) # get key - c = next(iter(cond.values())) # get value - assert (len(c) == 1) # todo extend to list with more than one elem - c = c[0] # get element - - c = unfold(c) - c = c.view((c.shape[0], -1, ks[0], ks[1], c.shape[-1])) # (bn, nc, ks[0], ks[1], L ) - - cond_list = [{c_key: [c[:, :, :, :, i]]} for i in range(c.shape[-1])] - - elif self.cond_stage_key == 'coordinates_bbox': - assert 'original_image_size' in self.split_input_params, 'BoudingBoxRescaling is missing original_image_size' - - # assuming padding of unfold is always 0 and its dilation is always 1 - n_patches_per_row = int((w - ks[0]) / stride[0] + 1) - full_img_h, full_img_w = self.split_input_params['original_image_size'] - # as we are operating on latents, we need the factor from the original image size to the - # spatial latent size to properly rescale the crops for regenerating the bbox annotations - num_downs = self.first_stage_model.encoder.num_resolutions - 1 - rescale_latent = 2 ** (num_downs) - - # get top left postions of patches as conforming for the bbbox tokenizer, therefore we - # need to rescale the tl patch coordinates to be in between (0,1) - tl_patch_coordinates = [(rescale_latent * stride[0] * (patch_nr % n_patches_per_row) / full_img_w, - rescale_latent * stride[1] * (patch_nr // n_patches_per_row) / full_img_h) - for patch_nr in range(z.shape[-1])] - - # patch_limits are tl_coord, width and height coordinates as (x_tl, y_tl, h, w) - patch_limits = [(x_tl, y_tl, - rescale_latent * ks[0] / full_img_w, - rescale_latent * ks[1] / full_img_h) for x_tl, y_tl in tl_patch_coordinates] - # patch_values = [(np.arange(x_tl,min(x_tl+ks, 1.)),np.arange(y_tl,min(y_tl+ks, 1.))) for x_tl, y_tl in tl_patch_coordinates] - - # tokenize crop coordinates for the bounding boxes of the respective patches - patch_limits_tknzd = [torch.LongTensor(self.bbox_tokenizer._crop_encoder(bbox))[None].to(self.device) - for bbox in patch_limits] # list of length l with tensors of shape (1, 2) - # cut tknzd crop position from conditioning - assert isinstance(cond, dict), 'cond must be dict to be fed into model' - cut_cond = cond['c_crossattn'][0][..., :-2].to(self.device) - - adapted_cond = torch.stack([torch.cat([cut_cond, p], dim=1) for p in patch_limits_tknzd]) - adapted_cond = rearrange(adapted_cond, 'l b n -> (l b) n') - adapted_cond = self.get_learned_conditioning(adapted_cond) - adapted_cond = rearrange(adapted_cond, '(l b) n d -> l b n d', l=z.shape[-1]) - - cond_list = [{'c_crossattn': [e]} for e in adapted_cond] - - else: - cond_list = [cond for i in range(z.shape[-1])] # Todo make this more efficient - - # apply model by loop over crops - output_list = [self.model(z_list[i], t, **cond_list[i]) for i in range(z.shape[-1])] - assert not isinstance(output_list[0], - tuple) # todo cant deal with multiple model outputs check this never happens - - o = torch.stack(output_list, axis=-1) - o = o * weighting - # Reverse reshape to img shape - o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L) - # stitch crops together - x_recon = fold(o) / normalization - - else: - x_recon = self.model(x_noisy, t, **cond) - - if isinstance(x_recon, tuple) and not return_ids: - return x_recon[0] - else: - return x_recon - - def _predict_eps_from_xstart(self, x_t, t, pred_xstart): - return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \ - extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) - - def _prior_bpd(self, x_start): - """ - Get the prior KL term for the variational lower-bound, measured in - bits-per-dim. - This term can't be optimized, as it only depends on the encoder. - :param x_start: the [N x C x ...] tensor of inputs. - :return: a batch of [N] KL values (in bits), one per batch element. - """ - batch_size = x_start.shape[0] - t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device) - qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t) - kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0) - return mean_flat(kl_prior) / np.log(2.0) - - def p_losses(self, x_start, cond, t, noise=None): - noise = default(noise, lambda: torch.randn_like(x_start)) - x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) - model_output = self.apply_model(x_noisy, t, cond) - - loss_dict = {} - prefix = 'train' if self.training else 'val' - - if self.parameterization == "x0": - target = x_start - elif self.parameterization == "eps": - target = noise - else: - raise NotImplementedError() - - loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3]) - loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()}) - - logvar_t = self.logvar[t].to(self.device) - loss = loss_simple / torch.exp(logvar_t) + logvar_t - # loss = loss_simple / torch.exp(self.logvar) + self.logvar - if self.learn_logvar: - loss_dict.update({f'{prefix}/loss_gamma': loss.mean()}) - loss_dict.update({'logvar': self.logvar.data.mean()}) - - loss = self.l_simple_weight * loss.mean() - - loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3)) - loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean() - loss_dict.update({f'{prefix}/loss_vlb': loss_vlb}) - loss += (self.original_elbo_weight * loss_vlb) - loss_dict.update({f'{prefix}/loss': loss}) - - return loss, loss_dict - - def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False, - return_x0=False, score_corrector=None, corrector_kwargs=None): - t_in = t - model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids) - - if score_corrector is not None: - assert self.parameterization == "eps" - model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs) - - if return_codebook_ids: - model_out, logits = model_out - - if self.parameterization == "eps": - x_recon = self.predict_start_from_noise(x, t=t, noise=model_out) - elif self.parameterization == "x0": - x_recon = model_out - else: - raise NotImplementedError() - - if clip_denoised: - x_recon.clamp_(-1., 1.) - if quantize_denoised: - x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon) - model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t) - if return_codebook_ids: - return model_mean, posterior_variance, posterior_log_variance, logits - elif return_x0: - return model_mean, posterior_variance, posterior_log_variance, x_recon - else: - return model_mean, posterior_variance, posterior_log_variance - - @torch.no_grad() - def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False, - return_codebook_ids=False, quantize_denoised=False, return_x0=False, - temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None): - b, *_, device = *x.shape, x.device - outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised, - return_codebook_ids=return_codebook_ids, - quantize_denoised=quantize_denoised, - return_x0=return_x0, - score_corrector=score_corrector, corrector_kwargs=corrector_kwargs) - if return_codebook_ids: - raise DeprecationWarning("Support dropped.") - model_mean, _, model_log_variance, logits = outputs - elif return_x0: - model_mean, _, model_log_variance, x0 = outputs - else: - model_mean, _, model_log_variance = outputs - - noise = noise_like(x.shape, device, repeat_noise) * temperature - if noise_dropout > 0.: - noise = torch.nn.functional.dropout(noise, p=noise_dropout) - # no noise when t == 0 - nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) - - if return_codebook_ids: - return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1) - if return_x0: - return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0 - else: - return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise - - @torch.no_grad() - def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False, - img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0., - score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None, - log_every_t=None): - if not log_every_t: - log_every_t = self.log_every_t - timesteps = self.num_timesteps - if batch_size is not None: - b = batch_size if batch_size is not None else shape[0] - shape = [batch_size] + list(shape) - else: - b = batch_size = shape[0] - if x_T is None: - img = torch.randn(shape, device=self.device) - else: - img = x_T - intermediates = [] - if cond is not None: - if isinstance(cond, dict): - cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else - list(map(lambda x: x[:batch_size], cond[key])) for key in cond} - else: - cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size] - - if start_T is not None: - timesteps = min(timesteps, start_T) - iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation', - total=timesteps) if verbose else reversed( - range(0, timesteps)) - if type(temperature) == float: - temperature = [temperature] * timesteps - - for i in iterator: - ts = torch.full((b,), i, device=self.device, dtype=torch.long) - if self.shorten_cond_schedule: - assert self.model.conditioning_key != 'hybrid' - tc = self.cond_ids[ts].to(cond.device) - cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond)) - - img, x0_partial = self.p_sample(img, cond, ts, - clip_denoised=self.clip_denoised, - quantize_denoised=quantize_denoised, return_x0=True, - temperature=temperature[i], noise_dropout=noise_dropout, - score_corrector=score_corrector, corrector_kwargs=corrector_kwargs) - if mask is not None: - assert x0 is not None - img_orig = self.q_sample(x0, ts) - img = img_orig * mask + (1. - mask) * img - - if i % log_every_t == 0 or i == timesteps - 1: - intermediates.append(x0_partial) - if callback: callback(i) - if img_callback: img_callback(img, i) - return img, intermediates - - @torch.no_grad() - def p_sample_loop(self, cond, shape, return_intermediates=False, - x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False, - mask=None, x0=None, img_callback=None, start_T=None, - log_every_t=None): - - if not log_every_t: - log_every_t = self.log_every_t - device = self.betas.device - b = shape[0] - if x_T is None: - img = torch.randn(shape, device=device) - else: - img = x_T - - intermediates = [img] - if timesteps is None: - timesteps = self.num_timesteps - - if start_T is not None: - timesteps = min(timesteps, start_T) - iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed( - range(0, timesteps)) - - if mask is not None: - assert x0 is not None - assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match - - for i in iterator: - ts = torch.full((b,), i, device=device, dtype=torch.long) - if self.shorten_cond_schedule: - assert self.model.conditioning_key != 'hybrid' - tc = self.cond_ids[ts].to(cond.device) - cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond)) - - img = self.p_sample(img, cond, ts, - clip_denoised=self.clip_denoised, - quantize_denoised=quantize_denoised) - if mask is not None: - img_orig = self.q_sample(x0, ts) - img = img_orig * mask + (1. - mask) * img - - if i % log_every_t == 0 or i == timesteps - 1: - intermediates.append(img) - if callback: callback(i) - if img_callback: img_callback(img, i) - - if return_intermediates: - return img, intermediates - return img - - @torch.no_grad() - def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None, - verbose=True, timesteps=None, quantize_denoised=False, - mask=None, x0=None, shape=None,**kwargs): - if shape is None: - shape = (batch_size, self.channels, self.image_size, self.image_size) - if cond is not None: - if isinstance(cond, dict): - cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else - list(map(lambda x: x[:batch_size], cond[key])) for key in cond} - else: - cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size] - return self.p_sample_loop(cond, - shape, - return_intermediates=return_intermediates, x_T=x_T, - verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised, - mask=mask, x0=x0) - - @torch.no_grad() - def sample_log(self, cond, batch_size, ddim, ddim_steps, **kwargs): - if ddim: - ddim_sampler = DDIMSampler(self) - shape = (self.channels, self.image_size, self.image_size) - samples, intermediates = ddim_sampler.sample(ddim_steps, batch_size, - shape, cond, verbose=False, **kwargs) - - else: - samples, intermediates = self.sample(cond=cond, batch_size=batch_size, - return_intermediates=True, **kwargs) - - return samples, intermediates - - @torch.no_grad() - def get_unconditional_conditioning(self, batch_size, null_label=None, image_size=512): - if null_label is not None: - xc = null_label - if isinstance(xc, ListConfig): - xc = list(xc) - if isinstance(xc, dict) or isinstance(xc, list): - c = self.get_learned_conditioning(xc) - else: - if hasattr(xc, "to"): - xc = xc.to(self.device) - c = self.get_learned_conditioning(xc) - else: - # todo: get null label from cond_stage_model - raise NotImplementedError() - c = repeat(c, '1 ... -> b ...', b=batch_size).to(self.device) - cond = {} - cond["c_crossattn"] = [c] - cond["c_concat"] = [torch.zeros([batch_size, 4, image_size // 8, image_size // 8]).to(self.device)] - return cond - - @torch.no_grad() - def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None, - quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True, - plot_diffusion_rows=True, unconditional_guidance_scale=1., unconditional_guidance_label=None, - use_ema_scope=True, - **kwargs): - ema_scope = self.ema_scope if use_ema_scope else nullcontext - use_ddim = ddim_steps is not None - - log = dict() - z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key, - return_first_stage_outputs=True, - force_c_encode=True, - return_original_cond=True, - bs=N) - N = min(x.shape[0], N) - n_row = min(x.shape[0], n_row) - log["inputs"] = x - log["reconstruction"] = xrec - if self.model.conditioning_key is not None: - if hasattr(self.cond_stage_model, "decode"): - xc = self.cond_stage_model.decode(c) - log["conditioning"] = xc - elif self.cond_stage_key in ["caption", "txt"]: - xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2]//25) - log["conditioning"] = xc - elif self.cond_stage_key == 'class_label': - xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2]//25) - log['conditioning'] = xc - elif isimage(xc): - log["conditioning"] = xc - if ismap(xc): - log["original_conditioning"] = self.to_rgb(xc) - - if plot_diffusion_rows: - # get diffusion row - diffusion_row = list() - z_start = z[:n_row] - for t in range(self.num_timesteps): - if t % self.log_every_t == 0 or t == self.num_timesteps - 1: - t = repeat(torch.tensor([t]), '1 -> b', b=n_row) - t = t.to(self.device).long() - noise = torch.randn_like(z_start) - z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise) - diffusion_row.append(self.decode_first_stage(z_noisy)) - - diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W - diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w') - diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w') - diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0]) - log["diffusion_row"] = diffusion_grid - - if sample: - # get denoise row - with ema_scope("Sampling"): - samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, - ddim_steps=ddim_steps,eta=ddim_eta) - # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True) - x_samples = self.decode_first_stage(samples) - log["samples"] = x_samples - if plot_denoise_rows: - denoise_grid = self._get_denoise_row_from_list(z_denoise_row) - log["denoise_row"] = denoise_grid - - if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance( - self.first_stage_model, IdentityFirstStage): - # also display when quantizing x0 while sampling - with ema_scope("Plotting Quantized Denoised"): - samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, - ddim_steps=ddim_steps,eta=ddim_eta, - quantize_denoised=True) - # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True, - # quantize_denoised=True) - x_samples = self.decode_first_stage(samples.to(self.device)) - log["samples_x0_quantized"] = x_samples - - if unconditional_guidance_scale > 1.0: - uc = self.get_unconditional_conditioning(N, unconditional_guidance_label, image_size=x.shape[-1]) - # uc = torch.zeros_like(c) - with ema_scope("Sampling with classifier-free guidance"): - samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim, - ddim_steps=ddim_steps, eta=ddim_eta, - unconditional_guidance_scale=unconditional_guidance_scale, - unconditional_conditioning=uc, - ) - x_samples_cfg = self.decode_first_stage(samples_cfg) - log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg - - if inpaint: - # make a simple center square - b, h, w = z.shape[0], z.shape[2], z.shape[3] - mask = torch.ones(N, h, w).to(self.device) - # zeros will be filled in - mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0. - mask = mask[:, None, ...] - with ema_scope("Plotting Inpaint"): - - samples, _ = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, eta=ddim_eta, - ddim_steps=ddim_steps, x0=z[:N], mask=mask) - x_samples = self.decode_first_stage(samples.to(self.device)) - log["samples_inpainting"] = x_samples - log["mask"] = mask - - # outpaint - mask = 1. - mask - with ema_scope("Plotting Outpaint"): - samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,eta=ddim_eta, - ddim_steps=ddim_steps, x0=z[:N], mask=mask) - x_samples = self.decode_first_stage(samples.to(self.device)) - log["samples_outpainting"] = x_samples - - if plot_progressive_rows: - with ema_scope("Plotting Progressives"): - img, progressives = self.progressive_denoising(c, - shape=(self.channels, self.image_size, self.image_size), - batch_size=N) - prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation") - log["progressive_row"] = prog_row - - if return_keys: - if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0: - return log - else: - return {key: log[key] for key in return_keys} - return log - - def configure_optimizers(self): - lr = self.learning_rate - params = [] - if self.unet_trainable == "attn": - print("Training only unet attention layers") - for n, m in self.model.named_modules(): - if isinstance(m, CrossAttention) and n.endswith('attn2'): - params.extend(m.parameters()) - if self.unet_trainable == "conv_in": - print("Training only unet input conv layers") - params = list(self.model.diffusion_model.input_blocks[0][0].parameters()) - elif self.unet_trainable is True or self.unet_trainable == "all": - print("Training the full unet") - params = list(self.model.parameters()) - else: - raise ValueError(f"Unrecognised setting for unet_trainable: {self.unet_trainable}") - - if self.cond_stage_trainable: - print(f"{self.__class__.__name__}: Also optimizing conditioner params!") - params = params + list(self.cond_stage_model.parameters()) - if self.learn_logvar: - print('Diffusion model optimizing logvar') - params.append(self.logvar) - - if self.cc_projection is not None: - params = params + list(self.cc_projection.parameters()) - print('========== optimizing for cc projection weight ==========') - - opt = torch.optim.AdamW([{"params": self.model.parameters(), "lr": lr}, - {"params": self.cc_projection.parameters(), "lr": 10. * lr}], lr=lr) - if self.use_scheduler: - assert 'target' in self.scheduler_config - scheduler = instantiate_from_config(self.scheduler_config) - - print("Setting up LambdaLR scheduler...") - scheduler = [ - { - 'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule), - 'interval': 'step', - 'frequency': 1 - }] - return [opt], scheduler - return opt - - @torch.no_grad() - def to_rgb(self, x): - x = x.float() - if not hasattr(self, "colorize"): - self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x) - x = nn.functional.conv2d(x, weight=self.colorize) - x = 2. * (x - x.min()) / (x.max() - x.min()) - 1. - return x - - -class DiffusionWrapper(pl.LightningModule): - def __init__(self, diff_model_config, conditioning_key): - super().__init__() - self.diffusion_model = instantiate_from_config(diff_model_config) - self.conditioning_key = conditioning_key - assert self.conditioning_key in [None, 'concat', 'crossattn', 'hybrid', 'adm', 'hybrid-adm'] - - def forward(self, x, t, c_concat: list = None, c_crossattn: list = None, c_adm=None): - if self.conditioning_key is None: - out = self.diffusion_model(x, t) - elif self.conditioning_key == 'concat': - xc = torch.cat([x] + c_concat, dim=1) - out = self.diffusion_model(xc, t) - elif self.conditioning_key == 'crossattn': - # c_crossattn dimension: torch.Size([8, 1, 768]) 1 - # cc dimension: torch.Size([8, 1, 768] - cc = torch.cat(c_crossattn, 1) - out = self.diffusion_model(x, t, context=cc) - elif self.conditioning_key == 'hybrid': - xc = torch.cat([x] + c_concat, dim=1) - cc = torch.cat(c_crossattn, 1) - out = self.diffusion_model(xc, t, context=cc) - elif self.conditioning_key == 'hybrid-adm': - assert c_adm is not None - xc = torch.cat([x] + c_concat, dim=1) - cc = torch.cat(c_crossattn, 1) - out = self.diffusion_model(xc, t, context=cc, y=c_adm) - elif self.conditioning_key == 'adm': - cc = c_crossattn[0] - out = self.diffusion_model(x, t, y=cc) - else: - raise NotImplementedError() - - return out - - -class LatentUpscaleDiffusion(LatentDiffusion): - def __init__(self, *args, low_scale_config, low_scale_key="LR", **kwargs): - super().__init__(*args, **kwargs) - # assumes that neither the cond_stage nor the low_scale_model contain trainable params - assert not self.cond_stage_trainable - self.instantiate_low_stage(low_scale_config) - self.low_scale_key = low_scale_key - - def instantiate_low_stage(self, config): - model = instantiate_from_config(config) - self.low_scale_model = model.eval() - self.low_scale_model.train = disabled_train - for param in self.low_scale_model.parameters(): - param.requires_grad = False - - @torch.no_grad() - def get_input(self, batch, k, cond_key=None, bs=None, log_mode=False): - if not log_mode: - z, c = super().get_input(batch, k, force_c_encode=True, bs=bs) - else: - z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True, - force_c_encode=True, return_original_cond=True, bs=bs) - x_low = batch[self.low_scale_key][:bs] - x_low = rearrange(x_low, 'b h w c -> b c h w') - x_low = x_low.to(memory_format=torch.contiguous_format).float() - zx, noise_level = self.low_scale_model(x_low) - all_conds = {"c_concat": [zx], "c_crossattn": [c], "c_adm": noise_level} - #import pudb; pu.db - if log_mode: - # TODO: maybe disable if too expensive - interpretability = False - if interpretability: - zx = zx[:, :, ::2, ::2] - x_low_rec = self.low_scale_model.decode(zx) - return z, all_conds, x, xrec, xc, x_low, x_low_rec, noise_level - return z, all_conds - - @torch.no_grad() - def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None, - plot_denoise_rows=False, plot_progressive_rows=True, plot_diffusion_rows=True, - unconditional_guidance_scale=1., unconditional_guidance_label=None, use_ema_scope=True, - **kwargs): - ema_scope = self.ema_scope if use_ema_scope else nullcontext - use_ddim = ddim_steps is not None - - log = dict() - z, c, x, xrec, xc, x_low, x_low_rec, noise_level = self.get_input(batch, self.first_stage_key, bs=N, - log_mode=True) - N = min(x.shape[0], N) - n_row = min(x.shape[0], n_row) - log["inputs"] = x - log["reconstruction"] = xrec - log["x_lr"] = x_low - log[f"x_lr_rec_@noise_levels{'-'.join(map(lambda x: str(x), list(noise_level.cpu().numpy())))}"] = x_low_rec - if self.model.conditioning_key is not None: - if hasattr(self.cond_stage_model, "decode"): - xc = self.cond_stage_model.decode(c) - log["conditioning"] = xc - elif self.cond_stage_key in ["caption", "txt"]: - xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2]//25) - log["conditioning"] = xc - elif self.cond_stage_key == 'class_label': - xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2]//25) - log['conditioning'] = xc - elif isimage(xc): - log["conditioning"] = xc - if ismap(xc): - log["original_conditioning"] = self.to_rgb(xc) - - if plot_diffusion_rows: - # get diffusion row - diffusion_row = list() - z_start = z[:n_row] - for t in range(self.num_timesteps): - if t % self.log_every_t == 0 or t == self.num_timesteps - 1: - t = repeat(torch.tensor([t]), '1 -> b', b=n_row) - t = t.to(self.device).long() - noise = torch.randn_like(z_start) - z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise) - diffusion_row.append(self.decode_first_stage(z_noisy)) - - diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W - diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w') - diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w') - diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0]) - log["diffusion_row"] = diffusion_grid - - if sample: - # get denoise row - with ema_scope("Sampling"): - samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim, - ddim_steps=ddim_steps, eta=ddim_eta) - # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True) - x_samples = self.decode_first_stage(samples) - log["samples"] = x_samples - if plot_denoise_rows: - denoise_grid = self._get_denoise_row_from_list(z_denoise_row) - log["denoise_row"] = denoise_grid - - if unconditional_guidance_scale > 1.0: - uc_tmp = self.get_unconditional_conditioning(N, unconditional_guidance_label) - # TODO explore better "unconditional" choices for the other keys - # maybe guide away from empty text label and highest noise level and maximally degraded zx? - uc = dict() - for k in c: - if k == "c_crossattn": - assert isinstance(c[k], list) and len(c[k]) == 1 - uc[k] = [uc_tmp] - elif k == "c_adm": # todo: only run with text-based guidance? - assert isinstance(c[k], torch.Tensor) - uc[k] = torch.ones_like(c[k]) * self.low_scale_model.max_noise_level - elif isinstance(c[k], list): - uc[k] = [c[k][i] for i in range(len(c[k]))] - else: - uc[k] = c[k] - - with ema_scope("Sampling with classifier-free guidance"): - samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim, - ddim_steps=ddim_steps, eta=ddim_eta, - unconditional_guidance_scale=unconditional_guidance_scale, - unconditional_conditioning=uc, - ) - x_samples_cfg = self.decode_first_stage(samples_cfg) - log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg - - if plot_progressive_rows: - with ema_scope("Plotting Progressives"): - img, progressives = self.progressive_denoising(c, - shape=(self.channels, self.image_size, self.image_size), - batch_size=N) - prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation") - log["progressive_row"] = prog_row - - return log - - -class LatentInpaintDiffusion(LatentDiffusion): - """ - can either run as pure inpainting model (only concat mode) or with mixed conditionings, - e.g. mask as concat and text via cross-attn. - To disable finetuning mode, set finetune_keys to None - """ - def __init__(self, - finetune_keys=("model.diffusion_model.input_blocks.0.0.weight", - "model_ema.diffusion_modelinput_blocks00weight" - ), - concat_keys=("mask", "masked_image"), - masked_image_key="masked_image", - keep_finetune_dims=4, # if model was trained without concat mode before and we would like to keep these channels - c_concat_log_start=None, # to log reconstruction of c_concat codes - c_concat_log_end=None, - *args, **kwargs - ): - ckpt_path = kwargs.pop("ckpt_path", None) - ignore_keys = kwargs.pop("ignore_keys", list()) - super().__init__(*args, **kwargs) - self.masked_image_key = masked_image_key - assert self.masked_image_key in concat_keys - self.finetune_keys = finetune_keys - self.concat_keys = concat_keys - self.keep_dims = keep_finetune_dims - self.c_concat_log_start = c_concat_log_start - self.c_concat_log_end = c_concat_log_end - if exists(self.finetune_keys): assert exists(ckpt_path), 'can only finetune from a given checkpoint' - if exists(ckpt_path): - self.init_from_ckpt(ckpt_path, ignore_keys) - - def init_from_ckpt(self, path, ignore_keys=list(), only_model=False): - sd = torch.load(path, map_location="cpu") - if "state_dict" in list(sd.keys()): - sd = sd["state_dict"] - keys = list(sd.keys()) - for k in keys: - for ik in ignore_keys: - if k.startswith(ik): - print("Deleting key {} from state_dict.".format(k)) - del sd[k] - - # make it explicit, finetune by including extra input channels - if exists(self.finetune_keys) and k in self.finetune_keys: - new_entry = None - for name, param in self.named_parameters(): - if name in self.finetune_keys: - print(f"modifying key '{name}' and keeping its original {self.keep_dims} (channels) dimensions only") - new_entry = torch.zeros_like(param) # zero init - assert exists(new_entry), 'did not find matching parameter to modify' - new_entry[:, :self.keep_dims, ...] = sd[k] - sd[k] = new_entry - - missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(sd, strict=False) - print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys") - if len(missing) > 0: - print(f"Missing Keys: {missing}") - if len(unexpected) > 0: - print(f"Unexpected Keys: {unexpected}") - - @torch.no_grad() - def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False): - # note: restricted to non-trainable encoders currently - assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for inpainting' - z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True, - force_c_encode=True, return_original_cond=True, bs=bs) - - assert exists(self.concat_keys) - c_cat = list() - for ck in self.concat_keys: - cc = rearrange(batch[ck], 'b h w c -> b c h w').to(memory_format=torch.contiguous_format).float() - if bs is not None: - cc = cc[:bs] - cc = cc.to(self.device) - bchw = z.shape - if ck != self.masked_image_key: - cc = torch.nn.functional.interpolate(cc, size=bchw[-2:]) - else: - cc = self.get_first_stage_encoding(self.encode_first_stage(cc)) - c_cat.append(cc) - c_cat = torch.cat(c_cat, dim=1) - all_conds = {"c_concat": [c_cat], "c_crossattn": [c]} - if return_first_stage_outputs: - return z, all_conds, x, xrec, xc - return z, all_conds - - @torch.no_grad() - def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None, - quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True, - plot_diffusion_rows=True, unconditional_guidance_scale=1., unconditional_guidance_label=None, - use_ema_scope=True, - **kwargs): - ema_scope = self.ema_scope if use_ema_scope else nullcontext - use_ddim = ddim_steps is not None - - log = dict() - z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key, bs=N, return_first_stage_outputs=True) - c_cat, c = c["c_concat"][0], c["c_crossattn"][0] - N = min(x.shape[0], N) - n_row = min(x.shape[0], n_row) - log["inputs"] = x - log["reconstruction"] = xrec - if self.model.conditioning_key is not None: - if hasattr(self.cond_stage_model, "decode"): - xc = self.cond_stage_model.decode(c) - log["conditioning"] = xc - elif self.cond_stage_key in ["caption", "txt"]: - xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25) - log["conditioning"] = xc - elif self.cond_stage_key == 'class_label': - xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25) - log['conditioning'] = xc - elif isimage(xc): - log["conditioning"] = xc - if ismap(xc): - log["original_conditioning"] = self.to_rgb(xc) - - if not (self.c_concat_log_start is None and self.c_concat_log_end is None): - log["c_concat_decoded"] = self.decode_first_stage(c_cat[:,self.c_concat_log_start:self.c_concat_log_end]) - - if plot_diffusion_rows: - # get diffusion row - diffusion_row = list() - z_start = z[:n_row] - for t in range(self.num_timesteps): - if t % self.log_every_t == 0 or t == self.num_timesteps - 1: - t = repeat(torch.tensor([t]), '1 -> b', b=n_row) - t = t.to(self.device).long() - noise = torch.randn_like(z_start) - z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise) - diffusion_row.append(self.decode_first_stage(z_noisy)) - - diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W - diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w') - diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w') - diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0]) - log["diffusion_row"] = diffusion_grid - - if sample: - # get denoise row - with ema_scope("Sampling"): - samples, z_denoise_row = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]}, - batch_size=N, ddim=use_ddim, - ddim_steps=ddim_steps, eta=ddim_eta) - # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True) - x_samples = self.decode_first_stage(samples) - log["samples"] = x_samples - if plot_denoise_rows: - denoise_grid = self._get_denoise_row_from_list(z_denoise_row) - log["denoise_row"] = denoise_grid - - if unconditional_guidance_scale > 1.0: - uc_cross = self.get_unconditional_conditioning(N, unconditional_guidance_label) - uc_cat = c_cat - uc_full = {"c_concat": [uc_cat], "c_crossattn": [uc_cross]} - with ema_scope("Sampling with classifier-free guidance"): - samples_cfg, _ = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]}, - batch_size=N, ddim=use_ddim, - ddim_steps=ddim_steps, eta=ddim_eta, - unconditional_guidance_scale=unconditional_guidance_scale, - unconditional_conditioning=uc_full, - ) - x_samples_cfg = self.decode_first_stage(samples_cfg) - log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg - - log["masked_image"] = rearrange(batch["masked_image"], - 'b h w c -> b c h w').to(memory_format=torch.contiguous_format).float() - return log - - -class Layout2ImgDiffusion(LatentDiffusion): - # TODO: move all layout-specific hacks to this class - def __init__(self, cond_stage_key, *args, **kwargs): - assert cond_stage_key == 'coordinates_bbox', 'Layout2ImgDiffusion only for cond_stage_key="coordinates_bbox"' - super().__init__(cond_stage_key=cond_stage_key, *args, **kwargs) - - def log_images(self, batch, N=8, *args, **kwargs): - logs = super().log_images(batch=batch, N=N, *args, **kwargs) - - key = 'train' if self.training else 'validation' - dset = self.trainer.datamodule.datasets[key] - mapper = dset.conditional_builders[self.cond_stage_key] - - bbox_imgs = [] - map_fn = lambda catno: dset.get_textual_label(dset.get_category_id(catno)) - for tknzd_bbox in batch[self.cond_stage_key][:N]: - bboximg = mapper.plot(tknzd_bbox.detach().cpu(), map_fn, (256, 256)) - bbox_imgs.append(bboximg) - - cond_img = torch.stack(bbox_imgs, dim=0) - logs['bbox_image'] = cond_img - return logs - - -class SimpleUpscaleDiffusion(LatentDiffusion): - def __init__(self, *args, low_scale_key="LR", **kwargs): - super().__init__(*args, **kwargs) - # assumes that neither the cond_stage nor the low_scale_model contain trainable params - assert not self.cond_stage_trainable - self.low_scale_key = low_scale_key - - @torch.no_grad() - def get_input(self, batch, k, cond_key=None, bs=None, log_mode=False): - if not log_mode: - z, c = super().get_input(batch, k, force_c_encode=True, bs=bs) - else: - z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True, - force_c_encode=True, return_original_cond=True, bs=bs) - x_low = batch[self.low_scale_key][:bs] - x_low = rearrange(x_low, 'b h w c -> b c h w') - x_low = x_low.to(memory_format=torch.contiguous_format).float() - - encoder_posterior = self.encode_first_stage(x_low) - zx = self.get_first_stage_encoding(encoder_posterior).detach() - all_conds = {"c_concat": [zx], "c_crossattn": [c]} - - if log_mode: - # TODO: maybe disable if too expensive - interpretability = False - if interpretability: - zx = zx[:, :, ::2, ::2] - return z, all_conds, x, xrec, xc, x_low - return z, all_conds - - @torch.no_grad() - def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None, - plot_denoise_rows=False, plot_progressive_rows=True, plot_diffusion_rows=True, - unconditional_guidance_scale=1., unconditional_guidance_label=None, use_ema_scope=True, - **kwargs): - ema_scope = self.ema_scope if use_ema_scope else nullcontext - use_ddim = ddim_steps is not None - - log = dict() - z, c, x, xrec, xc, x_low = self.get_input(batch, self.first_stage_key, bs=N, log_mode=True) - N = min(x.shape[0], N) - n_row = min(x.shape[0], n_row) - log["inputs"] = x - log["reconstruction"] = xrec - log["x_lr"] = x_low - - if self.model.conditioning_key is not None: - if hasattr(self.cond_stage_model, "decode"): - xc = self.cond_stage_model.decode(c) - log["conditioning"] = xc - elif self.cond_stage_key in ["caption", "txt"]: - xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2]//25) - log["conditioning"] = xc - elif self.cond_stage_key == 'class_label': - xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2]//25) - log['conditioning'] = xc - elif isimage(xc): - log["conditioning"] = xc - if ismap(xc): - log["original_conditioning"] = self.to_rgb(xc) - - if sample: - # get denoise row - with ema_scope("Sampling"): - samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim, - ddim_steps=ddim_steps, eta=ddim_eta) - # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True) - x_samples = self.decode_first_stage(samples) - log["samples"] = x_samples - - if unconditional_guidance_scale > 1.0: - uc_tmp = self.get_unconditional_conditioning(N, unconditional_guidance_label) - uc = dict() - for k in c: - if k == "c_crossattn": - assert isinstance(c[k], list) and len(c[k]) == 1 - uc[k] = [uc_tmp] - elif isinstance(c[k], list): - uc[k] = [c[k][i] for i in range(len(c[k]))] - else: - uc[k] = c[k] - - with ema_scope("Sampling with classifier-free guidance"): - samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim, - ddim_steps=ddim_steps, eta=ddim_eta, - unconditional_guidance_scale=unconditional_guidance_scale, - unconditional_conditioning=uc, - ) - x_samples_cfg = self.decode_first_stage(samples_cfg) - log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg - return log - -class MultiCatFrameDiffusion(LatentDiffusion): - def __init__(self, *args, low_scale_key="LR", **kwargs): - super().__init__(*args, **kwargs) - # assumes that neither the cond_stage nor the low_scale_model contain trainable params - assert not self.cond_stage_trainable - self.low_scale_key = low_scale_key - - @torch.no_grad() - def get_input(self, batch, k, cond_key=None, bs=None, log_mode=False): - n = 2 - if not log_mode: - z, c = super().get_input(batch, k, force_c_encode=True, bs=bs) - else: - z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True, - force_c_encode=True, return_original_cond=True, bs=bs) - cat_conds = batch[self.low_scale_key][:bs] - cats = [] - for i in range(n): - x_low = cat_conds[:,:,:,3*i:3*(i+1)] - x_low = rearrange(x_low, 'b h w c -> b c h w') - x_low = x_low.to(memory_format=torch.contiguous_format).float() - encoder_posterior = self.encode_first_stage(x_low) - zx = self.get_first_stage_encoding(encoder_posterior).detach() - cats.append(zx) - - all_conds = {"c_concat": [torch.cat(cats, dim=1)], "c_crossattn": [c]} - - if log_mode: - # TODO: maybe disable if too expensive - interpretability = False - if interpretability: - zx = zx[:, :, ::2, ::2] - return z, all_conds, x, xrec, xc, x_low - return z, all_conds - - @torch.no_grad() - def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None, - plot_denoise_rows=False, plot_progressive_rows=True, plot_diffusion_rows=True, - unconditional_guidance_scale=1., unconditional_guidance_label=None, use_ema_scope=True, - **kwargs): - ema_scope = self.ema_scope if use_ema_scope else nullcontext - use_ddim = ddim_steps is not None - - log = dict() - z, c, x, xrec, xc, x_low = self.get_input(batch, self.first_stage_key, bs=N, log_mode=True) - N = min(x.shape[0], N) - n_row = min(x.shape[0], n_row) - log["inputs"] = x - log["reconstruction"] = xrec - log["x_lr"] = x_low - - if self.model.conditioning_key is not None: - if hasattr(self.cond_stage_model, "decode"): - xc = self.cond_stage_model.decode(c) - log["conditioning"] = xc - elif self.cond_stage_key in ["caption", "txt"]: - xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2]//25) - log["conditioning"] = xc - elif self.cond_stage_key == 'class_label': - xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2]//25) - log['conditioning'] = xc - elif isimage(xc): - log["conditioning"] = xc - if ismap(xc): - log["original_conditioning"] = self.to_rgb(xc) - - if sample: - # get denoise row - with ema_scope("Sampling"): - samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim, - ddim_steps=ddim_steps, eta=ddim_eta) - # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True) - x_samples = self.decode_first_stage(samples) - log["samples"] = x_samples - - if unconditional_guidance_scale > 1.0: - uc_tmp = self.get_unconditional_conditioning(N, unconditional_guidance_label) - uc = dict() - for k in c: - if k == "c_crossattn": - assert isinstance(c[k], list) and len(c[k]) == 1 - uc[k] = [uc_tmp] - elif isinstance(c[k], list): - uc[k] = [c[k][i] for i in range(len(c[k]))] - else: - uc[k] = c[k] - - with ema_scope("Sampling with classifier-free guidance"): - samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim, - ddim_steps=ddim_steps, eta=ddim_eta, - unconditional_guidance_scale=unconditional_guidance_scale, - unconditional_conditioning=uc, - ) - x_samples_cfg = self.decode_first_stage(samples_cfg) - log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg - return log diff --git a/One-2-3-45-master 2/ldm/models/diffusion/plms.py b/One-2-3-45-master 2/ldm/models/diffusion/plms.py deleted file mode 100644 index 080edeec9efed663f0e01de0afbbf3bed1cfa1d1..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/ldm/models/diffusion/plms.py +++ /dev/null @@ -1,259 +0,0 @@ -"""SAMPLING ONLY.""" - -import torch -import numpy as np -from tqdm import tqdm -from functools import partial - -from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like -from ldm.models.diffusion.sampling_util import norm_thresholding - - -class PLMSSampler(object): - def __init__(self, model, schedule="linear", **kwargs): - super().__init__() - self.model = model - self.ddpm_num_timesteps = model.num_timesteps - self.schedule = schedule - - def register_buffer(self, name, attr): - if type(attr) == torch.Tensor: - if attr.device != torch.device("cuda"): - attr = attr.to(torch.device("cuda")) - setattr(self, name, attr) - - def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True): - if ddim_eta != 0: - raise ValueError('ddim_eta must be 0 for PLMS') - self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps, - num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose) - alphas_cumprod = self.model.alphas_cumprod - assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep' - to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device) - - self.register_buffer('betas', to_torch(self.model.betas)) - self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) - self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev)) - - # calculations for diffusion q(x_t | x_{t-1}) and others - self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu()))) - self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu()))) - self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu()))) - self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu()))) - self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1))) - - # ddim sampling parameters - ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(), - ddim_timesteps=self.ddim_timesteps, - eta=ddim_eta,verbose=verbose) - self.register_buffer('ddim_sigmas', ddim_sigmas) - self.register_buffer('ddim_alphas', ddim_alphas) - self.register_buffer('ddim_alphas_prev', ddim_alphas_prev) - self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas)) - sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt( - (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * ( - 1 - self.alphas_cumprod / self.alphas_cumprod_prev)) - self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps) - - @torch.no_grad() - def sample(self, - S, - batch_size, - shape, - conditioning=None, - callback=None, - normals_sequence=None, - img_callback=None, - quantize_x0=False, - eta=0., - mask=None, - x0=None, - temperature=1., - noise_dropout=0., - score_corrector=None, - corrector_kwargs=None, - verbose=True, - x_T=None, - log_every_t=100, - unconditional_guidance_scale=1., - unconditional_conditioning=None, - # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ... - dynamic_threshold=None, - **kwargs - ): - if conditioning is not None: - if isinstance(conditioning, dict): - ctmp = conditioning[list(conditioning.keys())[0]] - while isinstance(ctmp, list): ctmp = ctmp[0] - cbs = ctmp.shape[0] - if cbs != batch_size: - print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}") - else: - if conditioning.shape[0] != batch_size: - print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}") - - self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose) - # sampling - C, H, W = shape - size = (batch_size, C, H, W) - print(f'Data shape for PLMS sampling is {size}') - - samples, intermediates = self.plms_sampling(conditioning, size, - callback=callback, - img_callback=img_callback, - quantize_denoised=quantize_x0, - mask=mask, x0=x0, - ddim_use_original_steps=False, - noise_dropout=noise_dropout, - temperature=temperature, - score_corrector=score_corrector, - corrector_kwargs=corrector_kwargs, - x_T=x_T, - log_every_t=log_every_t, - unconditional_guidance_scale=unconditional_guidance_scale, - unconditional_conditioning=unconditional_conditioning, - dynamic_threshold=dynamic_threshold, - ) - return samples, intermediates - - @torch.no_grad() - def plms_sampling(self, cond, shape, - x_T=None, ddim_use_original_steps=False, - callback=None, timesteps=None, quantize_denoised=False, - mask=None, x0=None, img_callback=None, log_every_t=100, - temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, - unconditional_guidance_scale=1., unconditional_conditioning=None, - dynamic_threshold=None): - device = self.model.betas.device - b = shape[0] - if x_T is None: - img = torch.randn(shape, device=device) - else: - img = x_T - - if timesteps is None: - timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps - elif timesteps is not None and not ddim_use_original_steps: - subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1 - timesteps = self.ddim_timesteps[:subset_end] - - intermediates = {'x_inter': [img], 'pred_x0': [img]} - time_range = list(reversed(range(0,timesteps))) if ddim_use_original_steps else np.flip(timesteps) - total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0] - print(f"Running PLMS Sampling with {total_steps} timesteps") - - iterator = tqdm(time_range, desc='PLMS Sampler', total=total_steps) - old_eps = [] - - for i, step in enumerate(iterator): - index = total_steps - i - 1 - ts = torch.full((b,), step, device=device, dtype=torch.long) - ts_next = torch.full((b,), time_range[min(i + 1, len(time_range) - 1)], device=device, dtype=torch.long) - - if mask is not None: - assert x0 is not None - img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass? - img = img_orig * mask + (1. - mask) * img - - outs = self.p_sample_plms(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps, - quantize_denoised=quantize_denoised, temperature=temperature, - noise_dropout=noise_dropout, score_corrector=score_corrector, - corrector_kwargs=corrector_kwargs, - unconditional_guidance_scale=unconditional_guidance_scale, - unconditional_conditioning=unconditional_conditioning, - old_eps=old_eps, t_next=ts_next, - dynamic_threshold=dynamic_threshold) - img, pred_x0, e_t = outs - old_eps.append(e_t) - if len(old_eps) >= 4: - old_eps.pop(0) - if callback: callback(i) - if img_callback: img_callback(pred_x0, i) - - if index % log_every_t == 0 or index == total_steps - 1: - intermediates['x_inter'].append(img) - intermediates['pred_x0'].append(pred_x0) - - return img, intermediates - - @torch.no_grad() - def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False, - temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, - unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None, - dynamic_threshold=None): - b, *_, device = *x.shape, x.device - - def get_model_output(x, t): - if unconditional_conditioning is None or unconditional_guidance_scale == 1.: - e_t = self.model.apply_model(x, t, c) - else: - x_in = torch.cat([x] * 2) - t_in = torch.cat([t] * 2) - if isinstance(c, dict): - assert isinstance(unconditional_conditioning, dict) - c_in = dict() - for k in c: - if isinstance(c[k], list): - c_in[k] = [torch.cat([ - unconditional_conditioning[k][i], - c[k][i]]) for i in range(len(c[k]))] - else: - c_in[k] = torch.cat([ - unconditional_conditioning[k], - c[k]]) - else: - c_in = torch.cat([unconditional_conditioning, c]) - e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2) - e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond) - - if score_corrector is not None: - assert self.model.parameterization == "eps" - e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs) - - return e_t - - alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas - alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev - sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas - sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas - - def get_x_prev_and_pred_x0(e_t, index): - # select parameters corresponding to the currently considered timestep - a_t = torch.full((b, 1, 1, 1), alphas[index], device=device) - a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device) - sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device) - sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device) - - # current prediction for x_0 - pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt() - if quantize_denoised: - pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0) - if dynamic_threshold is not None: - pred_x0 = norm_thresholding(pred_x0, dynamic_threshold) - # direction pointing to x_t - dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t - noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature - if noise_dropout > 0.: - noise = torch.nn.functional.dropout(noise, p=noise_dropout) - x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise - return x_prev, pred_x0 - - e_t = get_model_output(x, t) - if len(old_eps) == 0: - # Pseudo Improved Euler (2nd order) - x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index) - e_t_next = get_model_output(x_prev, t_next) - e_t_prime = (e_t + e_t_next) / 2 - elif len(old_eps) == 1: - # 2nd order Pseudo Linear Multistep (Adams-Bashforth) - e_t_prime = (3 * e_t - old_eps[-1]) / 2 - elif len(old_eps) == 2: - # 3nd order Pseudo Linear Multistep (Adams-Bashforth) - e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12 - elif len(old_eps) >= 3: - # 4nd order Pseudo Linear Multistep (Adams-Bashforth) - e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24 - - x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index) - - return x_prev, pred_x0, e_t diff --git a/One-2-3-45-master 2/ldm/models/diffusion/sampling_util.py b/One-2-3-45-master 2/ldm/models/diffusion/sampling_util.py deleted file mode 100644 index a0ae00fe86044456fc403af403be71ff15112424..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/ldm/models/diffusion/sampling_util.py +++ /dev/null @@ -1,50 +0,0 @@ -import torch -import numpy as np - - -def append_dims(x, target_dims): - """Appends dimensions to the end of a tensor until it has target_dims dimensions. - From https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/utils.py""" - dims_to_append = target_dims - x.ndim - if dims_to_append < 0: - raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less') - return x[(...,) + (None,) * dims_to_append] - - -def renorm_thresholding(x0, value): - # renorm - pred_max = x0.max() - pred_min = x0.min() - pred_x0 = (x0 - pred_min) / (pred_max - pred_min) # 0 ... 1 - pred_x0 = 2 * pred_x0 - 1. # -1 ... 1 - - s = torch.quantile( - rearrange(pred_x0, 'b ... -> b (...)').abs(), - value, - dim=-1 - ) - s.clamp_(min=1.0) - s = s.view(-1, *((1,) * (pred_x0.ndim - 1))) - - # clip by threshold - # pred_x0 = pred_x0.clamp(-s, s) / s # needs newer pytorch # TODO bring back to pure-gpu with min/max - - # temporary hack: numpy on cpu - pred_x0 = np.clip(pred_x0.cpu().numpy(), -s.cpu().numpy(), s.cpu().numpy()) / s.cpu().numpy() - pred_x0 = torch.tensor(pred_x0).to(self.model.device) - - # re.renorm - pred_x0 = (pred_x0 + 1.) / 2. # 0 ... 1 - pred_x0 = (pred_max - pred_min) * pred_x0 + pred_min # orig range - return pred_x0 - - -def norm_thresholding(x0, value): - s = append_dims(x0.pow(2).flatten(1).mean(1).sqrt().clamp(min=value), x0.ndim) - return x0 * (value / s) - - -def spatial_norm_thresholding(x0, value): - # b c h w - s = x0.pow(2).mean(1, keepdim=True).sqrt().clamp(min=value) - return x0 * (value / s) \ No newline at end of file diff --git a/One-2-3-45-master 2/ldm/modules/attention.py b/One-2-3-45-master 2/ldm/modules/attention.py deleted file mode 100644 index 124effbeee03d2f0950f6cac6aa455be5a6d359f..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/ldm/modules/attention.py +++ /dev/null @@ -1,266 +0,0 @@ -from inspect import isfunction -import math -import torch -import torch.nn.functional as F -from torch import nn, einsum -from einops import rearrange, repeat - -from ldm.modules.diffusionmodules.util import checkpoint - - -def exists(val): - return val is not None - - -def uniq(arr): - return{el: True for el in arr}.keys() - - -def default(val, d): - if exists(val): - return val - return d() if isfunction(d) else d - - -def max_neg_value(t): - return -torch.finfo(t.dtype).max - - -def init_(tensor): - dim = tensor.shape[-1] - std = 1 / math.sqrt(dim) - tensor.uniform_(-std, std) - return tensor - - -# feedforward -class GEGLU(nn.Module): - def __init__(self, dim_in, dim_out): - super().__init__() - self.proj = nn.Linear(dim_in, dim_out * 2) - - def forward(self, x): - x, gate = self.proj(x).chunk(2, dim=-1) - return x * F.gelu(gate) - - -class FeedForward(nn.Module): - def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.): - super().__init__() - inner_dim = int(dim * mult) - dim_out = default(dim_out, dim) - project_in = nn.Sequential( - nn.Linear(dim, inner_dim), - nn.GELU() - ) if not glu else GEGLU(dim, inner_dim) - - self.net = nn.Sequential( - project_in, - nn.Dropout(dropout), - nn.Linear(inner_dim, dim_out) - ) - - def forward(self, x): - return self.net(x) - - -def zero_module(module): - """ - Zero out the parameters of a module and return it. - """ - for p in module.parameters(): - p.detach().zero_() - return module - - -def Normalize(in_channels): - return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) - - -class LinearAttention(nn.Module): - def __init__(self, dim, heads=4, dim_head=32): - super().__init__() - self.heads = heads - hidden_dim = dim_head * heads - self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False) - self.to_out = nn.Conv2d(hidden_dim, dim, 1) - - def forward(self, x): - b, c, h, w = x.shape - qkv = self.to_qkv(x) - q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3) - k = k.softmax(dim=-1) - context = torch.einsum('bhdn,bhen->bhde', k, v) - out = torch.einsum('bhde,bhdn->bhen', context, q) - out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w) - return self.to_out(out) - - -class SpatialSelfAttention(nn.Module): - def __init__(self, in_channels): - super().__init__() - self.in_channels = in_channels - - self.norm = Normalize(in_channels) - self.q = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - self.k = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - self.v = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - self.proj_out = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - - def forward(self, x): - h_ = x - h_ = self.norm(h_) - q = self.q(h_) - k = self.k(h_) - v = self.v(h_) - - # compute attention - b,c,h,w = q.shape - q = rearrange(q, 'b c h w -> b (h w) c') - k = rearrange(k, 'b c h w -> b c (h w)') - w_ = torch.einsum('bij,bjk->bik', q, k) - - w_ = w_ * (int(c)**(-0.5)) - w_ = torch.nn.functional.softmax(w_, dim=2) - - # attend to values - v = rearrange(v, 'b c h w -> b c (h w)') - w_ = rearrange(w_, 'b i j -> b j i') - h_ = torch.einsum('bij,bjk->bik', v, w_) - h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h) - h_ = self.proj_out(h_) - - return x+h_ - - -class CrossAttention(nn.Module): - def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.): - super().__init__() - inner_dim = dim_head * heads - context_dim = default(context_dim, query_dim) - - self.scale = dim_head ** -0.5 - self.heads = heads - - self.to_q = nn.Linear(query_dim, inner_dim, bias=False) - self.to_k = nn.Linear(context_dim, inner_dim, bias=False) - self.to_v = nn.Linear(context_dim, inner_dim, bias=False) - - self.to_out = nn.Sequential( - nn.Linear(inner_dim, query_dim), - nn.Dropout(dropout) - ) - - def forward(self, x, context=None, mask=None): - h = self.heads - - q = self.to_q(x) - context = default(context, x) - k = self.to_k(context) - v = self.to_v(context) - - q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) - - sim = einsum('b i d, b j d -> b i j', q, k) * self.scale - - if exists(mask): - mask = rearrange(mask, 'b ... -> b (...)') - max_neg_value = -torch.finfo(sim.dtype).max - mask = repeat(mask, 'b j -> (b h) () j', h=h) - sim.masked_fill_(~mask, max_neg_value) - - # attention, what we cannot get enough of - attn = sim.softmax(dim=-1) - - out = einsum('b i j, b j d -> b i d', attn, v) - out = rearrange(out, '(b h) n d -> b n (h d)', h=h) - return self.to_out(out) - - -class BasicTransformerBlock(nn.Module): - def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True, - disable_self_attn=False): - super().__init__() - self.disable_self_attn = disable_self_attn - self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout, - context_dim=context_dim if self.disable_self_attn else None) # is a self-attention if not self.disable_self_attn - self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) - self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim, - heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none - self.norm1 = nn.LayerNorm(dim) - self.norm2 = nn.LayerNorm(dim) - self.norm3 = nn.LayerNorm(dim) - self.checkpoint = checkpoint - - def forward(self, x, context=None): - return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint) - - def _forward(self, x, context=None): - x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None) + x - x = self.attn2(self.norm2(x), context=context) + x - x = self.ff(self.norm3(x)) + x - return x - - -class SpatialTransformer(nn.Module): - """ - Transformer block for image-like data. - First, project the input (aka embedding) - and reshape to b, t, d. - Then apply standard transformer action. - Finally, reshape to image - """ - def __init__(self, in_channels, n_heads, d_head, - depth=1, dropout=0., context_dim=None, - disable_self_attn=False): - super().__init__() - self.in_channels = in_channels - inner_dim = n_heads * d_head - self.norm = Normalize(in_channels) - - self.proj_in = nn.Conv2d(in_channels, - inner_dim, - kernel_size=1, - stride=1, - padding=0) - - self.transformer_blocks = nn.ModuleList( - [BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim, - disable_self_attn=disable_self_attn) - for d in range(depth)] - ) - - self.proj_out = zero_module(nn.Conv2d(inner_dim, - in_channels, - kernel_size=1, - stride=1, - padding=0)) - - def forward(self, x, context=None): - # note: if no context is given, cross-attention defaults to self-attention - b, c, h, w = x.shape - x_in = x - x = self.norm(x) - x = self.proj_in(x) - x = rearrange(x, 'b c h w -> b (h w) c').contiguous() - for block in self.transformer_blocks: - x = block(x, context=context) - x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous() - x = self.proj_out(x) - return x + x_in diff --git a/One-2-3-45-master 2/ldm/modules/diffusionmodules/__init__.py b/One-2-3-45-master 2/ldm/modules/diffusionmodules/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/One-2-3-45-master 2/ldm/modules/diffusionmodules/model.py b/One-2-3-45-master 2/ldm/modules/diffusionmodules/model.py deleted file mode 100644 index 533e589a2024f1d7c52093d8c472c3b1b6617e26..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/ldm/modules/diffusionmodules/model.py +++ /dev/null @@ -1,835 +0,0 @@ -# pytorch_diffusion + derived encoder decoder -import math -import torch -import torch.nn as nn -import numpy as np -from einops import rearrange - -from ldm.util import instantiate_from_config -from ldm.modules.attention import LinearAttention - - -def get_timestep_embedding(timesteps, embedding_dim): - """ - This matches the implementation in Denoising Diffusion Probabilistic Models: - From Fairseq. - Build sinusoidal embeddings. - This matches the implementation in tensor2tensor, but differs slightly - from the description in Section 3.5 of "Attention Is All You Need". - """ - assert len(timesteps.shape) == 1 - - half_dim = embedding_dim // 2 - emb = math.log(10000) / (half_dim - 1) - emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb) - emb = emb.to(device=timesteps.device) - emb = timesteps.float()[:, None] * emb[None, :] - emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) - if embedding_dim % 2 == 1: # zero pad - emb = torch.nn.functional.pad(emb, (0,1,0,0)) - return emb - - -def nonlinearity(x): - # swish - return x*torch.sigmoid(x) - - -def Normalize(in_channels, num_groups=32): - return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True) - - -class Upsample(nn.Module): - def __init__(self, in_channels, with_conv): - super().__init__() - self.with_conv = with_conv - if self.with_conv: - self.conv = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=3, - stride=1, - padding=1) - - def forward(self, x): - x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") - if self.with_conv: - x = self.conv(x) - return x - - -class Downsample(nn.Module): - def __init__(self, in_channels, with_conv): - super().__init__() - self.with_conv = with_conv - if self.with_conv: - # no asymmetric padding in torch conv, must do it ourselves - self.conv = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=3, - stride=2, - padding=0) - - def forward(self, x): - if self.with_conv: - pad = (0,1,0,1) - x = torch.nn.functional.pad(x, pad, mode="constant", value=0) - x = self.conv(x) - else: - x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2) - return x - - -class ResnetBlock(nn.Module): - def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, - dropout, temb_channels=512): - super().__init__() - self.in_channels = in_channels - out_channels = in_channels if out_channels is None else out_channels - self.out_channels = out_channels - self.use_conv_shortcut = conv_shortcut - - self.norm1 = Normalize(in_channels) - self.conv1 = torch.nn.Conv2d(in_channels, - out_channels, - kernel_size=3, - stride=1, - padding=1) - if temb_channels > 0: - self.temb_proj = torch.nn.Linear(temb_channels, - out_channels) - self.norm2 = Normalize(out_channels) - self.dropout = torch.nn.Dropout(dropout) - self.conv2 = torch.nn.Conv2d(out_channels, - out_channels, - kernel_size=3, - stride=1, - padding=1) - if self.in_channels != self.out_channels: - if self.use_conv_shortcut: - self.conv_shortcut = torch.nn.Conv2d(in_channels, - out_channels, - kernel_size=3, - stride=1, - padding=1) - else: - self.nin_shortcut = torch.nn.Conv2d(in_channels, - out_channels, - kernel_size=1, - stride=1, - padding=0) - - def forward(self, x, temb): - h = x - h = self.norm1(h) - h = nonlinearity(h) - h = self.conv1(h) - - if temb is not None: - h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None] - - h = self.norm2(h) - h = nonlinearity(h) - h = self.dropout(h) - h = self.conv2(h) - - if self.in_channels != self.out_channels: - if self.use_conv_shortcut: - x = self.conv_shortcut(x) - else: - x = self.nin_shortcut(x) - - return x+h - - -class LinAttnBlock(LinearAttention): - """to match AttnBlock usage""" - def __init__(self, in_channels): - super().__init__(dim=in_channels, heads=1, dim_head=in_channels) - - -class AttnBlock(nn.Module): - def __init__(self, in_channels): - super().__init__() - self.in_channels = in_channels - - self.norm = Normalize(in_channels) - self.q = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - self.k = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - self.v = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - self.proj_out = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - - - def forward(self, x): - h_ = x - h_ = self.norm(h_) - q = self.q(h_) - k = self.k(h_) - v = self.v(h_) - - # compute attention - b,c,h,w = q.shape - q = q.reshape(b,c,h*w) - q = q.permute(0,2,1) # b,hw,c - k = k.reshape(b,c,h*w) # b,c,hw - w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j] - w_ = w_ * (int(c)**(-0.5)) - w_ = torch.nn.functional.softmax(w_, dim=2) - - # attend to values - v = v.reshape(b,c,h*w) - w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q) - h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j] - h_ = h_.reshape(b,c,h,w) - - h_ = self.proj_out(h_) - - return x+h_ - - -def make_attn(in_channels, attn_type="vanilla"): - assert attn_type in ["vanilla", "linear", "none"], f'attn_type {attn_type} unknown' - print(f"making attention of type '{attn_type}' with {in_channels} in_channels") - if attn_type == "vanilla": - return AttnBlock(in_channels) - elif attn_type == "none": - return nn.Identity(in_channels) - else: - return LinAttnBlock(in_channels) - - -class Model(nn.Module): - def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, - attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, - resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"): - super().__init__() - if use_linear_attn: attn_type = "linear" - self.ch = ch - self.temb_ch = self.ch*4 - self.num_resolutions = len(ch_mult) - self.num_res_blocks = num_res_blocks - self.resolution = resolution - self.in_channels = in_channels - - self.use_timestep = use_timestep - if self.use_timestep: - # timestep embedding - self.temb = nn.Module() - self.temb.dense = nn.ModuleList([ - torch.nn.Linear(self.ch, - self.temb_ch), - torch.nn.Linear(self.temb_ch, - self.temb_ch), - ]) - - # downsampling - self.conv_in = torch.nn.Conv2d(in_channels, - self.ch, - kernel_size=3, - stride=1, - padding=1) - - curr_res = resolution - in_ch_mult = (1,)+tuple(ch_mult) - self.down = nn.ModuleList() - for i_level in range(self.num_resolutions): - block = nn.ModuleList() - attn = nn.ModuleList() - block_in = ch*in_ch_mult[i_level] - block_out = ch*ch_mult[i_level] - for i_block in range(self.num_res_blocks): - block.append(ResnetBlock(in_channels=block_in, - out_channels=block_out, - temb_channels=self.temb_ch, - dropout=dropout)) - block_in = block_out - if curr_res in attn_resolutions: - attn.append(make_attn(block_in, attn_type=attn_type)) - down = nn.Module() - down.block = block - down.attn = attn - if i_level != self.num_resolutions-1: - down.downsample = Downsample(block_in, resamp_with_conv) - curr_res = curr_res // 2 - self.down.append(down) - - # middle - self.mid = nn.Module() - self.mid.block_1 = ResnetBlock(in_channels=block_in, - out_channels=block_in, - temb_channels=self.temb_ch, - dropout=dropout) - self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) - self.mid.block_2 = ResnetBlock(in_channels=block_in, - out_channels=block_in, - temb_channels=self.temb_ch, - dropout=dropout) - - # upsampling - self.up = nn.ModuleList() - for i_level in reversed(range(self.num_resolutions)): - block = nn.ModuleList() - attn = nn.ModuleList() - block_out = ch*ch_mult[i_level] - skip_in = ch*ch_mult[i_level] - for i_block in range(self.num_res_blocks+1): - if i_block == self.num_res_blocks: - skip_in = ch*in_ch_mult[i_level] - block.append(ResnetBlock(in_channels=block_in+skip_in, - out_channels=block_out, - temb_channels=self.temb_ch, - dropout=dropout)) - block_in = block_out - if curr_res in attn_resolutions: - attn.append(make_attn(block_in, attn_type=attn_type)) - up = nn.Module() - up.block = block - up.attn = attn - if i_level != 0: - up.upsample = Upsample(block_in, resamp_with_conv) - curr_res = curr_res * 2 - self.up.insert(0, up) # prepend to get consistent order - - # end - self.norm_out = Normalize(block_in) - self.conv_out = torch.nn.Conv2d(block_in, - out_ch, - kernel_size=3, - stride=1, - padding=1) - - def forward(self, x, t=None, context=None): - #assert x.shape[2] == x.shape[3] == self.resolution - if context is not None: - # assume aligned context, cat along channel axis - x = torch.cat((x, context), dim=1) - if self.use_timestep: - # timestep embedding - assert t is not None - temb = get_timestep_embedding(t, self.ch) - temb = self.temb.dense[0](temb) - temb = nonlinearity(temb) - temb = self.temb.dense[1](temb) - else: - temb = None - - # downsampling - hs = [self.conv_in(x)] - for i_level in range(self.num_resolutions): - for i_block in range(self.num_res_blocks): - h = self.down[i_level].block[i_block](hs[-1], temb) - if len(self.down[i_level].attn) > 0: - h = self.down[i_level].attn[i_block](h) - hs.append(h) - if i_level != self.num_resolutions-1: - hs.append(self.down[i_level].downsample(hs[-1])) - - # middle - h = hs[-1] - h = self.mid.block_1(h, temb) - h = self.mid.attn_1(h) - h = self.mid.block_2(h, temb) - - # upsampling - for i_level in reversed(range(self.num_resolutions)): - for i_block in range(self.num_res_blocks+1): - h = self.up[i_level].block[i_block]( - torch.cat([h, hs.pop()], dim=1), temb) - if len(self.up[i_level].attn) > 0: - h = self.up[i_level].attn[i_block](h) - if i_level != 0: - h = self.up[i_level].upsample(h) - - # end - h = self.norm_out(h) - h = nonlinearity(h) - h = self.conv_out(h) - return h - - def get_last_layer(self): - return self.conv_out.weight - - -class Encoder(nn.Module): - def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, - attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, - resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla", - **ignore_kwargs): - super().__init__() - if use_linear_attn: attn_type = "linear" - self.ch = ch - self.temb_ch = 0 - self.num_resolutions = len(ch_mult) - self.num_res_blocks = num_res_blocks - self.resolution = resolution - self.in_channels = in_channels - - # downsampling - self.conv_in = torch.nn.Conv2d(in_channels, - self.ch, - kernel_size=3, - stride=1, - padding=1) - - curr_res = resolution - in_ch_mult = (1,)+tuple(ch_mult) - self.in_ch_mult = in_ch_mult - self.down = nn.ModuleList() - for i_level in range(self.num_resolutions): - block = nn.ModuleList() - attn = nn.ModuleList() - block_in = ch*in_ch_mult[i_level] - block_out = ch*ch_mult[i_level] - for i_block in range(self.num_res_blocks): - block.append(ResnetBlock(in_channels=block_in, - out_channels=block_out, - temb_channels=self.temb_ch, - dropout=dropout)) - block_in = block_out - if curr_res in attn_resolutions: - attn.append(make_attn(block_in, attn_type=attn_type)) - down = nn.Module() - down.block = block - down.attn = attn - if i_level != self.num_resolutions-1: - down.downsample = Downsample(block_in, resamp_with_conv) - curr_res = curr_res // 2 - self.down.append(down) - - # middle - self.mid = nn.Module() - self.mid.block_1 = ResnetBlock(in_channels=block_in, - out_channels=block_in, - temb_channels=self.temb_ch, - dropout=dropout) - self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) - self.mid.block_2 = ResnetBlock(in_channels=block_in, - out_channels=block_in, - temb_channels=self.temb_ch, - dropout=dropout) - - # end - self.norm_out = Normalize(block_in) - self.conv_out = torch.nn.Conv2d(block_in, - 2*z_channels if double_z else z_channels, - kernel_size=3, - stride=1, - padding=1) - - def forward(self, x): - # timestep embedding - temb = None - - # downsampling - hs = [self.conv_in(x)] - for i_level in range(self.num_resolutions): - for i_block in range(self.num_res_blocks): - h = self.down[i_level].block[i_block](hs[-1], temb) - if len(self.down[i_level].attn) > 0: - h = self.down[i_level].attn[i_block](h) - hs.append(h) - if i_level != self.num_resolutions-1: - hs.append(self.down[i_level].downsample(hs[-1])) - - # middle - h = hs[-1] - h = self.mid.block_1(h, temb) - h = self.mid.attn_1(h) - h = self.mid.block_2(h, temb) - - # end - h = self.norm_out(h) - h = nonlinearity(h) - h = self.conv_out(h) - return h - - -class Decoder(nn.Module): - def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, - attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, - resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False, - attn_type="vanilla", **ignorekwargs): - super().__init__() - if use_linear_attn: attn_type = "linear" - self.ch = ch - self.temb_ch = 0 - self.num_resolutions = len(ch_mult) - self.num_res_blocks = num_res_blocks - self.resolution = resolution - self.in_channels = in_channels - self.give_pre_end = give_pre_end - self.tanh_out = tanh_out - - # compute in_ch_mult, block_in and curr_res at lowest res - in_ch_mult = (1,)+tuple(ch_mult) - block_in = ch*ch_mult[self.num_resolutions-1] - curr_res = resolution // 2**(self.num_resolutions-1) - self.z_shape = (1,z_channels,curr_res,curr_res) - print("Working with z of shape {} = {} dimensions.".format( - self.z_shape, np.prod(self.z_shape))) - - # z to block_in - self.conv_in = torch.nn.Conv2d(z_channels, - block_in, - kernel_size=3, - stride=1, - padding=1) - - # middle - self.mid = nn.Module() - self.mid.block_1 = ResnetBlock(in_channels=block_in, - out_channels=block_in, - temb_channels=self.temb_ch, - dropout=dropout) - self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) - self.mid.block_2 = ResnetBlock(in_channels=block_in, - out_channels=block_in, - temb_channels=self.temb_ch, - dropout=dropout) - - # upsampling - self.up = nn.ModuleList() - for i_level in reversed(range(self.num_resolutions)): - block = nn.ModuleList() - attn = nn.ModuleList() - block_out = ch*ch_mult[i_level] - for i_block in range(self.num_res_blocks+1): - block.append(ResnetBlock(in_channels=block_in, - out_channels=block_out, - temb_channels=self.temb_ch, - dropout=dropout)) - block_in = block_out - if curr_res in attn_resolutions: - attn.append(make_attn(block_in, attn_type=attn_type)) - up = nn.Module() - up.block = block - up.attn = attn - if i_level != 0: - up.upsample = Upsample(block_in, resamp_with_conv) - curr_res = curr_res * 2 - self.up.insert(0, up) # prepend to get consistent order - - # end - self.norm_out = Normalize(block_in) - self.conv_out = torch.nn.Conv2d(block_in, - out_ch, - kernel_size=3, - stride=1, - padding=1) - - def forward(self, z): - #assert z.shape[1:] == self.z_shape[1:] - self.last_z_shape = z.shape - - # timestep embedding - temb = None - - # z to block_in - h = self.conv_in(z) - - # middle - h = self.mid.block_1(h, temb) - h = self.mid.attn_1(h) - h = self.mid.block_2(h, temb) - - # upsampling - for i_level in reversed(range(self.num_resolutions)): - for i_block in range(self.num_res_blocks+1): - h = self.up[i_level].block[i_block](h, temb) - if len(self.up[i_level].attn) > 0: - h = self.up[i_level].attn[i_block](h) - if i_level != 0: - h = self.up[i_level].upsample(h) - - # end - if self.give_pre_end: - return h - - h = self.norm_out(h) - h = nonlinearity(h) - h = self.conv_out(h) - if self.tanh_out: - h = torch.tanh(h) - return h - - -class SimpleDecoder(nn.Module): - def __init__(self, in_channels, out_channels, *args, **kwargs): - super().__init__() - self.model = nn.ModuleList([nn.Conv2d(in_channels, in_channels, 1), - ResnetBlock(in_channels=in_channels, - out_channels=2 * in_channels, - temb_channels=0, dropout=0.0), - ResnetBlock(in_channels=2 * in_channels, - out_channels=4 * in_channels, - temb_channels=0, dropout=0.0), - ResnetBlock(in_channels=4 * in_channels, - out_channels=2 * in_channels, - temb_channels=0, dropout=0.0), - nn.Conv2d(2*in_channels, in_channels, 1), - Upsample(in_channels, with_conv=True)]) - # end - self.norm_out = Normalize(in_channels) - self.conv_out = torch.nn.Conv2d(in_channels, - out_channels, - kernel_size=3, - stride=1, - padding=1) - - def forward(self, x): - for i, layer in enumerate(self.model): - if i in [1,2,3]: - x = layer(x, None) - else: - x = layer(x) - - h = self.norm_out(x) - h = nonlinearity(h) - x = self.conv_out(h) - return x - - -class UpsampleDecoder(nn.Module): - def __init__(self, in_channels, out_channels, ch, num_res_blocks, resolution, - ch_mult=(2,2), dropout=0.0): - super().__init__() - # upsampling - self.temb_ch = 0 - self.num_resolutions = len(ch_mult) - self.num_res_blocks = num_res_blocks - block_in = in_channels - curr_res = resolution // 2 ** (self.num_resolutions - 1) - self.res_blocks = nn.ModuleList() - self.upsample_blocks = nn.ModuleList() - for i_level in range(self.num_resolutions): - res_block = [] - block_out = ch * ch_mult[i_level] - for i_block in range(self.num_res_blocks + 1): - res_block.append(ResnetBlock(in_channels=block_in, - out_channels=block_out, - temb_channels=self.temb_ch, - dropout=dropout)) - block_in = block_out - self.res_blocks.append(nn.ModuleList(res_block)) - if i_level != self.num_resolutions - 1: - self.upsample_blocks.append(Upsample(block_in, True)) - curr_res = curr_res * 2 - - # end - self.norm_out = Normalize(block_in) - self.conv_out = torch.nn.Conv2d(block_in, - out_channels, - kernel_size=3, - stride=1, - padding=1) - - def forward(self, x): - # upsampling - h = x - for k, i_level in enumerate(range(self.num_resolutions)): - for i_block in range(self.num_res_blocks + 1): - h = self.res_blocks[i_level][i_block](h, None) - if i_level != self.num_resolutions - 1: - h = self.upsample_blocks[k](h) - h = self.norm_out(h) - h = nonlinearity(h) - h = self.conv_out(h) - return h - - -class LatentRescaler(nn.Module): - def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2): - super().__init__() - # residual block, interpolate, residual block - self.factor = factor - self.conv_in = nn.Conv2d(in_channels, - mid_channels, - kernel_size=3, - stride=1, - padding=1) - self.res_block1 = nn.ModuleList([ResnetBlock(in_channels=mid_channels, - out_channels=mid_channels, - temb_channels=0, - dropout=0.0) for _ in range(depth)]) - self.attn = AttnBlock(mid_channels) - self.res_block2 = nn.ModuleList([ResnetBlock(in_channels=mid_channels, - out_channels=mid_channels, - temb_channels=0, - dropout=0.0) for _ in range(depth)]) - - self.conv_out = nn.Conv2d(mid_channels, - out_channels, - kernel_size=1, - ) - - def forward(self, x): - x = self.conv_in(x) - for block in self.res_block1: - x = block(x, None) - x = torch.nn.functional.interpolate(x, size=(int(round(x.shape[2]*self.factor)), int(round(x.shape[3]*self.factor)))) - x = self.attn(x) - for block in self.res_block2: - x = block(x, None) - x = self.conv_out(x) - return x - - -class MergedRescaleEncoder(nn.Module): - def __init__(self, in_channels, ch, resolution, out_ch, num_res_blocks, - attn_resolutions, dropout=0.0, resamp_with_conv=True, - ch_mult=(1,2,4,8), rescale_factor=1.0, rescale_module_depth=1): - super().__init__() - intermediate_chn = ch * ch_mult[-1] - self.encoder = Encoder(in_channels=in_channels, num_res_blocks=num_res_blocks, ch=ch, ch_mult=ch_mult, - z_channels=intermediate_chn, double_z=False, resolution=resolution, - attn_resolutions=attn_resolutions, dropout=dropout, resamp_with_conv=resamp_with_conv, - out_ch=None) - self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=intermediate_chn, - mid_channels=intermediate_chn, out_channels=out_ch, depth=rescale_module_depth) - - def forward(self, x): - x = self.encoder(x) - x = self.rescaler(x) - return x - - -class MergedRescaleDecoder(nn.Module): - def __init__(self, z_channels, out_ch, resolution, num_res_blocks, attn_resolutions, ch, ch_mult=(1,2,4,8), - dropout=0.0, resamp_with_conv=True, rescale_factor=1.0, rescale_module_depth=1): - super().__init__() - tmp_chn = z_channels*ch_mult[-1] - self.decoder = Decoder(out_ch=out_ch, z_channels=tmp_chn, attn_resolutions=attn_resolutions, dropout=dropout, - resamp_with_conv=resamp_with_conv, in_channels=None, num_res_blocks=num_res_blocks, - ch_mult=ch_mult, resolution=resolution, ch=ch) - self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=z_channels, mid_channels=tmp_chn, - out_channels=tmp_chn, depth=rescale_module_depth) - - def forward(self, x): - x = self.rescaler(x) - x = self.decoder(x) - return x - - -class Upsampler(nn.Module): - def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2): - super().__init__() - assert out_size >= in_size - num_blocks = int(np.log2(out_size//in_size))+1 - factor_up = 1.+ (out_size % in_size) - print(f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}") - self.rescaler = LatentRescaler(factor=factor_up, in_channels=in_channels, mid_channels=2*in_channels, - out_channels=in_channels) - self.decoder = Decoder(out_ch=out_channels, resolution=out_size, z_channels=in_channels, num_res_blocks=2, - attn_resolutions=[], in_channels=None, ch=in_channels, - ch_mult=[ch_mult for _ in range(num_blocks)]) - - def forward(self, x): - x = self.rescaler(x) - x = self.decoder(x) - return x - - -class Resize(nn.Module): - def __init__(self, in_channels=None, learned=False, mode="bilinear"): - super().__init__() - self.with_conv = learned - self.mode = mode - if self.with_conv: - print(f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode") - raise NotImplementedError() - assert in_channels is not None - # no asymmetric padding in torch conv, must do it ourselves - self.conv = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=4, - stride=2, - padding=1) - - def forward(self, x, scale_factor=1.0): - if scale_factor==1.0: - return x - else: - x = torch.nn.functional.interpolate(x, mode=self.mode, align_corners=False, scale_factor=scale_factor) - return x - -class FirstStagePostProcessor(nn.Module): - - def __init__(self, ch_mult:list, in_channels, - pretrained_model:nn.Module=None, - reshape=False, - n_channels=None, - dropout=0., - pretrained_config=None): - super().__init__() - if pretrained_config is None: - assert pretrained_model is not None, 'Either "pretrained_model" or "pretrained_config" must not be None' - self.pretrained_model = pretrained_model - else: - assert pretrained_config is not None, 'Either "pretrained_model" or "pretrained_config" must not be None' - self.instantiate_pretrained(pretrained_config) - - self.do_reshape = reshape - - if n_channels is None: - n_channels = self.pretrained_model.encoder.ch - - self.proj_norm = Normalize(in_channels,num_groups=in_channels//2) - self.proj = nn.Conv2d(in_channels,n_channels,kernel_size=3, - stride=1,padding=1) - - blocks = [] - downs = [] - ch_in = n_channels - for m in ch_mult: - blocks.append(ResnetBlock(in_channels=ch_in,out_channels=m*n_channels,dropout=dropout)) - ch_in = m * n_channels - downs.append(Downsample(ch_in, with_conv=False)) - - self.model = nn.ModuleList(blocks) - self.downsampler = nn.ModuleList(downs) - - - def instantiate_pretrained(self, config): - model = instantiate_from_config(config) - self.pretrained_model = model.eval() - # self.pretrained_model.train = False - for param in self.pretrained_model.parameters(): - param.requires_grad = False - - - @torch.no_grad() - def encode_with_pretrained(self,x): - c = self.pretrained_model.encode(x) - if isinstance(c, DiagonalGaussianDistribution): - c = c.mode() - return c - - def forward(self,x): - z_fs = self.encode_with_pretrained(x) - z = self.proj_norm(z_fs) - z = self.proj(z) - z = nonlinearity(z) - - for submodel, downmodel in zip(self.model,self.downsampler): - z = submodel(z,temb=None) - z = downmodel(z) - - if self.do_reshape: - z = rearrange(z,'b c h w -> b (h w) c') - return z - diff --git a/One-2-3-45-master 2/ldm/modules/diffusionmodules/openaimodel.py b/One-2-3-45-master 2/ldm/modules/diffusionmodules/openaimodel.py deleted file mode 100644 index 6b994cca787464d34f6367edf486974b3542f808..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/ldm/modules/diffusionmodules/openaimodel.py +++ /dev/null @@ -1,996 +0,0 @@ -from abc import abstractmethod -from functools import partial -import math -from typing import Iterable - -import numpy as np -import torch as th -import torch.nn as nn -import torch.nn.functional as F - -from ldm.modules.diffusionmodules.util import ( - checkpoint, - conv_nd, - linear, - avg_pool_nd, - zero_module, - normalization, - timestep_embedding, -) -from ldm.modules.attention import SpatialTransformer -from ldm.util import exists - - -# dummy replace -def convert_module_to_f16(x): - pass - -def convert_module_to_f32(x): - pass - - -## go -class AttentionPool2d(nn.Module): - """ - Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py - """ - - def __init__( - self, - spacial_dim: int, - embed_dim: int, - num_heads_channels: int, - output_dim: int = None, - ): - super().__init__() - self.positional_embedding = nn.Parameter(th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5) - self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1) - self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1) - self.num_heads = embed_dim // num_heads_channels - self.attention = QKVAttention(self.num_heads) - - def forward(self, x): - b, c, *_spatial = x.shape - x = x.reshape(b, c, -1) # NC(HW) - x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1) - x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1) - x = self.qkv_proj(x) - x = self.attention(x) - x = self.c_proj(x) - return x[:, :, 0] - - -class TimestepBlock(nn.Module): - """ - Any module where forward() takes timestep embeddings as a second argument. - """ - - @abstractmethod - def forward(self, x, emb): - """ - Apply the module to `x` given `emb` timestep embeddings. - """ - - -class TimestepEmbedSequential(nn.Sequential, TimestepBlock): - """ - A sequential module that passes timestep embeddings to the children that - support it as an extra input. - """ - - def forward(self, x, emb, context=None): - for layer in self: - if isinstance(layer, TimestepBlock): - x = layer(x, emb) - elif isinstance(layer, SpatialTransformer): - x = layer(x, context) - else: - x = layer(x) - return x - - -class Upsample(nn.Module): - """ - An upsampling layer with an optional convolution. - :param channels: channels in the inputs and outputs. - :param use_conv: a bool determining if a convolution is applied. - :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then - upsampling occurs in the inner-two dimensions. - """ - - def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): - super().__init__() - self.channels = channels - self.out_channels = out_channels or channels - self.use_conv = use_conv - self.dims = dims - if use_conv: - self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding) - - def forward(self, x): - assert x.shape[1] == self.channels - if self.dims == 3: - x = F.interpolate( - x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest" - ) - else: - x = F.interpolate(x, scale_factor=2, mode="nearest") - if self.use_conv: - x = self.conv(x) - return x - -class TransposedUpsample(nn.Module): - 'Learned 2x upsampling without padding' - def __init__(self, channels, out_channels=None, ks=5): - super().__init__() - self.channels = channels - self.out_channels = out_channels or channels - - self.up = nn.ConvTranspose2d(self.channels,self.out_channels,kernel_size=ks,stride=2) - - def forward(self,x): - return self.up(x) - - -class Downsample(nn.Module): - """ - A downsampling layer with an optional convolution. - :param channels: channels in the inputs and outputs. - :param use_conv: a bool determining if a convolution is applied. - :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then - downsampling occurs in the inner-two dimensions. - """ - - def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1): - super().__init__() - self.channels = channels - self.out_channels = out_channels or channels - self.use_conv = use_conv - self.dims = dims - stride = 2 if dims != 3 else (1, 2, 2) - if use_conv: - self.op = conv_nd( - dims, self.channels, self.out_channels, 3, stride=stride, padding=padding - ) - else: - assert self.channels == self.out_channels - self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) - - def forward(self, x): - assert x.shape[1] == self.channels - return self.op(x) - - -class ResBlock(TimestepBlock): - """ - A residual block that can optionally change the number of channels. - :param channels: the number of input channels. - :param emb_channels: the number of timestep embedding channels. - :param dropout: the rate of dropout. - :param out_channels: if specified, the number of out channels. - :param use_conv: if True and out_channels is specified, use a spatial - convolution instead of a smaller 1x1 convolution to change the - channels in the skip connection. - :param dims: determines if the signal is 1D, 2D, or 3D. - :param use_checkpoint: if True, use gradient checkpointing on this module. - :param up: if True, use this block for upsampling. - :param down: if True, use this block for downsampling. - """ - - def __init__( - self, - channels, - emb_channels, - dropout, - out_channels=None, - use_conv=False, - use_scale_shift_norm=False, - dims=2, - use_checkpoint=False, - up=False, - down=False, - ): - super().__init__() - self.channels = channels - self.emb_channels = emb_channels - self.dropout = dropout - self.out_channels = out_channels or channels - self.use_conv = use_conv - self.use_checkpoint = use_checkpoint - self.use_scale_shift_norm = use_scale_shift_norm - - self.in_layers = nn.Sequential( - normalization(channels), - nn.SiLU(), - conv_nd(dims, channels, self.out_channels, 3, padding=1), - ) - - self.updown = up or down - - if up: - self.h_upd = Upsample(channels, False, dims) - self.x_upd = Upsample(channels, False, dims) - elif down: - self.h_upd = Downsample(channels, False, dims) - self.x_upd = Downsample(channels, False, dims) - else: - self.h_upd = self.x_upd = nn.Identity() - - self.emb_layers = nn.Sequential( - nn.SiLU(), - linear( - emb_channels, - 2 * self.out_channels if use_scale_shift_norm else self.out_channels, - ), - ) - self.out_layers = nn.Sequential( - normalization(self.out_channels), - nn.SiLU(), - nn.Dropout(p=dropout), - zero_module( - conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1) - ), - ) - - if self.out_channels == channels: - self.skip_connection = nn.Identity() - elif use_conv: - self.skip_connection = conv_nd( - dims, channels, self.out_channels, 3, padding=1 - ) - else: - self.skip_connection = conv_nd(dims, channels, self.out_channels, 1) - - def forward(self, x, emb): - """ - Apply the block to a Tensor, conditioned on a timestep embedding. - :param x: an [N x C x ...] Tensor of features. - :param emb: an [N x emb_channels] Tensor of timestep embeddings. - :return: an [N x C x ...] Tensor of outputs. - """ - return checkpoint( - self._forward, (x, emb), self.parameters(), self.use_checkpoint - ) - - - def _forward(self, x, emb): - if self.updown: - in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] - h = in_rest(x) - h = self.h_upd(h) - x = self.x_upd(x) - h = in_conv(h) - else: - h = self.in_layers(x) - emb_out = self.emb_layers(emb).type(h.dtype) - while len(emb_out.shape) < len(h.shape): - emb_out = emb_out[..., None] - if self.use_scale_shift_norm: - out_norm, out_rest = self.out_layers[0], self.out_layers[1:] - scale, shift = th.chunk(emb_out, 2, dim=1) - h = out_norm(h) * (1 + scale) + shift - h = out_rest(h) - else: - h = h + emb_out - h = self.out_layers(h) - return self.skip_connection(x) + h - - -class AttentionBlock(nn.Module): - """ - An attention block that allows spatial positions to attend to each other. - Originally ported from here, but adapted to the N-d case. - https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66. - """ - - def __init__( - self, - channels, - num_heads=1, - num_head_channels=-1, - use_checkpoint=False, - use_new_attention_order=False, - ): - super().__init__() - self.channels = channels - if num_head_channels == -1: - self.num_heads = num_heads - else: - assert ( - channels % num_head_channels == 0 - ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}" - self.num_heads = channels // num_head_channels - self.use_checkpoint = use_checkpoint - self.norm = normalization(channels) - self.qkv = conv_nd(1, channels, channels * 3, 1) - if use_new_attention_order: - # split qkv before split heads - self.attention = QKVAttention(self.num_heads) - else: - # split heads before split qkv - self.attention = QKVAttentionLegacy(self.num_heads) - - self.proj_out = zero_module(conv_nd(1, channels, channels, 1)) - - def forward(self, x): - return checkpoint(self._forward, (x,), self.parameters(), True) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!! - #return pt_checkpoint(self._forward, x) # pytorch - - def _forward(self, x): - b, c, *spatial = x.shape - x = x.reshape(b, c, -1) - qkv = self.qkv(self.norm(x)) - h = self.attention(qkv) - h = self.proj_out(h) - return (x + h).reshape(b, c, *spatial) - - -def count_flops_attn(model, _x, y): - """ - A counter for the `thop` package to count the operations in an - attention operation. - Meant to be used like: - macs, params = thop.profile( - model, - inputs=(inputs, timestamps), - custom_ops={QKVAttention: QKVAttention.count_flops}, - ) - """ - b, c, *spatial = y[0].shape - num_spatial = int(np.prod(spatial)) - # We perform two matmuls with the same number of ops. - # The first computes the weight matrix, the second computes - # the combination of the value vectors. - matmul_ops = 2 * b * (num_spatial ** 2) * c - model.total_ops += th.DoubleTensor([matmul_ops]) - - -class QKVAttentionLegacy(nn.Module): - """ - A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping - """ - - def __init__(self, n_heads): - super().__init__() - self.n_heads = n_heads - - def forward(self, qkv): - """ - Apply QKV attention. - :param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs. - :return: an [N x (H * C) x T] tensor after attention. - """ - bs, width, length = qkv.shape - assert width % (3 * self.n_heads) == 0 - ch = width // (3 * self.n_heads) - q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1) - scale = 1 / math.sqrt(math.sqrt(ch)) - weight = th.einsum( - "bct,bcs->bts", q * scale, k * scale - ) # More stable with f16 than dividing afterwards - weight = th.softmax(weight.float(), dim=-1).type(weight.dtype) - a = th.einsum("bts,bcs->bct", weight, v) - return a.reshape(bs, -1, length) - - @staticmethod - def count_flops(model, _x, y): - return count_flops_attn(model, _x, y) - - -class QKVAttention(nn.Module): - """ - A module which performs QKV attention and splits in a different order. - """ - - def __init__(self, n_heads): - super().__init__() - self.n_heads = n_heads - - def forward(self, qkv): - """ - Apply QKV attention. - :param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs. - :return: an [N x (H * C) x T] tensor after attention. - """ - bs, width, length = qkv.shape - assert width % (3 * self.n_heads) == 0 - ch = width // (3 * self.n_heads) - q, k, v = qkv.chunk(3, dim=1) - scale = 1 / math.sqrt(math.sqrt(ch)) - weight = th.einsum( - "bct,bcs->bts", - (q * scale).view(bs * self.n_heads, ch, length), - (k * scale).view(bs * self.n_heads, ch, length), - ) # More stable with f16 than dividing afterwards - weight = th.softmax(weight.float(), dim=-1).type(weight.dtype) - a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length)) - return a.reshape(bs, -1, length) - - @staticmethod - def count_flops(model, _x, y): - return count_flops_attn(model, _x, y) - - -class UNetModel(nn.Module): - """ - The full UNet model with attention and timestep embedding. - :param in_channels: channels in the input Tensor. - :param model_channels: base channel count for the model. - :param out_channels: channels in the output Tensor. - :param num_res_blocks: number of residual blocks per downsample. - :param attention_resolutions: a collection of downsample rates at which - attention will take place. May be a set, list, or tuple. - For example, if this contains 4, then at 4x downsampling, attention - will be used. - :param dropout: the dropout probability. - :param channel_mult: channel multiplier for each level of the UNet. - :param conv_resample: if True, use learned convolutions for upsampling and - downsampling. - :param dims: determines if the signal is 1D, 2D, or 3D. - :param num_classes: if specified (as an int), then this model will be - class-conditional with `num_classes` classes. - :param use_checkpoint: use gradient checkpointing to reduce memory usage. - :param num_heads: the number of attention heads in each attention layer. - :param num_heads_channels: if specified, ignore num_heads and instead use - a fixed channel width per attention head. - :param num_heads_upsample: works with num_heads to set a different number - of heads for upsampling. Deprecated. - :param use_scale_shift_norm: use a FiLM-like conditioning mechanism. - :param resblock_updown: use residual blocks for up/downsampling. - :param use_new_attention_order: use a different attention pattern for potentially - increased efficiency. - """ - - def __init__( - self, - image_size, - in_channels, - model_channels, - out_channels, - num_res_blocks, - attention_resolutions, - dropout=0, - channel_mult=(1, 2, 4, 8), - conv_resample=True, - dims=2, - num_classes=None, - use_checkpoint=False, - use_fp16=False, - num_heads=-1, - num_head_channels=-1, - num_heads_upsample=-1, - use_scale_shift_norm=False, - resblock_updown=False, - use_new_attention_order=False, - use_spatial_transformer=False, # custom transformer support - transformer_depth=1, # custom transformer support - context_dim=None, # custom transformer support - n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model - legacy=True, - disable_self_attentions=None, - num_attention_blocks=None - ): - super().__init__() - if use_spatial_transformer: - assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...' - - if context_dim is not None: - assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...' - from omegaconf.listconfig import ListConfig - if type(context_dim) == ListConfig: - context_dim = list(context_dim) - - if num_heads_upsample == -1: - num_heads_upsample = num_heads - - if num_heads == -1: - assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set' - - if num_head_channels == -1: - assert num_heads != -1, 'Either num_heads or num_head_channels has to be set' - - self.image_size = image_size - self.in_channels = in_channels - self.model_channels = model_channels - self.out_channels = out_channels - if isinstance(num_res_blocks, int): - self.num_res_blocks = len(channel_mult) * [num_res_blocks] - else: - if len(num_res_blocks) != len(channel_mult): - raise ValueError("provide num_res_blocks either as an int (globally constant) or " - "as a list/tuple (per-level) with the same length as channel_mult") - self.num_res_blocks = num_res_blocks - #self.num_res_blocks = num_res_blocks - if disable_self_attentions is not None: - # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not - assert len(disable_self_attentions) == len(channel_mult) - if num_attention_blocks is not None: - assert len(num_attention_blocks) == len(self.num_res_blocks) - assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks)))) - print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. " - f"This option has LESS priority than attention_resolutions {attention_resolutions}, " - f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, " - f"attention will still not be set.") # todo: convert to warning - - self.attention_resolutions = attention_resolutions - self.dropout = dropout - self.channel_mult = channel_mult - self.conv_resample = conv_resample - self.num_classes = num_classes - self.use_checkpoint = use_checkpoint - self.dtype = th.float16 if use_fp16 else th.float32 - self.num_heads = num_heads - self.num_head_channels = num_head_channels - self.num_heads_upsample = num_heads_upsample - self.predict_codebook_ids = n_embed is not None - - time_embed_dim = model_channels * 4 - self.time_embed = nn.Sequential( - linear(model_channels, time_embed_dim), - nn.SiLU(), - linear(time_embed_dim, time_embed_dim), - ) - - if self.num_classes is not None: - self.label_emb = nn.Embedding(num_classes, time_embed_dim) - - self.input_blocks = nn.ModuleList( - [ - TimestepEmbedSequential( - conv_nd(dims, in_channels, model_channels, 3, padding=1) - ) - ] - ) - self._feature_size = model_channels - input_block_chans = [model_channels] - ch = model_channels - ds = 1 - for level, mult in enumerate(channel_mult): - for nr in range(self.num_res_blocks[level]): - layers = [ - ResBlock( - ch, - time_embed_dim, - dropout, - out_channels=mult * model_channels, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - ) - ] - ch = mult * model_channels - if ds in attention_resolutions: - if num_head_channels == -1: - dim_head = ch // num_heads - else: - num_heads = ch // num_head_channels - dim_head = num_head_channels - if legacy: - #num_heads = 1 - dim_head = ch // num_heads if use_spatial_transformer else num_head_channels - if exists(disable_self_attentions): - disabled_sa = disable_self_attentions[level] - else: - disabled_sa = False - - if not exists(num_attention_blocks) or nr < num_attention_blocks[level]: - layers.append( - AttentionBlock( - ch, - use_checkpoint=use_checkpoint, - num_heads=num_heads, - num_head_channels=dim_head, - use_new_attention_order=use_new_attention_order, - ) if not use_spatial_transformer else SpatialTransformer( - ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, - disable_self_attn=disabled_sa - ) - ) - self.input_blocks.append(TimestepEmbedSequential(*layers)) - self._feature_size += ch - input_block_chans.append(ch) - if level != len(channel_mult) - 1: - out_ch = ch - self.input_blocks.append( - TimestepEmbedSequential( - ResBlock( - ch, - time_embed_dim, - dropout, - out_channels=out_ch, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - down=True, - ) - if resblock_updown - else Downsample( - ch, conv_resample, dims=dims, out_channels=out_ch - ) - ) - ) - ch = out_ch - input_block_chans.append(ch) - ds *= 2 - self._feature_size += ch - - if num_head_channels == -1: - dim_head = ch // num_heads - else: - num_heads = ch // num_head_channels - dim_head = num_head_channels - if legacy: - #num_heads = 1 - dim_head = ch // num_heads if use_spatial_transformer else num_head_channels - self.middle_block = TimestepEmbedSequential( - ResBlock( - ch, - time_embed_dim, - dropout, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - ), - AttentionBlock( - ch, - use_checkpoint=use_checkpoint, - num_heads=num_heads, - num_head_channels=dim_head, - use_new_attention_order=use_new_attention_order, - ) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn - ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim - ), - ResBlock( - ch, - time_embed_dim, - dropout, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - ), - ) - self._feature_size += ch - - self.output_blocks = nn.ModuleList([]) - for level, mult in list(enumerate(channel_mult))[::-1]: - for i in range(self.num_res_blocks[level] + 1): - ich = input_block_chans.pop() - layers = [ - ResBlock( - ch + ich, - time_embed_dim, - dropout, - out_channels=model_channels * mult, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - ) - ] - ch = model_channels * mult - if ds in attention_resolutions: - if num_head_channels == -1: - dim_head = ch // num_heads - else: - num_heads = ch // num_head_channels - dim_head = num_head_channels - if legacy: - #num_heads = 1 - dim_head = ch // num_heads if use_spatial_transformer else num_head_channels - if exists(disable_self_attentions): - disabled_sa = disable_self_attentions[level] - else: - disabled_sa = False - - if not exists(num_attention_blocks) or i < num_attention_blocks[level]: - layers.append( - AttentionBlock( - ch, - use_checkpoint=use_checkpoint, - num_heads=num_heads_upsample, - num_head_channels=dim_head, - use_new_attention_order=use_new_attention_order, - ) if not use_spatial_transformer else SpatialTransformer( - ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, - disable_self_attn=disabled_sa - ) - ) - if level and i == self.num_res_blocks[level]: - out_ch = ch - layers.append( - ResBlock( - ch, - time_embed_dim, - dropout, - out_channels=out_ch, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - up=True, - ) - if resblock_updown - else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch) - ) - ds //= 2 - self.output_blocks.append(TimestepEmbedSequential(*layers)) - self._feature_size += ch - - self.out = nn.Sequential( - normalization(ch), - nn.SiLU(), - zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)), - ) - if self.predict_codebook_ids: - self.id_predictor = nn.Sequential( - normalization(ch), - conv_nd(dims, model_channels, n_embed, 1), - #nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits - ) - - def convert_to_fp16(self): - """ - Convert the torso of the model to float16. - """ - self.input_blocks.apply(convert_module_to_f16) - self.middle_block.apply(convert_module_to_f16) - self.output_blocks.apply(convert_module_to_f16) - - def convert_to_fp32(self): - """ - Convert the torso of the model to float32. - """ - self.input_blocks.apply(convert_module_to_f32) - self.middle_block.apply(convert_module_to_f32) - self.output_blocks.apply(convert_module_to_f32) - - def forward(self, x, timesteps=None, context=None, y=None,**kwargs): - """ - Apply the model to an input batch. - :param x: an [N x C x ...] Tensor of inputs. - :param timesteps: a 1-D batch of timesteps. - :param context: conditioning plugged in via crossattn - :param y: an [N] Tensor of labels, if class-conditional. - :return: an [N x C x ...] Tensor of outputs. - """ - assert (y is not None) == ( - self.num_classes is not None - ), "must specify y if and only if the model is class-conditional" - hs = [] - t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) - emb = self.time_embed(t_emb) - - if self.num_classes is not None: - assert y.shape == (x.shape[0],) - emb = emb + self.label_emb(y) - - h = x.type(self.dtype) - for module in self.input_blocks: - h = module(h, emb, context) - hs.append(h) - h = self.middle_block(h, emb, context) - for module in self.output_blocks: - h = th.cat([h, hs.pop()], dim=1) - h = module(h, emb, context) - h = h.type(x.dtype) - if self.predict_codebook_ids: - return self.id_predictor(h) - else: - return self.out(h) - - -class EncoderUNetModel(nn.Module): - """ - The half UNet model with attention and timestep embedding. - For usage, see UNet. - """ - - def __init__( - self, - image_size, - in_channels, - model_channels, - out_channels, - num_res_blocks, - attention_resolutions, - dropout=0, - channel_mult=(1, 2, 4, 8), - conv_resample=True, - dims=2, - use_checkpoint=False, - use_fp16=False, - num_heads=1, - num_head_channels=-1, - num_heads_upsample=-1, - use_scale_shift_norm=False, - resblock_updown=False, - use_new_attention_order=False, - pool="adaptive", - *args, - **kwargs - ): - super().__init__() - - if num_heads_upsample == -1: - num_heads_upsample = num_heads - - self.in_channels = in_channels - self.model_channels = model_channels - self.out_channels = out_channels - self.num_res_blocks = num_res_blocks - self.attention_resolutions = attention_resolutions - self.dropout = dropout - self.channel_mult = channel_mult - self.conv_resample = conv_resample - self.use_checkpoint = use_checkpoint - self.dtype = th.float16 if use_fp16 else th.float32 - self.num_heads = num_heads - self.num_head_channels = num_head_channels - self.num_heads_upsample = num_heads_upsample - - time_embed_dim = model_channels * 4 - self.time_embed = nn.Sequential( - linear(model_channels, time_embed_dim), - nn.SiLU(), - linear(time_embed_dim, time_embed_dim), - ) - - self.input_blocks = nn.ModuleList( - [ - TimestepEmbedSequential( - conv_nd(dims, in_channels, model_channels, 3, padding=1) - ) - ] - ) - self._feature_size = model_channels - input_block_chans = [model_channels] - ch = model_channels - ds = 1 - for level, mult in enumerate(channel_mult): - for _ in range(num_res_blocks): - layers = [ - ResBlock( - ch, - time_embed_dim, - dropout, - out_channels=mult * model_channels, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - ) - ] - ch = mult * model_channels - if ds in attention_resolutions: - layers.append( - AttentionBlock( - ch, - use_checkpoint=use_checkpoint, - num_heads=num_heads, - num_head_channels=num_head_channels, - use_new_attention_order=use_new_attention_order, - ) - ) - self.input_blocks.append(TimestepEmbedSequential(*layers)) - self._feature_size += ch - input_block_chans.append(ch) - if level != len(channel_mult) - 1: - out_ch = ch - self.input_blocks.append( - TimestepEmbedSequential( - ResBlock( - ch, - time_embed_dim, - dropout, - out_channels=out_ch, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - down=True, - ) - if resblock_updown - else Downsample( - ch, conv_resample, dims=dims, out_channels=out_ch - ) - ) - ) - ch = out_ch - input_block_chans.append(ch) - ds *= 2 - self._feature_size += ch - - self.middle_block = TimestepEmbedSequential( - ResBlock( - ch, - time_embed_dim, - dropout, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - ), - AttentionBlock( - ch, - use_checkpoint=use_checkpoint, - num_heads=num_heads, - num_head_channels=num_head_channels, - use_new_attention_order=use_new_attention_order, - ), - ResBlock( - ch, - time_embed_dim, - dropout, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - ), - ) - self._feature_size += ch - self.pool = pool - if pool == "adaptive": - self.out = nn.Sequential( - normalization(ch), - nn.SiLU(), - nn.AdaptiveAvgPool2d((1, 1)), - zero_module(conv_nd(dims, ch, out_channels, 1)), - nn.Flatten(), - ) - elif pool == "attention": - assert num_head_channels != -1 - self.out = nn.Sequential( - normalization(ch), - nn.SiLU(), - AttentionPool2d( - (image_size // ds), ch, num_head_channels, out_channels - ), - ) - elif pool == "spatial": - self.out = nn.Sequential( - nn.Linear(self._feature_size, 2048), - nn.ReLU(), - nn.Linear(2048, self.out_channels), - ) - elif pool == "spatial_v2": - self.out = nn.Sequential( - nn.Linear(self._feature_size, 2048), - normalization(2048), - nn.SiLU(), - nn.Linear(2048, self.out_channels), - ) - else: - raise NotImplementedError(f"Unexpected {pool} pooling") - - def convert_to_fp16(self): - """ - Convert the torso of the model to float16. - """ - self.input_blocks.apply(convert_module_to_f16) - self.middle_block.apply(convert_module_to_f16) - - def convert_to_fp32(self): - """ - Convert the torso of the model to float32. - """ - self.input_blocks.apply(convert_module_to_f32) - self.middle_block.apply(convert_module_to_f32) - - def forward(self, x, timesteps): - """ - Apply the model to an input batch. - :param x: an [N x C x ...] Tensor of inputs. - :param timesteps: a 1-D batch of timesteps. - :return: an [N x K] Tensor of outputs. - """ - emb = self.time_embed(timestep_embedding(timesteps, self.model_channels)) - - results = [] - h = x.type(self.dtype) - for module in self.input_blocks: - h = module(h, emb) - if self.pool.startswith("spatial"): - results.append(h.type(x.dtype).mean(dim=(2, 3))) - h = self.middle_block(h, emb) - if self.pool.startswith("spatial"): - results.append(h.type(x.dtype).mean(dim=(2, 3))) - h = th.cat(results, axis=-1) - return self.out(h) - else: - h = h.type(x.dtype) - return self.out(h) - diff --git a/One-2-3-45-master 2/ldm/modules/diffusionmodules/util.py b/One-2-3-45-master 2/ldm/modules/diffusionmodules/util.py deleted file mode 100644 index a952e6c40308c33edd422da0ce6a60f47e73661b..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/ldm/modules/diffusionmodules/util.py +++ /dev/null @@ -1,267 +0,0 @@ -# adopted from -# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py -# and -# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py -# and -# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py -# -# thanks! - - -import os -import math -import torch -import torch.nn as nn -import numpy as np -from einops import repeat - -from ldm.util import instantiate_from_config - - -def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): - if schedule == "linear": - betas = ( - torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2 - ) - - elif schedule == "cosine": - timesteps = ( - torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s - ) - alphas = timesteps / (1 + cosine_s) * np.pi / 2 - alphas = torch.cos(alphas).pow(2) - alphas = alphas / alphas[0] - betas = 1 - alphas[1:] / alphas[:-1] - betas = np.clip(betas, a_min=0, a_max=0.999) - - elif schedule == "sqrt_linear": - betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) - elif schedule == "sqrt": - betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5 - else: - raise ValueError(f"schedule '{schedule}' unknown.") - return betas.numpy() - - -def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True): - if ddim_discr_method == 'uniform': - c = num_ddpm_timesteps // num_ddim_timesteps - ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c))) - elif ddim_discr_method == 'quad': - ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int) - else: - raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"') - - # assert ddim_timesteps.shape[0] == num_ddim_timesteps - # add one to get the final alpha values right (the ones from first scale to data during sampling) - steps_out = ddim_timesteps + 1 - if verbose: - print(f'Selected timesteps for ddim sampler: {steps_out}') - return steps_out - - -def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True): - # select alphas for computing the variance schedule - alphas = alphacums[ddim_timesteps] - alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist()) - - # according the the formula provided in https://arxiv.org/abs/2010.02502 - sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev)) - if verbose: - print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}') - print(f'For the chosen value of eta, which is {eta}, ' - f'this results in the following sigma_t schedule for ddim sampler {sigmas}') - return sigmas, alphas, alphas_prev - - -def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999): - """ - Create a beta schedule that discretizes the given alpha_t_bar function, - which defines the cumulative product of (1-beta) over time from t = [0,1]. - :param num_diffusion_timesteps: the number of betas to produce. - :param alpha_bar: a lambda that takes an argument t from 0 to 1 and - produces the cumulative product of (1-beta) up to that - part of the diffusion process. - :param max_beta: the maximum beta to use; use values lower than 1 to - prevent singularities. - """ - betas = [] - for i in range(num_diffusion_timesteps): - t1 = i / num_diffusion_timesteps - t2 = (i + 1) / num_diffusion_timesteps - betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) - return np.array(betas) - - -def extract_into_tensor(a, t, x_shape): - b, *_ = t.shape - out = a.gather(-1, t) - return out.reshape(b, *((1,) * (len(x_shape) - 1))) - - -def checkpoint(func, inputs, params, flag): - """ - Evaluate a function without caching intermediate activations, allowing for - reduced memory at the expense of extra compute in the backward pass. - :param func: the function to evaluate. - :param inputs: the argument sequence to pass to `func`. - :param params: a sequence of parameters `func` depends on but does not - explicitly take as arguments. - :param flag: if False, disable gradient checkpointing. - """ - if flag: - args = tuple(inputs) + tuple(params) - return CheckpointFunction.apply(func, len(inputs), *args) - else: - return func(*inputs) - - -class CheckpointFunction(torch.autograd.Function): - @staticmethod - def forward(ctx, run_function, length, *args): - ctx.run_function = run_function - ctx.input_tensors = list(args[:length]) - ctx.input_params = list(args[length:]) - - with torch.no_grad(): - output_tensors = ctx.run_function(*ctx.input_tensors) - return output_tensors - - @staticmethod - def backward(ctx, *output_grads): - ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors] - with torch.enable_grad(): - # Fixes a bug where the first op in run_function modifies the - # Tensor storage in place, which is not allowed for detach()'d - # Tensors. - shallow_copies = [x.view_as(x) for x in ctx.input_tensors] - output_tensors = ctx.run_function(*shallow_copies) - input_grads = torch.autograd.grad( - output_tensors, - ctx.input_tensors + ctx.input_params, - output_grads, - allow_unused=True, - ) - del ctx.input_tensors - del ctx.input_params - del output_tensors - return (None, None) + input_grads - - -def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False): - """ - Create sinusoidal timestep embeddings. - :param timesteps: a 1-D Tensor of N indices, one per batch element. - These may be fractional. - :param dim: the dimension of the output. - :param max_period: controls the minimum frequency of the embeddings. - :return: an [N x dim] Tensor of positional embeddings. - """ - if not repeat_only: - half = dim // 2 - freqs = torch.exp( - -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half - ).to(device=timesteps.device) - args = timesteps[:, None].float() * freqs[None] - embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) - if dim % 2: - embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) - else: - embedding = repeat(timesteps, 'b -> b d', d=dim) - return embedding - - -def zero_module(module): - """ - Zero out the parameters of a module and return it. - """ - for p in module.parameters(): - p.detach().zero_() - return module - - -def scale_module(module, scale): - """ - Scale the parameters of a module and return it. - """ - for p in module.parameters(): - p.detach().mul_(scale) - return module - - -def mean_flat(tensor): - """ - Take the mean over all non-batch dimensions. - """ - return tensor.mean(dim=list(range(1, len(tensor.shape)))) - - -def normalization(channels): - """ - Make a standard normalization layer. - :param channels: number of input channels. - :return: an nn.Module for normalization. - """ - return GroupNorm32(32, channels) - - -# PyTorch 1.7 has SiLU, but we support PyTorch 1.5. -class SiLU(nn.Module): - def forward(self, x): - return x * torch.sigmoid(x) - - -class GroupNorm32(nn.GroupNorm): - def forward(self, x): - return super().forward(x.float()).type(x.dtype) - -def conv_nd(dims, *args, **kwargs): - """ - Create a 1D, 2D, or 3D convolution module. - """ - if dims == 1: - return nn.Conv1d(*args, **kwargs) - elif dims == 2: - return nn.Conv2d(*args, **kwargs) - elif dims == 3: - return nn.Conv3d(*args, **kwargs) - raise ValueError(f"unsupported dimensions: {dims}") - - -def linear(*args, **kwargs): - """ - Create a linear module. - """ - return nn.Linear(*args, **kwargs) - - -def avg_pool_nd(dims, *args, **kwargs): - """ - Create a 1D, 2D, or 3D average pooling module. - """ - if dims == 1: - return nn.AvgPool1d(*args, **kwargs) - elif dims == 2: - return nn.AvgPool2d(*args, **kwargs) - elif dims == 3: - return nn.AvgPool3d(*args, **kwargs) - raise ValueError(f"unsupported dimensions: {dims}") - - -class HybridConditioner(nn.Module): - - def __init__(self, c_concat_config, c_crossattn_config): - super().__init__() - self.concat_conditioner = instantiate_from_config(c_concat_config) - self.crossattn_conditioner = instantiate_from_config(c_crossattn_config) - - def forward(self, c_concat, c_crossattn): - c_concat = self.concat_conditioner(c_concat) - c_crossattn = self.crossattn_conditioner(c_crossattn) - return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]} - - -def noise_like(shape, device, repeat=False): - repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1))) - noise = lambda: torch.randn(shape, device=device) - return repeat_noise() if repeat else noise() \ No newline at end of file diff --git a/One-2-3-45-master 2/ldm/modules/distributions/__init__.py b/One-2-3-45-master 2/ldm/modules/distributions/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/One-2-3-45-master 2/ldm/modules/distributions/distributions.py b/One-2-3-45-master 2/ldm/modules/distributions/distributions.py deleted file mode 100644 index f2b8ef901130efc171aa69742ca0244d94d3f2e9..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/ldm/modules/distributions/distributions.py +++ /dev/null @@ -1,92 +0,0 @@ -import torch -import numpy as np - - -class AbstractDistribution: - def sample(self): - raise NotImplementedError() - - def mode(self): - raise NotImplementedError() - - -class DiracDistribution(AbstractDistribution): - def __init__(self, value): - self.value = value - - def sample(self): - return self.value - - def mode(self): - return self.value - - -class DiagonalGaussianDistribution(object): - def __init__(self, parameters, deterministic=False): - self.parameters = parameters - self.mean, self.logvar = torch.chunk(parameters, 2, dim=1) - self.logvar = torch.clamp(self.logvar, -30.0, 20.0) - self.deterministic = deterministic - self.std = torch.exp(0.5 * self.logvar) - self.var = torch.exp(self.logvar) - if self.deterministic: - self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device) - - def sample(self): - x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device) - return x - - def kl(self, other=None): - if self.deterministic: - return torch.Tensor([0.]) - else: - if other is None: - return 0.5 * torch.sum(torch.pow(self.mean, 2) - + self.var - 1.0 - self.logvar, - dim=[1, 2, 3]) - else: - return 0.5 * torch.sum( - torch.pow(self.mean - other.mean, 2) / other.var - + self.var / other.var - 1.0 - self.logvar + other.logvar, - dim=[1, 2, 3]) - - def nll(self, sample, dims=[1,2,3]): - if self.deterministic: - return torch.Tensor([0.]) - logtwopi = np.log(2.0 * np.pi) - return 0.5 * torch.sum( - logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var, - dim=dims) - - def mode(self): - return self.mean - - -def normal_kl(mean1, logvar1, mean2, logvar2): - """ - source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12 - Compute the KL divergence between two gaussians. - Shapes are automatically broadcasted, so batches can be compared to - scalars, among other use cases. - """ - tensor = None - for obj in (mean1, logvar1, mean2, logvar2): - if isinstance(obj, torch.Tensor): - tensor = obj - break - assert tensor is not None, "at least one argument must be a Tensor" - - # Force variances to be Tensors. Broadcasting helps convert scalars to - # Tensors, but it does not work for torch.exp(). - logvar1, logvar2 = [ - x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor) - for x in (logvar1, logvar2) - ] - - return 0.5 * ( - -1.0 - + logvar2 - - logvar1 - + torch.exp(logvar1 - logvar2) - + ((mean1 - mean2) ** 2) * torch.exp(-logvar2) - ) diff --git a/One-2-3-45-master 2/ldm/modules/ema.py b/One-2-3-45-master 2/ldm/modules/ema.py deleted file mode 100644 index c8c75af43565f6e140287644aaaefa97dd6e67c5..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/ldm/modules/ema.py +++ /dev/null @@ -1,76 +0,0 @@ -import torch -from torch import nn - - -class LitEma(nn.Module): - def __init__(self, model, decay=0.9999, use_num_upates=True): - super().__init__() - if decay < 0.0 or decay > 1.0: - raise ValueError('Decay must be between 0 and 1') - - self.m_name2s_name = {} - self.register_buffer('decay', torch.tensor(decay, dtype=torch.float32)) - self.register_buffer('num_updates', torch.tensor(0,dtype=torch.int) if use_num_upates - else torch.tensor(-1,dtype=torch.int)) - - for name, p in model.named_parameters(): - if p.requires_grad: - #remove as '.'-character is not allowed in buffers - s_name = name.replace('.','') - self.m_name2s_name.update({name:s_name}) - self.register_buffer(s_name,p.clone().detach().data) - - self.collected_params = [] - - def forward(self,model): - decay = self.decay - - if self.num_updates >= 0: - self.num_updates += 1 - decay = min(self.decay,(1 + self.num_updates) / (10 + self.num_updates)) - - one_minus_decay = 1.0 - decay - - with torch.no_grad(): - m_param = dict(model.named_parameters()) - shadow_params = dict(self.named_buffers()) - - for key in m_param: - if m_param[key].requires_grad: - sname = self.m_name2s_name[key] - shadow_params[sname] = shadow_params[sname].type_as(m_param[key]) - shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key])) - else: - assert not key in self.m_name2s_name - - def copy_to(self, model): - m_param = dict(model.named_parameters()) - shadow_params = dict(self.named_buffers()) - for key in m_param: - if m_param[key].requires_grad: - m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data) - else: - assert not key in self.m_name2s_name - - def store(self, parameters): - """ - Save the current parameters for restoring later. - Args: - parameters: Iterable of `torch.nn.Parameter`; the parameters to be - temporarily stored. - """ - self.collected_params = [param.clone() for param in parameters] - - def restore(self, parameters): - """ - Restore the parameters stored with the `store` method. - Useful to validate the model with EMA parameters without affecting the - original optimization process. Store the parameters before the - `copy_to` method. After validation (or model saving), use this to - restore the former parameters. - Args: - parameters: Iterable of `torch.nn.Parameter`; the parameters to be - updated with the stored parameters. - """ - for c_param, param in zip(self.collected_params, parameters): - param.data.copy_(c_param.data) diff --git a/One-2-3-45-master 2/ldm/modules/encoders/__init__.py b/One-2-3-45-master 2/ldm/modules/encoders/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/One-2-3-45-master 2/ldm/modules/encoders/modules.py b/One-2-3-45-master 2/ldm/modules/encoders/modules.py deleted file mode 100644 index b1afccfc55d1b8162d6da8c0316082584a4bde34..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/ldm/modules/encoders/modules.py +++ /dev/null @@ -1,550 +0,0 @@ -import torch -import torch.nn as nn -import numpy as np -from functools import partial -import kornia - -from ldm.modules.x_transformer import Encoder, TransformerWrapper # TODO: can we directly rely on lucidrains code and simply add this as a reuirement? --> test -from ldm.util import default -import clip - - -class AbstractEncoder(nn.Module): - def __init__(self): - super().__init__() - - def encode(self, *args, **kwargs): - raise NotImplementedError - -class IdentityEncoder(AbstractEncoder): - - def encode(self, x): - return x - -class FaceClipEncoder(AbstractEncoder): - def __init__(self, augment=True, retreival_key=None): - super().__init__() - self.encoder = FrozenCLIPImageEmbedder() - self.augment = augment - self.retreival_key = retreival_key - - def forward(self, img): - encodings = [] - with torch.no_grad(): - x_offset = 125 - if self.retreival_key: - # Assumes retrieved image are packed into the second half of channels - face = img[:,3:,190:440,x_offset:(512-x_offset)] - other = img[:,:3,...].clone() - else: - face = img[:,:,190:440,x_offset:(512-x_offset)] - other = img.clone() - - if self.augment: - face = K.RandomHorizontalFlip()(face) - - other[:,:,190:440,x_offset:(512-x_offset)] *= 0 - encodings = [ - self.encoder.encode(face), - self.encoder.encode(other), - ] - - return torch.cat(encodings, dim=1) - - def encode(self, img): - if isinstance(img, list): - # Uncondition - return torch.zeros((1, 2, 768), device=self.encoder.model.visual.conv1.weight.device) - - return self(img) - -class FaceIdClipEncoder(AbstractEncoder): - def __init__(self): - super().__init__() - self.encoder = FrozenCLIPImageEmbedder() - for p in self.encoder.parameters(): - p.requires_grad = False - self.id = FrozenFaceEncoder("/home/jpinkney/code/stable-diffusion/model_ir_se50.pth", augment=True) - - def forward(self, img): - encodings = [] - with torch.no_grad(): - face = kornia.geometry.resize(img, (256, 256), - interpolation='bilinear', align_corners=True) - - other = img.clone() - other[:,:,184:452,122:396] *= 0 - encodings = [ - self.id.encode(face), - self.encoder.encode(other), - ] - - return torch.cat(encodings, dim=1) - - def encode(self, img): - if isinstance(img, list): - # Uncondition - return torch.zeros((1, 2, 768), device=self.encoder.model.visual.conv1.weight.device) - - return self(img) - -class ClassEmbedder(nn.Module): - def __init__(self, embed_dim, n_classes=1000, key='class'): - super().__init__() - self.key = key - self.embedding = nn.Embedding(n_classes, embed_dim) - - def forward(self, batch, key=None): - if key is None: - key = self.key - # this is for use in crossattn - c = batch[key][:, None] - c = self.embedding(c) - return c - - -class TransformerEmbedder(AbstractEncoder): - """Some transformer encoder layers""" - def __init__(self, n_embed, n_layer, vocab_size, max_seq_len=77, device="cuda"): - super().__init__() - self.device = device - self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len, - attn_layers=Encoder(dim=n_embed, depth=n_layer)) - - def forward(self, tokens): - tokens = tokens.to(self.device) # meh - z = self.transformer(tokens, return_embeddings=True) - return z - - def encode(self, x): - return self(x) - - -class BERTTokenizer(AbstractEncoder): - """ Uses a pretrained BERT tokenizer by huggingface. Vocab size: 30522 (?)""" - def __init__(self, device="cuda", vq_interface=True, max_length=77): - super().__init__() - from transformers import BertTokenizerFast # TODO: add to reuquirements - self.tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased") - self.device = device - self.vq_interface = vq_interface - self.max_length = max_length - - def forward(self, text): - batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, - return_overflowing_tokens=False, padding="max_length", return_tensors="pt") - tokens = batch_encoding["input_ids"].to(self.device) - return tokens - - @torch.no_grad() - def encode(self, text): - tokens = self(text) - if not self.vq_interface: - return tokens - return None, None, [None, None, tokens] - - def decode(self, text): - return text - - -class BERTEmbedder(AbstractEncoder): - """Uses the BERT tokenizr model and add some transformer encoder layers""" - def __init__(self, n_embed, n_layer, vocab_size=30522, max_seq_len=77, - device="cuda",use_tokenizer=True, embedding_dropout=0.0): - super().__init__() - self.use_tknz_fn = use_tokenizer - if self.use_tknz_fn: - self.tknz_fn = BERTTokenizer(vq_interface=False, max_length=max_seq_len) - self.device = device - self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len, - attn_layers=Encoder(dim=n_embed, depth=n_layer), - emb_dropout=embedding_dropout) - - def forward(self, text): - if self.use_tknz_fn: - tokens = self.tknz_fn(text)#.to(self.device) - else: - tokens = text - z = self.transformer(tokens, return_embeddings=True) - return z - - def encode(self, text): - # output of length 77 - return self(text) - - -from transformers import T5Tokenizer, T5EncoderModel, CLIPTokenizer, CLIPTextModel - -def disabled_train(self, mode=True): - """Overwrite model.train with this function to make sure train/eval mode - does not change anymore.""" - return self - - -class FrozenT5Embedder(AbstractEncoder): - """Uses the T5 transformer encoder for text""" - def __init__(self, version="google/t5-v1_1-large", device="cuda", max_length=77): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl - super().__init__() - self.tokenizer = T5Tokenizer.from_pretrained(version) - self.transformer = T5EncoderModel.from_pretrained(version) - self.device = device - self.max_length = max_length # TODO: typical value? - self.freeze() - - def freeze(self): - self.transformer = self.transformer.eval() - #self.train = disabled_train - for param in self.parameters(): - param.requires_grad = False - - def forward(self, text): - batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, - return_overflowing_tokens=False, padding="max_length", return_tensors="pt") - tokens = batch_encoding["input_ids"].to(self.device) - outputs = self.transformer(input_ids=tokens) - - z = outputs.last_hidden_state - return z - - def encode(self, text): - return self(text) - -from ldm.thirdp.psp.id_loss import IDFeatures -import kornia.augmentation as K - -class FrozenFaceEncoder(AbstractEncoder): - def __init__(self, model_path, augment=False): - super().__init__() - self.loss_fn = IDFeatures(model_path) - # face encoder is frozen - for p in self.loss_fn.parameters(): - p.requires_grad = False - # Mapper is trainable - self.mapper = torch.nn.Linear(512, 768) - p = 0.25 - if augment: - self.augment = K.AugmentationSequential( - K.RandomHorizontalFlip(p=0.5), - K.RandomEqualize(p=p), - # K.RandomPlanckianJitter(p=p), - # K.RandomPlasmaBrightness(p=p), - # K.RandomPlasmaContrast(p=p), - # K.ColorJiggle(0.02, 0.2, 0.2, p=p), - ) - else: - self.augment = False - - def forward(self, img): - if isinstance(img, list): - # Uncondition - return torch.zeros((1, 1, 768), device=self.mapper.weight.device) - - if self.augment is not None: - # Transforms require 0-1 - img = self.augment((img + 1)/2) - img = 2*img - 1 - - feat = self.loss_fn(img, crop=True) - feat = self.mapper(feat.unsqueeze(1)) - return feat - - def encode(self, img): - return self(img) - -class FrozenCLIPEmbedder(AbstractEncoder): - """Uses the CLIP transformer encoder for text (from huggingface)""" - def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77): # clip-vit-base-patch32 - super().__init__() - self.tokenizer = CLIPTokenizer.from_pretrained(version) - self.transformer = CLIPTextModel.from_pretrained(version) - self.device = device - self.max_length = max_length # TODO: typical value? - self.freeze() - - def freeze(self): - self.transformer = self.transformer.eval() - #self.train = disabled_train - for param in self.parameters(): - param.requires_grad = False - - def forward(self, text): - batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, - return_overflowing_tokens=False, padding="max_length", return_tensors="pt") - tokens = batch_encoding["input_ids"].to(self.device) - outputs = self.transformer(input_ids=tokens) - - z = outputs.last_hidden_state - return z - - def encode(self, text): - return self(text) - -import torch.nn.functional as F -from transformers import CLIPVisionModel -class ClipImageProjector(AbstractEncoder): - """ - Uses the CLIP image encoder. - """ - def __init__(self, version="openai/clip-vit-large-patch14", max_length=77): # clip-vit-base-patch32 - super().__init__() - self.model = CLIPVisionModel.from_pretrained(version) - self.model.train() - self.max_length = max_length # TODO: typical value? - self.antialias = True - self.mapper = torch.nn.Linear(1024, 768) - self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False) - self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False) - null_cond = self.get_null_cond(version, max_length) - self.register_buffer('null_cond', null_cond) - - @torch.no_grad() - def get_null_cond(self, version, max_length): - device = self.mean.device - embedder = FrozenCLIPEmbedder(version=version, device=device, max_length=max_length) - null_cond = embedder([""]) - return null_cond - - def preprocess(self, x): - # Expects inputs in the range -1, 1 - x = kornia.geometry.resize(x, (224, 224), - interpolation='bicubic',align_corners=True, - antialias=self.antialias) - x = (x + 1.) / 2. - # renormalize according to clip - x = kornia.enhance.normalize(x, self.mean, self.std) - return x - - def forward(self, x): - if isinstance(x, list): - return self.null_cond - # x is assumed to be in range [-1,1] - x = self.preprocess(x) - outputs = self.model(pixel_values=x) - last_hidden_state = outputs.last_hidden_state - last_hidden_state = self.mapper(last_hidden_state) - return F.pad(last_hidden_state, [0,0, 0,self.max_length-last_hidden_state.shape[1], 0,0]) - - def encode(self, im): - return self(im) - -class ProjectedFrozenCLIPEmbedder(AbstractEncoder): - def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77): # clip-vit-base-patch32 - super().__init__() - self.embedder = FrozenCLIPEmbedder(version=version, device=device, max_length=max_length) - self.projection = torch.nn.Linear(768, 768) - - def forward(self, text): - z = self.embedder(text) - return self.projection(z) - - def encode(self, text): - return self(text) - -class FrozenCLIPImageEmbedder(AbstractEncoder): - """ - Uses the CLIP image encoder. - Not actually frozen... If you want that set cond_stage_trainable=False in cfg - """ - def __init__( - self, - model='ViT-L/14', - jit=False, - device='cpu', - antialias=False, - ): - super().__init__() - self.model, _ = clip.load(name=model, device=device, jit=jit) - # We don't use the text part so delete it - del self.model.transformer - self.antialias = antialias - self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False) - self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False) - - def preprocess(self, x): - # Expects inputs in the range -1, 1 - x = kornia.geometry.resize(x, (224, 224), - interpolation='bicubic',align_corners=True, - antialias=self.antialias) - x = (x + 1.) / 2. - # renormalize according to clip - x = kornia.enhance.normalize(x, self.mean, self.std) - return x - - def forward(self, x): - # x is assumed to be in range [-1,1] - if isinstance(x, list): - # [""] denotes condition dropout for ucg - device = self.model.visual.conv1.weight.device - return torch.zeros(1, 768, device=device) - return self.model.encode_image(self.preprocess(x)).float() - - def encode(self, im): - return self(im).unsqueeze(1) - -from torchvision import transforms -import random - -class FrozenCLIPImageMutliEmbedder(AbstractEncoder): - """ - Uses the CLIP image encoder. - Not actually frozen... If you want that set cond_stage_trainable=False in cfg - """ - def __init__( - self, - model='ViT-L/14', - jit=False, - device='cpu', - antialias=True, - max_crops=5, - ): - super().__init__() - self.model, _ = clip.load(name=model, device=device, jit=jit) - # We don't use the text part so delete it - del self.model.transformer - self.antialias = antialias - self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False) - self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False) - self.max_crops = max_crops - - def preprocess(self, x): - - # Expects inputs in the range -1, 1 - randcrop = transforms.RandomResizedCrop(224, scale=(0.085, 1.0), ratio=(1,1)) - max_crops = self.max_crops - patches = [] - crops = [randcrop(x) for _ in range(max_crops)] - patches.extend(crops) - x = torch.cat(patches, dim=0) - x = (x + 1.) / 2. - # renormalize according to clip - x = kornia.enhance.normalize(x, self.mean, self.std) - return x - - def forward(self, x): - # x is assumed to be in range [-1,1] - if isinstance(x, list): - # [""] denotes condition dropout for ucg - device = self.model.visual.conv1.weight.device - return torch.zeros(1, self.max_crops, 768, device=device) - batch_tokens = [] - for im in x: - patches = self.preprocess(im.unsqueeze(0)) - tokens = self.model.encode_image(patches).float() - for t in tokens: - if random.random() < 0.1: - t *= 0 - batch_tokens.append(tokens.unsqueeze(0)) - - return torch.cat(batch_tokens, dim=0) - - def encode(self, im): - return self(im) - -class SpatialRescaler(nn.Module): - def __init__(self, - n_stages=1, - method='bilinear', - multiplier=0.5, - in_channels=3, - out_channels=None, - bias=False): - super().__init__() - self.n_stages = n_stages - assert self.n_stages >= 0 - assert method in ['nearest','linear','bilinear','trilinear','bicubic','area'] - self.multiplier = multiplier - self.interpolator = partial(torch.nn.functional.interpolate, mode=method) - self.remap_output = out_channels is not None - if self.remap_output: - print(f'Spatial Rescaler mapping from {in_channels} to {out_channels} channels after resizing.') - self.channel_mapper = nn.Conv2d(in_channels,out_channels,1,bias=bias) - - def forward(self,x): - for stage in range(self.n_stages): - x = self.interpolator(x, scale_factor=self.multiplier) - - - if self.remap_output: - x = self.channel_mapper(x) - return x - - def encode(self, x): - return self(x) - - -from ldm.util import instantiate_from_config -from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like - - -class LowScaleEncoder(nn.Module): - def __init__(self, model_config, linear_start, linear_end, timesteps=1000, max_noise_level=250, output_size=64, - scale_factor=1.0): - super().__init__() - self.max_noise_level = max_noise_level - self.model = instantiate_from_config(model_config) - self.augmentation_schedule = self.register_schedule(timesteps=timesteps, linear_start=linear_start, - linear_end=linear_end) - self.out_size = output_size - self.scale_factor = scale_factor - - def register_schedule(self, beta_schedule="linear", timesteps=1000, - linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): - betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, - cosine_s=cosine_s) - alphas = 1. - betas - alphas_cumprod = np.cumprod(alphas, axis=0) - alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1]) - - timesteps, = betas.shape - self.num_timesteps = int(timesteps) - self.linear_start = linear_start - self.linear_end = linear_end - assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep' - - to_torch = partial(torch.tensor, dtype=torch.float32) - - self.register_buffer('betas', to_torch(betas)) - self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) - self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev)) - - # calculations for diffusion q(x_t | x_{t-1}) and others - self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod))) - self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod))) - self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod))) - self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod))) - self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1))) - - def q_sample(self, x_start, t, noise=None): - noise = default(noise, lambda: torch.randn_like(x_start)) - return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + - extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise) - - def forward(self, x): - z = self.model.encode(x).sample() - z = z * self.scale_factor - noise_level = torch.randint(0, self.max_noise_level, (x.shape[0],), device=x.device).long() - z = self.q_sample(z, noise_level) - if self.out_size is not None: - z = torch.nn.functional.interpolate(z, size=self.out_size, mode="nearest") # TODO: experiment with mode - # z = z.repeat_interleave(2, -2).repeat_interleave(2, -1) - return z, noise_level - - def decode(self, z): - z = z / self.scale_factor - return self.model.decode(z) - - -if __name__ == "__main__": - from ldm.util import count_params - sentences = ["a hedgehog drinking a whiskey", "der mond ist aufgegangen", "Ein Satz mit vielen Sonderzeichen: äöü ß ?! : 'xx-y/@s'"] - model = FrozenT5Embedder(version="google/t5-v1_1-xl").cuda() - count_params(model, True) - z = model(sentences) - print(z.shape) - - model = FrozenCLIPEmbedder().cuda() - count_params(model, True) - z = model(sentences) - print(z.shape) - - print("done.") diff --git a/One-2-3-45-master 2/ldm/modules/evaluate/adm_evaluator.py b/One-2-3-45-master 2/ldm/modules/evaluate/adm_evaluator.py deleted file mode 100644 index 508cddf206e9aa8b2fa1de32e69a7b78acee13c0..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/ldm/modules/evaluate/adm_evaluator.py +++ /dev/null @@ -1,676 +0,0 @@ -import argparse -import io -import os -import random -import warnings -import zipfile -from abc import ABC, abstractmethod -from contextlib import contextmanager -from functools import partial -from multiprocessing import cpu_count -from multiprocessing.pool import ThreadPool -from typing import Iterable, Optional, Tuple -import yaml - -import numpy as np -import requests -import tensorflow.compat.v1 as tf -from scipy import linalg -from tqdm.auto import tqdm - -INCEPTION_V3_URL = "https://openaipublic.blob.core.windows.net/diffusion/jul-2021/ref_batches/classify_image_graph_def.pb" -INCEPTION_V3_PATH = "classify_image_graph_def.pb" - -FID_POOL_NAME = "pool_3:0" -FID_SPATIAL_NAME = "mixed_6/conv:0" - -REQUIREMENTS = f"This script has the following requirements: \n" \ - 'tensorflow-gpu>=2.0' + "\n" + 'scipy' + "\n" + "requests" + "\n" + "tqdm" - - -def main(): - parser = argparse.ArgumentParser() - parser.add_argument("--ref_batch", help="path to reference batch npz file") - parser.add_argument("--sample_batch", help="path to sample batch npz file") - args = parser.parse_args() - - config = tf.ConfigProto( - allow_soft_placement=True # allows DecodeJpeg to run on CPU in Inception graph - ) - config.gpu_options.allow_growth = True - evaluator = Evaluator(tf.Session(config=config)) - - print("warming up TensorFlow...") - # This will cause TF to print a bunch of verbose stuff now rather - # than after the next print(), to help prevent confusion. - evaluator.warmup() - - print("computing reference batch activations...") - ref_acts = evaluator.read_activations(args.ref_batch) - print("computing/reading reference batch statistics...") - ref_stats, ref_stats_spatial = evaluator.read_statistics(args.ref_batch, ref_acts) - - print("computing sample batch activations...") - sample_acts = evaluator.read_activations(args.sample_batch) - print("computing/reading sample batch statistics...") - sample_stats, sample_stats_spatial = evaluator.read_statistics(args.sample_batch, sample_acts) - - print("Computing evaluations...") - is_ = evaluator.compute_inception_score(sample_acts[0]) - print("Inception Score:", is_) - fid = sample_stats.frechet_distance(ref_stats) - print("FID:", fid) - sfid = sample_stats_spatial.frechet_distance(ref_stats_spatial) - print("sFID:", sfid) - prec, recall = evaluator.compute_prec_recall(ref_acts[0], sample_acts[0]) - print("Precision:", prec) - print("Recall:", recall) - - savepath = '/'.join(args.sample_batch.split('/')[:-1]) - results_file = os.path.join(savepath,'evaluation_metrics.yaml') - print(f'Saving evaluation results to "{results_file}"') - - results = { - 'IS': is_, - 'FID': fid, - 'sFID': sfid, - 'Precision:':prec, - 'Recall': recall - } - - with open(results_file, 'w') as f: - yaml.dump(results, f, default_flow_style=False) - -class InvalidFIDException(Exception): - pass - - -class FIDStatistics: - def __init__(self, mu: np.ndarray, sigma: np.ndarray): - self.mu = mu - self.sigma = sigma - - def frechet_distance(self, other, eps=1e-6): - """ - Compute the Frechet distance between two sets of statistics. - """ - # https://github.com/bioinf-jku/TTUR/blob/73ab375cdf952a12686d9aa7978567771084da42/fid.py#L132 - mu1, sigma1 = self.mu, self.sigma - mu2, sigma2 = other.mu, other.sigma - - mu1 = np.atleast_1d(mu1) - mu2 = np.atleast_1d(mu2) - - sigma1 = np.atleast_2d(sigma1) - sigma2 = np.atleast_2d(sigma2) - - assert ( - mu1.shape == mu2.shape - ), f"Training and test mean vectors have different lengths: {mu1.shape}, {mu2.shape}" - assert ( - sigma1.shape == sigma2.shape - ), f"Training and test covariances have different dimensions: {sigma1.shape}, {sigma2.shape}" - - diff = mu1 - mu2 - - # product might be almost singular - covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False) - if not np.isfinite(covmean).all(): - msg = ( - "fid calculation produces singular product; adding %s to diagonal of cov estimates" - % eps - ) - warnings.warn(msg) - offset = np.eye(sigma1.shape[0]) * eps - covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset)) - - # numerical error might give slight imaginary component - if np.iscomplexobj(covmean): - if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3): - m = np.max(np.abs(covmean.imag)) - raise ValueError("Imaginary component {}".format(m)) - covmean = covmean.real - - tr_covmean = np.trace(covmean) - - return diff.dot(diff) + np.trace(sigma1) + np.trace(sigma2) - 2 * tr_covmean - - -class Evaluator: - def __init__( - self, - session, - batch_size=64, - softmax_batch_size=512, - ): - self.sess = session - self.batch_size = batch_size - self.softmax_batch_size = softmax_batch_size - self.manifold_estimator = ManifoldEstimator(session) - with self.sess.graph.as_default(): - self.image_input = tf.placeholder(tf.float32, shape=[None, None, None, 3]) - self.softmax_input = tf.placeholder(tf.float32, shape=[None, 2048]) - self.pool_features, self.spatial_features = _create_feature_graph(self.image_input) - self.softmax = _create_softmax_graph(self.softmax_input) - - def warmup(self): - self.compute_activations(np.zeros([1, 8, 64, 64, 3])) - - def read_activations(self, npz_path: str) -> Tuple[np.ndarray, np.ndarray]: - with open_npz_array(npz_path, "arr_0") as reader: - return self.compute_activations(reader.read_batches(self.batch_size)) - - def compute_activations(self, batches: Iterable[np.ndarray],silent=False) -> Tuple[np.ndarray, np.ndarray]: - """ - Compute image features for downstream evals. - - :param batches: a iterator over NHWC numpy arrays in [0, 255]. - :return: a tuple of numpy arrays of shape [N x X], where X is a feature - dimension. The tuple is (pool_3, spatial). - """ - preds = [] - spatial_preds = [] - it = batches if silent else tqdm(batches) - for batch in it: - batch = batch.astype(np.float32) - pred, spatial_pred = self.sess.run( - [self.pool_features, self.spatial_features], {self.image_input: batch} - ) - preds.append(pred.reshape([pred.shape[0], -1])) - spatial_preds.append(spatial_pred.reshape([spatial_pred.shape[0], -1])) - return ( - np.concatenate(preds, axis=0), - np.concatenate(spatial_preds, axis=0), - ) - - def read_statistics( - self, npz_path: str, activations: Tuple[np.ndarray, np.ndarray] - ) -> Tuple[FIDStatistics, FIDStatistics]: - obj = np.load(npz_path) - if "mu" in list(obj.keys()): - return FIDStatistics(obj["mu"], obj["sigma"]), FIDStatistics( - obj["mu_s"], obj["sigma_s"] - ) - return tuple(self.compute_statistics(x) for x in activations) - - def compute_statistics(self, activations: np.ndarray) -> FIDStatistics: - mu = np.mean(activations, axis=0) - sigma = np.cov(activations, rowvar=False) - return FIDStatistics(mu, sigma) - - def compute_inception_score(self, activations: np.ndarray, split_size: int = 5000) -> float: - softmax_out = [] - for i in range(0, len(activations), self.softmax_batch_size): - acts = activations[i : i + self.softmax_batch_size] - softmax_out.append(self.sess.run(self.softmax, feed_dict={self.softmax_input: acts})) - preds = np.concatenate(softmax_out, axis=0) - # https://github.com/openai/improved-gan/blob/4f5d1ec5c16a7eceb206f42bfc652693601e1d5c/inception_score/model.py#L46 - scores = [] - for i in range(0, len(preds), split_size): - part = preds[i : i + split_size] - kl = part * (np.log(part) - np.log(np.expand_dims(np.mean(part, 0), 0))) - kl = np.mean(np.sum(kl, 1)) - scores.append(np.exp(kl)) - return float(np.mean(scores)) - - def compute_prec_recall( - self, activations_ref: np.ndarray, activations_sample: np.ndarray - ) -> Tuple[float, float]: - radii_1 = self.manifold_estimator.manifold_radii(activations_ref) - radii_2 = self.manifold_estimator.manifold_radii(activations_sample) - pr = self.manifold_estimator.evaluate_pr( - activations_ref, radii_1, activations_sample, radii_2 - ) - return (float(pr[0][0]), float(pr[1][0])) - - -class ManifoldEstimator: - """ - A helper for comparing manifolds of feature vectors. - - Adapted from https://github.com/kynkaat/improved-precision-and-recall-metric/blob/f60f25e5ad933a79135c783fcda53de30f42c9b9/precision_recall.py#L57 - """ - - def __init__( - self, - session, - row_batch_size=10000, - col_batch_size=10000, - nhood_sizes=(3,), - clamp_to_percentile=None, - eps=1e-5, - ): - """ - Estimate the manifold of given feature vectors. - - :param session: the TensorFlow session. - :param row_batch_size: row batch size to compute pairwise distances - (parameter to trade-off between memory usage and performance). - :param col_batch_size: column batch size to compute pairwise distances. - :param nhood_sizes: number of neighbors used to estimate the manifold. - :param clamp_to_percentile: prune hyperspheres that have radius larger than - the given percentile. - :param eps: small number for numerical stability. - """ - self.distance_block = DistanceBlock(session) - self.row_batch_size = row_batch_size - self.col_batch_size = col_batch_size - self.nhood_sizes = nhood_sizes - self.num_nhoods = len(nhood_sizes) - self.clamp_to_percentile = clamp_to_percentile - self.eps = eps - - def warmup(self): - feats, radii = ( - np.zeros([1, 2048], dtype=np.float32), - np.zeros([1, 1], dtype=np.float32), - ) - self.evaluate_pr(feats, radii, feats, radii) - - def manifold_radii(self, features: np.ndarray) -> np.ndarray: - num_images = len(features) - - # Estimate manifold of features by calculating distances to k-NN of each sample. - radii = np.zeros([num_images, self.num_nhoods], dtype=np.float32) - distance_batch = np.zeros([self.row_batch_size, num_images], dtype=np.float32) - seq = np.arange(max(self.nhood_sizes) + 1, dtype=np.int32) - - for begin1 in range(0, num_images, self.row_batch_size): - end1 = min(begin1 + self.row_batch_size, num_images) - row_batch = features[begin1:end1] - - for begin2 in range(0, num_images, self.col_batch_size): - end2 = min(begin2 + self.col_batch_size, num_images) - col_batch = features[begin2:end2] - - # Compute distances between batches. - distance_batch[ - 0 : end1 - begin1, begin2:end2 - ] = self.distance_block.pairwise_distances(row_batch, col_batch) - - # Find the k-nearest neighbor from the current batch. - radii[begin1:end1, :] = np.concatenate( - [ - x[:, self.nhood_sizes] - for x in _numpy_partition(distance_batch[0 : end1 - begin1, :], seq, axis=1) - ], - axis=0, - ) - - if self.clamp_to_percentile is not None: - max_distances = np.percentile(radii, self.clamp_to_percentile, axis=0) - radii[radii > max_distances] = 0 - return radii - - def evaluate(self, features: np.ndarray, radii: np.ndarray, eval_features: np.ndarray): - """ - Evaluate if new feature vectors are at the manifold. - """ - num_eval_images = eval_features.shape[0] - num_ref_images = radii.shape[0] - distance_batch = np.zeros([self.row_batch_size, num_ref_images], dtype=np.float32) - batch_predictions = np.zeros([num_eval_images, self.num_nhoods], dtype=np.int32) - max_realism_score = np.zeros([num_eval_images], dtype=np.float32) - nearest_indices = np.zeros([num_eval_images], dtype=np.int32) - - for begin1 in range(0, num_eval_images, self.row_batch_size): - end1 = min(begin1 + self.row_batch_size, num_eval_images) - feature_batch = eval_features[begin1:end1] - - for begin2 in range(0, num_ref_images, self.col_batch_size): - end2 = min(begin2 + self.col_batch_size, num_ref_images) - ref_batch = features[begin2:end2] - - distance_batch[ - 0 : end1 - begin1, begin2:end2 - ] = self.distance_block.pairwise_distances(feature_batch, ref_batch) - - # From the minibatch of new feature vectors, determine if they are in the estimated manifold. - # If a feature vector is inside a hypersphere of some reference sample, then - # the new sample lies at the estimated manifold. - # The radii of the hyperspheres are determined from distances of neighborhood size k. - samples_in_manifold = distance_batch[0 : end1 - begin1, :, None] <= radii - batch_predictions[begin1:end1] = np.any(samples_in_manifold, axis=1).astype(np.int32) - - max_realism_score[begin1:end1] = np.max( - radii[:, 0] / (distance_batch[0 : end1 - begin1, :] + self.eps), axis=1 - ) - nearest_indices[begin1:end1] = np.argmin(distance_batch[0 : end1 - begin1, :], axis=1) - - return { - "fraction": float(np.mean(batch_predictions)), - "batch_predictions": batch_predictions, - "max_realisim_score": max_realism_score, - "nearest_indices": nearest_indices, - } - - def evaluate_pr( - self, - features_1: np.ndarray, - radii_1: np.ndarray, - features_2: np.ndarray, - radii_2: np.ndarray, - ) -> Tuple[np.ndarray, np.ndarray]: - """ - Evaluate precision and recall efficiently. - - :param features_1: [N1 x D] feature vectors for reference batch. - :param radii_1: [N1 x K1] radii for reference vectors. - :param features_2: [N2 x D] feature vectors for the other batch. - :param radii_2: [N x K2] radii for other vectors. - :return: a tuple of arrays for (precision, recall): - - precision: an np.ndarray of length K1 - - recall: an np.ndarray of length K2 - """ - features_1_status = np.zeros([len(features_1), radii_2.shape[1]], dtype=np.bool) - features_2_status = np.zeros([len(features_2), radii_1.shape[1]], dtype=np.bool) - for begin_1 in range(0, len(features_1), self.row_batch_size): - end_1 = begin_1 + self.row_batch_size - batch_1 = features_1[begin_1:end_1] - for begin_2 in range(0, len(features_2), self.col_batch_size): - end_2 = begin_2 + self.col_batch_size - batch_2 = features_2[begin_2:end_2] - batch_1_in, batch_2_in = self.distance_block.less_thans( - batch_1, radii_1[begin_1:end_1], batch_2, radii_2[begin_2:end_2] - ) - features_1_status[begin_1:end_1] |= batch_1_in - features_2_status[begin_2:end_2] |= batch_2_in - return ( - np.mean(features_2_status.astype(np.float64), axis=0), - np.mean(features_1_status.astype(np.float64), axis=0), - ) - - -class DistanceBlock: - """ - Calculate pairwise distances between vectors. - - Adapted from https://github.com/kynkaat/improved-precision-and-recall-metric/blob/f60f25e5ad933a79135c783fcda53de30f42c9b9/precision_recall.py#L34 - """ - - def __init__(self, session): - self.session = session - - # Initialize TF graph to calculate pairwise distances. - with session.graph.as_default(): - self._features_batch1 = tf.placeholder(tf.float32, shape=[None, None]) - self._features_batch2 = tf.placeholder(tf.float32, shape=[None, None]) - distance_block_16 = _batch_pairwise_distances( - tf.cast(self._features_batch1, tf.float16), - tf.cast(self._features_batch2, tf.float16), - ) - self.distance_block = tf.cond( - tf.reduce_all(tf.math.is_finite(distance_block_16)), - lambda: tf.cast(distance_block_16, tf.float32), - lambda: _batch_pairwise_distances(self._features_batch1, self._features_batch2), - ) - - # Extra logic for less thans. - self._radii1 = tf.placeholder(tf.float32, shape=[None, None]) - self._radii2 = tf.placeholder(tf.float32, shape=[None, None]) - dist32 = tf.cast(self.distance_block, tf.float32)[..., None] - self._batch_1_in = tf.math.reduce_any(dist32 <= self._radii2, axis=1) - self._batch_2_in = tf.math.reduce_any(dist32 <= self._radii1[:, None], axis=0) - - def pairwise_distances(self, U, V): - """ - Evaluate pairwise distances between two batches of feature vectors. - """ - return self.session.run( - self.distance_block, - feed_dict={self._features_batch1: U, self._features_batch2: V}, - ) - - def less_thans(self, batch_1, radii_1, batch_2, radii_2): - return self.session.run( - [self._batch_1_in, self._batch_2_in], - feed_dict={ - self._features_batch1: batch_1, - self._features_batch2: batch_2, - self._radii1: radii_1, - self._radii2: radii_2, - }, - ) - - -def _batch_pairwise_distances(U, V): - """ - Compute pairwise distances between two batches of feature vectors. - """ - with tf.variable_scope("pairwise_dist_block"): - # Squared norms of each row in U and V. - norm_u = tf.reduce_sum(tf.square(U), 1) - norm_v = tf.reduce_sum(tf.square(V), 1) - - # norm_u as a column and norm_v as a row vectors. - norm_u = tf.reshape(norm_u, [-1, 1]) - norm_v = tf.reshape(norm_v, [1, -1]) - - # Pairwise squared Euclidean distances. - D = tf.maximum(norm_u - 2 * tf.matmul(U, V, False, True) + norm_v, 0.0) - - return D - - -class NpzArrayReader(ABC): - @abstractmethod - def read_batch(self, batch_size: int) -> Optional[np.ndarray]: - pass - - @abstractmethod - def remaining(self) -> int: - pass - - def read_batches(self, batch_size: int) -> Iterable[np.ndarray]: - def gen_fn(): - while True: - batch = self.read_batch(batch_size) - if batch is None: - break - yield batch - - rem = self.remaining() - num_batches = rem // batch_size + int(rem % batch_size != 0) - return BatchIterator(gen_fn, num_batches) - - -class BatchIterator: - def __init__(self, gen_fn, length): - self.gen_fn = gen_fn - self.length = length - - def __len__(self): - return self.length - - def __iter__(self): - return self.gen_fn() - - -class StreamingNpzArrayReader(NpzArrayReader): - def __init__(self, arr_f, shape, dtype): - self.arr_f = arr_f - self.shape = shape - self.dtype = dtype - self.idx = 0 - - def read_batch(self, batch_size: int) -> Optional[np.ndarray]: - if self.idx >= self.shape[0]: - return None - - bs = min(batch_size, self.shape[0] - self.idx) - self.idx += bs - - if self.dtype.itemsize == 0: - return np.ndarray([bs, *self.shape[1:]], dtype=self.dtype) - - read_count = bs * np.prod(self.shape[1:]) - read_size = int(read_count * self.dtype.itemsize) - data = _read_bytes(self.arr_f, read_size, "array data") - return np.frombuffer(data, dtype=self.dtype).reshape([bs, *self.shape[1:]]) - - def remaining(self) -> int: - return max(0, self.shape[0] - self.idx) - - -class MemoryNpzArrayReader(NpzArrayReader): - def __init__(self, arr): - self.arr = arr - self.idx = 0 - - @classmethod - def load(cls, path: str, arr_name: str): - with open(path, "rb") as f: - arr = np.load(f)[arr_name] - return cls(arr) - - def read_batch(self, batch_size: int) -> Optional[np.ndarray]: - if self.idx >= self.arr.shape[0]: - return None - - res = self.arr[self.idx : self.idx + batch_size] - self.idx += batch_size - return res - - def remaining(self) -> int: - return max(0, self.arr.shape[0] - self.idx) - - -@contextmanager -def open_npz_array(path: str, arr_name: str) -> NpzArrayReader: - with _open_npy_file(path, arr_name) as arr_f: - version = np.lib.format.read_magic(arr_f) - if version == (1, 0): - header = np.lib.format.read_array_header_1_0(arr_f) - elif version == (2, 0): - header = np.lib.format.read_array_header_2_0(arr_f) - else: - yield MemoryNpzArrayReader.load(path, arr_name) - return - shape, fortran, dtype = header - if fortran or dtype.hasobject: - yield MemoryNpzArrayReader.load(path, arr_name) - else: - yield StreamingNpzArrayReader(arr_f, shape, dtype) - - -def _read_bytes(fp, size, error_template="ran out of data"): - """ - Copied from: https://github.com/numpy/numpy/blob/fb215c76967739268de71aa4bda55dd1b062bc2e/numpy/lib/format.py#L788-L886 - - Read from file-like object until size bytes are read. - Raises ValueError if not EOF is encountered before size bytes are read. - Non-blocking objects only supported if they derive from io objects. - Required as e.g. ZipExtFile in python 2.6 can return less data than - requested. - """ - data = bytes() - while True: - # io files (default in python3) return None or raise on - # would-block, python2 file will truncate, probably nothing can be - # done about that. note that regular files can't be non-blocking - try: - r = fp.read(size - len(data)) - data += r - if len(r) == 0 or len(data) == size: - break - except io.BlockingIOError: - pass - if len(data) != size: - msg = "EOF: reading %s, expected %d bytes got %d" - raise ValueError(msg % (error_template, size, len(data))) - else: - return data - - -@contextmanager -def _open_npy_file(path: str, arr_name: str): - with open(path, "rb") as f: - with zipfile.ZipFile(f, "r") as zip_f: - if f"{arr_name}.npy" not in zip_f.namelist(): - raise ValueError(f"missing {arr_name} in npz file") - with zip_f.open(f"{arr_name}.npy", "r") as arr_f: - yield arr_f - - -def _download_inception_model(): - if os.path.exists(INCEPTION_V3_PATH): - return - print("downloading InceptionV3 model...") - with requests.get(INCEPTION_V3_URL, stream=True) as r: - r.raise_for_status() - tmp_path = INCEPTION_V3_PATH + ".tmp" - with open(tmp_path, "wb") as f: - for chunk in tqdm(r.iter_content(chunk_size=8192)): - f.write(chunk) - os.rename(tmp_path, INCEPTION_V3_PATH) - - -def _create_feature_graph(input_batch): - _download_inception_model() - prefix = f"{random.randrange(2**32)}_{random.randrange(2**32)}" - with open(INCEPTION_V3_PATH, "rb") as f: - graph_def = tf.GraphDef() - graph_def.ParseFromString(f.read()) - pool3, spatial = tf.import_graph_def( - graph_def, - input_map={f"ExpandDims:0": input_batch}, - return_elements=[FID_POOL_NAME, FID_SPATIAL_NAME], - name=prefix, - ) - _update_shapes(pool3) - spatial = spatial[..., :7] - return pool3, spatial - - -def _create_softmax_graph(input_batch): - _download_inception_model() - prefix = f"{random.randrange(2**32)}_{random.randrange(2**32)}" - with open(INCEPTION_V3_PATH, "rb") as f: - graph_def = tf.GraphDef() - graph_def.ParseFromString(f.read()) - (matmul,) = tf.import_graph_def( - graph_def, return_elements=[f"softmax/logits/MatMul"], name=prefix - ) - w = matmul.inputs[1] - logits = tf.matmul(input_batch, w) - return tf.nn.softmax(logits) - - -def _update_shapes(pool3): - # https://github.com/bioinf-jku/TTUR/blob/73ab375cdf952a12686d9aa7978567771084da42/fid.py#L50-L63 - ops = pool3.graph.get_operations() - for op in ops: - for o in op.outputs: - shape = o.get_shape() - if shape._dims is not None: # pylint: disable=protected-access - # shape = [s.value for s in shape] TF 1.x - shape = [s for s in shape] # TF 2.x - new_shape = [] - for j, s in enumerate(shape): - if s == 1 and j == 0: - new_shape.append(None) - else: - new_shape.append(s) - o.__dict__["_shape_val"] = tf.TensorShape(new_shape) - return pool3 - - -def _numpy_partition(arr, kth, **kwargs): - num_workers = min(cpu_count(), len(arr)) - chunk_size = len(arr) // num_workers - extra = len(arr) % num_workers - - start_idx = 0 - batches = [] - for i in range(num_workers): - size = chunk_size + (1 if i < extra else 0) - batches.append(arr[start_idx : start_idx + size]) - start_idx += size - - with ThreadPool(num_workers) as pool: - return list(pool.map(partial(np.partition, kth=kth, **kwargs), batches)) - - -if __name__ == "__main__": - print(REQUIREMENTS) - main() diff --git a/One-2-3-45-master 2/ldm/modules/evaluate/evaluate_perceptualsim.py b/One-2-3-45-master 2/ldm/modules/evaluate/evaluate_perceptualsim.py deleted file mode 100644 index c85fef967b60b90e3001b0cc29aa70b1a80ed36f..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/ldm/modules/evaluate/evaluate_perceptualsim.py +++ /dev/null @@ -1,630 +0,0 @@ -import argparse -import glob -import os -from tqdm import tqdm -from collections import namedtuple - -import numpy as np -import torch -import torchvision.transforms as transforms -from torchvision import models -from PIL import Image - -from ldm.modules.evaluate.ssim import ssim - - -transform = transforms.Compose([transforms.ToTensor()]) - -def normalize_tensor(in_feat, eps=1e-10): - norm_factor = torch.sqrt(torch.sum(in_feat ** 2, dim=1)).view( - in_feat.size()[0], 1, in_feat.size()[2], in_feat.size()[3] - ) - return in_feat / (norm_factor.expand_as(in_feat) + eps) - - -def cos_sim(in0, in1): - in0_norm = normalize_tensor(in0) - in1_norm = normalize_tensor(in1) - N = in0.size()[0] - X = in0.size()[2] - Y = in0.size()[3] - - return torch.mean( - torch.mean( - torch.sum(in0_norm * in1_norm, dim=1).view(N, 1, X, Y), dim=2 - ).view(N, 1, 1, Y), - dim=3, - ).view(N) - - -class squeezenet(torch.nn.Module): - def __init__(self, requires_grad=False, pretrained=True): - super(squeezenet, self).__init__() - pretrained_features = models.squeezenet1_1( - pretrained=pretrained - ).features - self.slice1 = torch.nn.Sequential() - self.slice2 = torch.nn.Sequential() - self.slice3 = torch.nn.Sequential() - self.slice4 = torch.nn.Sequential() - self.slice5 = torch.nn.Sequential() - self.slice6 = torch.nn.Sequential() - self.slice7 = torch.nn.Sequential() - self.N_slices = 7 - for x in range(2): - self.slice1.add_module(str(x), pretrained_features[x]) - for x in range(2, 5): - self.slice2.add_module(str(x), pretrained_features[x]) - for x in range(5, 8): - self.slice3.add_module(str(x), pretrained_features[x]) - for x in range(8, 10): - self.slice4.add_module(str(x), pretrained_features[x]) - for x in range(10, 11): - self.slice5.add_module(str(x), pretrained_features[x]) - for x in range(11, 12): - self.slice6.add_module(str(x), pretrained_features[x]) - for x in range(12, 13): - self.slice7.add_module(str(x), pretrained_features[x]) - if not requires_grad: - for param in self.parameters(): - param.requires_grad = False - - def forward(self, X): - h = self.slice1(X) - h_relu1 = h - h = self.slice2(h) - h_relu2 = h - h = self.slice3(h) - h_relu3 = h - h = self.slice4(h) - h_relu4 = h - h = self.slice5(h) - h_relu5 = h - h = self.slice6(h) - h_relu6 = h - h = self.slice7(h) - h_relu7 = h - vgg_outputs = namedtuple( - "SqueezeOutputs", - ["relu1", "relu2", "relu3", "relu4", "relu5", "relu6", "relu7"], - ) - out = vgg_outputs( - h_relu1, h_relu2, h_relu3, h_relu4, h_relu5, h_relu6, h_relu7 - ) - - return out - - -class alexnet(torch.nn.Module): - def __init__(self, requires_grad=False, pretrained=True): - super(alexnet, self).__init__() - alexnet_pretrained_features = models.alexnet( - pretrained=pretrained - ).features - self.slice1 = torch.nn.Sequential() - self.slice2 = torch.nn.Sequential() - self.slice3 = torch.nn.Sequential() - self.slice4 = torch.nn.Sequential() - self.slice5 = torch.nn.Sequential() - self.N_slices = 5 - for x in range(2): - self.slice1.add_module(str(x), alexnet_pretrained_features[x]) - for x in range(2, 5): - self.slice2.add_module(str(x), alexnet_pretrained_features[x]) - for x in range(5, 8): - self.slice3.add_module(str(x), alexnet_pretrained_features[x]) - for x in range(8, 10): - self.slice4.add_module(str(x), alexnet_pretrained_features[x]) - for x in range(10, 12): - self.slice5.add_module(str(x), alexnet_pretrained_features[x]) - if not requires_grad: - for param in self.parameters(): - param.requires_grad = False - - def forward(self, X): - h = self.slice1(X) - h_relu1 = h - h = self.slice2(h) - h_relu2 = h - h = self.slice3(h) - h_relu3 = h - h = self.slice4(h) - h_relu4 = h - h = self.slice5(h) - h_relu5 = h - alexnet_outputs = namedtuple( - "AlexnetOutputs", ["relu1", "relu2", "relu3", "relu4", "relu5"] - ) - out = alexnet_outputs(h_relu1, h_relu2, h_relu3, h_relu4, h_relu5) - - return out - - -class vgg16(torch.nn.Module): - def __init__(self, requires_grad=False, pretrained=True): - super(vgg16, self).__init__() - vgg_pretrained_features = models.vgg16(pretrained=pretrained).features - self.slice1 = torch.nn.Sequential() - self.slice2 = torch.nn.Sequential() - self.slice3 = torch.nn.Sequential() - self.slice4 = torch.nn.Sequential() - self.slice5 = torch.nn.Sequential() - self.N_slices = 5 - for x in range(4): - self.slice1.add_module(str(x), vgg_pretrained_features[x]) - for x in range(4, 9): - self.slice2.add_module(str(x), vgg_pretrained_features[x]) - for x in range(9, 16): - self.slice3.add_module(str(x), vgg_pretrained_features[x]) - for x in range(16, 23): - self.slice4.add_module(str(x), vgg_pretrained_features[x]) - for x in range(23, 30): - self.slice5.add_module(str(x), vgg_pretrained_features[x]) - if not requires_grad: - for param in self.parameters(): - param.requires_grad = False - - def forward(self, X): - h = self.slice1(X) - h_relu1_2 = h - h = self.slice2(h) - h_relu2_2 = h - h = self.slice3(h) - h_relu3_3 = h - h = self.slice4(h) - h_relu4_3 = h - h = self.slice5(h) - h_relu5_3 = h - vgg_outputs = namedtuple( - "VggOutputs", - ["relu1_2", "relu2_2", "relu3_3", "relu4_3", "relu5_3"], - ) - out = vgg_outputs(h_relu1_2, h_relu2_2, h_relu3_3, h_relu4_3, h_relu5_3) - - return out - - -class resnet(torch.nn.Module): - def __init__(self, requires_grad=False, pretrained=True, num=18): - super(resnet, self).__init__() - if num == 18: - self.net = models.resnet18(pretrained=pretrained) - elif num == 34: - self.net = models.resnet34(pretrained=pretrained) - elif num == 50: - self.net = models.resnet50(pretrained=pretrained) - elif num == 101: - self.net = models.resnet101(pretrained=pretrained) - elif num == 152: - self.net = models.resnet152(pretrained=pretrained) - self.N_slices = 5 - - self.conv1 = self.net.conv1 - self.bn1 = self.net.bn1 - self.relu = self.net.relu - self.maxpool = self.net.maxpool - self.layer1 = self.net.layer1 - self.layer2 = self.net.layer2 - self.layer3 = self.net.layer3 - self.layer4 = self.net.layer4 - - def forward(self, X): - h = self.conv1(X) - h = self.bn1(h) - h = self.relu(h) - h_relu1 = h - h = self.maxpool(h) - h = self.layer1(h) - h_conv2 = h - h = self.layer2(h) - h_conv3 = h - h = self.layer3(h) - h_conv4 = h - h = self.layer4(h) - h_conv5 = h - - outputs = namedtuple( - "Outputs", ["relu1", "conv2", "conv3", "conv4", "conv5"] - ) - out = outputs(h_relu1, h_conv2, h_conv3, h_conv4, h_conv5) - - return out - -# Off-the-shelf deep network -class PNet(torch.nn.Module): - """Pre-trained network with all channels equally weighted by default""" - - def __init__(self, pnet_type="vgg", pnet_rand=False, use_gpu=True): - super(PNet, self).__init__() - - self.use_gpu = use_gpu - - self.pnet_type = pnet_type - self.pnet_rand = pnet_rand - - self.shift = torch.Tensor([-0.030, -0.088, -0.188]).view(1, 3, 1, 1) - self.scale = torch.Tensor([0.458, 0.448, 0.450]).view(1, 3, 1, 1) - - if self.pnet_type in ["vgg", "vgg16"]: - self.net = vgg16(pretrained=not self.pnet_rand, requires_grad=False) - elif self.pnet_type == "alex": - self.net = alexnet( - pretrained=not self.pnet_rand, requires_grad=False - ) - elif self.pnet_type[:-2] == "resnet": - self.net = resnet( - pretrained=not self.pnet_rand, - requires_grad=False, - num=int(self.pnet_type[-2:]), - ) - elif self.pnet_type == "squeeze": - self.net = squeezenet( - pretrained=not self.pnet_rand, requires_grad=False - ) - - self.L = self.net.N_slices - - if use_gpu: - self.net.cuda() - self.shift = self.shift.cuda() - self.scale = self.scale.cuda() - - def forward(self, in0, in1, retPerLayer=False): - in0_sc = (in0 - self.shift.expand_as(in0)) / self.scale.expand_as(in0) - in1_sc = (in1 - self.shift.expand_as(in0)) / self.scale.expand_as(in0) - - outs0 = self.net.forward(in0_sc) - outs1 = self.net.forward(in1_sc) - - if retPerLayer: - all_scores = [] - for (kk, out0) in enumerate(outs0): - cur_score = 1.0 - cos_sim(outs0[kk], outs1[kk]) - if kk == 0: - val = 1.0 * cur_score - else: - val = val + cur_score - if retPerLayer: - all_scores += [cur_score] - - if retPerLayer: - return (val, all_scores) - else: - return val - - - - -# The SSIM metric -def ssim_metric(img1, img2, mask=None): - return ssim(img1, img2, mask=mask, size_average=False) - - -# The PSNR metric -def psnr(img1, img2, mask=None,reshape=False): - b = img1.size(0) - if not (mask is None): - b = img1.size(0) - mse_err = (img1 - img2).pow(2) * mask - if reshape: - mse_err = mse_err.reshape(b, -1).sum(dim=1) / ( - 3 * mask.reshape(b, -1).sum(dim=1).clamp(min=1) - ) - else: - mse_err = mse_err.view(b, -1).sum(dim=1) / ( - 3 * mask.view(b, -1).sum(dim=1).clamp(min=1) - ) - else: - if reshape: - mse_err = (img1 - img2).pow(2).reshape(b, -1).mean(dim=1) - else: - mse_err = (img1 - img2).pow(2).view(b, -1).mean(dim=1) - - psnr = 10 * (1 / mse_err).log10() - return psnr - - -# The perceptual similarity metric -def perceptual_sim(img1, img2, vgg16): - # First extract features - dist = vgg16(img1 * 2 - 1, img2 * 2 - 1) - - return dist - -def load_img(img_name, size=None): - try: - img = Image.open(img_name) - - if type(size) == int: - img = img.resize((size, size)) - elif size is not None: - img = img.resize((size[1], size[0])) - - img = transform(img).cuda() - img = img.unsqueeze(0) - except Exception as e: - print("Failed at loading %s " % img_name) - print(e) - img = torch.zeros(1, 3, 256, 256).cuda() - raise - return img - - -def compute_perceptual_similarity(folder, pred_img, tgt_img, take_every_other): - - # Load VGG16 for feature similarity - vgg16 = PNet().to("cuda") - vgg16.eval() - vgg16.cuda() - - values_percsim = [] - values_ssim = [] - values_psnr = [] - folders = os.listdir(folder) - for i, f in tqdm(enumerate(sorted(folders))): - pred_imgs = glob.glob(folder + f + "/" + pred_img) - tgt_imgs = glob.glob(folder + f + "/" + tgt_img) - assert len(tgt_imgs) == 1 - - perc_sim = 10000 - ssim_sim = -10 - psnr_sim = -10 - for p_img in pred_imgs: - t_img = load_img(tgt_imgs[0]) - p_img = load_img(p_img, size=t_img.shape[2:]) - t_perc_sim = perceptual_sim(p_img, t_img, vgg16).item() - perc_sim = min(perc_sim, t_perc_sim) - - ssim_sim = max(ssim_sim, ssim_metric(p_img, t_img).item()) - psnr_sim = max(psnr_sim, psnr(p_img, t_img).item()) - - values_percsim += [perc_sim] - values_ssim += [ssim_sim] - values_psnr += [psnr_sim] - - if take_every_other: - n_valuespercsim = [] - n_valuesssim = [] - n_valuespsnr = [] - for i in range(0, len(values_percsim) // 2): - n_valuespercsim += [ - min(values_percsim[2 * i], values_percsim[2 * i + 1]) - ] - n_valuespsnr += [max(values_psnr[2 * i], values_psnr[2 * i + 1])] - n_valuesssim += [max(values_ssim[2 * i], values_ssim[2 * i + 1])] - - values_percsim = n_valuespercsim - values_ssim = n_valuesssim - values_psnr = n_valuespsnr - - avg_percsim = np.mean(np.array(values_percsim)) - std_percsim = np.std(np.array(values_percsim)) - - avg_psnr = np.mean(np.array(values_psnr)) - std_psnr = np.std(np.array(values_psnr)) - - avg_ssim = np.mean(np.array(values_ssim)) - std_ssim = np.std(np.array(values_ssim)) - - return { - "Perceptual similarity": (avg_percsim, std_percsim), - "PSNR": (avg_psnr, std_psnr), - "SSIM": (avg_ssim, std_ssim), - } - - -def compute_perceptual_similarity_from_list(pred_imgs_list, tgt_imgs_list, - take_every_other, - simple_format=True): - - # Load VGG16 for feature similarity - vgg16 = PNet().to("cuda") - vgg16.eval() - vgg16.cuda() - - values_percsim = [] - values_ssim = [] - values_psnr = [] - equal_count = 0 - ambig_count = 0 - for i, tgt_img in enumerate(tqdm(tgt_imgs_list)): - pred_imgs = pred_imgs_list[i] - tgt_imgs = [tgt_img] - assert len(tgt_imgs) == 1 - - if type(pred_imgs) != list: - pred_imgs = [pred_imgs] - - perc_sim = 10000 - ssim_sim = -10 - psnr_sim = -10 - assert len(pred_imgs)>0 - for p_img in pred_imgs: - t_img = load_img(tgt_imgs[0]) - p_img = load_img(p_img, size=t_img.shape[2:]) - t_perc_sim = perceptual_sim(p_img, t_img, vgg16).item() - perc_sim = min(perc_sim, t_perc_sim) - - ssim_sim = max(ssim_sim, ssim_metric(p_img, t_img).item()) - psnr_sim = max(psnr_sim, psnr(p_img, t_img).item()) - - values_percsim += [perc_sim] - values_ssim += [ssim_sim] - if psnr_sim != np.float("inf"): - values_psnr += [psnr_sim] - else: - if torch.allclose(p_img, t_img): - equal_count += 1 - print("{} equal src and wrp images.".format(equal_count)) - else: - ambig_count += 1 - print("{} ambiguous src and wrp images.".format(ambig_count)) - - if take_every_other: - n_valuespercsim = [] - n_valuesssim = [] - n_valuespsnr = [] - for i in range(0, len(values_percsim) // 2): - n_valuespercsim += [ - min(values_percsim[2 * i], values_percsim[2 * i + 1]) - ] - n_valuespsnr += [max(values_psnr[2 * i], values_psnr[2 * i + 1])] - n_valuesssim += [max(values_ssim[2 * i], values_ssim[2 * i + 1])] - - values_percsim = n_valuespercsim - values_ssim = n_valuesssim - values_psnr = n_valuespsnr - - avg_percsim = np.mean(np.array(values_percsim)) - std_percsim = np.std(np.array(values_percsim)) - - avg_psnr = np.mean(np.array(values_psnr)) - std_psnr = np.std(np.array(values_psnr)) - - avg_ssim = np.mean(np.array(values_ssim)) - std_ssim = np.std(np.array(values_ssim)) - - if simple_format: - # just to make yaml formatting readable - return { - "Perceptual similarity": [float(avg_percsim), float(std_percsim)], - "PSNR": [float(avg_psnr), float(std_psnr)], - "SSIM": [float(avg_ssim), float(std_ssim)], - } - else: - return { - "Perceptual similarity": (avg_percsim, std_percsim), - "PSNR": (avg_psnr, std_psnr), - "SSIM": (avg_ssim, std_ssim), - } - - -def compute_perceptual_similarity_from_list_topk(pred_imgs_list, tgt_imgs_list, - take_every_other, resize=False): - - # Load VGG16 for feature similarity - vgg16 = PNet().to("cuda") - vgg16.eval() - vgg16.cuda() - - values_percsim = [] - values_ssim = [] - values_psnr = [] - individual_percsim = [] - individual_ssim = [] - individual_psnr = [] - for i, tgt_img in enumerate(tqdm(tgt_imgs_list)): - pred_imgs = pred_imgs_list[i] - tgt_imgs = [tgt_img] - assert len(tgt_imgs) == 1 - - if type(pred_imgs) != list: - assert False - pred_imgs = [pred_imgs] - - perc_sim = 10000 - ssim_sim = -10 - psnr_sim = -10 - sample_percsim = list() - sample_ssim = list() - sample_psnr = list() - for p_img in pred_imgs: - if resize: - t_img = load_img(tgt_imgs[0], size=(256,256)) - else: - t_img = load_img(tgt_imgs[0]) - p_img = load_img(p_img, size=t_img.shape[2:]) - - t_perc_sim = perceptual_sim(p_img, t_img, vgg16).item() - sample_percsim.append(t_perc_sim) - perc_sim = min(perc_sim, t_perc_sim) - - t_ssim = ssim_metric(p_img, t_img).item() - sample_ssim.append(t_ssim) - ssim_sim = max(ssim_sim, t_ssim) - - t_psnr = psnr(p_img, t_img).item() - sample_psnr.append(t_psnr) - psnr_sim = max(psnr_sim, t_psnr) - - values_percsim += [perc_sim] - values_ssim += [ssim_sim] - values_psnr += [psnr_sim] - individual_percsim.append(sample_percsim) - individual_ssim.append(sample_ssim) - individual_psnr.append(sample_psnr) - - if take_every_other: - assert False, "Do this later, after specifying topk to get proper results" - n_valuespercsim = [] - n_valuesssim = [] - n_valuespsnr = [] - for i in range(0, len(values_percsim) // 2): - n_valuespercsim += [ - min(values_percsim[2 * i], values_percsim[2 * i + 1]) - ] - n_valuespsnr += [max(values_psnr[2 * i], values_psnr[2 * i + 1])] - n_valuesssim += [max(values_ssim[2 * i], values_ssim[2 * i + 1])] - - values_percsim = n_valuespercsim - values_ssim = n_valuesssim - values_psnr = n_valuespsnr - - avg_percsim = np.mean(np.array(values_percsim)) - std_percsim = np.std(np.array(values_percsim)) - - avg_psnr = np.mean(np.array(values_psnr)) - std_psnr = np.std(np.array(values_psnr)) - - avg_ssim = np.mean(np.array(values_ssim)) - std_ssim = np.std(np.array(values_ssim)) - - individual_percsim = np.array(individual_percsim) - individual_psnr = np.array(individual_psnr) - individual_ssim = np.array(individual_ssim) - - return { - "avg_of_best": { - "Perceptual similarity": [float(avg_percsim), float(std_percsim)], - "PSNR": [float(avg_psnr), float(std_psnr)], - "SSIM": [float(avg_ssim), float(std_ssim)], - }, - "individual": { - "PSIM": individual_percsim, - "PSNR": individual_psnr, - "SSIM": individual_ssim, - } - } - - -if __name__ == "__main__": - args = argparse.ArgumentParser() - args.add_argument("--folder", type=str, default="") - args.add_argument("--pred_image", type=str, default="") - args.add_argument("--target_image", type=str, default="") - args.add_argument("--take_every_other", action="store_true", default=False) - args.add_argument("--output_file", type=str, default="") - - opts = args.parse_args() - - folder = opts.folder - pred_img = opts.pred_image - tgt_img = opts.target_image - - results = compute_perceptual_similarity( - folder, pred_img, tgt_img, opts.take_every_other - ) - - f = open(opts.output_file, 'w') - for key in results: - print("%s for %s: \n" % (key, opts.folder)) - print( - "\t {:0.4f} | {:0.4f} \n".format(results[key][0], results[key][1]) - ) - - f.write("%s for %s: \n" % (key, opts.folder)) - f.write( - "\t {:0.4f} | {:0.4f} \n".format(results[key][0], results[key][1]) - ) - - f.close() diff --git a/One-2-3-45-master 2/ldm/modules/evaluate/frechet_video_distance.py b/One-2-3-45-master 2/ldm/modules/evaluate/frechet_video_distance.py deleted file mode 100644 index d9e13c41505d9895016cdda1a1fd59aec33ab4d0..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/ldm/modules/evaluate/frechet_video_distance.py +++ /dev/null @@ -1,147 +0,0 @@ -# coding=utf-8 -# Copyright 2022 The Google Research Authors. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -# Lint as: python2, python3 -"""Minimal Reference implementation for the Frechet Video Distance (FVD). - -FVD is a metric for the quality of video generation models. It is inspired by -the FID (Frechet Inception Distance) used for images, but uses a different -embedding to be better suitable for videos. -""" - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - - -import six -import tensorflow.compat.v1 as tf -import tensorflow_gan as tfgan -import tensorflow_hub as hub - - -def preprocess(videos, target_resolution): - """Runs some preprocessing on the videos for I3D model. - - Args: - videos: [batch_size, num_frames, height, width, depth] The videos to be - preprocessed. We don't care about the specific dtype of the videos, it can - be anything that tf.image.resize_bilinear accepts. Values are expected to - be in the range 0-255. - target_resolution: (width, height): target video resolution - - Returns: - videos: [batch_size, num_frames, height, width, depth] - """ - videos_shape = list(videos.shape) - all_frames = tf.reshape(videos, [-1] + videos_shape[-3:]) - resized_videos = tf.image.resize_bilinear(all_frames, size=target_resolution) - target_shape = [videos_shape[0], -1] + list(target_resolution) + [3] - output_videos = tf.reshape(resized_videos, target_shape) - scaled_videos = 2. * tf.cast(output_videos, tf.float32) / 255. - 1 - return scaled_videos - - -def _is_in_graph(tensor_name): - """Checks whether a given tensor does exists in the graph.""" - try: - tf.get_default_graph().get_tensor_by_name(tensor_name) - except KeyError: - return False - return True - - -def create_id3_embedding(videos,warmup=False,batch_size=16): - """Embeds the given videos using the Inflated 3D Convolution ne twork. - - Downloads the graph of the I3D from tf.hub and adds it to the graph on the - first call. - - Args: - videos: [batch_size, num_frames, height=224, width=224, depth=3]. - Expected range is [-1, 1]. - - Returns: - embedding: [batch_size, embedding_size]. embedding_size depends - on the model used. - - Raises: - ValueError: when a provided embedding_layer is not supported. - """ - - # batch_size = 16 - module_spec = "https://tfhub.dev/deepmind/i3d-kinetics-400/1" - - - # Making sure that we import the graph separately for - # each different input video tensor. - module_name = "fvd_kinetics-400_id3_module_" + six.ensure_str( - videos.name).replace(":", "_") - - - - assert_ops = [ - tf.Assert( - tf.reduce_max(videos) <= 1.001, - ["max value in frame is > 1", videos]), - tf.Assert( - tf.reduce_min(videos) >= -1.001, - ["min value in frame is < -1", videos]), - tf.assert_equal( - tf.shape(videos)[0], - batch_size, ["invalid frame batch size: ", - tf.shape(videos)], - summarize=6), - ] - with tf.control_dependencies(assert_ops): - videos = tf.identity(videos) - - module_scope = "%s_apply_default/" % module_name - - # To check whether the module has already been loaded into the graph, we look - # for a given tensor name. If this tensor name exists, we assume the function - # has been called before and the graph was imported. Otherwise we import it. - # Note: in theory, the tensor could exist, but have wrong shapes. - # This will happen if create_id3_embedding is called with a frames_placehoder - # of wrong size/batch size, because even though that will throw a tf.Assert - # on graph-execution time, it will insert the tensor (with wrong shape) into - # the graph. This is why we need the following assert. - if warmup: - video_batch_size = int(videos.shape[0]) - assert video_batch_size in [batch_size, -1, None], f"Invalid batch size {video_batch_size}" - tensor_name = module_scope + "RGB/inception_i3d/Mean:0" - if not _is_in_graph(tensor_name): - i3d_model = hub.Module(module_spec, name=module_name) - i3d_model(videos) - - # gets the kinetics-i3d-400-logits layer - tensor_name = module_scope + "RGB/inception_i3d/Mean:0" - tensor = tf.get_default_graph().get_tensor_by_name(tensor_name) - return tensor - - -def calculate_fvd(real_activations, - generated_activations): - """Returns a list of ops that compute metrics as funcs of activations. - - Args: - real_activations: [num_samples, embedding_size] - generated_activations: [num_samples, embedding_size] - - Returns: - A scalar that contains the requested FVD. - """ - return tfgan.eval.frechet_classifier_distance_from_activations( - real_activations, generated_activations) diff --git a/One-2-3-45-master 2/ldm/modules/evaluate/ssim.py b/One-2-3-45-master 2/ldm/modules/evaluate/ssim.py deleted file mode 100644 index 4e8883ccb3b30455a76caf2e4d1e04745f75d214..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/ldm/modules/evaluate/ssim.py +++ /dev/null @@ -1,124 +0,0 @@ -# MIT Licence - -# Methods to predict the SSIM, taken from -# https://github.com/Po-Hsun-Su/pytorch-ssim/blob/master/pytorch_ssim/__init__.py - -from math import exp - -import torch -import torch.nn.functional as F -from torch.autograd import Variable - -def gaussian(window_size, sigma): - gauss = torch.Tensor( - [ - exp(-((x - window_size // 2) ** 2) / float(2 * sigma ** 2)) - for x in range(window_size) - ] - ) - return gauss / gauss.sum() - - -def create_window(window_size, channel): - _1D_window = gaussian(window_size, 1.5).unsqueeze(1) - _2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0) - window = Variable( - _2D_window.expand(channel, 1, window_size, window_size).contiguous() - ) - return window - - -def _ssim( - img1, img2, window, window_size, channel, mask=None, size_average=True -): - mu1 = F.conv2d(img1, window, padding=window_size // 2, groups=channel) - mu2 = F.conv2d(img2, window, padding=window_size // 2, groups=channel) - - mu1_sq = mu1.pow(2) - mu2_sq = mu2.pow(2) - mu1_mu2 = mu1 * mu2 - - sigma1_sq = ( - F.conv2d(img1 * img1, window, padding=window_size // 2, groups=channel) - - mu1_sq - ) - sigma2_sq = ( - F.conv2d(img2 * img2, window, padding=window_size // 2, groups=channel) - - mu2_sq - ) - sigma12 = ( - F.conv2d(img1 * img2, window, padding=window_size // 2, groups=channel) - - mu1_mu2 - ) - - C1 = (0.01) ** 2 - C2 = (0.03) ** 2 - - ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ( - (mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2) - ) - - if not (mask is None): - b = mask.size(0) - ssim_map = ssim_map.mean(dim=1, keepdim=True) * mask - ssim_map = ssim_map.view(b, -1).sum(dim=1) / mask.view(b, -1).sum( - dim=1 - ).clamp(min=1) - return ssim_map - - import pdb - - pdb.set_trace - - if size_average: - return ssim_map.mean() - else: - return ssim_map.mean(1).mean(1).mean(1) - - -class SSIM(torch.nn.Module): - def __init__(self, window_size=11, size_average=True): - super(SSIM, self).__init__() - self.window_size = window_size - self.size_average = size_average - self.channel = 1 - self.window = create_window(window_size, self.channel) - - def forward(self, img1, img2, mask=None): - (_, channel, _, _) = img1.size() - - if ( - channel == self.channel - and self.window.data.type() == img1.data.type() - ): - window = self.window - else: - window = create_window(self.window_size, channel) - - if img1.is_cuda: - window = window.cuda(img1.get_device()) - window = window.type_as(img1) - - self.window = window - self.channel = channel - - return _ssim( - img1, - img2, - window, - self.window_size, - channel, - mask, - self.size_average, - ) - - -def ssim(img1, img2, window_size=11, mask=None, size_average=True): - (_, channel, _, _) = img1.size() - window = create_window(window_size, channel) - - if img1.is_cuda: - window = window.cuda(img1.get_device()) - window = window.type_as(img1) - - return _ssim(img1, img2, window, window_size, channel, mask, size_average) diff --git a/One-2-3-45-master 2/ldm/modules/evaluate/torch_frechet_video_distance.py b/One-2-3-45-master 2/ldm/modules/evaluate/torch_frechet_video_distance.py deleted file mode 100644 index 04856b828a17cdc97fa88a7b9d2f7fe0f735b3fc..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/ldm/modules/evaluate/torch_frechet_video_distance.py +++ /dev/null @@ -1,294 +0,0 @@ -# based on https://github.com/universome/fvd-comparison/blob/master/compare_models.py; huge thanks! -import os -import numpy as np -import io -import re -import requests -import html -import hashlib -import urllib -import urllib.request -import scipy.linalg -import multiprocessing as mp -import glob - - -from tqdm import tqdm -from typing import Any, List, Tuple, Union, Dict, Callable - -from torchvision.io import read_video -import torch; torch.set_grad_enabled(False) -from einops import rearrange - -from nitro.util import isvideo - -def compute_frechet_distance(mu_sample,sigma_sample,mu_ref,sigma_ref) -> float: - print('Calculate frechet distance...') - m = np.square(mu_sample - mu_ref).sum() - s, _ = scipy.linalg.sqrtm(np.dot(sigma_sample, sigma_ref), disp=False) # pylint: disable=no-member - fid = np.real(m + np.trace(sigma_sample + sigma_ref - s * 2)) - - return float(fid) - - -def compute_stats(feats: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: - mu = feats.mean(axis=0) # [d] - sigma = np.cov(feats, rowvar=False) # [d, d] - - return mu, sigma - - -def open_url(url: str, num_attempts: int = 10, verbose: bool = True, return_filename: bool = False) -> Any: - """Download the given URL and return a binary-mode file object to access the data.""" - assert num_attempts >= 1 - - # Doesn't look like an URL scheme so interpret it as a local filename. - if not re.match('^[a-z]+://', url): - return url if return_filename else open(url, "rb") - - # Handle file URLs. This code handles unusual file:// patterns that - # arise on Windows: - # - # file:///c:/foo.txt - # - # which would translate to a local '/c:/foo.txt' filename that's - # invalid. Drop the forward slash for such pathnames. - # - # If you touch this code path, you should test it on both Linux and - # Windows. - # - # Some internet resources suggest using urllib.request.url2pathname() but - # but that converts forward slashes to backslashes and this causes - # its own set of problems. - if url.startswith('file://'): - filename = urllib.parse.urlparse(url).path - if re.match(r'^/[a-zA-Z]:', filename): - filename = filename[1:] - return filename if return_filename else open(filename, "rb") - - url_md5 = hashlib.md5(url.encode("utf-8")).hexdigest() - - # Download. - url_name = None - url_data = None - with requests.Session() as session: - if verbose: - print("Downloading %s ..." % url, end="", flush=True) - for attempts_left in reversed(range(num_attempts)): - try: - with session.get(url) as res: - res.raise_for_status() - if len(res.content) == 0: - raise IOError("No data received") - - if len(res.content) < 8192: - content_str = res.content.decode("utf-8") - if "download_warning" in res.headers.get("Set-Cookie", ""): - links = [html.unescape(link) for link in content_str.split('"') if "export=download" in link] - if len(links) == 1: - url = requests.compat.urljoin(url, links[0]) - raise IOError("Google Drive virus checker nag") - if "Google Drive - Quota exceeded" in content_str: - raise IOError("Google Drive download quota exceeded -- please try again later") - - match = re.search(r'filename="([^"]*)"', res.headers.get("Content-Disposition", "")) - url_name = match[1] if match else url - url_data = res.content - if verbose: - print(" done") - break - except KeyboardInterrupt: - raise - except: - if not attempts_left: - if verbose: - print(" failed") - raise - if verbose: - print(".", end="", flush=True) - - # Return data as file object. - assert not return_filename - return io.BytesIO(url_data) - -def load_video(ip): - vid, *_ = read_video(ip) - vid = rearrange(vid, 't h w c -> t c h w').to(torch.uint8) - return vid - -def get_data_from_str(input_str,nprc = None): - assert os.path.isdir(input_str), f'Specified input folder "{input_str}" is not a directory' - vid_filelist = glob.glob(os.path.join(input_str,'*.mp4')) - print(f'Found {len(vid_filelist)} videos in dir {input_str}') - - if nprc is None: - try: - nprc = mp.cpu_count() - except NotImplementedError: - print('WARNING: cpu_count() not avlailable, using only 1 cpu for video loading') - nprc = 1 - - pool = mp.Pool(processes=nprc) - - vids = [] - for v in tqdm(pool.imap_unordered(load_video,vid_filelist),total=len(vid_filelist),desc='Loading videos...'): - vids.append(v) - - - vids = torch.stack(vids,dim=0).float() - - return vids - -def get_stats(stats): - assert os.path.isfile(stats) and stats.endswith('.npz'), f'no stats found under {stats}' - - print(f'Using precomputed statistics under {stats}') - stats = np.load(stats) - stats = {key: stats[key] for key in stats.files} - - return stats - - - - -@torch.no_grad() -def compute_fvd(ref_input, sample_input, bs=32, - ref_stats=None, - sample_stats=None, - nprc_load=None): - - - - calc_stats = ref_stats is None or sample_stats is None - - if calc_stats: - - only_ref = sample_stats is not None - only_sample = ref_stats is not None - - - if isinstance(ref_input,str) and not only_sample: - ref_input = get_data_from_str(ref_input,nprc_load) - - if isinstance(sample_input, str) and not only_ref: - sample_input = get_data_from_str(sample_input, nprc_load) - - stats = compute_statistics(sample_input,ref_input, - device='cuda' if torch.cuda.is_available() else 'cpu', - bs=bs, - only_ref=only_ref, - only_sample=only_sample) - - if only_ref: - stats.update(get_stats(sample_stats)) - elif only_sample: - stats.update(get_stats(ref_stats)) - - - - else: - stats = get_stats(sample_stats) - stats.update(get_stats(ref_stats)) - - fvd = compute_frechet_distance(**stats) - - return {'FVD' : fvd,} - - -@torch.no_grad() -def compute_statistics(videos_fake, videos_real, device: str='cuda', bs=32, only_ref=False,only_sample=False) -> Dict: - detector_url = 'https://www.dropbox.com/s/ge9e5ujwgetktms/i3d_torchscript.pt?dl=1' - detector_kwargs = dict(rescale=True, resize=True, return_features=True) # Return raw features before the softmax layer. - - with open_url(detector_url, verbose=False) as f: - detector = torch.jit.load(f).eval().to(device) - - - - assert not (only_sample and only_ref), 'only_ref and only_sample arguments are mutually exclusive' - - ref_embed, sample_embed = [], [] - - info = f'Computing I3D activations for FVD score with batch size {bs}' - - if only_ref: - - if not isvideo(videos_real): - # if not is video we assume to have numpy arrays pf shape (n_vids, t, h, w, c) in range [0,255] - videos_real = torch.from_numpy(videos_real).permute(0, 4, 1, 2, 3).float() - print(videos_real.shape) - - if videos_real.shape[0] % bs == 0: - n_secs = videos_real.shape[0] // bs - else: - n_secs = videos_real.shape[0] // bs + 1 - - videos_real = torch.tensor_split(videos_real, n_secs, dim=0) - - for ref_v in tqdm(videos_real, total=len(videos_real),desc=info): - - feats_ref = detector(ref_v.to(device).contiguous(), **detector_kwargs).cpu().numpy() - ref_embed.append(feats_ref) - - elif only_sample: - - if not isvideo(videos_fake): - # if not is video we assume to have numpy arrays pf shape (n_vids, t, h, w, c) in range [0,255] - videos_fake = torch.from_numpy(videos_fake).permute(0, 4, 1, 2, 3).float() - print(videos_fake.shape) - - if videos_fake.shape[0] % bs == 0: - n_secs = videos_fake.shape[0] // bs - else: - n_secs = videos_fake.shape[0] // bs + 1 - - videos_real = torch.tensor_split(videos_real, n_secs, dim=0) - - for sample_v in tqdm(videos_fake, total=len(videos_real),desc=info): - feats_sample = detector(sample_v.to(device).contiguous(), **detector_kwargs).cpu().numpy() - sample_embed.append(feats_sample) - - - else: - - if not isvideo(videos_real): - # if not is video we assume to have numpy arrays pf shape (n_vids, t, h, w, c) in range [0,255] - videos_real = torch.from_numpy(videos_real).permute(0, 4, 1, 2, 3).float() - - if not isvideo(videos_fake): - videos_fake = torch.from_numpy(videos_fake).permute(0, 4, 1, 2, 3).float() - - if videos_fake.shape[0] % bs == 0: - n_secs = videos_fake.shape[0] // bs - else: - n_secs = videos_fake.shape[0] // bs + 1 - - videos_real = torch.tensor_split(videos_real, n_secs, dim=0) - videos_fake = torch.tensor_split(videos_fake, n_secs, dim=0) - - for ref_v, sample_v in tqdm(zip(videos_real,videos_fake),total=len(videos_fake),desc=info): - # print(ref_v.shape) - # ref_v = torch.nn.functional.interpolate(ref_v, size=(sample_v.shape[2], 256, 256), mode='trilinear', align_corners=False) - # sample_v = torch.nn.functional.interpolate(sample_v, size=(sample_v.shape[2], 256, 256), mode='trilinear', align_corners=False) - - - feats_sample = detector(sample_v.to(device).contiguous(), **detector_kwargs).cpu().numpy() - feats_ref = detector(ref_v.to(device).contiguous(), **detector_kwargs).cpu().numpy() - sample_embed.append(feats_sample) - ref_embed.append(feats_ref) - - out = dict() - if len(sample_embed) > 0: - sample_embed = np.concatenate(sample_embed,axis=0) - mu_sample, sigma_sample = compute_stats(sample_embed) - out.update({'mu_sample': mu_sample, - 'sigma_sample': sigma_sample}) - - if len(ref_embed) > 0: - ref_embed = np.concatenate(ref_embed,axis=0) - mu_ref, sigma_ref = compute_stats(ref_embed) - out.update({'mu_ref': mu_ref, - 'sigma_ref': sigma_ref}) - - - return out diff --git a/One-2-3-45-master 2/ldm/modules/image_degradation/__init__.py b/One-2-3-45-master 2/ldm/modules/image_degradation/__init__.py deleted file mode 100644 index 7836cada81f90ded99c58d5942eea4c3477f58fc..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/ldm/modules/image_degradation/__init__.py +++ /dev/null @@ -1,2 +0,0 @@ -from ldm.modules.image_degradation.bsrgan import degradation_bsrgan_variant as degradation_fn_bsr -from ldm.modules.image_degradation.bsrgan_light import degradation_bsrgan_variant as degradation_fn_bsr_light diff --git a/One-2-3-45-master 2/ldm/modules/image_degradation/bsrgan.py b/One-2-3-45-master 2/ldm/modules/image_degradation/bsrgan.py deleted file mode 100644 index 32ef56169978e550090261cddbcf5eb611a6173b..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/ldm/modules/image_degradation/bsrgan.py +++ /dev/null @@ -1,730 +0,0 @@ -# -*- coding: utf-8 -*- -""" -# -------------------------------------------- -# Super-Resolution -# -------------------------------------------- -# -# Kai Zhang (cskaizhang@gmail.com) -# https://github.com/cszn -# From 2019/03--2021/08 -# -------------------------------------------- -""" - -import numpy as np -import cv2 -import torch - -from functools import partial -import random -from scipy import ndimage -import scipy -import scipy.stats as ss -from scipy.interpolate import interp2d -from scipy.linalg import orth -import albumentations - -import ldm.modules.image_degradation.utils_image as util - - -def modcrop_np(img, sf): - ''' - Args: - img: numpy image, WxH or WxHxC - sf: scale factor - Return: - cropped image - ''' - w, h = img.shape[:2] - im = np.copy(img) - return im[:w - w % sf, :h - h % sf, ...] - - -""" -# -------------------------------------------- -# anisotropic Gaussian kernels -# -------------------------------------------- -""" - - -def analytic_kernel(k): - """Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)""" - k_size = k.shape[0] - # Calculate the big kernels size - big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2)) - # Loop over the small kernel to fill the big one - for r in range(k_size): - for c in range(k_size): - big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k - # Crop the edges of the big kernel to ignore very small values and increase run time of SR - crop = k_size // 2 - cropped_big_k = big_k[crop:-crop, crop:-crop] - # Normalize to 1 - return cropped_big_k / cropped_big_k.sum() - - -def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6): - """ generate an anisotropic Gaussian kernel - Args: - ksize : e.g., 15, kernel size - theta : [0, pi], rotation angle range - l1 : [0.1,50], scaling of eigenvalues - l2 : [0.1,l1], scaling of eigenvalues - If l1 = l2, will get an isotropic Gaussian kernel. - Returns: - k : kernel - """ - - v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.])) - V = np.array([[v[0], v[1]], [v[1], -v[0]]]) - D = np.array([[l1, 0], [0, l2]]) - Sigma = np.dot(np.dot(V, D), np.linalg.inv(V)) - k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize) - - return k - - -def gm_blur_kernel(mean, cov, size=15): - center = size / 2.0 + 0.5 - k = np.zeros([size, size]) - for y in range(size): - for x in range(size): - cy = y - center + 1 - cx = x - center + 1 - k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov) - - k = k / np.sum(k) - return k - - -def shift_pixel(x, sf, upper_left=True): - """shift pixel for super-resolution with different scale factors - Args: - x: WxHxC or WxH - sf: scale factor - upper_left: shift direction - """ - h, w = x.shape[:2] - shift = (sf - 1) * 0.5 - xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0) - if upper_left: - x1 = xv + shift - y1 = yv + shift - else: - x1 = xv - shift - y1 = yv - shift - - x1 = np.clip(x1, 0, w - 1) - y1 = np.clip(y1, 0, h - 1) - - if x.ndim == 2: - x = interp2d(xv, yv, x)(x1, y1) - if x.ndim == 3: - for i in range(x.shape[-1]): - x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1) - - return x - - -def blur(x, k): - ''' - x: image, NxcxHxW - k: kernel, Nx1xhxw - ''' - n, c = x.shape[:2] - p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2 - x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate') - k = k.repeat(1, c, 1, 1) - k = k.view(-1, 1, k.shape[2], k.shape[3]) - x = x.view(1, -1, x.shape[2], x.shape[3]) - x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c) - x = x.view(n, c, x.shape[2], x.shape[3]) - - return x - - -def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10., noise_level=0): - """" - # modified version of https://github.com/assafshocher/BlindSR_dataset_generator - # Kai Zhang - # min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var - # max_var = 2.5 * sf - """ - # Set random eigen-vals (lambdas) and angle (theta) for COV matrix - lambda_1 = min_var + np.random.rand() * (max_var - min_var) - lambda_2 = min_var + np.random.rand() * (max_var - min_var) - theta = np.random.rand() * np.pi # random theta - noise = -noise_level + np.random.rand(*k_size) * noise_level * 2 - - # Set COV matrix using Lambdas and Theta - LAMBDA = np.diag([lambda_1, lambda_2]) - Q = np.array([[np.cos(theta), -np.sin(theta)], - [np.sin(theta), np.cos(theta)]]) - SIGMA = Q @ LAMBDA @ Q.T - INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :] - - # Set expectation position (shifting kernel for aligned image) - MU = k_size // 2 - 0.5 * (scale_factor - 1) # - 0.5 * (scale_factor - k_size % 2) - MU = MU[None, None, :, None] - - # Create meshgrid for Gaussian - [X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1])) - Z = np.stack([X, Y], 2)[:, :, :, None] - - # Calcualte Gaussian for every pixel of the kernel - ZZ = Z - MU - ZZ_t = ZZ.transpose(0, 1, 3, 2) - raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise) - - # shift the kernel so it will be centered - # raw_kernel_centered = kernel_shift(raw_kernel, scale_factor) - - # Normalize the kernel and return - # kernel = raw_kernel_centered / np.sum(raw_kernel_centered) - kernel = raw_kernel / np.sum(raw_kernel) - return kernel - - -def fspecial_gaussian(hsize, sigma): - hsize = [hsize, hsize] - siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0] - std = sigma - [x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1)) - arg = -(x * x + y * y) / (2 * std * std) - h = np.exp(arg) - h[h < scipy.finfo(float).eps * h.max()] = 0 - sumh = h.sum() - if sumh != 0: - h = h / sumh - return h - - -def fspecial_laplacian(alpha): - alpha = max([0, min([alpha, 1])]) - h1 = alpha / (alpha + 1) - h2 = (1 - alpha) / (alpha + 1) - h = [[h1, h2, h1], [h2, -4 / (alpha + 1), h2], [h1, h2, h1]] - h = np.array(h) - return h - - -def fspecial(filter_type, *args, **kwargs): - ''' - python code from: - https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py - ''' - if filter_type == 'gaussian': - return fspecial_gaussian(*args, **kwargs) - if filter_type == 'laplacian': - return fspecial_laplacian(*args, **kwargs) - - -""" -# -------------------------------------------- -# degradation models -# -------------------------------------------- -""" - - -def bicubic_degradation(x, sf=3): - ''' - Args: - x: HxWxC image, [0, 1] - sf: down-scale factor - Return: - bicubicly downsampled LR image - ''' - x = util.imresize_np(x, scale=1 / sf) - return x - - -def srmd_degradation(x, k, sf=3): - ''' blur + bicubic downsampling - Args: - x: HxWxC image, [0, 1] - k: hxw, double - sf: down-scale factor - Return: - downsampled LR image - Reference: - @inproceedings{zhang2018learning, - title={Learning a single convolutional super-resolution network for multiple degradations}, - author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei}, - booktitle={IEEE Conference on Computer Vision and Pattern Recognition}, - pages={3262--3271}, - year={2018} - } - ''' - x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap') # 'nearest' | 'mirror' - x = bicubic_degradation(x, sf=sf) - return x - - -def dpsr_degradation(x, k, sf=3): - ''' bicubic downsampling + blur - Args: - x: HxWxC image, [0, 1] - k: hxw, double - sf: down-scale factor - Return: - downsampled LR image - Reference: - @inproceedings{zhang2019deep, - title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels}, - author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei}, - booktitle={IEEE Conference on Computer Vision and Pattern Recognition}, - pages={1671--1681}, - year={2019} - } - ''' - x = bicubic_degradation(x, sf=sf) - x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap') - return x - - -def classical_degradation(x, k, sf=3): - ''' blur + downsampling - Args: - x: HxWxC image, [0, 1]/[0, 255] - k: hxw, double - sf: down-scale factor - Return: - downsampled LR image - ''' - x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap') - # x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2)) - st = 0 - return x[st::sf, st::sf, ...] - - -def add_sharpening(img, weight=0.5, radius=50, threshold=10): - """USM sharpening. borrowed from real-ESRGAN - Input image: I; Blurry image: B. - 1. K = I + weight * (I - B) - 2. Mask = 1 if abs(I - B) > threshold, else: 0 - 3. Blur mask: - 4. Out = Mask * K + (1 - Mask) * I - Args: - img (Numpy array): Input image, HWC, BGR; float32, [0, 1]. - weight (float): Sharp weight. Default: 1. - radius (float): Kernel size of Gaussian blur. Default: 50. - threshold (int): - """ - if radius % 2 == 0: - radius += 1 - blur = cv2.GaussianBlur(img, (radius, radius), 0) - residual = img - blur - mask = np.abs(residual) * 255 > threshold - mask = mask.astype('float32') - soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0) - - K = img + weight * residual - K = np.clip(K, 0, 1) - return soft_mask * K + (1 - soft_mask) * img - - -def add_blur(img, sf=4): - wd2 = 4.0 + sf - wd = 2.0 + 0.2 * sf - if random.random() < 0.5: - l1 = wd2 * random.random() - l2 = wd2 * random.random() - k = anisotropic_Gaussian(ksize=2 * random.randint(2, 11) + 3, theta=random.random() * np.pi, l1=l1, l2=l2) - else: - k = fspecial('gaussian', 2 * random.randint(2, 11) + 3, wd * random.random()) - img = ndimage.filters.convolve(img, np.expand_dims(k, axis=2), mode='mirror') - - return img - - -def add_resize(img, sf=4): - rnum = np.random.rand() - if rnum > 0.8: # up - sf1 = random.uniform(1, 2) - elif rnum < 0.7: # down - sf1 = random.uniform(0.5 / sf, 1) - else: - sf1 = 1.0 - img = cv2.resize(img, (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3])) - img = np.clip(img, 0.0, 1.0) - - return img - - -# def add_Gaussian_noise(img, noise_level1=2, noise_level2=25): -# noise_level = random.randint(noise_level1, noise_level2) -# rnum = np.random.rand() -# if rnum > 0.6: # add color Gaussian noise -# img += np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32) -# elif rnum < 0.4: # add grayscale Gaussian noise -# img += np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32) -# else: # add noise -# L = noise_level2 / 255. -# D = np.diag(np.random.rand(3)) -# U = orth(np.random.rand(3, 3)) -# conv = np.dot(np.dot(np.transpose(U), D), U) -# img += np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32) -# img = np.clip(img, 0.0, 1.0) -# return img - -def add_Gaussian_noise(img, noise_level1=2, noise_level2=25): - noise_level = random.randint(noise_level1, noise_level2) - rnum = np.random.rand() - if rnum > 0.6: # add color Gaussian noise - img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32) - elif rnum < 0.4: # add grayscale Gaussian noise - img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32) - else: # add noise - L = noise_level2 / 255. - D = np.diag(np.random.rand(3)) - U = orth(np.random.rand(3, 3)) - conv = np.dot(np.dot(np.transpose(U), D), U) - img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32) - img = np.clip(img, 0.0, 1.0) - return img - - -def add_speckle_noise(img, noise_level1=2, noise_level2=25): - noise_level = random.randint(noise_level1, noise_level2) - img = np.clip(img, 0.0, 1.0) - rnum = random.random() - if rnum > 0.6: - img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32) - elif rnum < 0.4: - img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32) - else: - L = noise_level2 / 255. - D = np.diag(np.random.rand(3)) - U = orth(np.random.rand(3, 3)) - conv = np.dot(np.dot(np.transpose(U), D), U) - img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32) - img = np.clip(img, 0.0, 1.0) - return img - - -def add_Poisson_noise(img): - img = np.clip((img * 255.0).round(), 0, 255) / 255. - vals = 10 ** (2 * random.random() + 2.0) # [2, 4] - if random.random() < 0.5: - img = np.random.poisson(img * vals).astype(np.float32) / vals - else: - img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114]) - img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255. - noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray - img += noise_gray[:, :, np.newaxis] - img = np.clip(img, 0.0, 1.0) - return img - - -def add_JPEG_noise(img): - quality_factor = random.randint(30, 95) - img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR) - result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor]) - img = cv2.imdecode(encimg, 1) - img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB) - return img - - -def random_crop(lq, hq, sf=4, lq_patchsize=64): - h, w = lq.shape[:2] - rnd_h = random.randint(0, h - lq_patchsize) - rnd_w = random.randint(0, w - lq_patchsize) - lq = lq[rnd_h:rnd_h + lq_patchsize, rnd_w:rnd_w + lq_patchsize, :] - - rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf) - hq = hq[rnd_h_H:rnd_h_H + lq_patchsize * sf, rnd_w_H:rnd_w_H + lq_patchsize * sf, :] - return lq, hq - - -def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None): - """ - This is the degradation model of BSRGAN from the paper - "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution" - ---------- - img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf) - sf: scale factor - isp_model: camera ISP model - Returns - ------- - img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1] - hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1] - """ - isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25 - sf_ori = sf - - h1, w1 = img.shape[:2] - img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop - h, w = img.shape[:2] - - if h < lq_patchsize * sf or w < lq_patchsize * sf: - raise ValueError(f'img size ({h1}X{w1}) is too small!') - - hq = img.copy() - - if sf == 4 and random.random() < scale2_prob: # downsample1 - if np.random.rand() < 0.5: - img = cv2.resize(img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])), - interpolation=random.choice([1, 2, 3])) - else: - img = util.imresize_np(img, 1 / 2, True) - img = np.clip(img, 0.0, 1.0) - sf = 2 - - shuffle_order = random.sample(range(7), 7) - idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3) - if idx1 > idx2: # keep downsample3 last - shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1] - - for i in shuffle_order: - - if i == 0: - img = add_blur(img, sf=sf) - - elif i == 1: - img = add_blur(img, sf=sf) - - elif i == 2: - a, b = img.shape[1], img.shape[0] - # downsample2 - if random.random() < 0.75: - sf1 = random.uniform(1, 2 * sf) - img = cv2.resize(img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])), - interpolation=random.choice([1, 2, 3])) - else: - k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf)) - k_shifted = shift_pixel(k, sf) - k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel - img = ndimage.filters.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror') - img = img[0::sf, 0::sf, ...] # nearest downsampling - img = np.clip(img, 0.0, 1.0) - - elif i == 3: - # downsample3 - img = cv2.resize(img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3])) - img = np.clip(img, 0.0, 1.0) - - elif i == 4: - # add Gaussian noise - img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25) - - elif i == 5: - # add JPEG noise - if random.random() < jpeg_prob: - img = add_JPEG_noise(img) - - elif i == 6: - # add processed camera sensor noise - if random.random() < isp_prob and isp_model is not None: - with torch.no_grad(): - img, hq = isp_model.forward(img.copy(), hq) - - # add final JPEG compression noise - img = add_JPEG_noise(img) - - # random crop - img, hq = random_crop(img, hq, sf_ori, lq_patchsize) - - return img, hq - - -# todo no isp_model? -def degradation_bsrgan_variant(image, sf=4, isp_model=None): - """ - This is the degradation model of BSRGAN from the paper - "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution" - ---------- - sf: scale factor - isp_model: camera ISP model - Returns - ------- - img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1] - hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1] - """ - image = util.uint2single(image) - isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25 - sf_ori = sf - - h1, w1 = image.shape[:2] - image = image.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop - h, w = image.shape[:2] - - hq = image.copy() - - if sf == 4 and random.random() < scale2_prob: # downsample1 - if np.random.rand() < 0.5: - image = cv2.resize(image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])), - interpolation=random.choice([1, 2, 3])) - else: - image = util.imresize_np(image, 1 / 2, True) - image = np.clip(image, 0.0, 1.0) - sf = 2 - - shuffle_order = random.sample(range(7), 7) - idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3) - if idx1 > idx2: # keep downsample3 last - shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1] - - for i in shuffle_order: - - if i == 0: - image = add_blur(image, sf=sf) - - elif i == 1: - image = add_blur(image, sf=sf) - - elif i == 2: - a, b = image.shape[1], image.shape[0] - # downsample2 - if random.random() < 0.75: - sf1 = random.uniform(1, 2 * sf) - image = cv2.resize(image, (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])), - interpolation=random.choice([1, 2, 3])) - else: - k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf)) - k_shifted = shift_pixel(k, sf) - k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel - image = ndimage.filters.convolve(image, np.expand_dims(k_shifted, axis=2), mode='mirror') - image = image[0::sf, 0::sf, ...] # nearest downsampling - image = np.clip(image, 0.0, 1.0) - - elif i == 3: - # downsample3 - image = cv2.resize(image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3])) - image = np.clip(image, 0.0, 1.0) - - elif i == 4: - # add Gaussian noise - image = add_Gaussian_noise(image, noise_level1=2, noise_level2=25) - - elif i == 5: - # add JPEG noise - if random.random() < jpeg_prob: - image = add_JPEG_noise(image) - - # elif i == 6: - # # add processed camera sensor noise - # if random.random() < isp_prob and isp_model is not None: - # with torch.no_grad(): - # img, hq = isp_model.forward(img.copy(), hq) - - # add final JPEG compression noise - image = add_JPEG_noise(image) - image = util.single2uint(image) - example = {"image":image} - return example - - -# TODO incase there is a pickle error one needs to replace a += x with a = a + x in add_speckle_noise etc... -def degradation_bsrgan_plus(img, sf=4, shuffle_prob=0.5, use_sharp=True, lq_patchsize=64, isp_model=None): - """ - This is an extended degradation model by combining - the degradation models of BSRGAN and Real-ESRGAN - ---------- - img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf) - sf: scale factor - use_shuffle: the degradation shuffle - use_sharp: sharpening the img - Returns - ------- - img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1] - hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1] - """ - - h1, w1 = img.shape[:2] - img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop - h, w = img.shape[:2] - - if h < lq_patchsize * sf or w < lq_patchsize * sf: - raise ValueError(f'img size ({h1}X{w1}) is too small!') - - if use_sharp: - img = add_sharpening(img) - hq = img.copy() - - if random.random() < shuffle_prob: - shuffle_order = random.sample(range(13), 13) - else: - shuffle_order = list(range(13)) - # local shuffle for noise, JPEG is always the last one - shuffle_order[2:6] = random.sample(shuffle_order[2:6], len(range(2, 6))) - shuffle_order[9:13] = random.sample(shuffle_order[9:13], len(range(9, 13))) - - poisson_prob, speckle_prob, isp_prob = 0.1, 0.1, 0.1 - - for i in shuffle_order: - if i == 0: - img = add_blur(img, sf=sf) - elif i == 1: - img = add_resize(img, sf=sf) - elif i == 2: - img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25) - elif i == 3: - if random.random() < poisson_prob: - img = add_Poisson_noise(img) - elif i == 4: - if random.random() < speckle_prob: - img = add_speckle_noise(img) - elif i == 5: - if random.random() < isp_prob and isp_model is not None: - with torch.no_grad(): - img, hq = isp_model.forward(img.copy(), hq) - elif i == 6: - img = add_JPEG_noise(img) - elif i == 7: - img = add_blur(img, sf=sf) - elif i == 8: - img = add_resize(img, sf=sf) - elif i == 9: - img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25) - elif i == 10: - if random.random() < poisson_prob: - img = add_Poisson_noise(img) - elif i == 11: - if random.random() < speckle_prob: - img = add_speckle_noise(img) - elif i == 12: - if random.random() < isp_prob and isp_model is not None: - with torch.no_grad(): - img, hq = isp_model.forward(img.copy(), hq) - else: - print('check the shuffle!') - - # resize to desired size - img = cv2.resize(img, (int(1 / sf * hq.shape[1]), int(1 / sf * hq.shape[0])), - interpolation=random.choice([1, 2, 3])) - - # add final JPEG compression noise - img = add_JPEG_noise(img) - - # random crop - img, hq = random_crop(img, hq, sf, lq_patchsize) - - return img, hq - - -if __name__ == '__main__': - print("hey") - img = util.imread_uint('utils/test.png', 3) - print(img) - img = util.uint2single(img) - print(img) - img = img[:448, :448] - h = img.shape[0] // 4 - print("resizing to", h) - sf = 4 - deg_fn = partial(degradation_bsrgan_variant, sf=sf) - for i in range(20): - print(i) - img_lq = deg_fn(img) - print(img_lq) - img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img)["image"] - print(img_lq.shape) - print("bicubic", img_lq_bicubic.shape) - print(img_hq.shape) - lq_nearest = cv2.resize(util.single2uint(img_lq), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])), - interpolation=0) - lq_bicubic_nearest = cv2.resize(util.single2uint(img_lq_bicubic), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])), - interpolation=0) - img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1) - util.imsave(img_concat, str(i) + '.png') - - diff --git a/One-2-3-45-master 2/ldm/modules/image_degradation/bsrgan_light.py b/One-2-3-45-master 2/ldm/modules/image_degradation/bsrgan_light.py deleted file mode 100644 index dfa760689762d4e9490fe4d817f844955f1b35de..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/ldm/modules/image_degradation/bsrgan_light.py +++ /dev/null @@ -1,650 +0,0 @@ -# -*- coding: utf-8 -*- -import numpy as np -import cv2 -import torch - -from functools import partial -import random -from scipy import ndimage -import scipy -import scipy.stats as ss -from scipy.interpolate import interp2d -from scipy.linalg import orth -import albumentations - -import ldm.modules.image_degradation.utils_image as util - -""" -# -------------------------------------------- -# Super-Resolution -# -------------------------------------------- -# -# Kai Zhang (cskaizhang@gmail.com) -# https://github.com/cszn -# From 2019/03--2021/08 -# -------------------------------------------- -""" - - -def modcrop_np(img, sf): - ''' - Args: - img: numpy image, WxH or WxHxC - sf: scale factor - Return: - cropped image - ''' - w, h = img.shape[:2] - im = np.copy(img) - return im[:w - w % sf, :h - h % sf, ...] - - -""" -# -------------------------------------------- -# anisotropic Gaussian kernels -# -------------------------------------------- -""" - - -def analytic_kernel(k): - """Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)""" - k_size = k.shape[0] - # Calculate the big kernels size - big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2)) - # Loop over the small kernel to fill the big one - for r in range(k_size): - for c in range(k_size): - big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k - # Crop the edges of the big kernel to ignore very small values and increase run time of SR - crop = k_size // 2 - cropped_big_k = big_k[crop:-crop, crop:-crop] - # Normalize to 1 - return cropped_big_k / cropped_big_k.sum() - - -def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6): - """ generate an anisotropic Gaussian kernel - Args: - ksize : e.g., 15, kernel size - theta : [0, pi], rotation angle range - l1 : [0.1,50], scaling of eigenvalues - l2 : [0.1,l1], scaling of eigenvalues - If l1 = l2, will get an isotropic Gaussian kernel. - Returns: - k : kernel - """ - - v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.])) - V = np.array([[v[0], v[1]], [v[1], -v[0]]]) - D = np.array([[l1, 0], [0, l2]]) - Sigma = np.dot(np.dot(V, D), np.linalg.inv(V)) - k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize) - - return k - - -def gm_blur_kernel(mean, cov, size=15): - center = size / 2.0 + 0.5 - k = np.zeros([size, size]) - for y in range(size): - for x in range(size): - cy = y - center + 1 - cx = x - center + 1 - k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov) - - k = k / np.sum(k) - return k - - -def shift_pixel(x, sf, upper_left=True): - """shift pixel for super-resolution with different scale factors - Args: - x: WxHxC or WxH - sf: scale factor - upper_left: shift direction - """ - h, w = x.shape[:2] - shift = (sf - 1) * 0.5 - xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0) - if upper_left: - x1 = xv + shift - y1 = yv + shift - else: - x1 = xv - shift - y1 = yv - shift - - x1 = np.clip(x1, 0, w - 1) - y1 = np.clip(y1, 0, h - 1) - - if x.ndim == 2: - x = interp2d(xv, yv, x)(x1, y1) - if x.ndim == 3: - for i in range(x.shape[-1]): - x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1) - - return x - - -def blur(x, k): - ''' - x: image, NxcxHxW - k: kernel, Nx1xhxw - ''' - n, c = x.shape[:2] - p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2 - x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate') - k = k.repeat(1, c, 1, 1) - k = k.view(-1, 1, k.shape[2], k.shape[3]) - x = x.view(1, -1, x.shape[2], x.shape[3]) - x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c) - x = x.view(n, c, x.shape[2], x.shape[3]) - - return x - - -def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10., noise_level=0): - """" - # modified version of https://github.com/assafshocher/BlindSR_dataset_generator - # Kai Zhang - # min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var - # max_var = 2.5 * sf - """ - # Set random eigen-vals (lambdas) and angle (theta) for COV matrix - lambda_1 = min_var + np.random.rand() * (max_var - min_var) - lambda_2 = min_var + np.random.rand() * (max_var - min_var) - theta = np.random.rand() * np.pi # random theta - noise = -noise_level + np.random.rand(*k_size) * noise_level * 2 - - # Set COV matrix using Lambdas and Theta - LAMBDA = np.diag([lambda_1, lambda_2]) - Q = np.array([[np.cos(theta), -np.sin(theta)], - [np.sin(theta), np.cos(theta)]]) - SIGMA = Q @ LAMBDA @ Q.T - INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :] - - # Set expectation position (shifting kernel for aligned image) - MU = k_size // 2 - 0.5 * (scale_factor - 1) # - 0.5 * (scale_factor - k_size % 2) - MU = MU[None, None, :, None] - - # Create meshgrid for Gaussian - [X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1])) - Z = np.stack([X, Y], 2)[:, :, :, None] - - # Calcualte Gaussian for every pixel of the kernel - ZZ = Z - MU - ZZ_t = ZZ.transpose(0, 1, 3, 2) - raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise) - - # shift the kernel so it will be centered - # raw_kernel_centered = kernel_shift(raw_kernel, scale_factor) - - # Normalize the kernel and return - # kernel = raw_kernel_centered / np.sum(raw_kernel_centered) - kernel = raw_kernel / np.sum(raw_kernel) - return kernel - - -def fspecial_gaussian(hsize, sigma): - hsize = [hsize, hsize] - siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0] - std = sigma - [x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1)) - arg = -(x * x + y * y) / (2 * std * std) - h = np.exp(arg) - h[h < scipy.finfo(float).eps * h.max()] = 0 - sumh = h.sum() - if sumh != 0: - h = h / sumh - return h - - -def fspecial_laplacian(alpha): - alpha = max([0, min([alpha, 1])]) - h1 = alpha / (alpha + 1) - h2 = (1 - alpha) / (alpha + 1) - h = [[h1, h2, h1], [h2, -4 / (alpha + 1), h2], [h1, h2, h1]] - h = np.array(h) - return h - - -def fspecial(filter_type, *args, **kwargs): - ''' - python code from: - https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py - ''' - if filter_type == 'gaussian': - return fspecial_gaussian(*args, **kwargs) - if filter_type == 'laplacian': - return fspecial_laplacian(*args, **kwargs) - - -""" -# -------------------------------------------- -# degradation models -# -------------------------------------------- -""" - - -def bicubic_degradation(x, sf=3): - ''' - Args: - x: HxWxC image, [0, 1] - sf: down-scale factor - Return: - bicubicly downsampled LR image - ''' - x = util.imresize_np(x, scale=1 / sf) - return x - - -def srmd_degradation(x, k, sf=3): - ''' blur + bicubic downsampling - Args: - x: HxWxC image, [0, 1] - k: hxw, double - sf: down-scale factor - Return: - downsampled LR image - Reference: - @inproceedings{zhang2018learning, - title={Learning a single convolutional super-resolution network for multiple degradations}, - author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei}, - booktitle={IEEE Conference on Computer Vision and Pattern Recognition}, - pages={3262--3271}, - year={2018} - } - ''' - x = ndimage.convolve(x, np.expand_dims(k, axis=2), mode='wrap') # 'nearest' | 'mirror' - x = bicubic_degradation(x, sf=sf) - return x - - -def dpsr_degradation(x, k, sf=3): - ''' bicubic downsampling + blur - Args: - x: HxWxC image, [0, 1] - k: hxw, double - sf: down-scale factor - Return: - downsampled LR image - Reference: - @inproceedings{zhang2019deep, - title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels}, - author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei}, - booktitle={IEEE Conference on Computer Vision and Pattern Recognition}, - pages={1671--1681}, - year={2019} - } - ''' - x = bicubic_degradation(x, sf=sf) - x = ndimage.convolve(x, np.expand_dims(k, axis=2), mode='wrap') - return x - - -def classical_degradation(x, k, sf=3): - ''' blur + downsampling - Args: - x: HxWxC image, [0, 1]/[0, 255] - k: hxw, double - sf: down-scale factor - Return: - downsampled LR image - ''' - x = ndimage.convolve(x, np.expand_dims(k, axis=2), mode='wrap') - # x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2)) - st = 0 - return x[st::sf, st::sf, ...] - - -def add_sharpening(img, weight=0.5, radius=50, threshold=10): - """USM sharpening. borrowed from real-ESRGAN - Input image: I; Blurry image: B. - 1. K = I + weight * (I - B) - 2. Mask = 1 if abs(I - B) > threshold, else: 0 - 3. Blur mask: - 4. Out = Mask * K + (1 - Mask) * I - Args: - img (Numpy array): Input image, HWC, BGR; float32, [0, 1]. - weight (float): Sharp weight. Default: 1. - radius (float): Kernel size of Gaussian blur. Default: 50. - threshold (int): - """ - if radius % 2 == 0: - radius += 1 - blur = cv2.GaussianBlur(img, (radius, radius), 0) - residual = img - blur - mask = np.abs(residual) * 255 > threshold - mask = mask.astype('float32') - soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0) - - K = img + weight * residual - K = np.clip(K, 0, 1) - return soft_mask * K + (1 - soft_mask) * img - - -def add_blur(img, sf=4): - wd2 = 4.0 + sf - wd = 2.0 + 0.2 * sf - - wd2 = wd2/4 - wd = wd/4 - - if random.random() < 0.5: - l1 = wd2 * random.random() - l2 = wd2 * random.random() - k = anisotropic_Gaussian(ksize=random.randint(2, 11) + 3, theta=random.random() * np.pi, l1=l1, l2=l2) - else: - k = fspecial('gaussian', random.randint(2, 4) + 3, wd * random.random()) - img = ndimage.convolve(img, np.expand_dims(k, axis=2), mode='mirror') - - return img - - -def add_resize(img, sf=4): - rnum = np.random.rand() - if rnum > 0.8: # up - sf1 = random.uniform(1, 2) - elif rnum < 0.7: # down - sf1 = random.uniform(0.5 / sf, 1) - else: - sf1 = 1.0 - img = cv2.resize(img, (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3])) - img = np.clip(img, 0.0, 1.0) - - return img - - -# def add_Gaussian_noise(img, noise_level1=2, noise_level2=25): -# noise_level = random.randint(noise_level1, noise_level2) -# rnum = np.random.rand() -# if rnum > 0.6: # add color Gaussian noise -# img += np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32) -# elif rnum < 0.4: # add grayscale Gaussian noise -# img += np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32) -# else: # add noise -# L = noise_level2 / 255. -# D = np.diag(np.random.rand(3)) -# U = orth(np.random.rand(3, 3)) -# conv = np.dot(np.dot(np.transpose(U), D), U) -# img += np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32) -# img = np.clip(img, 0.0, 1.0) -# return img - -def add_Gaussian_noise(img, noise_level1=2, noise_level2=25): - noise_level = random.randint(noise_level1, noise_level2) - rnum = np.random.rand() - if rnum > 0.6: # add color Gaussian noise - img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32) - elif rnum < 0.4: # add grayscale Gaussian noise - img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32) - else: # add noise - L = noise_level2 / 255. - D = np.diag(np.random.rand(3)) - U = orth(np.random.rand(3, 3)) - conv = np.dot(np.dot(np.transpose(U), D), U) - img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32) - img = np.clip(img, 0.0, 1.0) - return img - - -def add_speckle_noise(img, noise_level1=2, noise_level2=25): - noise_level = random.randint(noise_level1, noise_level2) - img = np.clip(img, 0.0, 1.0) - rnum = random.random() - if rnum > 0.6: - img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32) - elif rnum < 0.4: - img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32) - else: - L = noise_level2 / 255. - D = np.diag(np.random.rand(3)) - U = orth(np.random.rand(3, 3)) - conv = np.dot(np.dot(np.transpose(U), D), U) - img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32) - img = np.clip(img, 0.0, 1.0) - return img - - -def add_Poisson_noise(img): - img = np.clip((img * 255.0).round(), 0, 255) / 255. - vals = 10 ** (2 * random.random() + 2.0) # [2, 4] - if random.random() < 0.5: - img = np.random.poisson(img * vals).astype(np.float32) / vals - else: - img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114]) - img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255. - noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray - img += noise_gray[:, :, np.newaxis] - img = np.clip(img, 0.0, 1.0) - return img - - -def add_JPEG_noise(img): - quality_factor = random.randint(80, 95) - img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR) - result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor]) - img = cv2.imdecode(encimg, 1) - img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB) - return img - - -def random_crop(lq, hq, sf=4, lq_patchsize=64): - h, w = lq.shape[:2] - rnd_h = random.randint(0, h - lq_patchsize) - rnd_w = random.randint(0, w - lq_patchsize) - lq = lq[rnd_h:rnd_h + lq_patchsize, rnd_w:rnd_w + lq_patchsize, :] - - rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf) - hq = hq[rnd_h_H:rnd_h_H + lq_patchsize * sf, rnd_w_H:rnd_w_H + lq_patchsize * sf, :] - return lq, hq - - -def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None): - """ - This is the degradation model of BSRGAN from the paper - "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution" - ---------- - img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf) - sf: scale factor - isp_model: camera ISP model - Returns - ------- - img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1] - hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1] - """ - isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25 - sf_ori = sf - - h1, w1 = img.shape[:2] - img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop - h, w = img.shape[:2] - - if h < lq_patchsize * sf or w < lq_patchsize * sf: - raise ValueError(f'img size ({h1}X{w1}) is too small!') - - hq = img.copy() - - if sf == 4 and random.random() < scale2_prob: # downsample1 - if np.random.rand() < 0.5: - img = cv2.resize(img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])), - interpolation=random.choice([1, 2, 3])) - else: - img = util.imresize_np(img, 1 / 2, True) - img = np.clip(img, 0.0, 1.0) - sf = 2 - - shuffle_order = random.sample(range(7), 7) - idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3) - if idx1 > idx2: # keep downsample3 last - shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1] - - for i in shuffle_order: - - if i == 0: - img = add_blur(img, sf=sf) - - elif i == 1: - img = add_blur(img, sf=sf) - - elif i == 2: - a, b = img.shape[1], img.shape[0] - # downsample2 - if random.random() < 0.75: - sf1 = random.uniform(1, 2 * sf) - img = cv2.resize(img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])), - interpolation=random.choice([1, 2, 3])) - else: - k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf)) - k_shifted = shift_pixel(k, sf) - k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel - img = ndimage.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror') - img = img[0::sf, 0::sf, ...] # nearest downsampling - img = np.clip(img, 0.0, 1.0) - - elif i == 3: - # downsample3 - img = cv2.resize(img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3])) - img = np.clip(img, 0.0, 1.0) - - elif i == 4: - # add Gaussian noise - img = add_Gaussian_noise(img, noise_level1=2, noise_level2=8) - - elif i == 5: - # add JPEG noise - if random.random() < jpeg_prob: - img = add_JPEG_noise(img) - - elif i == 6: - # add processed camera sensor noise - if random.random() < isp_prob and isp_model is not None: - with torch.no_grad(): - img, hq = isp_model.forward(img.copy(), hq) - - # add final JPEG compression noise - img = add_JPEG_noise(img) - - # random crop - img, hq = random_crop(img, hq, sf_ori, lq_patchsize) - - return img, hq - - -# todo no isp_model? -def degradation_bsrgan_variant(image, sf=4, isp_model=None): - """ - This is the degradation model of BSRGAN from the paper - "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution" - ---------- - sf: scale factor - isp_model: camera ISP model - Returns - ------- - img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1] - hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1] - """ - image = util.uint2single(image) - isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25 - sf_ori = sf - - h1, w1 = image.shape[:2] - image = image.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop - h, w = image.shape[:2] - - hq = image.copy() - - if sf == 4 and random.random() < scale2_prob: # downsample1 - if np.random.rand() < 0.5: - image = cv2.resize(image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])), - interpolation=random.choice([1, 2, 3])) - else: - image = util.imresize_np(image, 1 / 2, True) - image = np.clip(image, 0.0, 1.0) - sf = 2 - - shuffle_order = random.sample(range(7), 7) - idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3) - if idx1 > idx2: # keep downsample3 last - shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1] - - for i in shuffle_order: - - if i == 0: - image = add_blur(image, sf=sf) - - # elif i == 1: - # image = add_blur(image, sf=sf) - - if i == 0: - pass - - elif i == 2: - a, b = image.shape[1], image.shape[0] - # downsample2 - if random.random() < 0.8: - sf1 = random.uniform(1, 2 * sf) - image = cv2.resize(image, (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])), - interpolation=random.choice([1, 2, 3])) - else: - k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf)) - k_shifted = shift_pixel(k, sf) - k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel - image = ndimage.convolve(image, np.expand_dims(k_shifted, axis=2), mode='mirror') - image = image[0::sf, 0::sf, ...] # nearest downsampling - - image = np.clip(image, 0.0, 1.0) - - elif i == 3: - # downsample3 - image = cv2.resize(image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3])) - image = np.clip(image, 0.0, 1.0) - - elif i == 4: - # add Gaussian noise - image = add_Gaussian_noise(image, noise_level1=1, noise_level2=2) - - elif i == 5: - # add JPEG noise - if random.random() < jpeg_prob: - image = add_JPEG_noise(image) - # - # elif i == 6: - # # add processed camera sensor noise - # if random.random() < isp_prob and isp_model is not None: - # with torch.no_grad(): - # img, hq = isp_model.forward(img.copy(), hq) - - # add final JPEG compression noise - image = add_JPEG_noise(image) - image = util.single2uint(image) - example = {"image": image} - return example - - - - -if __name__ == '__main__': - print("hey") - img = util.imread_uint('utils/test.png', 3) - img = img[:448, :448] - h = img.shape[0] // 4 - print("resizing to", h) - sf = 4 - deg_fn = partial(degradation_bsrgan_variant, sf=sf) - for i in range(20): - print(i) - img_hq = img - img_lq = deg_fn(img)["image"] - img_hq, img_lq = util.uint2single(img_hq), util.uint2single(img_lq) - print(img_lq) - img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img_hq)["image"] - print(img_lq.shape) - print("bicubic", img_lq_bicubic.shape) - print(img_hq.shape) - lq_nearest = cv2.resize(util.single2uint(img_lq), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])), - interpolation=0) - lq_bicubic_nearest = cv2.resize(util.single2uint(img_lq_bicubic), - (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])), - interpolation=0) - img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1) - util.imsave(img_concat, str(i) + '.png') diff --git a/One-2-3-45-master 2/ldm/modules/image_degradation/utils/test.png b/One-2-3-45-master 2/ldm/modules/image_degradation/utils/test.png deleted file mode 100644 index 4249b43de0f22707758d13c240268a401642f6e6..0000000000000000000000000000000000000000 Binary files a/One-2-3-45-master 2/ldm/modules/image_degradation/utils/test.png and /dev/null differ diff --git a/One-2-3-45-master 2/ldm/modules/image_degradation/utils_image.py b/One-2-3-45-master 2/ldm/modules/image_degradation/utils_image.py deleted file mode 100644 index 0175f155ad900ae33c3c46ed87f49b352e3faf98..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/ldm/modules/image_degradation/utils_image.py +++ /dev/null @@ -1,916 +0,0 @@ -import os -import math -import random -import numpy as np -import torch -import cv2 -from torchvision.utils import make_grid -from datetime import datetime -#import matplotlib.pyplot as plt # TODO: check with Dominik, also bsrgan.py vs bsrgan_light.py - - -os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" - - -''' -# -------------------------------------------- -# Kai Zhang (github: https://github.com/cszn) -# 03/Mar/2019 -# -------------------------------------------- -# https://github.com/twhui/SRGAN-pyTorch -# https://github.com/xinntao/BasicSR -# -------------------------------------------- -''' - - -IMG_EXTENSIONS = ['.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP', '.tif'] - - -def is_image_file(filename): - return any(filename.endswith(extension) for extension in IMG_EXTENSIONS) - - -def get_timestamp(): - return datetime.now().strftime('%y%m%d-%H%M%S') - - -def imshow(x, title=None, cbar=False, figsize=None): - plt.figure(figsize=figsize) - plt.imshow(np.squeeze(x), interpolation='nearest', cmap='gray') - if title: - plt.title(title) - if cbar: - plt.colorbar() - plt.show() - - -def surf(Z, cmap='rainbow', figsize=None): - plt.figure(figsize=figsize) - ax3 = plt.axes(projection='3d') - - w, h = Z.shape[:2] - xx = np.arange(0,w,1) - yy = np.arange(0,h,1) - X, Y = np.meshgrid(xx, yy) - ax3.plot_surface(X,Y,Z,cmap=cmap) - #ax3.contour(X,Y,Z, zdim='z',offset=-2,cmap=cmap) - plt.show() - - -''' -# -------------------------------------------- -# get image pathes -# -------------------------------------------- -''' - - -def get_image_paths(dataroot): - paths = None # return None if dataroot is None - if dataroot is not None: - paths = sorted(_get_paths_from_images(dataroot)) - return paths - - -def _get_paths_from_images(path): - assert os.path.isdir(path), '{:s} is not a valid directory'.format(path) - images = [] - for dirpath, _, fnames in sorted(os.walk(path)): - for fname in sorted(fnames): - if is_image_file(fname): - img_path = os.path.join(dirpath, fname) - images.append(img_path) - assert images, '{:s} has no valid image file'.format(path) - return images - - -''' -# -------------------------------------------- -# split large images into small images -# -------------------------------------------- -''' - - -def patches_from_image(img, p_size=512, p_overlap=64, p_max=800): - w, h = img.shape[:2] - patches = [] - if w > p_max and h > p_max: - w1 = list(np.arange(0, w-p_size, p_size-p_overlap, dtype=np.int)) - h1 = list(np.arange(0, h-p_size, p_size-p_overlap, dtype=np.int)) - w1.append(w-p_size) - h1.append(h-p_size) -# print(w1) -# print(h1) - for i in w1: - for j in h1: - patches.append(img[i:i+p_size, j:j+p_size,:]) - else: - patches.append(img) - - return patches - - -def imssave(imgs, img_path): - """ - imgs: list, N images of size WxHxC - """ - img_name, ext = os.path.splitext(os.path.basename(img_path)) - - for i, img in enumerate(imgs): - if img.ndim == 3: - img = img[:, :, [2, 1, 0]] - new_path = os.path.join(os.path.dirname(img_path), img_name+str('_s{:04d}'.format(i))+'.png') - cv2.imwrite(new_path, img) - - -def split_imageset(original_dataroot, taget_dataroot, n_channels=3, p_size=800, p_overlap=96, p_max=1000): - """ - split the large images from original_dataroot into small overlapped images with size (p_size)x(p_size), - and save them into taget_dataroot; only the images with larger size than (p_max)x(p_max) - will be splitted. - Args: - original_dataroot: - taget_dataroot: - p_size: size of small images - p_overlap: patch size in training is a good choice - p_max: images with smaller size than (p_max)x(p_max) keep unchanged. - """ - paths = get_image_paths(original_dataroot) - for img_path in paths: - # img_name, ext = os.path.splitext(os.path.basename(img_path)) - img = imread_uint(img_path, n_channels=n_channels) - patches = patches_from_image(img, p_size, p_overlap, p_max) - imssave(patches, os.path.join(taget_dataroot,os.path.basename(img_path))) - #if original_dataroot == taget_dataroot: - #del img_path - -''' -# -------------------------------------------- -# makedir -# -------------------------------------------- -''' - - -def mkdir(path): - if not os.path.exists(path): - os.makedirs(path) - - -def mkdirs(paths): - if isinstance(paths, str): - mkdir(paths) - else: - for path in paths: - mkdir(path) - - -def mkdir_and_rename(path): - if os.path.exists(path): - new_name = path + '_archived_' + get_timestamp() - print('Path already exists. Rename it to [{:s}]'.format(new_name)) - os.rename(path, new_name) - os.makedirs(path) - - -''' -# -------------------------------------------- -# read image from path -# opencv is fast, but read BGR numpy image -# -------------------------------------------- -''' - - -# -------------------------------------------- -# get uint8 image of size HxWxn_channles (RGB) -# -------------------------------------------- -def imread_uint(path, n_channels=3): - # input: path - # output: HxWx3(RGB or GGG), or HxWx1 (G) - if n_channels == 1: - img = cv2.imread(path, 0) # cv2.IMREAD_GRAYSCALE - img = np.expand_dims(img, axis=2) # HxWx1 - elif n_channels == 3: - img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # BGR or G - if img.ndim == 2: - img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) # GGG - else: - img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # RGB - return img - - -# -------------------------------------------- -# matlab's imwrite -# -------------------------------------------- -def imsave(img, img_path): - img = np.squeeze(img) - if img.ndim == 3: - img = img[:, :, [2, 1, 0]] - cv2.imwrite(img_path, img) - -def imwrite(img, img_path): - img = np.squeeze(img) - if img.ndim == 3: - img = img[:, :, [2, 1, 0]] - cv2.imwrite(img_path, img) - - - -# -------------------------------------------- -# get single image of size HxWxn_channles (BGR) -# -------------------------------------------- -def read_img(path): - # read image by cv2 - # return: Numpy float32, HWC, BGR, [0,1] - img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # cv2.IMREAD_GRAYSCALE - img = img.astype(np.float32) / 255. - if img.ndim == 2: - img = np.expand_dims(img, axis=2) - # some images have 4 channels - if img.shape[2] > 3: - img = img[:, :, :3] - return img - - -''' -# -------------------------------------------- -# image format conversion -# -------------------------------------------- -# numpy(single) <---> numpy(unit) -# numpy(single) <---> tensor -# numpy(unit) <---> tensor -# -------------------------------------------- -''' - - -# -------------------------------------------- -# numpy(single) [0, 1] <---> numpy(unit) -# -------------------------------------------- - - -def uint2single(img): - - return np.float32(img/255.) - - -def single2uint(img): - - return np.uint8((img.clip(0, 1)*255.).round()) - - -def uint162single(img): - - return np.float32(img/65535.) - - -def single2uint16(img): - - return np.uint16((img.clip(0, 1)*65535.).round()) - - -# -------------------------------------------- -# numpy(unit) (HxWxC or HxW) <---> tensor -# -------------------------------------------- - - -# convert uint to 4-dimensional torch tensor -def uint2tensor4(img): - if img.ndim == 2: - img = np.expand_dims(img, axis=2) - return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.).unsqueeze(0) - - -# convert uint to 3-dimensional torch tensor -def uint2tensor3(img): - if img.ndim == 2: - img = np.expand_dims(img, axis=2) - return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.) - - -# convert 2/3/4-dimensional torch tensor to uint -def tensor2uint(img): - img = img.data.squeeze().float().clamp_(0, 1).cpu().numpy() - if img.ndim == 3: - img = np.transpose(img, (1, 2, 0)) - return np.uint8((img*255.0).round()) - - -# -------------------------------------------- -# numpy(single) (HxWxC) <---> tensor -# -------------------------------------------- - - -# convert single (HxWxC) to 3-dimensional torch tensor -def single2tensor3(img): - return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float() - - -# convert single (HxWxC) to 4-dimensional torch tensor -def single2tensor4(img): - return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().unsqueeze(0) - - -# convert torch tensor to single -def tensor2single(img): - img = img.data.squeeze().float().cpu().numpy() - if img.ndim == 3: - img = np.transpose(img, (1, 2, 0)) - - return img - -# convert torch tensor to single -def tensor2single3(img): - img = img.data.squeeze().float().cpu().numpy() - if img.ndim == 3: - img = np.transpose(img, (1, 2, 0)) - elif img.ndim == 2: - img = np.expand_dims(img, axis=2) - return img - - -def single2tensor5(img): - return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float().unsqueeze(0) - - -def single32tensor5(img): - return torch.from_numpy(np.ascontiguousarray(img)).float().unsqueeze(0).unsqueeze(0) - - -def single42tensor4(img): - return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float() - - -# from skimage.io import imread, imsave -def tensor2img(tensor, out_type=np.uint8, min_max=(0, 1)): - ''' - Converts a torch Tensor into an image Numpy array of BGR channel order - Input: 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order - Output: 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default) - ''' - tensor = tensor.squeeze().float().cpu().clamp_(*min_max) # squeeze first, then clamp - tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0]) # to range [0,1] - n_dim = tensor.dim() - if n_dim == 4: - n_img = len(tensor) - img_np = make_grid(tensor, nrow=int(math.sqrt(n_img)), normalize=False).numpy() - img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR - elif n_dim == 3: - img_np = tensor.numpy() - img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR - elif n_dim == 2: - img_np = tensor.numpy() - else: - raise TypeError( - 'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim)) - if out_type == np.uint8: - img_np = (img_np * 255.0).round() - # Important. Unlike matlab, numpy.unit8() WILL NOT round by default. - return img_np.astype(out_type) - - -''' -# -------------------------------------------- -# Augmentation, flipe and/or rotate -# -------------------------------------------- -# The following two are enough. -# (1) augmet_img: numpy image of WxHxC or WxH -# (2) augment_img_tensor4: tensor image 1xCxWxH -# -------------------------------------------- -''' - - -def augment_img(img, mode=0): - '''Kai Zhang (github: https://github.com/cszn) - ''' - if mode == 0: - return img - elif mode == 1: - return np.flipud(np.rot90(img)) - elif mode == 2: - return np.flipud(img) - elif mode == 3: - return np.rot90(img, k=3) - elif mode == 4: - return np.flipud(np.rot90(img, k=2)) - elif mode == 5: - return np.rot90(img) - elif mode == 6: - return np.rot90(img, k=2) - elif mode == 7: - return np.flipud(np.rot90(img, k=3)) - - -def augment_img_tensor4(img, mode=0): - '''Kai Zhang (github: https://github.com/cszn) - ''' - if mode == 0: - return img - elif mode == 1: - return img.rot90(1, [2, 3]).flip([2]) - elif mode == 2: - return img.flip([2]) - elif mode == 3: - return img.rot90(3, [2, 3]) - elif mode == 4: - return img.rot90(2, [2, 3]).flip([2]) - elif mode == 5: - return img.rot90(1, [2, 3]) - elif mode == 6: - return img.rot90(2, [2, 3]) - elif mode == 7: - return img.rot90(3, [2, 3]).flip([2]) - - -def augment_img_tensor(img, mode=0): - '''Kai Zhang (github: https://github.com/cszn) - ''' - img_size = img.size() - img_np = img.data.cpu().numpy() - if len(img_size) == 3: - img_np = np.transpose(img_np, (1, 2, 0)) - elif len(img_size) == 4: - img_np = np.transpose(img_np, (2, 3, 1, 0)) - img_np = augment_img(img_np, mode=mode) - img_tensor = torch.from_numpy(np.ascontiguousarray(img_np)) - if len(img_size) == 3: - img_tensor = img_tensor.permute(2, 0, 1) - elif len(img_size) == 4: - img_tensor = img_tensor.permute(3, 2, 0, 1) - - return img_tensor.type_as(img) - - -def augment_img_np3(img, mode=0): - if mode == 0: - return img - elif mode == 1: - return img.transpose(1, 0, 2) - elif mode == 2: - return img[::-1, :, :] - elif mode == 3: - img = img[::-1, :, :] - img = img.transpose(1, 0, 2) - return img - elif mode == 4: - return img[:, ::-1, :] - elif mode == 5: - img = img[:, ::-1, :] - img = img.transpose(1, 0, 2) - return img - elif mode == 6: - img = img[:, ::-1, :] - img = img[::-1, :, :] - return img - elif mode == 7: - img = img[:, ::-1, :] - img = img[::-1, :, :] - img = img.transpose(1, 0, 2) - return img - - -def augment_imgs(img_list, hflip=True, rot=True): - # horizontal flip OR rotate - hflip = hflip and random.random() < 0.5 - vflip = rot and random.random() < 0.5 - rot90 = rot and random.random() < 0.5 - - def _augment(img): - if hflip: - img = img[:, ::-1, :] - if vflip: - img = img[::-1, :, :] - if rot90: - img = img.transpose(1, 0, 2) - return img - - return [_augment(img) for img in img_list] - - -''' -# -------------------------------------------- -# modcrop and shave -# -------------------------------------------- -''' - - -def modcrop(img_in, scale): - # img_in: Numpy, HWC or HW - img = np.copy(img_in) - if img.ndim == 2: - H, W = img.shape - H_r, W_r = H % scale, W % scale - img = img[:H - H_r, :W - W_r] - elif img.ndim == 3: - H, W, C = img.shape - H_r, W_r = H % scale, W % scale - img = img[:H - H_r, :W - W_r, :] - else: - raise ValueError('Wrong img ndim: [{:d}].'.format(img.ndim)) - return img - - -def shave(img_in, border=0): - # img_in: Numpy, HWC or HW - img = np.copy(img_in) - h, w = img.shape[:2] - img = img[border:h-border, border:w-border] - return img - - -''' -# -------------------------------------------- -# image processing process on numpy image -# channel_convert(in_c, tar_type, img_list): -# rgb2ycbcr(img, only_y=True): -# bgr2ycbcr(img, only_y=True): -# ycbcr2rgb(img): -# -------------------------------------------- -''' - - -def rgb2ycbcr(img, only_y=True): - '''same as matlab rgb2ycbcr - only_y: only return Y channel - Input: - uint8, [0, 255] - float, [0, 1] - ''' - in_img_type = img.dtype - img.astype(np.float32) - if in_img_type != np.uint8: - img *= 255. - # convert - if only_y: - rlt = np.dot(img, [65.481, 128.553, 24.966]) / 255.0 + 16.0 - else: - rlt = np.matmul(img, [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786], - [24.966, 112.0, -18.214]]) / 255.0 + [16, 128, 128] - if in_img_type == np.uint8: - rlt = rlt.round() - else: - rlt /= 255. - return rlt.astype(in_img_type) - - -def ycbcr2rgb(img): - '''same as matlab ycbcr2rgb - Input: - uint8, [0, 255] - float, [0, 1] - ''' - in_img_type = img.dtype - img.astype(np.float32) - if in_img_type != np.uint8: - img *= 255. - # convert - rlt = np.matmul(img, [[0.00456621, 0.00456621, 0.00456621], [0, -0.00153632, 0.00791071], - [0.00625893, -0.00318811, 0]]) * 255.0 + [-222.921, 135.576, -276.836] - if in_img_type == np.uint8: - rlt = rlt.round() - else: - rlt /= 255. - return rlt.astype(in_img_type) - - -def bgr2ycbcr(img, only_y=True): - '''bgr version of rgb2ycbcr - only_y: only return Y channel - Input: - uint8, [0, 255] - float, [0, 1] - ''' - in_img_type = img.dtype - img.astype(np.float32) - if in_img_type != np.uint8: - img *= 255. - # convert - if only_y: - rlt = np.dot(img, [24.966, 128.553, 65.481]) / 255.0 + 16.0 - else: - rlt = np.matmul(img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786], - [65.481, -37.797, 112.0]]) / 255.0 + [16, 128, 128] - if in_img_type == np.uint8: - rlt = rlt.round() - else: - rlt /= 255. - return rlt.astype(in_img_type) - - -def channel_convert(in_c, tar_type, img_list): - # conversion among BGR, gray and y - if in_c == 3 and tar_type == 'gray': # BGR to gray - gray_list = [cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) for img in img_list] - return [np.expand_dims(img, axis=2) for img in gray_list] - elif in_c == 3 and tar_type == 'y': # BGR to y - y_list = [bgr2ycbcr(img, only_y=True) for img in img_list] - return [np.expand_dims(img, axis=2) for img in y_list] - elif in_c == 1 and tar_type == 'RGB': # gray/y to BGR - return [cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) for img in img_list] - else: - return img_list - - -''' -# -------------------------------------------- -# metric, PSNR and SSIM -# -------------------------------------------- -''' - - -# -------------------------------------------- -# PSNR -# -------------------------------------------- -def calculate_psnr(img1, img2, border=0): - # img1 and img2 have range [0, 255] - #img1 = img1.squeeze() - #img2 = img2.squeeze() - if not img1.shape == img2.shape: - raise ValueError('Input images must have the same dimensions.') - h, w = img1.shape[:2] - img1 = img1[border:h-border, border:w-border] - img2 = img2[border:h-border, border:w-border] - - img1 = img1.astype(np.float64) - img2 = img2.astype(np.float64) - mse = np.mean((img1 - img2)**2) - if mse == 0: - return float('inf') - return 20 * math.log10(255.0 / math.sqrt(mse)) - - -# -------------------------------------------- -# SSIM -# -------------------------------------------- -def calculate_ssim(img1, img2, border=0): - '''calculate SSIM - the same outputs as MATLAB's - img1, img2: [0, 255] - ''' - #img1 = img1.squeeze() - #img2 = img2.squeeze() - if not img1.shape == img2.shape: - raise ValueError('Input images must have the same dimensions.') - h, w = img1.shape[:2] - img1 = img1[border:h-border, border:w-border] - img2 = img2[border:h-border, border:w-border] - - if img1.ndim == 2: - return ssim(img1, img2) - elif img1.ndim == 3: - if img1.shape[2] == 3: - ssims = [] - for i in range(3): - ssims.append(ssim(img1[:,:,i], img2[:,:,i])) - return np.array(ssims).mean() - elif img1.shape[2] == 1: - return ssim(np.squeeze(img1), np.squeeze(img2)) - else: - raise ValueError('Wrong input image dimensions.') - - -def ssim(img1, img2): - C1 = (0.01 * 255)**2 - C2 = (0.03 * 255)**2 - - img1 = img1.astype(np.float64) - img2 = img2.astype(np.float64) - kernel = cv2.getGaussianKernel(11, 1.5) - window = np.outer(kernel, kernel.transpose()) - - mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid - mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5] - mu1_sq = mu1**2 - mu2_sq = mu2**2 - mu1_mu2 = mu1 * mu2 - sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq - sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq - sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2 - - ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * - (sigma1_sq + sigma2_sq + C2)) - return ssim_map.mean() - - -''' -# -------------------------------------------- -# matlab's bicubic imresize (numpy and torch) [0, 1] -# -------------------------------------------- -''' - - -# matlab 'imresize' function, now only support 'bicubic' -def cubic(x): - absx = torch.abs(x) - absx2 = absx**2 - absx3 = absx**3 - return (1.5*absx3 - 2.5*absx2 + 1) * ((absx <= 1).type_as(absx)) + \ - (-0.5*absx3 + 2.5*absx2 - 4*absx + 2) * (((absx > 1)*(absx <= 2)).type_as(absx)) - - -def calculate_weights_indices(in_length, out_length, scale, kernel, kernel_width, antialiasing): - if (scale < 1) and (antialiasing): - # Use a modified kernel to simultaneously interpolate and antialias- larger kernel width - kernel_width = kernel_width / scale - - # Output-space coordinates - x = torch.linspace(1, out_length, out_length) - - # Input-space coordinates. Calculate the inverse mapping such that 0.5 - # in output space maps to 0.5 in input space, and 0.5+scale in output - # space maps to 1.5 in input space. - u = x / scale + 0.5 * (1 - 1 / scale) - - # What is the left-most pixel that can be involved in the computation? - left = torch.floor(u - kernel_width / 2) - - # What is the maximum number of pixels that can be involved in the - # computation? Note: it's OK to use an extra pixel here; if the - # corresponding weights are all zero, it will be eliminated at the end - # of this function. - P = math.ceil(kernel_width) + 2 - - # The indices of the input pixels involved in computing the k-th output - # pixel are in row k of the indices matrix. - indices = left.view(out_length, 1).expand(out_length, P) + torch.linspace(0, P - 1, P).view( - 1, P).expand(out_length, P) - - # The weights used to compute the k-th output pixel are in row k of the - # weights matrix. - distance_to_center = u.view(out_length, 1).expand(out_length, P) - indices - # apply cubic kernel - if (scale < 1) and (antialiasing): - weights = scale * cubic(distance_to_center * scale) - else: - weights = cubic(distance_to_center) - # Normalize the weights matrix so that each row sums to 1. - weights_sum = torch.sum(weights, 1).view(out_length, 1) - weights = weights / weights_sum.expand(out_length, P) - - # If a column in weights is all zero, get rid of it. only consider the first and last column. - weights_zero_tmp = torch.sum((weights == 0), 0) - if not math.isclose(weights_zero_tmp[0], 0, rel_tol=1e-6): - indices = indices.narrow(1, 1, P - 2) - weights = weights.narrow(1, 1, P - 2) - if not math.isclose(weights_zero_tmp[-1], 0, rel_tol=1e-6): - indices = indices.narrow(1, 0, P - 2) - weights = weights.narrow(1, 0, P - 2) - weights = weights.contiguous() - indices = indices.contiguous() - sym_len_s = -indices.min() + 1 - sym_len_e = indices.max() - in_length - indices = indices + sym_len_s - 1 - return weights, indices, int(sym_len_s), int(sym_len_e) - - -# -------------------------------------------- -# imresize for tensor image [0, 1] -# -------------------------------------------- -def imresize(img, scale, antialiasing=True): - # Now the scale should be the same for H and W - # input: img: pytorch tensor, CHW or HW [0,1] - # output: CHW or HW [0,1] w/o round - need_squeeze = True if img.dim() == 2 else False - if need_squeeze: - img.unsqueeze_(0) - in_C, in_H, in_W = img.size() - out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale) - kernel_width = 4 - kernel = 'cubic' - - # Return the desired dimension order for performing the resize. The - # strategy is to perform the resize first along the dimension with the - # smallest scale factor. - # Now we do not support this. - - # get weights and indices - weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices( - in_H, out_H, scale, kernel, kernel_width, antialiasing) - weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices( - in_W, out_W, scale, kernel, kernel_width, antialiasing) - # process H dimension - # symmetric copying - img_aug = torch.FloatTensor(in_C, in_H + sym_len_Hs + sym_len_He, in_W) - img_aug.narrow(1, sym_len_Hs, in_H).copy_(img) - - sym_patch = img[:, :sym_len_Hs, :] - inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() - sym_patch_inv = sym_patch.index_select(1, inv_idx) - img_aug.narrow(1, 0, sym_len_Hs).copy_(sym_patch_inv) - - sym_patch = img[:, -sym_len_He:, :] - inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() - sym_patch_inv = sym_patch.index_select(1, inv_idx) - img_aug.narrow(1, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv) - - out_1 = torch.FloatTensor(in_C, out_H, in_W) - kernel_width = weights_H.size(1) - for i in range(out_H): - idx = int(indices_H[i][0]) - for j in range(out_C): - out_1[j, i, :] = img_aug[j, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_H[i]) - - # process W dimension - # symmetric copying - out_1_aug = torch.FloatTensor(in_C, out_H, in_W + sym_len_Ws + sym_len_We) - out_1_aug.narrow(2, sym_len_Ws, in_W).copy_(out_1) - - sym_patch = out_1[:, :, :sym_len_Ws] - inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long() - sym_patch_inv = sym_patch.index_select(2, inv_idx) - out_1_aug.narrow(2, 0, sym_len_Ws).copy_(sym_patch_inv) - - sym_patch = out_1[:, :, -sym_len_We:] - inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long() - sym_patch_inv = sym_patch.index_select(2, inv_idx) - out_1_aug.narrow(2, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv) - - out_2 = torch.FloatTensor(in_C, out_H, out_W) - kernel_width = weights_W.size(1) - for i in range(out_W): - idx = int(indices_W[i][0]) - for j in range(out_C): - out_2[j, :, i] = out_1_aug[j, :, idx:idx + kernel_width].mv(weights_W[i]) - if need_squeeze: - out_2.squeeze_() - return out_2 - - -# -------------------------------------------- -# imresize for numpy image [0, 1] -# -------------------------------------------- -def imresize_np(img, scale, antialiasing=True): - # Now the scale should be the same for H and W - # input: img: Numpy, HWC or HW [0,1] - # output: HWC or HW [0,1] w/o round - img = torch.from_numpy(img) - need_squeeze = True if img.dim() == 2 else False - if need_squeeze: - img.unsqueeze_(2) - - in_H, in_W, in_C = img.size() - out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale) - kernel_width = 4 - kernel = 'cubic' - - # Return the desired dimension order for performing the resize. The - # strategy is to perform the resize first along the dimension with the - # smallest scale factor. - # Now we do not support this. - - # get weights and indices - weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices( - in_H, out_H, scale, kernel, kernel_width, antialiasing) - weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices( - in_W, out_W, scale, kernel, kernel_width, antialiasing) - # process H dimension - # symmetric copying - img_aug = torch.FloatTensor(in_H + sym_len_Hs + sym_len_He, in_W, in_C) - img_aug.narrow(0, sym_len_Hs, in_H).copy_(img) - - sym_patch = img[:sym_len_Hs, :, :] - inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long() - sym_patch_inv = sym_patch.index_select(0, inv_idx) - img_aug.narrow(0, 0, sym_len_Hs).copy_(sym_patch_inv) - - sym_patch = img[-sym_len_He:, :, :] - inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long() - sym_patch_inv = sym_patch.index_select(0, inv_idx) - img_aug.narrow(0, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv) - - out_1 = torch.FloatTensor(out_H, in_W, in_C) - kernel_width = weights_H.size(1) - for i in range(out_H): - idx = int(indices_H[i][0]) - for j in range(out_C): - out_1[i, :, j] = img_aug[idx:idx + kernel_width, :, j].transpose(0, 1).mv(weights_H[i]) - - # process W dimension - # symmetric copying - out_1_aug = torch.FloatTensor(out_H, in_W + sym_len_Ws + sym_len_We, in_C) - out_1_aug.narrow(1, sym_len_Ws, in_W).copy_(out_1) - - sym_patch = out_1[:, :sym_len_Ws, :] - inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() - sym_patch_inv = sym_patch.index_select(1, inv_idx) - out_1_aug.narrow(1, 0, sym_len_Ws).copy_(sym_patch_inv) - - sym_patch = out_1[:, -sym_len_We:, :] - inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() - sym_patch_inv = sym_patch.index_select(1, inv_idx) - out_1_aug.narrow(1, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv) - - out_2 = torch.FloatTensor(out_H, out_W, in_C) - kernel_width = weights_W.size(1) - for i in range(out_W): - idx = int(indices_W[i][0]) - for j in range(out_C): - out_2[:, i, j] = out_1_aug[:, idx:idx + kernel_width, j].mv(weights_W[i]) - if need_squeeze: - out_2.squeeze_() - - return out_2.numpy() - - -if __name__ == '__main__': - print('---') -# img = imread_uint('test.bmp', 3) -# img = uint2single(img) -# img_bicubic = imresize_np(img, 1/4) \ No newline at end of file diff --git a/One-2-3-45-master 2/ldm/modules/losses/__init__.py b/One-2-3-45-master 2/ldm/modules/losses/__init__.py deleted file mode 100644 index 876d7c5bd6e3245ee77feb4c482b7a8143604ad5..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/ldm/modules/losses/__init__.py +++ /dev/null @@ -1 +0,0 @@ -from ldm.modules.losses.contperceptual import LPIPSWithDiscriminator \ No newline at end of file diff --git a/One-2-3-45-master 2/ldm/modules/losses/contperceptual.py b/One-2-3-45-master 2/ldm/modules/losses/contperceptual.py deleted file mode 100644 index 672c1e32a1389def02461c0781339681060c540e..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/ldm/modules/losses/contperceptual.py +++ /dev/null @@ -1,111 +0,0 @@ -import torch -import torch.nn as nn - -from taming.modules.losses.vqperceptual import * # TODO: taming dependency yes/no? - - -class LPIPSWithDiscriminator(nn.Module): - def __init__(self, disc_start, logvar_init=0.0, kl_weight=1.0, pixelloss_weight=1.0, - disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=1.0, - perceptual_weight=1.0, use_actnorm=False, disc_conditional=False, - disc_loss="hinge"): - - super().__init__() - assert disc_loss in ["hinge", "vanilla"] - self.kl_weight = kl_weight - self.pixel_weight = pixelloss_weight - self.perceptual_loss = LPIPS().eval() - self.perceptual_weight = perceptual_weight - # output log variance - self.logvar = nn.Parameter(torch.ones(size=()) * logvar_init) - - self.discriminator = NLayerDiscriminator(input_nc=disc_in_channels, - n_layers=disc_num_layers, - use_actnorm=use_actnorm - ).apply(weights_init) - self.discriminator_iter_start = disc_start - self.disc_loss = hinge_d_loss if disc_loss == "hinge" else vanilla_d_loss - self.disc_factor = disc_factor - self.discriminator_weight = disc_weight - self.disc_conditional = disc_conditional - - def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None): - if last_layer is not None: - nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0] - g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0] - else: - nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0] - g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0] - - d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4) - d_weight = torch.clamp(d_weight, 0.0, 1e4).detach() - d_weight = d_weight * self.discriminator_weight - return d_weight - - def forward(self, inputs, reconstructions, posteriors, optimizer_idx, - global_step, last_layer=None, cond=None, split="train", - weights=None): - rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous()) - if self.perceptual_weight > 0: - p_loss = self.perceptual_loss(inputs.contiguous(), reconstructions.contiguous()) - rec_loss = rec_loss + self.perceptual_weight * p_loss - - nll_loss = rec_loss / torch.exp(self.logvar) + self.logvar - weighted_nll_loss = nll_loss - if weights is not None: - weighted_nll_loss = weights*nll_loss - weighted_nll_loss = torch.sum(weighted_nll_loss) / weighted_nll_loss.shape[0] - nll_loss = torch.sum(nll_loss) / nll_loss.shape[0] - kl_loss = posteriors.kl() - kl_loss = torch.sum(kl_loss) / kl_loss.shape[0] - - # now the GAN part - if optimizer_idx == 0: - # generator update - if cond is None: - assert not self.disc_conditional - logits_fake = self.discriminator(reconstructions.contiguous()) - else: - assert self.disc_conditional - logits_fake = self.discriminator(torch.cat((reconstructions.contiguous(), cond), dim=1)) - g_loss = -torch.mean(logits_fake) - - if self.disc_factor > 0.0: - try: - d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer) - except RuntimeError: - assert not self.training - d_weight = torch.tensor(0.0) - else: - d_weight = torch.tensor(0.0) - - disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start) - loss = weighted_nll_loss + self.kl_weight * kl_loss + d_weight * disc_factor * g_loss - - log = {"{}/total_loss".format(split): loss.clone().detach().mean(), "{}/logvar".format(split): self.logvar.detach(), - "{}/kl_loss".format(split): kl_loss.detach().mean(), "{}/nll_loss".format(split): nll_loss.detach().mean(), - "{}/rec_loss".format(split): rec_loss.detach().mean(), - "{}/d_weight".format(split): d_weight.detach(), - "{}/disc_factor".format(split): torch.tensor(disc_factor), - "{}/g_loss".format(split): g_loss.detach().mean(), - } - return loss, log - - if optimizer_idx == 1: - # second pass for discriminator update - if cond is None: - logits_real = self.discriminator(inputs.contiguous().detach()) - logits_fake = self.discriminator(reconstructions.contiguous().detach()) - else: - logits_real = self.discriminator(torch.cat((inputs.contiguous().detach(), cond), dim=1)) - logits_fake = self.discriminator(torch.cat((reconstructions.contiguous().detach(), cond), dim=1)) - - disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start) - d_loss = disc_factor * self.disc_loss(logits_real, logits_fake) - - log = {"{}/disc_loss".format(split): d_loss.clone().detach().mean(), - "{}/logits_real".format(split): logits_real.detach().mean(), - "{}/logits_fake".format(split): logits_fake.detach().mean() - } - return d_loss, log - diff --git a/One-2-3-45-master 2/ldm/modules/losses/vqperceptual.py b/One-2-3-45-master 2/ldm/modules/losses/vqperceptual.py deleted file mode 100644 index f69981769e4bd5462600458c4fcf26620f7e4306..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/ldm/modules/losses/vqperceptual.py +++ /dev/null @@ -1,167 +0,0 @@ -import torch -from torch import nn -import torch.nn.functional as F -from einops import repeat - -from taming.modules.discriminator.model import NLayerDiscriminator, weights_init -from taming.modules.losses.lpips import LPIPS -from taming.modules.losses.vqperceptual import hinge_d_loss, vanilla_d_loss - - -def hinge_d_loss_with_exemplar_weights(logits_real, logits_fake, weights): - assert weights.shape[0] == logits_real.shape[0] == logits_fake.shape[0] - loss_real = torch.mean(F.relu(1. - logits_real), dim=[1,2,3]) - loss_fake = torch.mean(F.relu(1. + logits_fake), dim=[1,2,3]) - loss_real = (weights * loss_real).sum() / weights.sum() - loss_fake = (weights * loss_fake).sum() / weights.sum() - d_loss = 0.5 * (loss_real + loss_fake) - return d_loss - -def adopt_weight(weight, global_step, threshold=0, value=0.): - if global_step < threshold: - weight = value - return weight - - -def measure_perplexity(predicted_indices, n_embed): - # src: https://github.com/karpathy/deep-vector-quantization/blob/main/model.py - # eval cluster perplexity. when perplexity == num_embeddings then all clusters are used exactly equally - encodings = F.one_hot(predicted_indices, n_embed).float().reshape(-1, n_embed) - avg_probs = encodings.mean(0) - perplexity = (-(avg_probs * torch.log(avg_probs + 1e-10)).sum()).exp() - cluster_use = torch.sum(avg_probs > 0) - return perplexity, cluster_use - -def l1(x, y): - return torch.abs(x-y) - - -def l2(x, y): - return torch.pow((x-y), 2) - - -class VQLPIPSWithDiscriminator(nn.Module): - def __init__(self, disc_start, codebook_weight=1.0, pixelloss_weight=1.0, - disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=1.0, - perceptual_weight=1.0, use_actnorm=False, disc_conditional=False, - disc_ndf=64, disc_loss="hinge", n_classes=None, perceptual_loss="lpips", - pixel_loss="l1"): - super().__init__() - assert disc_loss in ["hinge", "vanilla"] - assert perceptual_loss in ["lpips", "clips", "dists"] - assert pixel_loss in ["l1", "l2"] - self.codebook_weight = codebook_weight - self.pixel_weight = pixelloss_weight - if perceptual_loss == "lpips": - print(f"{self.__class__.__name__}: Running with LPIPS.") - self.perceptual_loss = LPIPS().eval() - else: - raise ValueError(f"Unknown perceptual loss: >> {perceptual_loss} <<") - self.perceptual_weight = perceptual_weight - - if pixel_loss == "l1": - self.pixel_loss = l1 - else: - self.pixel_loss = l2 - - self.discriminator = NLayerDiscriminator(input_nc=disc_in_channels, - n_layers=disc_num_layers, - use_actnorm=use_actnorm, - ndf=disc_ndf - ).apply(weights_init) - self.discriminator_iter_start = disc_start - if disc_loss == "hinge": - self.disc_loss = hinge_d_loss - elif disc_loss == "vanilla": - self.disc_loss = vanilla_d_loss - else: - raise ValueError(f"Unknown GAN loss '{disc_loss}'.") - print(f"VQLPIPSWithDiscriminator running with {disc_loss} loss.") - self.disc_factor = disc_factor - self.discriminator_weight = disc_weight - self.disc_conditional = disc_conditional - self.n_classes = n_classes - - def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None): - if last_layer is not None: - nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0] - g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0] - else: - nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0] - g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0] - - d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4) - d_weight = torch.clamp(d_weight, 0.0, 1e4).detach() - d_weight = d_weight * self.discriminator_weight - return d_weight - - def forward(self, codebook_loss, inputs, reconstructions, optimizer_idx, - global_step, last_layer=None, cond=None, split="train", predicted_indices=None): - if not exists(codebook_loss): - codebook_loss = torch.tensor([0.]).to(inputs.device) - #rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous()) - rec_loss = self.pixel_loss(inputs.contiguous(), reconstructions.contiguous()) - if self.perceptual_weight > 0: - p_loss = self.perceptual_loss(inputs.contiguous(), reconstructions.contiguous()) - rec_loss = rec_loss + self.perceptual_weight * p_loss - else: - p_loss = torch.tensor([0.0]) - - nll_loss = rec_loss - #nll_loss = torch.sum(nll_loss) / nll_loss.shape[0] - nll_loss = torch.mean(nll_loss) - - # now the GAN part - if optimizer_idx == 0: - # generator update - if cond is None: - assert not self.disc_conditional - logits_fake = self.discriminator(reconstructions.contiguous()) - else: - assert self.disc_conditional - logits_fake = self.discriminator(torch.cat((reconstructions.contiguous(), cond), dim=1)) - g_loss = -torch.mean(logits_fake) - - try: - d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer) - except RuntimeError: - assert not self.training - d_weight = torch.tensor(0.0) - - disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start) - loss = nll_loss + d_weight * disc_factor * g_loss + self.codebook_weight * codebook_loss.mean() - - log = {"{}/total_loss".format(split): loss.clone().detach().mean(), - "{}/quant_loss".format(split): codebook_loss.detach().mean(), - "{}/nll_loss".format(split): nll_loss.detach().mean(), - "{}/rec_loss".format(split): rec_loss.detach().mean(), - "{}/p_loss".format(split): p_loss.detach().mean(), - "{}/d_weight".format(split): d_weight.detach(), - "{}/disc_factor".format(split): torch.tensor(disc_factor), - "{}/g_loss".format(split): g_loss.detach().mean(), - } - if predicted_indices is not None: - assert self.n_classes is not None - with torch.no_grad(): - perplexity, cluster_usage = measure_perplexity(predicted_indices, self.n_classes) - log[f"{split}/perplexity"] = perplexity - log[f"{split}/cluster_usage"] = cluster_usage - return loss, log - - if optimizer_idx == 1: - # second pass for discriminator update - if cond is None: - logits_real = self.discriminator(inputs.contiguous().detach()) - logits_fake = self.discriminator(reconstructions.contiguous().detach()) - else: - logits_real = self.discriminator(torch.cat((inputs.contiguous().detach(), cond), dim=1)) - logits_fake = self.discriminator(torch.cat((reconstructions.contiguous().detach(), cond), dim=1)) - - disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start) - d_loss = disc_factor * self.disc_loss(logits_real, logits_fake) - - log = {"{}/disc_loss".format(split): d_loss.clone().detach().mean(), - "{}/logits_real".format(split): logits_real.detach().mean(), - "{}/logits_fake".format(split): logits_fake.detach().mean() - } - return d_loss, log diff --git a/One-2-3-45-master 2/ldm/modules/x_transformer.py b/One-2-3-45-master 2/ldm/modules/x_transformer.py deleted file mode 100644 index 5fc15bf9cfe0111a910e7de33d04ffdec3877576..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/ldm/modules/x_transformer.py +++ /dev/null @@ -1,641 +0,0 @@ -"""shout-out to https://github.com/lucidrains/x-transformers/tree/main/x_transformers""" -import torch -from torch import nn, einsum -import torch.nn.functional as F -from functools import partial -from inspect import isfunction -from collections import namedtuple -from einops import rearrange, repeat, reduce - -# constants - -DEFAULT_DIM_HEAD = 64 - -Intermediates = namedtuple('Intermediates', [ - 'pre_softmax_attn', - 'post_softmax_attn' -]) - -LayerIntermediates = namedtuple('Intermediates', [ - 'hiddens', - 'attn_intermediates' -]) - - -class AbsolutePositionalEmbedding(nn.Module): - def __init__(self, dim, max_seq_len): - super().__init__() - self.emb = nn.Embedding(max_seq_len, dim) - self.init_() - - def init_(self): - nn.init.normal_(self.emb.weight, std=0.02) - - def forward(self, x): - n = torch.arange(x.shape[1], device=x.device) - return self.emb(n)[None, :, :] - - -class FixedPositionalEmbedding(nn.Module): - def __init__(self, dim): - super().__init__() - inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim)) - self.register_buffer('inv_freq', inv_freq) - - def forward(self, x, seq_dim=1, offset=0): - t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq) + offset - sinusoid_inp = torch.einsum('i , j -> i j', t, self.inv_freq) - emb = torch.cat((sinusoid_inp.sin(), sinusoid_inp.cos()), dim=-1) - return emb[None, :, :] - - -# helpers - -def exists(val): - return val is not None - - -def default(val, d): - if exists(val): - return val - return d() if isfunction(d) else d - - -def always(val): - def inner(*args, **kwargs): - return val - return inner - - -def not_equals(val): - def inner(x): - return x != val - return inner - - -def equals(val): - def inner(x): - return x == val - return inner - - -def max_neg_value(tensor): - return -torch.finfo(tensor.dtype).max - - -# keyword argument helpers - -def pick_and_pop(keys, d): - values = list(map(lambda key: d.pop(key), keys)) - return dict(zip(keys, values)) - - -def group_dict_by_key(cond, d): - return_val = [dict(), dict()] - for key in d.keys(): - match = bool(cond(key)) - ind = int(not match) - return_val[ind][key] = d[key] - return (*return_val,) - - -def string_begins_with(prefix, str): - return str.startswith(prefix) - - -def group_by_key_prefix(prefix, d): - return group_dict_by_key(partial(string_begins_with, prefix), d) - - -def groupby_prefix_and_trim(prefix, d): - kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d) - kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items()))) - return kwargs_without_prefix, kwargs - - -# classes -class Scale(nn.Module): - def __init__(self, value, fn): - super().__init__() - self.value = value - self.fn = fn - - def forward(self, x, **kwargs): - x, *rest = self.fn(x, **kwargs) - return (x * self.value, *rest) - - -class Rezero(nn.Module): - def __init__(self, fn): - super().__init__() - self.fn = fn - self.g = nn.Parameter(torch.zeros(1)) - - def forward(self, x, **kwargs): - x, *rest = self.fn(x, **kwargs) - return (x * self.g, *rest) - - -class ScaleNorm(nn.Module): - def __init__(self, dim, eps=1e-5): - super().__init__() - self.scale = dim ** -0.5 - self.eps = eps - self.g = nn.Parameter(torch.ones(1)) - - def forward(self, x): - norm = torch.norm(x, dim=-1, keepdim=True) * self.scale - return x / norm.clamp(min=self.eps) * self.g - - -class RMSNorm(nn.Module): - def __init__(self, dim, eps=1e-8): - super().__init__() - self.scale = dim ** -0.5 - self.eps = eps - self.g = nn.Parameter(torch.ones(dim)) - - def forward(self, x): - norm = torch.norm(x, dim=-1, keepdim=True) * self.scale - return x / norm.clamp(min=self.eps) * self.g - - -class Residual(nn.Module): - def forward(self, x, residual): - return x + residual - - -class GRUGating(nn.Module): - def __init__(self, dim): - super().__init__() - self.gru = nn.GRUCell(dim, dim) - - def forward(self, x, residual): - gated_output = self.gru( - rearrange(x, 'b n d -> (b n) d'), - rearrange(residual, 'b n d -> (b n) d') - ) - - return gated_output.reshape_as(x) - - -# feedforward - -class GEGLU(nn.Module): - def __init__(self, dim_in, dim_out): - super().__init__() - self.proj = nn.Linear(dim_in, dim_out * 2) - - def forward(self, x): - x, gate = self.proj(x).chunk(2, dim=-1) - return x * F.gelu(gate) - - -class FeedForward(nn.Module): - def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.): - super().__init__() - inner_dim = int(dim * mult) - dim_out = default(dim_out, dim) - project_in = nn.Sequential( - nn.Linear(dim, inner_dim), - nn.GELU() - ) if not glu else GEGLU(dim, inner_dim) - - self.net = nn.Sequential( - project_in, - nn.Dropout(dropout), - nn.Linear(inner_dim, dim_out) - ) - - def forward(self, x): - return self.net(x) - - -# attention. -class Attention(nn.Module): - def __init__( - self, - dim, - dim_head=DEFAULT_DIM_HEAD, - heads=8, - causal=False, - mask=None, - talking_heads=False, - sparse_topk=None, - use_entmax15=False, - num_mem_kv=0, - dropout=0., - on_attn=False - ): - super().__init__() - if use_entmax15: - raise NotImplementedError("Check out entmax activation instead of softmax activation!") - self.scale = dim_head ** -0.5 - self.heads = heads - self.causal = causal - self.mask = mask - - inner_dim = dim_head * heads - - self.to_q = nn.Linear(dim, inner_dim, bias=False) - self.to_k = nn.Linear(dim, inner_dim, bias=False) - self.to_v = nn.Linear(dim, inner_dim, bias=False) - self.dropout = nn.Dropout(dropout) - - # talking heads - self.talking_heads = talking_heads - if talking_heads: - self.pre_softmax_proj = nn.Parameter(torch.randn(heads, heads)) - self.post_softmax_proj = nn.Parameter(torch.randn(heads, heads)) - - # explicit topk sparse attention - self.sparse_topk = sparse_topk - - # entmax - #self.attn_fn = entmax15 if use_entmax15 else F.softmax - self.attn_fn = F.softmax - - # add memory key / values - self.num_mem_kv = num_mem_kv - if num_mem_kv > 0: - self.mem_k = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head)) - self.mem_v = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head)) - - # attention on attention - self.attn_on_attn = on_attn - self.to_out = nn.Sequential(nn.Linear(inner_dim, dim * 2), nn.GLU()) if on_attn else nn.Linear(inner_dim, dim) - - def forward( - self, - x, - context=None, - mask=None, - context_mask=None, - rel_pos=None, - sinusoidal_emb=None, - prev_attn=None, - mem=None - ): - b, n, _, h, talking_heads, device = *x.shape, self.heads, self.talking_heads, x.device - kv_input = default(context, x) - - q_input = x - k_input = kv_input - v_input = kv_input - - if exists(mem): - k_input = torch.cat((mem, k_input), dim=-2) - v_input = torch.cat((mem, v_input), dim=-2) - - if exists(sinusoidal_emb): - # in shortformer, the query would start at a position offset depending on the past cached memory - offset = k_input.shape[-2] - q_input.shape[-2] - q_input = q_input + sinusoidal_emb(q_input, offset=offset) - k_input = k_input + sinusoidal_emb(k_input) - - q = self.to_q(q_input) - k = self.to_k(k_input) - v = self.to_v(v_input) - - q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), (q, k, v)) - - input_mask = None - if any(map(exists, (mask, context_mask))): - q_mask = default(mask, lambda: torch.ones((b, n), device=device).bool()) - k_mask = q_mask if not exists(context) else context_mask - k_mask = default(k_mask, lambda: torch.ones((b, k.shape[-2]), device=device).bool()) - q_mask = rearrange(q_mask, 'b i -> b () i ()') - k_mask = rearrange(k_mask, 'b j -> b () () j') - input_mask = q_mask * k_mask - - if self.num_mem_kv > 0: - mem_k, mem_v = map(lambda t: repeat(t, 'h n d -> b h n d', b=b), (self.mem_k, self.mem_v)) - k = torch.cat((mem_k, k), dim=-2) - v = torch.cat((mem_v, v), dim=-2) - if exists(input_mask): - input_mask = F.pad(input_mask, (self.num_mem_kv, 0), value=True) - - dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale - mask_value = max_neg_value(dots) - - if exists(prev_attn): - dots = dots + prev_attn - - pre_softmax_attn = dots - - if talking_heads: - dots = einsum('b h i j, h k -> b k i j', dots, self.pre_softmax_proj).contiguous() - - if exists(rel_pos): - dots = rel_pos(dots) - - if exists(input_mask): - dots.masked_fill_(~input_mask, mask_value) - del input_mask - - if self.causal: - i, j = dots.shape[-2:] - r = torch.arange(i, device=device) - mask = rearrange(r, 'i -> () () i ()') < rearrange(r, 'j -> () () () j') - mask = F.pad(mask, (j - i, 0), value=False) - dots.masked_fill_(mask, mask_value) - del mask - - if exists(self.sparse_topk) and self.sparse_topk < dots.shape[-1]: - top, _ = dots.topk(self.sparse_topk, dim=-1) - vk = top[..., -1].unsqueeze(-1).expand_as(dots) - mask = dots < vk - dots.masked_fill_(mask, mask_value) - del mask - - attn = self.attn_fn(dots, dim=-1) - post_softmax_attn = attn - - attn = self.dropout(attn) - - if talking_heads: - attn = einsum('b h i j, h k -> b k i j', attn, self.post_softmax_proj).contiguous() - - out = einsum('b h i j, b h j d -> b h i d', attn, v) - out = rearrange(out, 'b h n d -> b n (h d)') - - intermediates = Intermediates( - pre_softmax_attn=pre_softmax_attn, - post_softmax_attn=post_softmax_attn - ) - - return self.to_out(out), intermediates - - -class AttentionLayers(nn.Module): - def __init__( - self, - dim, - depth, - heads=8, - causal=False, - cross_attend=False, - only_cross=False, - use_scalenorm=False, - use_rmsnorm=False, - use_rezero=False, - rel_pos_num_buckets=32, - rel_pos_max_distance=128, - position_infused_attn=False, - custom_layers=None, - sandwich_coef=None, - par_ratio=None, - residual_attn=False, - cross_residual_attn=False, - macaron=False, - pre_norm=True, - gate_residual=False, - **kwargs - ): - super().__init__() - ff_kwargs, kwargs = groupby_prefix_and_trim('ff_', kwargs) - attn_kwargs, _ = groupby_prefix_and_trim('attn_', kwargs) - - dim_head = attn_kwargs.get('dim_head', DEFAULT_DIM_HEAD) - - self.dim = dim - self.depth = depth - self.layers = nn.ModuleList([]) - - self.has_pos_emb = position_infused_attn - self.pia_pos_emb = FixedPositionalEmbedding(dim) if position_infused_attn else None - self.rotary_pos_emb = always(None) - - assert rel_pos_num_buckets <= rel_pos_max_distance, 'number of relative position buckets must be less than the relative position max distance' - self.rel_pos = None - - self.pre_norm = pre_norm - - self.residual_attn = residual_attn - self.cross_residual_attn = cross_residual_attn - - norm_class = ScaleNorm if use_scalenorm else nn.LayerNorm - norm_class = RMSNorm if use_rmsnorm else norm_class - norm_fn = partial(norm_class, dim) - - norm_fn = nn.Identity if use_rezero else norm_fn - branch_fn = Rezero if use_rezero else None - - if cross_attend and not only_cross: - default_block = ('a', 'c', 'f') - elif cross_attend and only_cross: - default_block = ('c', 'f') - else: - default_block = ('a', 'f') - - if macaron: - default_block = ('f',) + default_block - - if exists(custom_layers): - layer_types = custom_layers - elif exists(par_ratio): - par_depth = depth * len(default_block) - assert 1 < par_ratio <= par_depth, 'par ratio out of range' - default_block = tuple(filter(not_equals('f'), default_block)) - par_attn = par_depth // par_ratio - depth_cut = par_depth * 2 // 3 # 2 / 3 attention layer cutoff suggested by PAR paper - par_width = (depth_cut + depth_cut // par_attn) // par_attn - assert len(default_block) <= par_width, 'default block is too large for par_ratio' - par_block = default_block + ('f',) * (par_width - len(default_block)) - par_head = par_block * par_attn - layer_types = par_head + ('f',) * (par_depth - len(par_head)) - elif exists(sandwich_coef): - assert sandwich_coef > 0 and sandwich_coef <= depth, 'sandwich coefficient should be less than the depth' - layer_types = ('a',) * sandwich_coef + default_block * (depth - sandwich_coef) + ('f',) * sandwich_coef - else: - layer_types = default_block * depth - - self.layer_types = layer_types - self.num_attn_layers = len(list(filter(equals('a'), layer_types))) - - for layer_type in self.layer_types: - if layer_type == 'a': - layer = Attention(dim, heads=heads, causal=causal, **attn_kwargs) - elif layer_type == 'c': - layer = Attention(dim, heads=heads, **attn_kwargs) - elif layer_type == 'f': - layer = FeedForward(dim, **ff_kwargs) - layer = layer if not macaron else Scale(0.5, layer) - else: - raise Exception(f'invalid layer type {layer_type}') - - if isinstance(layer, Attention) and exists(branch_fn): - layer = branch_fn(layer) - - if gate_residual: - residual_fn = GRUGating(dim) - else: - residual_fn = Residual() - - self.layers.append(nn.ModuleList([ - norm_fn(), - layer, - residual_fn - ])) - - def forward( - self, - x, - context=None, - mask=None, - context_mask=None, - mems=None, - return_hiddens=False - ): - hiddens = [] - intermediates = [] - prev_attn = None - prev_cross_attn = None - - mems = mems.copy() if exists(mems) else [None] * self.num_attn_layers - - for ind, (layer_type, (norm, block, residual_fn)) in enumerate(zip(self.layer_types, self.layers)): - is_last = ind == (len(self.layers) - 1) - - if layer_type == 'a': - hiddens.append(x) - layer_mem = mems.pop(0) - - residual = x - - if self.pre_norm: - x = norm(x) - - if layer_type == 'a': - out, inter = block(x, mask=mask, sinusoidal_emb=self.pia_pos_emb, rel_pos=self.rel_pos, - prev_attn=prev_attn, mem=layer_mem) - elif layer_type == 'c': - out, inter = block(x, context=context, mask=mask, context_mask=context_mask, prev_attn=prev_cross_attn) - elif layer_type == 'f': - out = block(x) - - x = residual_fn(out, residual) - - if layer_type in ('a', 'c'): - intermediates.append(inter) - - if layer_type == 'a' and self.residual_attn: - prev_attn = inter.pre_softmax_attn - elif layer_type == 'c' and self.cross_residual_attn: - prev_cross_attn = inter.pre_softmax_attn - - if not self.pre_norm and not is_last: - x = norm(x) - - if return_hiddens: - intermediates = LayerIntermediates( - hiddens=hiddens, - attn_intermediates=intermediates - ) - - return x, intermediates - - return x - - -class Encoder(AttentionLayers): - def __init__(self, **kwargs): - assert 'causal' not in kwargs, 'cannot set causality on encoder' - super().__init__(causal=False, **kwargs) - - - -class TransformerWrapper(nn.Module): - def __init__( - self, - *, - num_tokens, - max_seq_len, - attn_layers, - emb_dim=None, - max_mem_len=0., - emb_dropout=0., - num_memory_tokens=None, - tie_embedding=False, - use_pos_emb=True - ): - super().__init__() - assert isinstance(attn_layers, AttentionLayers), 'attention layers must be one of Encoder or Decoder' - - dim = attn_layers.dim - emb_dim = default(emb_dim, dim) - - self.max_seq_len = max_seq_len - self.max_mem_len = max_mem_len - self.num_tokens = num_tokens - - self.token_emb = nn.Embedding(num_tokens, emb_dim) - self.pos_emb = AbsolutePositionalEmbedding(emb_dim, max_seq_len) if ( - use_pos_emb and not attn_layers.has_pos_emb) else always(0) - self.emb_dropout = nn.Dropout(emb_dropout) - - self.project_emb = nn.Linear(emb_dim, dim) if emb_dim != dim else nn.Identity() - self.attn_layers = attn_layers - self.norm = nn.LayerNorm(dim) - - self.init_() - - self.to_logits = nn.Linear(dim, num_tokens) if not tie_embedding else lambda t: t @ self.token_emb.weight.t() - - # memory tokens (like [cls]) from Memory Transformers paper - num_memory_tokens = default(num_memory_tokens, 0) - self.num_memory_tokens = num_memory_tokens - if num_memory_tokens > 0: - self.memory_tokens = nn.Parameter(torch.randn(num_memory_tokens, dim)) - - # let funnel encoder know number of memory tokens, if specified - if hasattr(attn_layers, 'num_memory_tokens'): - attn_layers.num_memory_tokens = num_memory_tokens - - def init_(self): - nn.init.normal_(self.token_emb.weight, std=0.02) - - def forward( - self, - x, - return_embeddings=False, - mask=None, - return_mems=False, - return_attn=False, - mems=None, - **kwargs - ): - b, n, device, num_mem = *x.shape, x.device, self.num_memory_tokens - x = self.token_emb(x) - x += self.pos_emb(x) - x = self.emb_dropout(x) - - x = self.project_emb(x) - - if num_mem > 0: - mem = repeat(self.memory_tokens, 'n d -> b n d', b=b) - x = torch.cat((mem, x), dim=1) - - # auto-handle masking after appending memory tokens - if exists(mask): - mask = F.pad(mask, (num_mem, 0), value=True) - - x, intermediates = self.attn_layers(x, mask=mask, mems=mems, return_hiddens=True, **kwargs) - x = self.norm(x) - - mem, x = x[:, :num_mem], x[:, num_mem:] - - out = self.to_logits(x) if not return_embeddings else x - - if return_mems: - hiddens = intermediates.hiddens - new_mems = list(map(lambda pair: torch.cat(pair, dim=-2), zip(mems, hiddens))) if exists(mems) else hiddens - new_mems = list(map(lambda t: t[..., -self.max_mem_len:, :].detach(), new_mems)) - return out, new_mems - - if return_attn: - attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates)) - return out, attn_maps - - return out - diff --git a/One-2-3-45-master 2/ldm/thirdp/psp/helpers.py b/One-2-3-45-master 2/ldm/thirdp/psp/helpers.py deleted file mode 100644 index 983baaa50ea9df0cbabe09aba80293ddf7709845..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/ldm/thirdp/psp/helpers.py +++ /dev/null @@ -1,121 +0,0 @@ -# https://github.com/eladrich/pixel2style2pixel - -from collections import namedtuple -import torch -from torch.nn import Conv2d, BatchNorm2d, PReLU, ReLU, Sigmoid, MaxPool2d, AdaptiveAvgPool2d, Sequential, Module - -""" -ArcFace implementation from [TreB1eN](https://github.com/TreB1eN/InsightFace_Pytorch) -""" - - -class Flatten(Module): - def forward(self, input): - return input.view(input.size(0), -1) - - -def l2_norm(input, axis=1): - norm = torch.norm(input, 2, axis, True) - output = torch.div(input, norm) - return output - - -class Bottleneck(namedtuple('Block', ['in_channel', 'depth', 'stride'])): - """ A named tuple describing a ResNet block. """ - - -def get_block(in_channel, depth, num_units, stride=2): - return [Bottleneck(in_channel, depth, stride)] + [Bottleneck(depth, depth, 1) for i in range(num_units - 1)] - - -def get_blocks(num_layers): - if num_layers == 50: - blocks = [ - get_block(in_channel=64, depth=64, num_units=3), - get_block(in_channel=64, depth=128, num_units=4), - get_block(in_channel=128, depth=256, num_units=14), - get_block(in_channel=256, depth=512, num_units=3) - ] - elif num_layers == 100: - blocks = [ - get_block(in_channel=64, depth=64, num_units=3), - get_block(in_channel=64, depth=128, num_units=13), - get_block(in_channel=128, depth=256, num_units=30), - get_block(in_channel=256, depth=512, num_units=3) - ] - elif num_layers == 152: - blocks = [ - get_block(in_channel=64, depth=64, num_units=3), - get_block(in_channel=64, depth=128, num_units=8), - get_block(in_channel=128, depth=256, num_units=36), - get_block(in_channel=256, depth=512, num_units=3) - ] - else: - raise ValueError("Invalid number of layers: {}. Must be one of [50, 100, 152]".format(num_layers)) - return blocks - - -class SEModule(Module): - def __init__(self, channels, reduction): - super(SEModule, self).__init__() - self.avg_pool = AdaptiveAvgPool2d(1) - self.fc1 = Conv2d(channels, channels // reduction, kernel_size=1, padding=0, bias=False) - self.relu = ReLU(inplace=True) - self.fc2 = Conv2d(channels // reduction, channels, kernel_size=1, padding=0, bias=False) - self.sigmoid = Sigmoid() - - def forward(self, x): - module_input = x - x = self.avg_pool(x) - x = self.fc1(x) - x = self.relu(x) - x = self.fc2(x) - x = self.sigmoid(x) - return module_input * x - - -class bottleneck_IR(Module): - def __init__(self, in_channel, depth, stride): - super(bottleneck_IR, self).__init__() - if in_channel == depth: - self.shortcut_layer = MaxPool2d(1, stride) - else: - self.shortcut_layer = Sequential( - Conv2d(in_channel, depth, (1, 1), stride, bias=False), - BatchNorm2d(depth) - ) - self.res_layer = Sequential( - BatchNorm2d(in_channel), - Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False), PReLU(depth), - Conv2d(depth, depth, (3, 3), stride, 1, bias=False), BatchNorm2d(depth) - ) - - def forward(self, x): - shortcut = self.shortcut_layer(x) - res = self.res_layer(x) - return res + shortcut - - -class bottleneck_IR_SE(Module): - def __init__(self, in_channel, depth, stride): - super(bottleneck_IR_SE, self).__init__() - if in_channel == depth: - self.shortcut_layer = MaxPool2d(1, stride) - else: - self.shortcut_layer = Sequential( - Conv2d(in_channel, depth, (1, 1), stride, bias=False), - BatchNorm2d(depth) - ) - self.res_layer = Sequential( - BatchNorm2d(in_channel), - Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False), - PReLU(depth), - Conv2d(depth, depth, (3, 3), stride, 1, bias=False), - BatchNorm2d(depth), - SEModule(depth, 16) - ) - - def forward(self, x): - shortcut = self.shortcut_layer(x) - res = self.res_layer(x) - return res + shortcut \ No newline at end of file diff --git a/One-2-3-45-master 2/ldm/thirdp/psp/id_loss.py b/One-2-3-45-master 2/ldm/thirdp/psp/id_loss.py deleted file mode 100644 index e08ee095bd20ff664dcf470de15ff54f839b38e2..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/ldm/thirdp/psp/id_loss.py +++ /dev/null @@ -1,23 +0,0 @@ -# https://github.com/eladrich/pixel2style2pixel -import torch -from torch import nn -from ldm.thirdp.psp.model_irse import Backbone - - -class IDFeatures(nn.Module): - def __init__(self, model_path): - super(IDFeatures, self).__init__() - print('Loading ResNet ArcFace') - self.facenet = Backbone(input_size=112, num_layers=50, drop_ratio=0.6, mode='ir_se') - self.facenet.load_state_dict(torch.load(model_path, map_location="cpu")) - self.face_pool = torch.nn.AdaptiveAvgPool2d((112, 112)) - self.facenet.eval() - - def forward(self, x, crop=False): - # Not sure of the image range here - if crop: - x = torch.nn.functional.interpolate(x, (256, 256), mode="area") - x = x[:, :, 35:223, 32:220] - x = self.face_pool(x) - x_feats = self.facenet(x) - return x_feats diff --git a/One-2-3-45-master 2/ldm/thirdp/psp/model_irse.py b/One-2-3-45-master 2/ldm/thirdp/psp/model_irse.py deleted file mode 100644 index 21cedd2994a6eed5a0afd451b08dd09801fe60c0..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/ldm/thirdp/psp/model_irse.py +++ /dev/null @@ -1,86 +0,0 @@ -# https://github.com/eladrich/pixel2style2pixel - -from torch.nn import Linear, Conv2d, BatchNorm1d, BatchNorm2d, PReLU, Dropout, Sequential, Module -from ldm.thirdp.psp.helpers import get_blocks, Flatten, bottleneck_IR, bottleneck_IR_SE, l2_norm - -""" -Modified Backbone implementation from [TreB1eN](https://github.com/TreB1eN/InsightFace_Pytorch) -""" - - -class Backbone(Module): - def __init__(self, input_size, num_layers, mode='ir', drop_ratio=0.4, affine=True): - super(Backbone, self).__init__() - assert input_size in [112, 224], "input_size should be 112 or 224" - assert num_layers in [50, 100, 152], "num_layers should be 50, 100 or 152" - assert mode in ['ir', 'ir_se'], "mode should be ir or ir_se" - blocks = get_blocks(num_layers) - if mode == 'ir': - unit_module = bottleneck_IR - elif mode == 'ir_se': - unit_module = bottleneck_IR_SE - self.input_layer = Sequential(Conv2d(3, 64, (3, 3), 1, 1, bias=False), - BatchNorm2d(64), - PReLU(64)) - if input_size == 112: - self.output_layer = Sequential(BatchNorm2d(512), - Dropout(drop_ratio), - Flatten(), - Linear(512 * 7 * 7, 512), - BatchNorm1d(512, affine=affine)) - else: - self.output_layer = Sequential(BatchNorm2d(512), - Dropout(drop_ratio), - Flatten(), - Linear(512 * 14 * 14, 512), - BatchNorm1d(512, affine=affine)) - - modules = [] - for block in blocks: - for bottleneck in block: - modules.append(unit_module(bottleneck.in_channel, - bottleneck.depth, - bottleneck.stride)) - self.body = Sequential(*modules) - - def forward(self, x): - x = self.input_layer(x) - x = self.body(x) - x = self.output_layer(x) - return l2_norm(x) - - -def IR_50(input_size): - """Constructs a ir-50 model.""" - model = Backbone(input_size, num_layers=50, mode='ir', drop_ratio=0.4, affine=False) - return model - - -def IR_101(input_size): - """Constructs a ir-101 model.""" - model = Backbone(input_size, num_layers=100, mode='ir', drop_ratio=0.4, affine=False) - return model - - -def IR_152(input_size): - """Constructs a ir-152 model.""" - model = Backbone(input_size, num_layers=152, mode='ir', drop_ratio=0.4, affine=False) - return model - - -def IR_SE_50(input_size): - """Constructs a ir_se-50 model.""" - model = Backbone(input_size, num_layers=50, mode='ir_se', drop_ratio=0.4, affine=False) - return model - - -def IR_SE_101(input_size): - """Constructs a ir_se-101 model.""" - model = Backbone(input_size, num_layers=100, mode='ir_se', drop_ratio=0.4, affine=False) - return model - - -def IR_SE_152(input_size): - """Constructs a ir_se-152 model.""" - model = Backbone(input_size, num_layers=152, mode='ir_se', drop_ratio=0.4, affine=False) - return model \ No newline at end of file diff --git a/One-2-3-45-master 2/ldm/util.py b/One-2-3-45-master 2/ldm/util.py deleted file mode 100644 index 07e2689a919f605a50866bdfd1e0faf5cc7fadc0..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/ldm/util.py +++ /dev/null @@ -1,256 +0,0 @@ -import importlib - -import torch -from torch import optim -import numpy as np - -from inspect import isfunction -from PIL import Image, ImageDraw, ImageFont - -import os -import numpy as np -import matplotlib.pyplot as plt -from PIL import Image -import torch -import time -import cv2 -import PIL - -def pil_rectangle_crop(im): - width, height = im.size # Get dimensions - - if width <= height: - left = 0 - right = width - top = (height - width)/2 - bottom = (height + width)/2 - else: - - top = 0 - bottom = height - left = (width - height) / 2 - bottom = (width + height) / 2 - - # Crop the center of the image - im = im.crop((left, top, right, bottom)) - return im - -def add_margin(pil_img, color, size=256): - width, height = pil_img.size - result = Image.new(pil_img.mode, (size, size), color) - result.paste(pil_img, ((size - width) // 2, (size - height) // 2)) - return result - -def load_and_preprocess(interface, input_im): - ''' - :param input_im (PIL Image). - :return image (H, W, 3) array in [0, 1]. - ''' - # See https://github.com/Ir1d/image-background-remove-tool - image = input_im.convert('RGB') - - image_without_background = interface([image])[0] - image_without_background = np.array(image_without_background) - est_seg = image_without_background > 127 - image = np.array(image) - foreground = est_seg[:, : , -1].astype(np.bool_) - image[~foreground] = [255., 255., 255.] - x, y, w, h = cv2.boundingRect(foreground.astype(np.uint8)) - image = image[y:y+h, x:x+w, :] - image = PIL.Image.fromarray(np.array(image)) - - # resize image such that long edge is 512 - image.thumbnail([200, 200], Image.Resampling.LANCZOS) - image = add_margin(image, (255, 255, 255), size=256) - image = np.array(image) - - return image - - -def log_txt_as_img(wh, xc, size=10): - # wh a tuple of (width, height) - # xc a list of captions to plot - b = len(xc) - txts = list() - for bi in range(b): - txt = Image.new("RGB", wh, color="white") - draw = ImageDraw.Draw(txt) - font = ImageFont.truetype('data/DejaVuSans.ttf', size=size) - nc = int(40 * (wh[0] / 256)) - lines = "\n".join(xc[bi][start:start + nc] for start in range(0, len(xc[bi]), nc)) - - try: - draw.text((0, 0), lines, fill="black", font=font) - except UnicodeEncodeError: - print("Cant encode string for logging. Skipping.") - - txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0 - txts.append(txt) - txts = np.stack(txts) - txts = torch.tensor(txts) - return txts - - -def ismap(x): - if not isinstance(x, torch.Tensor): - return False - return (len(x.shape) == 4) and (x.shape[1] > 3) - - -def isimage(x): - if not isinstance(x,torch.Tensor): - return False - return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1) - - -def exists(x): - return x is not None - - -def default(val, d): - if exists(val): - return val - return d() if isfunction(d) else d - - -def mean_flat(tensor): - """ - https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86 - Take the mean over all non-batch dimensions. - """ - return tensor.mean(dim=list(range(1, len(tensor.shape)))) - - -def count_params(model, verbose=False): - total_params = sum(p.numel() for p in model.parameters()) - if verbose: - print(f"{model.__class__.__name__} has {total_params*1.e-6:.2f} M params.") - return total_params - - -def instantiate_from_config(config): - if not "target" in config: - if config == '__is_first_stage__': - return None - elif config == "__is_unconditional__": - return None - raise KeyError("Expected key `target` to instantiate.") - return get_obj_from_str(config["target"])(**config.get("params", dict())) - - -def get_obj_from_str(string, reload=False): - module, cls = string.rsplit(".", 1) - if reload: - module_imp = importlib.import_module(module) - importlib.reload(module_imp) - return getattr(importlib.import_module(module, package=None), cls) - - -class AdamWwithEMAandWings(optim.Optimizer): - # credit to https://gist.github.com/crowsonkb/65f7265353f403714fce3b2595e0b298 - def __init__(self, params, lr=1.e-3, betas=(0.9, 0.999), eps=1.e-8, # TODO: check hyperparameters before using - weight_decay=1.e-2, amsgrad=False, ema_decay=0.9999, # ema decay to match previous code - ema_power=1., param_names=()): - """AdamW that saves EMA versions of the parameters.""" - if not 0.0 <= lr: - raise ValueError("Invalid learning rate: {}".format(lr)) - if not 0.0 <= eps: - raise ValueError("Invalid epsilon value: {}".format(eps)) - if not 0.0 <= betas[0] < 1.0: - raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) - if not 0.0 <= betas[1] < 1.0: - raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) - if not 0.0 <= weight_decay: - raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) - if not 0.0 <= ema_decay <= 1.0: - raise ValueError("Invalid ema_decay value: {}".format(ema_decay)) - defaults = dict(lr=lr, betas=betas, eps=eps, - weight_decay=weight_decay, amsgrad=amsgrad, ema_decay=ema_decay, - ema_power=ema_power, param_names=param_names) - super().__init__(params, defaults) - - def __setstate__(self, state): - super().__setstate__(state) - for group in self.param_groups: - group.setdefault('amsgrad', False) - - @torch.no_grad() - def step(self, closure=None): - """Performs a single optimization step. - Args: - closure (callable, optional): A closure that reevaluates the model - and returns the loss. - """ - loss = None - if closure is not None: - with torch.enable_grad(): - loss = closure() - - for group in self.param_groups: - params_with_grad = [] - grads = [] - exp_avgs = [] - exp_avg_sqs = [] - ema_params_with_grad = [] - state_sums = [] - max_exp_avg_sqs = [] - state_steps = [] - amsgrad = group['amsgrad'] - beta1, beta2 = group['betas'] - ema_decay = group['ema_decay'] - ema_power = group['ema_power'] - - for p in group['params']: - if p.grad is None: - continue - params_with_grad.append(p) - if p.grad.is_sparse: - raise RuntimeError('AdamW does not support sparse gradients') - grads.append(p.grad) - - state = self.state[p] - - # State initialization - if len(state) == 0: - state['step'] = 0 - # Exponential moving average of gradient values - state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format) - # Exponential moving average of squared gradient values - state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format) - if amsgrad: - # Maintains max of all exp. moving avg. of sq. grad. values - state['max_exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format) - # Exponential moving average of parameter values - state['param_exp_avg'] = p.detach().float().clone() - - exp_avgs.append(state['exp_avg']) - exp_avg_sqs.append(state['exp_avg_sq']) - ema_params_with_grad.append(state['param_exp_avg']) - - if amsgrad: - max_exp_avg_sqs.append(state['max_exp_avg_sq']) - - # update the steps for each param group update - state['step'] += 1 - # record the step after step update - state_steps.append(state['step']) - - optim._functional.adamw(params_with_grad, - grads, - exp_avgs, - exp_avg_sqs, - max_exp_avg_sqs, - state_steps, - amsgrad=amsgrad, - beta1=beta1, - beta2=beta2, - lr=group['lr'], - weight_decay=group['weight_decay'], - eps=group['eps'], - maximize=False) - - cur_ema_decay = min(ema_decay, 1 - state['step'] ** -ema_power) - for param, ema_param in zip(params_with_grad, ema_params_with_grad): - ema_param.mul_(cur_ema_decay).add_(param.float(), alpha=1 - cur_ema_decay) - - return loss \ No newline at end of file diff --git a/One-2-3-45-master 2/reconstruction/confs/one2345_lod0_val_demo.conf b/One-2-3-45-master 2/reconstruction/confs/one2345_lod0_val_demo.conf deleted file mode 100644 index f0f2f7eba0afc3a62d3a903c009c221209af4b50..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/reconstruction/confs/one2345_lod0_val_demo.conf +++ /dev/null @@ -1,130 +0,0 @@ -# - for the lod1 geometry network, using adaptive cost for sparse cost regularization network -#- for lod1 rendering network, using depth-adaptive render - -general { - - base_exp_dir = exp/lod0 # !!! where you store the results and checkpoints to be used - recording = [ - ./, - ./data - ./ops - ./models - ./loss - ] -} - -dataset { - trainpath = ../ - valpath = ../ # !!! where you store the validation data - testpath = ../ - - imgScale_train = 1.0 - imgScale_test = 1.0 - nviews = 5 - clean_image = True - importance_sample = True - - # test dataset - test_img_wh = [256, 256] - test_clip_wh = [0, 0] - test_scan_id = scan110 - test_dir_comment = train -} - -train { - learning_rate = 2e-4 - learning_rate_milestone = [100000, 150000, 200000] - learning_rate_factor = 0.5 - end_iter = 200000 - save_freq = 5000 - val_freq = 1 - val_mesh_freq = 1 - report_freq = 100 - - N_rays = 512 - - validate_resolution_level = 4 - anneal_start = 0 - anneal_end = 25000 - anneal_start_lod1 = 0 - anneal_end_lod1 = 15000 - - use_white_bkgd = True - - # Loss - # ! for training the lod1 network, don't use this regularization in first 10k steps; then use the regularization - sdf_igr_weight = 0.1 - sdf_sparse_weight = 0.02 # 0.002 for lod1 network; 0.02 for lod0 network - sdf_decay_param = 100 # cannot be too large, which decide the tsdf range - fg_bg_weight = 0.01 # first 0.01 - bg_ratio = 0.3 - - if_fix_lod0_networks = False -} - -model { - num_lods = 1 - - sdf_network_lod0 { - lod = 0, - ch_in = 56, # the channel num of fused pyramid features - voxel_size = 0.02105263, # 0.02083333, should be 2/95 - vol_dims = [96, 96, 96], - hidden_dim = 128, - cost_type = variance_mean - d_pyramid_feature_compress = 16, - regnet_d_out = 16, - num_sdf_layers = 4, - # position embedding - multires = 6 - } - - - sdf_network_lod1 { - lod = 1, - ch_in = 56, # the channel num of fused pyramid features - voxel_size = 0.0104712, #0.01041667, should be 2/191 - vol_dims = [192, 192, 192], - hidden_dim = 128, - cost_type = variance_mean - d_pyramid_feature_compress = 8, - regnet_d_out = 16, - num_sdf_layers = 4, - - # position embedding - multires = 6 - } - - - variance_network { - init_val = 0.2 - } - - variance_network_lod1 { - init_val = 0.2 - } - - rendering_network { - in_geometry_feat_ch = 16 - in_rendering_feat_ch = 56 - anti_alias_pooling = True - } - - rendering_network_lod1 { - in_geometry_feat_ch = 16 # default 8 - in_rendering_feat_ch = 56 - anti_alias_pooling = True - - } - - - trainer { - n_samples_lod0 = 64 - n_importance_lod0 = 64 - n_samples_lod1 = 64 - n_importance_lod1 = 64 - n_outside = 0 # 128 if render_outside_uniform_sampling - perturb = 1.0 - alpha_type = div - } -} diff --git a/One-2-3-45-master 2/reconstruction/confs/one2345_lod_train.conf b/One-2-3-45-master 2/reconstruction/confs/one2345_lod_train.conf deleted file mode 100644 index 253b279fa3c1845bab84b2d51d93dec8c8561c33..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/reconstruction/confs/one2345_lod_train.conf +++ /dev/null @@ -1,130 +0,0 @@ -# only use lod0 - -general { - base_exp_dir = ./exp/One2345/obj_lod0_train - recording = [ - ./, - ./data - ./ops - ./models - ./loss - ] -} - -dataset { - # local path - trainpath = /objaverse-processed/zero12345_img/ - valpath = /objaverse-processed/zero12345_img/ - testpath = /objaverse-processed/zero12345_img/ - - - imgScale_train = 1.0 - imgScale_test = 1.0 - nviews = 5 - clean_image = True - importance_sample = True - - # test dataset - test_img_wh = [256, 256] - test_clip_wh = [0, 0] - - - test_dir_comment = train -} - -train { - learning_rate = 2e-4 - learning_rate_milestone = [100000, 150000, 200000] - learning_rate_factor = 0.5 - end_iter = 200000 - save_freq = 5000 - val_freq = 1600 - val_mesh_freq = 1600 - report_freq = 100 - - N_rays = 512 - - validate_resolution_level = 4 - anneal_start = 0 - anneal_end = 25000 - anneal_start_lod1 = 0 - anneal_end_lod1 = 15000 - - use_white_bkgd = True - - # Loss - sdf_igr_weight = 0.1 - sdf_sparse_weight = 0.02 - sdf_decay_param = 100 - fg_bg_weight = 0.1 - bg_ratio = 0.3 - depth_loss_weight = 0.0 - if_fix_lod0_networks = False -} - -model { - num_lods = 1 - - sdf_network_lod0 { - lod = 0, - ch_in = 56, # the channel num of fused pyramid features - voxel_size = 0.02105263, # 0.02083333, should be 2/95 - vol_dims = [96, 96, 96], - hidden_dim = 128, - cost_type = variance_mean - d_pyramid_feature_compress = 16, - regnet_d_out = 16, - num_sdf_layers = 4, - # position embedding - multires = 6 - } - - - sdf_network_lod1 { - lod = 1, - ch_in = 56, # the channel num of fused pyramid features - voxel_size = 0.0104712, #0.01041667, should be 2/191 - vol_dims = [192, 192, 192], - hidden_dim = 128, - cost_type = variance_mean - d_pyramid_feature_compress = 8, - regnet_d_out = 16, - num_sdf_layers = 4, - - # position embedding - multires = 6 - } - - - variance_network { - init_val = 0.2 - } - - variance_network_lod1 { - init_val = 0.2 - } - - rendering_network { - in_geometry_feat_ch = 16 - in_rendering_feat_ch = 56 - anti_alias_pooling = True - } - - rendering_network_lod1 { - in_geometry_feat_ch = 16 # default 8 - in_rendering_feat_ch = 56 - anti_alias_pooling = True - - } - - - trainer { - n_samples_lod0 = 64 - n_importance_lod0 = 64 - n_samples_lod1 = 64 - n_importance_lod1 = 64 - n_outside = 0 # 128 if render_outside_uniform_sampling - perturb = 1.0 - alpha_type = div - } -} diff --git a/One-2-3-45-master 2/reconstruction/data/One2345_eval_new_data.py b/One-2-3-45-master 2/reconstruction/data/One2345_eval_new_data.py deleted file mode 100644 index 5aa70f2c3ff4cb7002bc7897179a37490bd40de2..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/reconstruction/data/One2345_eval_new_data.py +++ /dev/null @@ -1,377 +0,0 @@ -from torch.utils.data import Dataset -import os -import json -import numpy as np -import cv2 -from PIL import Image -import torch -from torchvision import transforms as T -from data.scene import get_boundingbox - -from models.rays import gen_rays_from_single_image, gen_random_rays_from_single_image -from kornia import create_meshgrid - -def get_ray_directions(H, W, focal, center=None): - """ - Get ray directions for all pixels in camera coordinate. - Reference: https://www.scratchapixel.com/lessons/3d-basic-rendering/ - ray-tracing-generating-camera-rays/standard-coordinate-systems - Inputs: - H, W, focal: image height, width and focal length - Outputs: - directions: (H, W, 3), the direction of the rays in camera coordinate - """ - grid = create_meshgrid(H, W, normalized_coordinates=False)[0] + 0.5 # 1xHxWx2 - - i, j = grid.unbind(-1) - # the direction here is without +0.5 pixel centering as calibration is not so accurate - # see https://github.com/bmild/nerf/issues/24 - cent = center if center is not None else [W / 2, H / 2] - directions = torch.stack([(i - cent[0]) / focal[0], (j - cent[1]) / focal[1], torch.ones_like(i)], -1) # (H, W, 3) - - return directions - -def load_K_Rt_from_P(filename, P=None): - if P is None: - lines = open(filename).read().splitlines() - if len(lines) == 4: - lines = lines[1:] - lines = [[x[0], x[1], x[2], x[3]] for x in (x.split(" ") for x in lines)] - P = np.asarray(lines).astype(np.float32).squeeze() - - out = cv2.decomposeProjectionMatrix(P) - K = out[0] - R = out[1] - t = out[2] - - K = K / K[2, 2] - intrinsics = np.eye(4) - intrinsics[:3, :3] = K - - pose = np.eye(4, dtype=np.float32) - pose[:3, :3] = R.transpose() - pose[:3, 3] = (t[:3] / t[3])[:, 0] - - return intrinsics, pose # ! return cam2world matrix here - - -# ! load one ref-image with multiple src-images in camera coordinate system -class BlenderPerView(Dataset): - def __init__(self, root_dir, split, img_wh=(256, 256), downSample=1.0, - N_rays=512, - vol_dims=[128, 128, 128], batch_size=1, - clean_image=False, importance_sample=False, - specific_dataset_name = 'GSO' - ): - - - self.root_dir = root_dir - self.split = split - - self.specific_dataset_name = specific_dataset_name - self.N_rays = N_rays - self.batch_size = batch_size # - used for construct new metas for gru fusion training - - self.clean_image = clean_image - self.importance_sample = importance_sample - self.scale_factor = 1.0 - self.scale_mat = np.float32(np.diag([1, 1, 1, 1.0])) - assert self.split == 'val' or 'export_mesh', 'only support val or export_mesh' - # find all subfolders - main_folder = os.path.join(root_dir, self.specific_dataset_name) - self.shape_list = [""] # os.listdir(main_folder) # MODIFIED - self.shape_list.sort() - - self.lvis_paths = [] - for shape_name in self.shape_list: - self.lvis_paths.append(os.path.join(main_folder, shape_name)) - - if img_wh is not None: - assert img_wh[0] % 32 == 0 and img_wh[1] % 32 == 0, \ - 'img_wh must both be multiples of 32!' - - # * bounding box for rendering - self.bbox_min = np.array([-1.0, -1.0, -1.0]) - self.bbox_max = np.array([1.0, 1.0, 1.0]) - - # - used for cost volume regularization - self.voxel_dims = torch.tensor(vol_dims, dtype=torch.float32) - self.partial_vol_origin = torch.tensor([-1., -1., -1.], dtype=torch.float32) - - - def define_transforms(self): - self.transform = T.Compose([T.ToTensor()]) - - - def load_cam_info(self): - for vid, img_id in enumerate(self.img_ids): - intrinsic, extrinsic, near_far = self.intrinsic, np.linalg.inv(self.c2ws[vid]), self.near_far - self.all_intrinsics.append(intrinsic) - self.all_extrinsics.append(extrinsic) - self.all_near_fars.append(near_far) - - def read_mask(self, filename): - mask_h = cv2.imread(filename, 0) - mask_h = cv2.resize(mask_h, None, fx=self.downSample, fy=self.downSample, - interpolation=cv2.INTER_NEAREST) - mask = cv2.resize(mask_h, None, fx=0.25, fy=0.25, - interpolation=cv2.INTER_NEAREST) - - mask[mask > 0] = 1 # the masks stored in png are not binary - mask_h[mask_h > 0] = 1 - - return mask, mask_h - - def cal_scale_mat(self, img_hw, intrinsics, extrinsics, near_fars, factor=1.): - - center, radius, bounds = get_boundingbox(img_hw, intrinsics, extrinsics, near_fars) - - radius = radius * factor - scale_mat = np.diag([radius, radius, radius, 1.0]) - scale_mat[:3, 3] = center.cpu().numpy() - scale_mat = scale_mat.astype(np.float32) - - return scale_mat, 1. / radius.cpu().numpy() - - def __len__(self): - return len(self.lvis_paths) - - def __getitem__(self, idx): - sample = {} - origin_idx = idx - imgs, depths_h, masks_h = [], [], [] # full size (256, 256) - intrinsics, w2cs, c2ws, near_fars = [], [], [], [] # record proj-mats between views - - folder_path = self.lvis_paths[idx] - target_idx = 0 - # last subdir name - shape_name = os.path.split(folder_path)[-1] - - pose_json_path = os.path.join(folder_path, "pose.json") - with open(pose_json_path, 'r') as f: - meta = json.load(f) - - self.img_ids = list(meta["c2ws"].keys()) # e.g. "view_0", "view_7", "view_0_2_10" - self.img_wh = (256, 256) - self.input_poses = np.array(list(meta["c2ws"].values())) - intrinsic = np.eye(4) - intrinsic[:3, :3] = np.array(meta["intrinsics"]) - self.intrinsic = intrinsic - self.near_far = np.array(meta["near_far"]) - self.define_transforms() - self.blender2opencv = np.array( - [[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]] - ) - - self.c2ws = [] - self.w2cs = [] - self.all_intrinsics = [] # the cam info of the whole scene - self.all_extrinsics = [] - self.all_near_fars = [] - - for idx, img_id in enumerate(self.img_ids): - pose = self.input_poses[idx] - c2w = pose @ self.blender2opencv - self.c2ws.append(c2w) - self.all_intrinsics.append(self.intrinsic) - self.all_near_fars.append(self.near_far) - self.all_extrinsics.append(np.linalg.inv(c2w)) - self.w2cs.append(np.linalg.inv(c2w)) - self.c2ws = np.stack(self.c2ws, axis=0) - self.w2cs = np.stack(self.w2cs, axis=0) - - - # target view - c2w = self.c2ws[target_idx] - w2c = np.linalg.inv(c2w) - w2c_ref = w2c - w2c_ref_inv = np.linalg.inv(w2c_ref) - - w2cs.append(w2c @ w2c_ref_inv) - c2ws.append(np.linalg.inv(w2c @ w2c_ref_inv)) - - img_filename = os.path.join(folder_path, 'stage1_8', f'{self.img_ids[target_idx]}') - - img = Image.open(img_filename) - img = self.transform(img) # (4, h, w) - - - if img.shape[0] == 4: - img = img[:3] * img[-1:] + (1 - img[-1:]) # blend A to RGB - imgs += [img] - - - depth_h = torch.ones((img.shape[1], img.shape[2]), dtype=torch.float32) - depth_h = depth_h.fill_(-1.0) - mask_h = torch.ones((img.shape[1], img.shape[2]), dtype=torch.int32) - - - depths_h.append(depth_h) - masks_h.append(mask_h) - - intrinsic = self.intrinsic - intrinsics.append(intrinsic) - - near_fars.append(self.all_near_fars[target_idx]) - image_perm = 0 # only supervised on reference view - - mask_dilated = None - - src_views = range(8, 8 + 8 * 4) - - for vid in src_views: - - img_filename = os.path.join(folder_path, 'stage2_8', f'{self.img_ids[vid]}') - img = Image.open(img_filename) - img_wh = self.img_wh - - img = self.transform(img) - if img.shape[0] == 4: - img = img[:3] * img[-1:] + (1 - img[-1:]) # blend A to RGB - - imgs += [img] - depth_h = np.ones(img.shape[1:], dtype=np.float32) - depths_h.append(depth_h) - masks_h.append(np.ones(img.shape[1:], dtype=np.int32)) - - near_fars.append(self.all_near_fars[vid]) - intrinsics.append(self.all_intrinsics[vid]) - - w2cs.append(self.all_extrinsics[vid] @ w2c_ref_inv) - - - # ! estimate scale_mat - scale_mat, scale_factor = self.cal_scale_mat( - img_hw=[img_wh[1], img_wh[0]], - intrinsics=intrinsics, extrinsics=w2cs, - near_fars=near_fars, factor=1.1 - ) - - - new_near_fars = [] - new_w2cs = [] - new_c2ws = [] - new_affine_mats = [] - new_depths_h = [] - for intrinsic, extrinsic, near_far, depth in zip(intrinsics, w2cs, near_fars, depths_h): - - P = intrinsic @ extrinsic @ scale_mat - P = P[:3, :4] - # - should use load_K_Rt_from_P() to obtain c2w - c2w = load_K_Rt_from_P(None, P)[1] - w2c = np.linalg.inv(c2w) - new_w2cs.append(w2c) - new_c2ws.append(c2w) - affine_mat = np.eye(4) - affine_mat[:3, :4] = intrinsic[:3, :3] @ w2c[:3, :4] - new_affine_mats.append(affine_mat) - - camera_o = c2w[:3, 3] - dist = np.sqrt(np.sum(camera_o ** 2)) - near = dist - 1 - far = dist + 1 - - new_near_fars.append([0.95 * near, 1.05 * far]) - new_depths_h.append(depth * scale_factor) - - imgs = torch.stack(imgs).float() - depths_h = np.stack(new_depths_h) - masks_h = np.stack(masks_h) - - affine_mats = np.stack(new_affine_mats) - intrinsics, w2cs, c2ws, near_fars = np.stack(intrinsics), np.stack(new_w2cs), np.stack(new_c2ws), np.stack( - new_near_fars) - - if self.split == 'train': - start_idx = 0 - else: - start_idx = 1 - - - target_w2cs = [] - target_intrinsics = [] - new_target_w2cs = [] - for i_idx in range(8): - target_w2cs.append(self.all_extrinsics[i_idx] @ w2c_ref_inv) - target_intrinsics.append(self.all_intrinsics[i_idx]) - - for intrinsic, extrinsic in zip(target_intrinsics, target_w2cs): - - P = intrinsic @ extrinsic @ scale_mat - P = P[:3, :4] - # - should use load_K_Rt_from_P() to obtain c2w - c2w = load_K_Rt_from_P(None, P)[1] - w2c = np.linalg.inv(c2w) - new_target_w2cs.append(w2c) - target_w2cs = np.stack(new_target_w2cs) - - - - view_ids = [idx] + list(src_views) - sample['origin_idx'] = origin_idx - sample['images'] = imgs # (V, 3, H, W) - sample['depths_h'] = torch.from_numpy(depths_h.astype(np.float32)) # (V, H, W) - sample['masks_h'] = torch.from_numpy(masks_h.astype(np.float32)) # (V, H, W) - sample['w2cs'] = torch.from_numpy(w2cs.astype(np.float32)) # (V, 4, 4) - sample['c2ws'] = torch.from_numpy(c2ws.astype(np.float32)) # (V, 4, 4) - sample['target_candidate_w2cs'] = torch.from_numpy(target_w2cs.astype(np.float32)) # (8, 4, 4) - sample['near_fars'] = torch.from_numpy(near_fars.astype(np.float32)) # (V, 2) - sample['intrinsics'] = torch.from_numpy(intrinsics.astype(np.float32))[:, :3, :3] # (V, 3, 3) - sample['view_ids'] = torch.from_numpy(np.array(view_ids)) - sample['affine_mats'] = torch.from_numpy(affine_mats.astype(np.float32)) # ! in world space - - sample['scan'] = shape_name - - sample['scale_factor'] = torch.tensor(scale_factor) - sample['img_wh'] = torch.from_numpy(np.array(img_wh)) - sample['render_img_idx'] = torch.tensor(image_perm) - sample['partial_vol_origin'] = self.partial_vol_origin - sample['meta'] = str(self.specific_dataset_name) + '_' + str(shape_name) + "_refview" + str(view_ids[0]) - # print("meta: ", sample['meta']) - - # - image to render - sample['query_image'] = sample['images'][0] - sample['query_c2w'] = sample['c2ws'][0] - sample['query_w2c'] = sample['w2cs'][0] - sample['query_intrinsic'] = sample['intrinsics'][0] - sample['query_depth'] = sample['depths_h'][0] - sample['query_mask'] = sample['masks_h'][0] - sample['query_near_far'] = sample['near_fars'][0] - - sample['images'] = sample['images'][start_idx:] # (V, 3, H, W) - sample['depths_h'] = sample['depths_h'][start_idx:] # (V, H, W) - sample['masks_h'] = sample['masks_h'][start_idx:] # (V, H, W) - sample['w2cs'] = sample['w2cs'][start_idx:] # (V, 4, 4) - sample['c2ws'] = sample['c2ws'][start_idx:] # (V, 4, 4) - sample['intrinsics'] = sample['intrinsics'][start_idx:] # (V, 3, 3) - sample['view_ids'] = sample['view_ids'][start_idx:] - sample['affine_mats'] = sample['affine_mats'][start_idx:] # ! in world space - - sample['scale_mat'] = torch.from_numpy(scale_mat) - sample['trans_mat'] = torch.from_numpy(w2c_ref_inv) - - # - generate rays - if ('val' in self.split) or ('test' in self.split): - sample_rays = gen_rays_from_single_image( - img_wh[1], img_wh[0], - sample['query_image'], - sample['query_intrinsic'], - sample['query_c2w'], - depth=sample['query_depth'], - mask=sample['query_mask'] if self.clean_image else None) - else: - sample_rays = gen_random_rays_from_single_image( - img_wh[1], img_wh[0], - self.N_rays, - sample['query_image'], - sample['query_intrinsic'], - sample['query_c2w'], - depth=sample['query_depth'], - mask=sample['query_mask'] if self.clean_image else None, - dilated_mask=mask_dilated, - importance_sample=self.importance_sample) - - - sample['rays'] = sample_rays - - return sample diff --git a/One-2-3-45-master 2/reconstruction/data/One2345_train.py b/One-2-3-45-master 2/reconstruction/data/One2345_train.py deleted file mode 100644 index 0e3cbe37d82ba026f24b12c9a47d29f8999fb827..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/reconstruction/data/One2345_train.py +++ /dev/null @@ -1,393 +0,0 @@ -from torch.utils.data import Dataset -import os -import numpy as np -import cv2 -from PIL import Image -import torch -from torchvision import transforms as T -from data.scene import get_boundingbox -from models.rays import gen_rays_from_single_image, gen_random_rays_from_single_image -import json - -from kornia import create_meshgrid -def get_ray_directions(H, W, focal, center=None): - """ - Get ray directions for all pixels in camera coordinate. - Reference: https://www.scratchapixel.com/lessons/3d-basic-rendering/ - ray-tracing-generating-camera-rays/standard-coordinate-systems - Inputs: - H, W, focal: image height, width and focal length - Outputs: - directions: (H, W, 3), the direction of the rays in camera coordinate - """ - grid = create_meshgrid(H, W, normalized_coordinates=False)[0] + 0.5 # 1xHxWx2 - - i, j = grid.unbind(-1) - # the direction here is without +0.5 pixel centering as calibration is not so accurate - # see https://github.com/bmild/nerf/issues/24 - cent = center if center is not None else [W / 2, H / 2] - directions = torch.stack([(i - cent[0]) / focal[0], (j - cent[1]) / focal[1], torch.ones_like(i)], -1) # (H, W, 3) - - return directions - -def load_K_Rt_from_P(filename, P=None): - if P is None: - lines = open(filename).read().splitlines() - if len(lines) == 4: - lines = lines[1:] - lines = [[x[0], x[1], x[2], x[3]] for x in (x.split(" ") for x in lines)] - P = np.asarray(lines).astype(np.float32).squeeze() - - out = cv2.decomposeProjectionMatrix(P) - K = out[0] - R = out[1] - t = out[2] - - K = K / K[2, 2] - intrinsics = np.eye(4) - intrinsics[:3, :3] = K - - pose = np.eye(4, dtype=np.float32) - pose[:3, :3] = R.transpose() # ? why need transpose here - pose[:3, 3] = (t[:3] / t[3])[:, 0] - - return intrinsics, pose # ! return cam2world matrix here - - -# ! load one ref-image with multiple src-images in camera coordinate system -class BlenderPerView(Dataset): - def __init__(self, root_dir, split, img_wh=(256, 256), downSample=1.0, - N_rays=512, - vol_dims=[128, 128, 128], batch_size=1, - clean_image=False, importance_sample=False,): - - self.root_dir = root_dir - self.split = split - - self.N_rays = N_rays - self.batch_size = batch_size - - self.clean_image = clean_image - self.importance_sample = importance_sample - self.scale_factor = 1.0 - self.scale_mat = np.float32(np.diag([1, 1, 1, 1.0])) - - lvis_json_path = os.path.join(self.root_dir, 'lvis_split_cc_by.json') # you can define your own split - - with open(lvis_json_path, 'r') as f: - lvis_paths = json.load(f) - if self.split == 'train': - self.lvis_paths = lvis_paths['train'] - else: - self.lvis_paths = lvis_paths['val'] - if img_wh is not None: - assert img_wh[0] % 32 == 0 and img_wh[1] % 32 == 0, \ - 'img_wh must both be multiples of 32!' - - - pose_json_path = os.path.join(self.root_dir, 'One2345_training_pose.json') - with open(pose_json_path, 'r') as f: - meta = json.load(f) - - self.img_ids = list(meta["c2ws"].keys()) - self.img_wh = img_wh - self.input_poses = np.array(list(meta["c2ws"].values())) - intrinsic = np.eye(4) - intrinsic[:3, :3] = np.array(meta["intrinsics"]) - self.intrinsic = intrinsic - self.near_far = np.array(meta["near_far"]) - # self.near_far[1] = 1.8 - self.define_transforms() - self.blender2opencv = np.array( - [[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]] - ) - - - self.c2ws = [] - self.w2cs = [] - self.all_intrinsics = [] # the cam info of the whole scene - self.all_extrinsics = [] - self.all_near_fars = [] - - for idx, img_id in enumerate(self.img_ids): - pose = self.input_poses[idx] - c2w = pose @ self.blender2opencv - self.c2ws.append(c2w) - self.all_intrinsics.append(self.intrinsic) - self.all_near_fars.append(self.near_far) - self.all_extrinsics.append(np.linalg.inv(c2w)) - self.w2cs.append(np.linalg.inv(c2w)) - self.c2ws = np.stack(self.c2ws, axis=0) - self.w2cs = np.stack(self.w2cs, axis=0) - - # * bounding box for rendering - self.bbox_min = np.array([-1.0, -1.0, -1.0]) - self.bbox_max = np.array([1.0, 1.0, 1.0]) - - # - used for cost volume regularization - self.voxel_dims = torch.tensor(vol_dims, dtype=torch.float32) - self.partial_vol_origin = torch.tensor([-1., -1., -1.], dtype=torch.float32) - - - def define_transforms(self): - self.transform = T.Compose([T.ToTensor()]) - - - def read_mask(self, filename): - mask_h = cv2.imread(filename, 0) - mask_h = cv2.resize(mask_h, None, fx=self.downSample, fy=self.downSample, - interpolation=cv2.INTER_NEAREST) - mask = cv2.resize(mask_h, None, fx=0.25, fy=0.25, - interpolation=cv2.INTER_NEAREST) - - mask[mask > 0] = 1 # the masks stored in png are not binary - mask_h[mask_h > 0] = 1 - - return mask, mask_h - - def cal_scale_mat(self, img_hw, intrinsics, extrinsics, near_fars, factor=1.): - - center, radius, bounds = get_boundingbox(img_hw, intrinsics, extrinsics, near_fars) - - radius = radius * factor - scale_mat = np.diag([radius, radius, radius, 1.0]) - scale_mat[:3, 3] = center.cpu().numpy() - scale_mat = scale_mat.astype(np.float32) - - return scale_mat, 1. / radius.cpu().numpy() - - def __len__(self): - return 8 * len(self.lvis_paths) - - - def __getitem__(self, idx): - sample = {} - origin_idx = idx - imgs, depths_h, masks_h = [], [], [] # full size (256, 256) - intrinsics, w2cs, c2ws, near_fars = [], [], [], [] # record proj mats between views - - folder_uid_dict = self.lvis_paths[idx//8] - idx = idx % 8 # [0, 7] - folder_id = folder_uid_dict['folder_id'] - uid = folder_uid_dict['uid'] - - # target view - c2w = self.c2ws[idx] - w2c = np.linalg.inv(c2w) - w2c_ref = w2c - w2c_ref_inv = np.linalg.inv(w2c_ref) - - w2cs.append(w2c @ w2c_ref_inv) - c2ws.append(np.linalg.inv(w2c @ w2c_ref_inv)) - - img_filename = os.path.join(self.root_dir, 'zero12345_narrow', folder_id, uid, f'view_{idx}.png') - depth_filename = os.path.join(os.path.join(self.root_dir, 'zero12345_narrow', folder_id, uid, f'view_{idx}_depth_mm.png')) - - img = Image.open(img_filename) - img = self.transform(img) # (4, h, w) - - if img.shape[0] == 4: - img = img[:3] * img[-1:] + (1 - img[-1:]) # blend A to RGB - imgs += [img] - - depth_h = cv2.imread(depth_filename, cv2.IMREAD_UNCHANGED).astype(np.uint16) / 1000.0 - mask_h = depth_h > 0 - directions = get_ray_directions(self.img_wh[1], self.img_wh[0], [self.intrinsic[0, 0], self.intrinsic[1, 1]]) # [H, W, 3] - surface_points = directions * depth_h[..., None] # [H, W, 3] - distance = np.linalg.norm(surface_points, axis=-1) # [H, W] - depth_h = distance - - depths_h.append(depth_h) - masks_h.append(mask_h) - - intrinsic = self.intrinsic - intrinsics.append(intrinsic) - - near_fars.append(self.all_near_fars[idx]) - image_perm = 0 # only supervised on reference view - - mask_dilated = None - - src_views = range(8, 8 + 8 * 4) - - for vid in src_views: - img_filename = os.path.join(self.root_dir, "zero12345_narrow", folder_id, uid, f'view_{(vid - 8) // 4}_{vid%4}_10.png') - - img = Image.open(img_filename) - img_wh = self.img_wh - - img = self.transform(img) - if img.shape[0] == 4: - img = img[:3] * img[-1:] + (1 - img[-1:]) # blend A to RGB - - imgs += [img] - depth_h = np.ones(img.shape[1:], dtype=np.float32) - depths_h.append(depth_h) - masks_h.append(np.ones(img.shape[1:], dtype=np.int32)) - - near_fars.append(self.all_near_fars[vid]) - intrinsics.append(self.all_intrinsics[vid]) - - w2cs.append(self.all_extrinsics[vid] @ w2c_ref_inv) - - - # ! estimate scale_mat - scale_mat, scale_factor = self.cal_scale_mat( - img_hw=[img_wh[1], img_wh[0]], - intrinsics=intrinsics, extrinsics=w2cs, - near_fars=near_fars, factor=1.1 - ) - - - new_near_fars = [] - new_w2cs = [] - new_c2ws = [] - new_affine_mats = [] - new_depths_h = [] - for intrinsic, extrinsic, near_far, depth in zip(intrinsics, w2cs, near_fars, depths_h): - - P = intrinsic @ extrinsic @ scale_mat - P = P[:3, :4] - # - should use load_K_Rt_from_P() to obtain c2w - c2w = load_K_Rt_from_P(None, P)[1] - w2c = np.linalg.inv(c2w) - new_w2cs.append(w2c) - new_c2ws.append(c2w) - affine_mat = np.eye(4) - affine_mat[:3, :4] = intrinsic[:3, :3] @ w2c[:3, :4] - new_affine_mats.append(affine_mat) - - camera_o = c2w[:3, 3] - dist = np.sqrt(np.sum(camera_o ** 2)) - near = (dist - 1).clip(min=0.02) - far = dist + 1 - - new_near_fars.append([0.95 * near, 1.05 * far]) - new_depths_h.append(depth * scale_factor) - - if self.split == 'train': - # randomly select one view from eight views as reference view - idx_to_select = np.random.randint(0, 8) - - img_filename = os.path.join(self.root_dir, 'zero12345_narrow', folder_id, uid, f'view_{idx_to_select}.png') - img = Image.open(img_filename) - img = self.transform(img) # (4, h, w) - - if img.shape[0] == 4: - img = img[:3] * img[-1:] + (1 - img[-1:]) # blend A to RGB - - imgs[0] = img - - w2c_selected = self.all_extrinsics[idx_to_select] @ w2c_ref_inv - P = self.all_intrinsics[idx_to_select] @ w2c_selected @ scale_mat - P = P[:3, :4] - - c2w = load_K_Rt_from_P(None, P)[1] - w2c = np.linalg.inv(c2w) - affine_mat = np.eye(4) - affine_mat[:3, :4] = self.all_intrinsics[idx_to_select][:3, :3] @ w2c[:3, :4] - new_affine_mats[0] = affine_mat - camera_o = c2w[:3, 3] - dist = np.sqrt(np.sum(camera_o ** 2)) - near = (dist - 1).clip(min=0.02) - far = dist + 1 - new_near_fars[0] = [0.95 * near, 1.05 * far] - - new_w2cs[0] = w2c - new_c2ws[0] = c2w - - depth_filename = os.path.join(os.path.join(self.root_dir, 'zero12345_narrow', folder_id, uid, f'view_{idx_to_select}_depth_mm.png')) - depth_h = cv2.imread(depth_filename, cv2.IMREAD_UNCHANGED).astype(np.uint16) / 1000.0 - mask_h = depth_h > 0 - directions = get_ray_directions(self.img_wh[1], self.img_wh[0], [self.intrinsic[0, 0], self.intrinsic[1, 1]]) # [H, W, 3] - surface_points = directions * depth_h[..., None] # [H, W, 3] - distance = np.linalg.norm(surface_points, axis=-1) # [H, W] - depth_h = distance * scale_factor - - new_depths_h[0] = depth_h - masks_h[0] = mask_h - - - imgs = torch.stack(imgs).float() - depths_h = np.stack(new_depths_h) - masks_h = np.stack(masks_h) - - affine_mats = np.stack(new_affine_mats) - intrinsics, w2cs, c2ws, near_fars = np.stack(intrinsics), np.stack(new_w2cs), np.stack(new_c2ws), np.stack( - new_near_fars) - - if self.split == 'train': - start_idx = 0 - else: - start_idx = 1 - - - view_ids = [idx] + list(src_views) - sample['origin_idx'] = origin_idx - sample['images'] = imgs # (V, 3, H, W) - sample['depths_h'] = torch.from_numpy(depths_h.astype(np.float32)) # (V, H, W) - sample['masks_h'] = torch.from_numpy(masks_h.astype(np.float32)) # (V, H, W) - sample['w2cs'] = torch.from_numpy(w2cs.astype(np.float32)) # (V, 4, 4) - sample['c2ws'] = torch.from_numpy(c2ws.astype(np.float32)) # (V, 4, 4) - sample['near_fars'] = torch.from_numpy(near_fars.astype(np.float32)) # (V, 2) - sample['intrinsics'] = torch.from_numpy(intrinsics.astype(np.float32))[:, :3, :3] # (V, 3, 3) - sample['view_ids'] = torch.from_numpy(np.array(view_ids)) - sample['affine_mats'] = torch.from_numpy(affine_mats.astype(np.float32)) # ! in world space - - # sample['light_idx'] = torch.tensor(light_idx) - sample['scan'] = folder_id - - sample['scale_factor'] = torch.tensor(scale_factor) - sample['img_wh'] = torch.from_numpy(np.array(img_wh)) - sample['render_img_idx'] = torch.tensor(image_perm) - sample['partial_vol_origin'] = self.partial_vol_origin - sample['meta'] = str(folder_id) + "_" + str(uid) + "_refview" + str(view_ids[0]) - - - # - image to render - sample['query_image'] = sample['images'][0] - sample['query_c2w'] = sample['c2ws'][0] - sample['query_w2c'] = sample['w2cs'][0] - sample['query_intrinsic'] = sample['intrinsics'][0] - sample['query_depth'] = sample['depths_h'][0] - sample['query_mask'] = sample['masks_h'][0] - sample['query_near_far'] = sample['near_fars'][0] - - - sample['images'] = sample['images'][start_idx:] # (V, 3, H, W) - sample['depths_h'] = sample['depths_h'][start_idx:] # (V, H, W) - sample['masks_h'] = sample['masks_h'][start_idx:] # (V, H, W) - sample['w2cs'] = sample['w2cs'][start_idx:] # (V, 4, 4) - sample['c2ws'] = sample['c2ws'][start_idx:] # (V, 4, 4) - sample['intrinsics'] = sample['intrinsics'][start_idx:] # (V, 3, 3) - sample['view_ids'] = sample['view_ids'][start_idx:] - sample['affine_mats'] = sample['affine_mats'][start_idx:] # ! in world space - - sample['scale_mat'] = torch.from_numpy(scale_mat) - sample['trans_mat'] = torch.from_numpy(w2c_ref_inv) - - # - generate rays - if ('val' in self.split) or ('test' in self.split): - sample_rays = gen_rays_from_single_image( - img_wh[1], img_wh[0], - sample['query_image'], - sample['query_intrinsic'], - sample['query_c2w'], - depth=sample['query_depth'], - mask=sample['query_mask'] if self.clean_image else None) - else: - sample_rays = gen_random_rays_from_single_image( - img_wh[1], img_wh[0], - self.N_rays, - sample['query_image'], - sample['query_intrinsic'], - sample['query_c2w'], - depth=sample['query_depth'], - mask=sample['query_mask'] if self.clean_image else None, - dilated_mask=mask_dilated, - importance_sample=self.importance_sample) - - - sample['rays'] = sample_rays - - return sample diff --git a/One-2-3-45-master 2/reconstruction/data/scene.py b/One-2-3-45-master 2/reconstruction/data/scene.py deleted file mode 100644 index 5f34f4abf9977fba8a3f8785ef4f0c95dbd9fa1b..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/reconstruction/data/scene.py +++ /dev/null @@ -1,101 +0,0 @@ -import numpy as np -import torch - - -def rigid_transform(xyz, transform): - """Applies a rigid transform (c2w) to an (N, 3) pointcloud. - """ - device = xyz.device - xyz_h = torch.cat([xyz, torch.ones((len(xyz), 1)).to(device)], dim=1) # (N, 4) - xyz_t_h = (transform @ xyz_h.T).T # * checked: the same with the below - - return xyz_t_h[:, :3] - - -def get_view_frustum(min_depth, max_depth, size, cam_intr, c2w): - """Get corners of 3D camera view frustum of depth image - """ - device = cam_intr.device - im_h, im_w = size - im_h = int(im_h) - im_w = int(im_w) - view_frust_pts = torch.stack([ - (torch.tensor([0, 0, im_w, im_w, 0, 0, im_w, im_w]).to(device) - cam_intr[0, 2]) * torch.tensor( - [min_depth, min_depth, min_depth, min_depth, max_depth, max_depth, max_depth, max_depth]).to(device) / - cam_intr[0, 0], - (torch.tensor([0, im_h, 0, im_h, 0, im_h, 0, im_h]).to(device) - cam_intr[1, 2]) * torch.tensor( - [min_depth, min_depth, min_depth, min_depth, max_depth, max_depth, max_depth, max_depth]).to(device) / - cam_intr[1, 1], - torch.tensor([min_depth, min_depth, min_depth, min_depth, max_depth, max_depth, max_depth, max_depth]).to( - device) - ]) - view_frust_pts = view_frust_pts.type(torch.float32) - c2w = c2w.type(torch.float32) - view_frust_pts = rigid_transform(view_frust_pts.T, c2w).T - return view_frust_pts - - -def set_pixel_coords(h, w): - i_range = torch.arange(0, h).view(1, h, 1).expand(1, h, w).type(torch.float32) # [1, H, W] - j_range = torch.arange(0, w).view(1, 1, w).expand(1, h, w).type(torch.float32) # [1, H, W] - ones = torch.ones(1, h, w).type(torch.float32) - - pixel_coords = torch.stack((j_range, i_range, ones), dim=1) # [1, 3, H, W] - - return pixel_coords - - -def get_boundingbox(img_hw, intrinsics, extrinsics, near_fars): - """ - # get the minimum bounding box of all visual hulls - :param img_hw: - :param intrinsics: - :param extrinsics: - :param near_fars: - :return: - """ - - bnds = torch.zeros((3, 2)) - bnds[:, 0] = np.inf - bnds[:, 1] = -np.inf - - if isinstance(intrinsics, list): - num = len(intrinsics) - else: - num = intrinsics.shape[0] - # print("num: ", num) - view_frust_pts_list = [] - for i in range(num): - if not isinstance(intrinsics[i], torch.Tensor): - cam_intr = torch.tensor(intrinsics[i]) - w2c = torch.tensor(extrinsics[i]) - c2w = torch.inverse(w2c) - else: - cam_intr = intrinsics[i] - w2c = extrinsics[i] - c2w = torch.inverse(w2c) - min_depth, max_depth = near_fars[i][0], near_fars[i][1] - # todo: check the coresponding points are matched - - view_frust_pts = get_view_frustum(min_depth, max_depth, img_hw, cam_intr, c2w) - bnds[:, 0] = torch.min(bnds[:, 0], torch.min(view_frust_pts, dim=1)[0]) - bnds[:, 1] = torch.max(bnds[:, 1], torch.max(view_frust_pts, dim=1)[0]) - view_frust_pts_list.append(view_frust_pts) - all_view_frust_pts = torch.cat(view_frust_pts_list, dim=1) - - # print("all_view_frust_pts: ", all_view_frust_pts.shape) - # distance = torch.norm(all_view_frust_pts, dim=0) - # print("distance: ", distance) - - # print("all_view_frust_pts_z: ", all_view_frust_pts[2, :]) - - center = torch.tensor(((bnds[0, 1] + bnds[0, 0]) / 2, (bnds[1, 1] + bnds[1, 0]) / 2, - (bnds[2, 1] + bnds[2, 0]) / 2)) - - lengths = bnds[:, 1] - bnds[:, 0] - - max_length, _ = torch.max(lengths, dim=0) - radius = max_length / 2 - - # print("radius: ", radius) - return center, radius, bnds diff --git a/One-2-3-45-master 2/reconstruction/exp/lod0/.gitignore b/One-2-3-45-master 2/reconstruction/exp/lod0/.gitignore deleted file mode 100644 index 35c54109136367b098bb5112c0b87cee09444c0b..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/reconstruction/exp/lod0/.gitignore +++ /dev/null @@ -1 +0,0 @@ -checkpoints_*/ \ No newline at end of file diff --git a/One-2-3-45-master 2/reconstruction/exp/lod0/checkpoints/.gitkeep b/One-2-3-45-master 2/reconstruction/exp/lod0/checkpoints/.gitkeep deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/One-2-3-45-master 2/reconstruction/exp_runner_generic_blender_train.py b/One-2-3-45-master 2/reconstruction/exp_runner_generic_blender_train.py deleted file mode 100644 index a72e49be96d88ed2ab6677e17a26685a2c46e65e..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/reconstruction/exp_runner_generic_blender_train.py +++ /dev/null @@ -1,627 +0,0 @@ -import torch -from torch.utils.data import DataLoader -import argparse -import os -import logging -import numpy as np -from shutil import copyfile -from torch.utils.tensorboard import SummaryWriter -from icecream import ic -from tqdm import tqdm -from pyhocon import ConfigFactory - -from models.fields import SingleVarianceNetwork - -from models.featurenet import FeatureNet - -from models.trainer_generic import GenericTrainer - -from models.sparse_sdf_network import SparseSdfNetwork - -from models.rendering_network import GeneralRenderingNetwork - -from datetime import datetime - -from data.One2345_train import BlenderPerView -from termcolor import colored - -from datetime import datetime - -class Runner: - def __init__(self, conf_path, mode='train', is_continue=False, - is_restore=False, restore_lod0=False, local_rank=0): - - # Initial setting - self.device = torch.device('cuda:%d' % local_rank) - # self.device = torch.device('cuda') - self.num_devices = torch.cuda.device_count() - self.is_continue = is_continue - self.is_restore = is_restore - self.restore_lod0 = restore_lod0 - self.mode = mode - self.model_list = [] - self.logger = logging.getLogger('exp_logger') - - print(colored("detected %d GPUs" % self.num_devices, "red")) - - self.conf_path = conf_path - self.conf = ConfigFactory.parse_file(conf_path) - self.timestamp = None - if not self.is_continue: - self.timestamp = '_{:%Y_%m_%d_%H_%M_%S}'.format(datetime.now()) - self.base_exp_dir = self.conf['general.base_exp_dir'] + self.timestamp - else: - self.base_exp_dir = self.conf['general.base_exp_dir'] - self.conf['general.base_exp_dir'] = self.base_exp_dir - print(colored("base_exp_dir: " + self.base_exp_dir, 'yellow')) - os.makedirs(self.base_exp_dir, exist_ok=True) - self.iter_step = 0 - self.val_step = 0 - - # trainning parameters - self.end_iter = self.conf.get_int('train.end_iter') - self.save_freq = self.conf.get_int('train.save_freq') - self.report_freq = self.conf.get_int('train.report_freq') - self.val_freq = self.conf.get_int('train.val_freq') - self.val_mesh_freq = self.conf.get_int('train.val_mesh_freq') - self.batch_size = self.num_devices # use DataParallel to warp - self.validate_resolution_level = self.conf.get_int('train.validate_resolution_level') - self.learning_rate = self.conf.get_float('train.learning_rate') - self.learning_rate_milestone = self.conf.get_list('train.learning_rate_milestone') - self.learning_rate_factor = self.conf.get_float('train.learning_rate_factor') - self.use_white_bkgd = self.conf.get_bool('train.use_white_bkgd') - self.N_rays = self.conf.get_int('train.N_rays') - - # warmup params for sdf gradient - self.anneal_start_lod0 = self.conf.get_float('train.anneal_start', default=0) - self.anneal_end_lod0 = self.conf.get_float('train.anneal_end', default=0) - self.anneal_start_lod1 = self.conf.get_float('train.anneal_start_lod1', default=0) - self.anneal_end_lod1 = self.conf.get_float('train.anneal_end_lod1', default=0) - - self.writer = None - - # Networks - self.num_lods = self.conf.get_int('model.num_lods') - - self.rendering_network_outside = None - self.sdf_network_lod0 = None - self.sdf_network_lod1 = None - self.variance_network_lod0 = None - self.variance_network_lod1 = None - self.rendering_network_lod0 = None - self.rendering_network_lod1 = None - self.pyramid_feature_network = None # extract 2d pyramid feature maps from images, used for geometry - self.pyramid_feature_network_lod1 = None # may use different feature network for different lod - - # * pyramid_feature_network - self.pyramid_feature_network = FeatureNet().to(self.device) - self.sdf_network_lod0 = SparseSdfNetwork(**self.conf['model.sdf_network_lod0']).to(self.device) - self.variance_network_lod0 = SingleVarianceNetwork(**self.conf['model.variance_network']).to(self.device) - - if self.num_lods > 1: - self.sdf_network_lod1 = SparseSdfNetwork(**self.conf['model.sdf_network_lod1']).to(self.device) - self.variance_network_lod1 = SingleVarianceNetwork(**self.conf['model.variance_network']).to(self.device) - - self.rendering_network_lod0 = GeneralRenderingNetwork(**self.conf['model.rendering_network']).to( - self.device) - - if self.num_lods > 1: - self.pyramid_feature_network_lod1 = FeatureNet().to(self.device) - self.rendering_network_lod1 = GeneralRenderingNetwork( - **self.conf['model.rendering_network_lod1']).to(self.device) - if self.mode == 'export_mesh' or self.mode == 'val': - base_exp_dir_to_store = os.path.join(self.base_exp_dir, '{:%Y_%m_%d_%H_%M_%S}'.format(datetime.now())) - else: - base_exp_dir_to_store = self.base_exp_dir - - print(colored(f"Store in: {base_exp_dir_to_store}", "blue")) - # Renderer model - self.trainer = GenericTrainer( - self.rendering_network_outside, - self.pyramid_feature_network, - self.pyramid_feature_network_lod1, - self.sdf_network_lod0, - self.sdf_network_lod1, - self.variance_network_lod0, - self.variance_network_lod1, - self.rendering_network_lod0, - self.rendering_network_lod1, - **self.conf['model.trainer'], - timestamp=self.timestamp, - base_exp_dir=base_exp_dir_to_store, - conf=self.conf) - - self.data_setup() # * data setup - - self.optimizer_setup() - - # Load checkpoint - latest_model_name = None - if is_continue: - model_list_raw = os.listdir(os.path.join(self.base_exp_dir, 'checkpoints')) - model_list = [] - for model_name in model_list_raw: - if model_name.startswith('ckpt'): - if model_name[-3:] == 'pth': # and int(model_name[5:-4]) <= self.end_iter: - model_list.append(model_name) - model_list.sort() - latest_model_name = model_list[-1] - - if latest_model_name is not None: - self.logger.info('Find checkpoint: {}'.format(latest_model_name)) - self.load_checkpoint(latest_model_name) - - self.trainer = torch.nn.DataParallel(self.trainer).to(self.device) - - if self.mode[:5] == 'train': - self.file_backup() - - def optimizer_setup(self): - self.params_to_train = self.trainer.get_trainable_params() - self.optimizer = torch.optim.Adam(self.params_to_train, lr=self.learning_rate) - - def data_setup(self): - """ - if use ddp, use setup() not prepare_data(), - prepare_data() only called on 1 GPU/TPU in distributed - :return: - """ - - self.train_dataset = BlenderPerView( - root_dir=self.conf['dataset.trainpath'], - split=self.conf.get_string('dataset.train_split', default='train'), - downSample=self.conf['dataset.imgScale_train'], - N_rays=self.N_rays, - batch_size=self.batch_size, - clean_image=True, # True for training - importance_sample=self.conf.get_bool('dataset.importance_sample', default=False), - ) - - self.val_dataset = BlenderPerView( - root_dir=self.conf['dataset.valpath'], - split=self.conf.get_string('dataset.test_split', default='test'), - downSample=self.conf['dataset.imgScale_test'], - N_rays=self.N_rays, - batch_size=self.batch_size, - clean_image=self.conf.get_bool('dataset.mask_out_image', - default=False) if self.mode != 'train' else False, - importance_sample=self.conf.get_bool('dataset.importance_sample', default=False), - ) - - # item = self.train_dataset.__getitem__(0) - self.train_dataloader = DataLoader(self.train_dataset, - shuffle=True, - num_workers=4 * self.batch_size, - batch_size=self.batch_size, - pin_memory=True, - drop_last=True - ) - - self.val_dataloader = DataLoader(self.val_dataset, - shuffle=False, - num_workers=4 * self.batch_size, - batch_size=self.batch_size, - pin_memory=True, - drop_last=False - ) - - self.val_dataloader_iterator = iter(self.val_dataloader) # - should be after "reconstruct_metas_for_gru_fusion" - - def train(self): - self.writer = SummaryWriter(log_dir=os.path.join(self.base_exp_dir, 'logs')) - - dataloader = self.train_dataloader - - epochs_needed = int(1 + self.end_iter // len(dataloader)) - self.end_iter = epochs_needed * len(dataloader) - self.adjust_learning_rate() - print(colored("starting training learning rate: {:.5f}".format(self.optimizer.param_groups[0]['lr']), "yellow")) - - background_rgb = None - if self.use_white_bkgd: - background_rgb = 1.0 - - for epoch_i in range(epochs_needed): - - print(colored("current epoch %d" % epoch_i, 'red')) - dataloader = tqdm(dataloader) - - for batch in dataloader: - batch['batch_idx'] = torch.tensor([x for x in range(self.batch_size)]) # used to get meta - - if self.iter_step > self.end_iter: - break - - # - warmup params - if self.num_lods == 1: - alpha_inter_ratio_lod0 = self.get_alpha_inter_ratio(self.anneal_start_lod0, self.anneal_end_lod0) - else: - alpha_inter_ratio_lod0 = 1. - alpha_inter_ratio_lod1 = self.get_alpha_inter_ratio(self.anneal_start_lod1, self.anneal_end_lod1) - - losses = self.trainer( - batch, - background_rgb=background_rgb, - alpha_inter_ratio_lod0=alpha_inter_ratio_lod0, - alpha_inter_ratio_lod1=alpha_inter_ratio_lod1, - iter_step=self.iter_step, - mode='train', - ) - - loss_types = ['loss_lod0', 'loss_lod1'] - - losses_lod0 = losses['losses_lod0'] - losses_lod1 = losses['losses_lod1'] - loss = 0 - for loss_type in loss_types: - if losses[loss_type] is not None: - loss = loss + losses[loss_type].mean() - self.optimizer.zero_grad() - loss.backward() - torch.nn.utils.clip_grad_norm_(self.params_to_train, 1.0) - self.optimizer.step() - self.iter_step += 1 - - if self.iter_step % self.report_freq == 0: - self.writer.add_scalar('Loss/loss', loss, self.iter_step) - self.writer.add_scalar('Loss/loss_fg_bg_loss', losses_lod0['fg_bg_loss'].mean(), self.iter_step) - if losses_lod0 is not None: - self.writer.add_scalar('Loss/d_loss_lod0', - losses_lod0['depth_loss'].mean() if losses_lod0 is not None else 0, - self.iter_step) - self.writer.add_scalar('Loss/sparse_loss_lod0', - losses_lod0[ - 'sparse_loss'].mean() if losses_lod0 is not None else 0, - self.iter_step) - self.writer.add_scalar('Loss/color_loss_lod0', - losses_lod0['color_fine_loss'].mean() - if losses_lod0['color_fine_loss'] is not None else 0, - self.iter_step) - - self.writer.add_scalar('statis/psnr_lod0', - losses_lod0['psnr'].mean() - if losses_lod0['psnr'] is not None else 0, - self.iter_step) - - self.writer.add_scalar('param/variance_lod0', - 1. / torch.exp(self.variance_network_lod0.variance * 10), - self.iter_step) - self.writer.add_scalar('param/eikonal_loss', losses_lod0['gradient_error_loss'].mean() if losses_lod0 is not None else 0, - self.iter_step) - - ######## - lod 1 - if self.num_lods > 1: - self.writer.add_scalar('Loss/d_loss_lod1', - losses_lod1['depth_loss'].mean() if losses_lod1 is not None else 0, - self.iter_step) - self.writer.add_scalar('Loss/sparse_loss_lod1', - losses_lod1[ - 'sparse_loss'].mean() if losses_lod1 is not None else 0, - self.iter_step) - self.writer.add_scalar('Loss/color_loss_lod1', - losses_lod1['color_fine_loss'].mean() - if losses_lod1['color_fine_loss'] is not None else 0, - self.iter_step) - self.writer.add_scalar('statis/sdf_mean_lod1', - losses_lod1['sdf_mean'].mean() if losses_lod1 is not None else 0, - self.iter_step) - self.writer.add_scalar('statis/psnr_lod1', - losses_lod1['psnr'].mean() - if losses_lod1['psnr'] is not None else 0, - self.iter_step) - self.writer.add_scalar('statis/sparseness_0.01_lod1', - losses_lod1['sparseness_1'].mean() - if losses_lod1['sparseness_1'] is not None else 0, - self.iter_step) - self.writer.add_scalar('statis/sparseness_0.02_lod1', - losses_lod1['sparseness_2'].mean() - if losses_lod1['sparseness_2'] is not None else 0, - self.iter_step) - self.writer.add_scalar('param/variance_lod1', - 1. / torch.exp(self.variance_network_lod1.variance * 10), - self.iter_step) - - print(self.base_exp_dir) - print( - 'iter:{:8>d} ' - 'loss = {:.4f} ' - 'd_loss_lod0 = {:.4f} ' - 'color_loss_lod0 = {:.4f} ' - 'sparse_loss_lod0= {:.4f} ' - 'd_loss_lod1 = {:.4f} ' - 'color_loss_lod1 = {:.4f} ' - ' lr = {:.5f}'.format( - self.iter_step, loss, - losses_lod0['depth_loss'].mean() if losses_lod0 is not None else 0, - losses_lod0['color_fine_loss'].mean() if losses_lod0 is not None else 0, - losses_lod0['sparse_loss'].mean() if losses_lod0 is not None else 0, - losses_lod1['depth_loss'].mean() if losses_lod1 is not None else 0, - losses_lod1['color_fine_loss'].mean() if losses_lod1 is not None else 0, - self.optimizer.param_groups[0]['lr'])) - - print(colored('alpha_inter_ratio_lod0 = {:.4f} alpha_inter_ratio_lod1 = {:.4f}\n'.format( - alpha_inter_ratio_lod0, alpha_inter_ratio_lod1), 'green')) - - if losses_lod0 is not None: - # print("[TEST]: weights_sum in print", losses_lod0['weights_sum'].mean()) - # import ipdb; ipdb.set_trace() - print( - 'iter:{:8>d} ' - 'variance = {:.5f} ' - 'weights_sum = {:.4f} ' - 'weights_sum_fg = {:.4f} ' - 'alpha_sum = {:.4f} ' - 'sparse_weight= {:.4f} ' - 'background_loss = {:.4f} ' - 'background_weight = {:.4f} ' - .format( - self.iter_step, - losses_lod0['variance'].mean(), - losses_lod0['weights_sum'].mean(), - losses_lod0['weights_sum_fg'].mean(), - losses_lod0['alpha_sum'].mean(), - losses_lod0['sparse_weight'].mean(), - losses_lod0['fg_bg_loss'].mean(), - losses_lod0['fg_bg_weight'].mean(), - )) - - if losses_lod1 is not None: - print( - 'iter:{:8>d} ' - 'variance = {:.5f} ' - ' weights_sum = {:.4f} ' - 'alpha_sum = {:.4f} ' - 'fg_bg_loss = {:.4f} ' - 'fg_bg_weight = {:.4f} ' - 'sparse_weight= {:.4f} ' - 'fg_bg_loss = {:.4f} ' - 'fg_bg_weight = {:.4f} ' - .format( - self.iter_step, - losses_lod1['variance'].mean(), - losses_lod1['weights_sum'].mean(), - losses_lod1['alpha_sum'].mean(), - losses_lod1['fg_bg_loss'].mean(), - losses_lod1['fg_bg_weight'].mean(), - losses_lod1['sparse_weight'].mean(), - losses_lod1['fg_bg_loss'].mean(), - losses_lod1['fg_bg_weight'].mean(), - )) - - if self.iter_step % self.save_freq == 0: - self.save_checkpoint() - - if self.iter_step % self.val_freq == 0: - self.validate() - - # - ajust learning rate - self.adjust_learning_rate() - - def adjust_learning_rate(self): - # - ajust learning rate, cosine learning schedule - learning_rate = (np.cos(np.pi * self.iter_step / self.end_iter) + 1.0) * 0.5 * 0.9 + 0.1 - learning_rate = self.learning_rate * learning_rate - for g in self.optimizer.param_groups: - g['lr'] = learning_rate - - def get_alpha_inter_ratio(self, start, end): - if end == 0.0: - return 1.0 - elif self.iter_step < start: - return 0.0 - else: - return np.min([1.0, (self.iter_step - start) / (end - start)]) - - def file_backup(self): - # copy python file - dir_lis = self.conf['general.recording'] - os.makedirs(os.path.join(self.base_exp_dir, 'recording'), exist_ok=True) - for dir_name in dir_lis: - cur_dir = os.path.join(self.base_exp_dir, 'recording', dir_name) - os.makedirs(cur_dir, exist_ok=True) - files = os.listdir(dir_name) - for f_name in files: - if f_name[-3:] == '.py': - copyfile(os.path.join(dir_name, f_name), os.path.join(cur_dir, f_name)) - - # copy configs - copyfile(self.conf_path, os.path.join(self.base_exp_dir, 'recording', 'config.conf')) - - def load_checkpoint(self, checkpoint_name): - - def load_state_dict(network, checkpoint, comment): - if network is not None: - try: - pretrained_dict = checkpoint[comment] - - model_dict = network.state_dict() - - # 1. filter out unnecessary keys - pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict} - # 2. overwrite entries in the existing state dict - model_dict.update(pretrained_dict) - # 3. load the new state dict - network.load_state_dict(pretrained_dict) - except: - print(colored(comment + " load fails", 'yellow')) - - checkpoint = torch.load(os.path.join(self.base_exp_dir, 'checkpoints', checkpoint_name), - map_location=self.device) - - load_state_dict(self.rendering_network_outside, checkpoint, 'rendering_network_outside') - - load_state_dict(self.sdf_network_lod0, checkpoint, 'sdf_network_lod0') - load_state_dict(self.sdf_network_lod1, checkpoint, 'sdf_network_lod1') - - load_state_dict(self.pyramid_feature_network, checkpoint, 'pyramid_feature_network') - load_state_dict(self.pyramid_feature_network_lod1, checkpoint, 'pyramid_feature_network_lod1') - - load_state_dict(self.variance_network_lod0, checkpoint, 'variance_network_lod0') - load_state_dict(self.variance_network_lod1, checkpoint, 'variance_network_lod1') - - load_state_dict(self.rendering_network_lod0, checkpoint, 'rendering_network_lod0') - load_state_dict(self.rendering_network_lod1, checkpoint, 'rendering_network_lod1') - - if self.restore_lod0: # use the trained lod0 networks to initialize lod1 networks - load_state_dict(self.sdf_network_lod1, checkpoint, 'sdf_network_lod0') - load_state_dict(self.pyramid_feature_network_lod1, checkpoint, 'pyramid_feature_network') - load_state_dict(self.rendering_network_lod1, checkpoint, 'rendering_network_lod0') - - if self.is_continue and (not self.restore_lod0): - try: - self.optimizer.load_state_dict(checkpoint['optimizer']) - except: - print(colored("load optimizer fails", "yellow")) - self.iter_step = checkpoint['iter_step'] - self.val_step = checkpoint['val_step'] if 'val_step' in checkpoint.keys() else 0 - - self.logger.info('End') - - def save_checkpoint(self): - - def save_state_dict(network, checkpoint, comment): - if network is not None: - checkpoint[comment] = network.state_dict() - - checkpoint = { - 'optimizer': self.optimizer.state_dict(), - 'iter_step': self.iter_step, - 'val_step': self.val_step, - } - - save_state_dict(self.sdf_network_lod0, checkpoint, "sdf_network_lod0") - save_state_dict(self.sdf_network_lod1, checkpoint, "sdf_network_lod1") - - save_state_dict(self.rendering_network_outside, checkpoint, 'rendering_network_outside') - save_state_dict(self.rendering_network_lod0, checkpoint, "rendering_network_lod0") - save_state_dict(self.rendering_network_lod1, checkpoint, "rendering_network_lod1") - - save_state_dict(self.variance_network_lod0, checkpoint, 'variance_network_lod0') - save_state_dict(self.variance_network_lod1, checkpoint, 'variance_network_lod1') - - save_state_dict(self.pyramid_feature_network, checkpoint, 'pyramid_feature_network') - save_state_dict(self.pyramid_feature_network_lod1, checkpoint, 'pyramid_feature_network_lod1') - - os.makedirs(os.path.join(self.base_exp_dir, 'checkpoints'), exist_ok=True) - torch.save(checkpoint, - os.path.join(self.base_exp_dir, 'checkpoints', 'ckpt_{:0>6d}.pth'.format(self.iter_step))) - - def validate(self, idx=-1, resolution_level=-1): - # validate image - - ic(self.iter_step, idx) - self.logger.info('Validate begin') - if idx < 0: - idx = self.val_step - self.val_step += 1 - - try: - batch = next(self.val_dataloader_iterator) - # batch = self.val_dataloader_iterator.next() - except: - self.val_dataloader_iterator = iter(self.val_dataloader) # reset - - batch = next(self.val_dataloader_iterator) - - - background_rgb = None - if self.use_white_bkgd: - background_rgb = 1.0 - - batch['batch_idx'] = torch.tensor([x for x in range(self.batch_size)]) - - # - warmup params - if self.num_lods == 1: - alpha_inter_ratio_lod0 = self.get_alpha_inter_ratio(self.anneal_start_lod0, self.anneal_end_lod0) - else: - alpha_inter_ratio_lod0 = 1. - alpha_inter_ratio_lod1 = self.get_alpha_inter_ratio(self.anneal_start_lod1, self.anneal_end_lod1) - - self.trainer( - batch, - background_rgb=background_rgb, - alpha_inter_ratio_lod0=alpha_inter_ratio_lod0, - alpha_inter_ratio_lod1=alpha_inter_ratio_lod1, - iter_step=self.iter_step, - save_vis=True, - mode='val', - ) - - - def export_mesh(self, idx=-1, resolution_level=-1): - # validate image - - ic(self.iter_step, idx) - self.logger.info('Validate begin') - import time - start1 = time.time() - if idx < 0: - idx = self.val_step - # idx = np.random.randint(len(self.val_dataset)) - self.val_step += 1 - - try: - batch = self.val_dataloader_iterator.next() - except: - self.val_dataloader_iterator = iter(self.val_dataloader) # reset - - batch = self.val_dataloader_iterator.next() - - - background_rgb = None - if self.use_white_bkgd: - background_rgb = 1.0 - - batch['batch_idx'] = torch.tensor([x for x in range(self.batch_size)]) - - # - warmup params - if self.num_lods == 1: - alpha_inter_ratio_lod0 = self.get_alpha_inter_ratio(self.anneal_start_lod0, self.anneal_end_lod0) - else: - alpha_inter_ratio_lod0 = 1. - alpha_inter_ratio_lod1 = self.get_alpha_inter_ratio(self.anneal_start_lod1, self.anneal_end_lod1) - end1 = time.time() - print("time for getting data", end1 - start1) - self.trainer( - batch, - background_rgb=background_rgb, - alpha_inter_ratio_lod0=alpha_inter_ratio_lod0, - alpha_inter_ratio_lod1=alpha_inter_ratio_lod1, - iter_step=self.iter_step, - save_vis=True, - mode='export_mesh', - ) - - -if __name__ == '__main__': - # torch.set_default_tensor_type('torch.cuda.FloatTensor') - torch.set_default_dtype(torch.float32) - FORMAT = "[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s" - logging.basicConfig(level=logging.INFO, format=FORMAT) - - parser = argparse.ArgumentParser() - parser.add_argument('--conf', type=str, default='./confs/base.conf') - parser.add_argument('--mode', type=str, default='train') - parser.add_argument('--threshold', type=float, default=0.0) - parser.add_argument('--is_continue', default=False, action="store_true") - parser.add_argument('--is_restore', default=False, action="store_true") - parser.add_argument('--is_finetune', default=False, action="store_true") - parser.add_argument('--train_from_scratch', default=False, action="store_true") - parser.add_argument('--restore_lod0', default=False, action="store_true") - parser.add_argument('--local_rank', type=int, default=0) - args = parser.parse_args() - - torch.cuda.set_device(args.local_rank) - torch.backends.cudnn.benchmark = True # ! make training 2x faster - - runner = Runner(args.conf, args.mode, args.is_continue, args.is_restore, args.restore_lod0, - args.local_rank) - - if args.mode == 'train': - runner.train() - elif args.mode == 'val': - for i in range(len(runner.val_dataset)): - runner.validate() - elif args.mode == 'export_mesh': - for i in range(len(runner.val_dataset)): - runner.export_mesh() diff --git a/One-2-3-45-master 2/reconstruction/exp_runner_generic_blender_val.py b/One-2-3-45-master 2/reconstruction/exp_runner_generic_blender_val.py deleted file mode 100644 index 7485fdfc315ddfebe0462ef79da8da0073b639df..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/reconstruction/exp_runner_generic_blender_val.py +++ /dev/null @@ -1,625 +0,0 @@ -import os -import logging -import argparse -import numpy as np -from shutil import copyfile -import torch -from torch.utils.data import DataLoader -from torch.utils.tensorboard import SummaryWriter -from rich import print -from tqdm import tqdm -from pyhocon import ConfigFactory - -import sys -sys.path.append(os.path.dirname(__file__)) - -from models.fields import SingleVarianceNetwork -from models.featurenet import FeatureNet -from models.trainer_generic import GenericTrainer -from models.sparse_sdf_network import SparseSdfNetwork -from models.rendering_network import GeneralRenderingNetwork -from data.One2345_eval_new_data import BlenderPerView - - -from datetime import datetime - -class Runner: - def __init__(self, conf_path, mode='train', is_continue=False, - is_restore=False, restore_lod0=False, local_rank=0): - - # Initial setting - self.device = torch.device('cuda:%d' % local_rank) - # self.device = torch.device('cuda') - self.num_devices = torch.cuda.device_count() - self.is_continue = is_continue or (mode == "export_mesh") - self.is_restore = is_restore - self.restore_lod0 = restore_lod0 - self.mode = mode - self.model_list = [] - self.logger = logging.getLogger('exp_logger') - - print("detected %d GPUs" % self.num_devices) - - self.conf_path = conf_path - self.conf = ConfigFactory.parse_file(conf_path) - self.timestamp = None - if not self.is_continue: - self.timestamp = '_{:%Y_%m_%d_%H_%M_%S}'.format(datetime.now()) - self.base_exp_dir = self.conf['general.base_exp_dir'] + self.timestamp - else: - self.base_exp_dir = self.conf['general.base_exp_dir'] - self.conf['general.base_exp_dir'] = self.base_exp_dir - print("base_exp_dir: " + self.base_exp_dir) - os.makedirs(self.base_exp_dir, exist_ok=True) - self.iter_step = 0 - self.val_step = 0 - - # trainning parameters - self.end_iter = self.conf.get_int('train.end_iter') - self.save_freq = self.conf.get_int('train.save_freq') - self.report_freq = self.conf.get_int('train.report_freq') - self.val_freq = self.conf.get_int('train.val_freq') - self.val_mesh_freq = self.conf.get_int('train.val_mesh_freq') - self.batch_size = self.num_devices # use DataParallel to warp - self.validate_resolution_level = self.conf.get_int('train.validate_resolution_level') - self.learning_rate = self.conf.get_float('train.learning_rate') - self.learning_rate_milestone = self.conf.get_list('train.learning_rate_milestone') - self.learning_rate_factor = self.conf.get_float('train.learning_rate_factor') - self.use_white_bkgd = self.conf.get_bool('train.use_white_bkgd') - self.N_rays = self.conf.get_int('train.N_rays') - - # warmup params for sdf gradient - self.anneal_start_lod0 = self.conf.get_float('train.anneal_start', default=0) - self.anneal_end_lod0 = self.conf.get_float('train.anneal_end', default=0) - self.anneal_start_lod1 = self.conf.get_float('train.anneal_start_lod1', default=0) - self.anneal_end_lod1 = self.conf.get_float('train.anneal_end_lod1', default=0) - - self.writer = None - - # Networks - self.num_lods = self.conf.get_int('model.num_lods') - - self.rendering_network_outside = None - self.sdf_network_lod0 = None - self.sdf_network_lod1 = None - self.variance_network_lod0 = None - self.variance_network_lod1 = None - self.rendering_network_lod0 = None - self.rendering_network_lod1 = None - self.pyramid_feature_network = None # extract 2d pyramid feature maps from images, used for geometry - self.pyramid_feature_network_lod1 = None # may use different feature network for different lod - - # * pyramid_feature_network - self.pyramid_feature_network = FeatureNet().to(self.device) - self.sdf_network_lod0 = SparseSdfNetwork(**self.conf['model.sdf_network_lod0']).to(self.device) - self.variance_network_lod0 = SingleVarianceNetwork(**self.conf['model.variance_network']).to(self.device) - - if self.num_lods > 1: - self.sdf_network_lod1 = SparseSdfNetwork(**self.conf['model.sdf_network_lod1']).to(self.device) - self.variance_network_lod1 = SingleVarianceNetwork(**self.conf['model.variance_network']).to(self.device) - - self.rendering_network_lod0 = GeneralRenderingNetwork(**self.conf['model.rendering_network']).to( - self.device) - - if self.num_lods > 1: - self.pyramid_feature_network_lod1 = FeatureNet().to(self.device) - self.rendering_network_lod1 = GeneralRenderingNetwork( - **self.conf['model.rendering_network_lod1']).to(self.device) - if self.mode == 'export_mesh' or self.mode == 'val': - # base_exp_dir_to_store = os.path.join(self.base_exp_dir, '{:%Y_%m_%d_%H_%M_%S}'.format(datetime.now())) - base_exp_dir_to_store = os.path.join("../", args.specific_dataset_name) #"../gradio_tmp" # MODIFIED - else: - base_exp_dir_to_store = self.base_exp_dir - - print(f"Store in: {base_exp_dir_to_store}") - # Renderer model - self.trainer = GenericTrainer( - self.rendering_network_outside, - self.pyramid_feature_network, - self.pyramid_feature_network_lod1, - self.sdf_network_lod0, - self.sdf_network_lod1, - self.variance_network_lod0, - self.variance_network_lod1, - self.rendering_network_lod0, - self.rendering_network_lod1, - **self.conf['model.trainer'], - timestamp=self.timestamp, - base_exp_dir=base_exp_dir_to_store, - conf=self.conf) - - self.data_setup() # * data setup - - self.optimizer_setup() - - # Load checkpoint - latest_model_name = None - if self.is_continue: - model_list_raw = os.listdir(os.path.join(self.base_exp_dir, 'checkpoints')) - model_list = [] - for model_name in model_list_raw: - if model_name.startswith('ckpt'): - if model_name[-3:] == 'pth': # and int(model_name[5:-4]) <= self.end_iter: - model_list.append(model_name) - model_list.sort() - latest_model_name = model_list[-1] - - if latest_model_name is not None: - self.logger.info('Find checkpoint: {}'.format(latest_model_name)) - self.load_checkpoint(latest_model_name) - - self.trainer = torch.nn.DataParallel(self.trainer).to(self.device) - - if self.mode[:5] == 'train': - self.file_backup() - - def optimizer_setup(self): - self.params_to_train = self.trainer.get_trainable_params() - self.optimizer = torch.optim.Adam(self.params_to_train, lr=self.learning_rate) - - def data_setup(self): - """ - if use ddp, use setup() not prepare_data(), - prepare_data() only called on 1 GPU/TPU in distributed - :return: - """ - - self.train_dataset = BlenderPerView( - root_dir=self.conf['dataset.trainpath'], - split=self.conf.get_string('dataset.train_split', default='train'), - downSample=self.conf['dataset.imgScale_train'], - N_rays=self.N_rays, - batch_size=self.batch_size, - clean_image=True, # True for training - importance_sample=self.conf.get_bool('dataset.importance_sample', default=False), - specific_dataset_name = args.specific_dataset_name - ) - - self.val_dataset = BlenderPerView( - root_dir=self.conf['dataset.valpath'], - split=self.conf.get_string('dataset.test_split', default='test'), - downSample=self.conf['dataset.imgScale_test'], - N_rays=self.N_rays, - batch_size=self.batch_size, - clean_image=self.conf.get_bool('dataset.mask_out_image', - default=False) if self.mode != 'train' else False, - importance_sample=self.conf.get_bool('dataset.importance_sample', default=False), - specific_dataset_name = args.specific_dataset_name - ) - - self.train_dataloader = DataLoader(self.train_dataset, - shuffle=True, - num_workers=4 * self.batch_size, - # num_workers=1, - batch_size=self.batch_size, - pin_memory=True, - drop_last=True - ) - - self.val_dataloader = DataLoader(self.val_dataset, - # shuffle=False if self.mode == 'train' else True, - shuffle=False, - num_workers=4 * self.batch_size, - # num_workers=1, - batch_size=self.batch_size, - pin_memory=True, - drop_last=False - ) - - self.val_dataloader_iterator = iter(self.val_dataloader) # - should be after "reconstruct_metas_for_gru_fusion" - - def train(self): - self.writer = SummaryWriter(log_dir=os.path.join(self.base_exp_dir, 'logs')) - res_step = self.end_iter - self.iter_step - - dataloader = self.train_dataloader - - epochs = int(1 + res_step // len(dataloader)) - - self.adjust_learning_rate() - print("starting training learning rate: {:.5f}".format(self.optimizer.param_groups[0]['lr'])) - - background_rgb = None - if self.use_white_bkgd: - # background_rgb = torch.ones([1, 3]).to(self.device) - background_rgb = 1.0 - - for epoch_i in range(epochs): - - print("current epoch %d" % epoch_i) - dataloader = tqdm(dataloader) - - for batch in dataloader: - # print("Checker1:, fetch data") - batch['batch_idx'] = torch.tensor([x for x in range(self.batch_size)]) # used to get meta - - # - warmup params - if self.num_lods == 1: - alpha_inter_ratio_lod0 = self.get_alpha_inter_ratio(self.anneal_start_lod0, self.anneal_end_lod0) - else: - alpha_inter_ratio_lod0 = 1. - alpha_inter_ratio_lod1 = self.get_alpha_inter_ratio(self.anneal_start_lod1, self.anneal_end_lod1) - - losses = self.trainer( - batch, - background_rgb=background_rgb, - alpha_inter_ratio_lod0=alpha_inter_ratio_lod0, - alpha_inter_ratio_lod1=alpha_inter_ratio_lod1, - iter_step=self.iter_step, - mode='train', - ) - - loss_types = ['loss_lod0', 'loss_lod1'] - # print("[TEST]: weights_sum in trainer return", losses['losses_lod0']['weights_sum'].mean()) - - losses_lod0 = losses['losses_lod0'] - losses_lod1 = losses['losses_lod1'] - # import ipdb; ipdb.set_trace() - loss = 0 - for loss_type in loss_types: - if losses[loss_type] is not None: - loss = loss + losses[loss_type].mean() - # print("Checker4:, begin BP") - self.optimizer.zero_grad() - loss.backward() - torch.nn.utils.clip_grad_norm_(self.params_to_train, 1.0) - self.optimizer.step() - # print("Checker5:, end BP") - self.iter_step += 1 - - if self.iter_step % self.report_freq == 0: - self.writer.add_scalar('Loss/loss', loss, self.iter_step) - - if losses_lod0 is not None: - self.writer.add_scalar('Loss/d_loss_lod0', - losses_lod0['depth_loss'].mean() if losses_lod0 is not None else 0, - self.iter_step) - self.writer.add_scalar('Loss/sparse_loss_lod0', - losses_lod0[ - 'sparse_loss'].mean() if losses_lod0 is not None else 0, - self.iter_step) - self.writer.add_scalar('Loss/color_loss_lod0', - losses_lod0['color_fine_loss'].mean() - if losses_lod0['color_fine_loss'] is not None else 0, - self.iter_step) - - self.writer.add_scalar('statis/psnr_lod0', - losses_lod0['psnr'].mean() - if losses_lod0['psnr'] is not None else 0, - self.iter_step) - - self.writer.add_scalar('param/variance_lod0', - 1. / torch.exp(self.variance_network_lod0.variance * 10), - self.iter_step) - self.writer.add_scalar('param/eikonal_loss', losses_lod0['gradient_error_loss'].mean() if losses_lod0 is not None else 0, - self.iter_step) - - ######## - lod 1 - if self.num_lods > 1: - self.writer.add_scalar('Loss/d_loss_lod1', - losses_lod1['depth_loss'].mean() if losses_lod1 is not None else 0, - self.iter_step) - self.writer.add_scalar('Loss/sparse_loss_lod1', - losses_lod1[ - 'sparse_loss'].mean() if losses_lod1 is not None else 0, - self.iter_step) - self.writer.add_scalar('Loss/color_loss_lod1', - losses_lod1['color_fine_loss'].mean() - if losses_lod1['color_fine_loss'] is not None else 0, - self.iter_step) - self.writer.add_scalar('statis/sdf_mean_lod1', - losses_lod1['sdf_mean'].mean() if losses_lod1 is not None else 0, - self.iter_step) - self.writer.add_scalar('statis/psnr_lod1', - losses_lod1['psnr'].mean() - if losses_lod1['psnr'] is not None else 0, - self.iter_step) - self.writer.add_scalar('statis/sparseness_0.01_lod1', - losses_lod1['sparseness_1'].mean() - if losses_lod1['sparseness_1'] is not None else 0, - self.iter_step) - self.writer.add_scalar('statis/sparseness_0.02_lod1', - losses_lod1['sparseness_2'].mean() - if losses_lod1['sparseness_2'] is not None else 0, - self.iter_step) - self.writer.add_scalar('param/variance_lod1', - 1. / torch.exp(self.variance_network_lod1.variance * 10), - self.iter_step) - - print(self.base_exp_dir) - print( - 'iter:{:8>d} ' - 'loss = {:.4f} ' - 'd_loss_lod0 = {:.4f} ' - 'color_loss_lod0 = {:.4f} ' - 'sparse_loss_lod0= {:.4f} ' - 'd_loss_lod1 = {:.4f} ' - 'color_loss_lod1 = {:.4f} ' - ' lr = {:.5f}'.format( - self.iter_step, loss, - losses_lod0['depth_loss'].mean() if losses_lod0 is not None else 0, - losses_lod0['color_fine_loss'].mean() if losses_lod0 is not None else 0, - losses_lod0['sparse_loss'].mean() if losses_lod0 is not None else 0, - losses_lod1['depth_loss'].mean() if losses_lod1 is not None else 0, - losses_lod1['color_fine_loss'].mean() if losses_lod1 is not None else 0, - self.optimizer.param_groups[0]['lr'])) - - print('alpha_inter_ratio_lod0 = {:.4f} alpha_inter_ratio_lod1 = {:.4f}\n'.format( - alpha_inter_ratio_lod0, alpha_inter_ratio_lod1)) - - if losses_lod0 is not None: - # print("[TEST]: weights_sum in print", losses_lod0['weights_sum'].mean()) - # import ipdb; ipdb.set_trace() - print( - 'iter:{:8>d} ' - 'variance = {:.5f} ' - 'weights_sum = {:.4f} ' - 'weights_sum_fg = {:.4f} ' - 'alpha_sum = {:.4f} ' - 'sparse_weight= {:.4f} ' - 'background_loss = {:.4f} ' - 'background_weight = {:.4f} ' - .format( - self.iter_step, - losses_lod0['variance'].mean(), - losses_lod0['weights_sum'].mean(), - losses_lod0['weights_sum_fg'].mean(), - losses_lod0['alpha_sum'].mean(), - losses_lod0['sparse_weight'].mean(), - losses_lod0['fg_bg_loss'].mean(), - losses_lod0['fg_bg_weight'].mean(), - )) - - if losses_lod1 is not None: - print( - 'iter:{:8>d} ' - 'variance = {:.5f} ' - ' weights_sum = {:.4f} ' - 'alpha_sum = {:.4f} ' - 'fg_bg_loss = {:.4f} ' - 'fg_bg_weight = {:.4f} ' - 'sparse_weight= {:.4f} ' - 'fg_bg_loss = {:.4f} ' - 'fg_bg_weight = {:.4f} ' - .format( - self.iter_step, - losses_lod1['variance'].mean(), - losses_lod1['weights_sum'].mean(), - losses_lod1['alpha_sum'].mean(), - losses_lod1['fg_bg_loss'].mean(), - losses_lod1['fg_bg_weight'].mean(), - losses_lod1['sparse_weight'].mean(), - losses_lod1['fg_bg_loss'].mean(), - losses_lod1['fg_bg_weight'].mean(), - )) - - if self.iter_step % self.save_freq == 0: - self.save_checkpoint() - - if self.iter_step % self.val_freq == 0: - self.validate() - - # - ajust learning rate - self.adjust_learning_rate() - - def adjust_learning_rate(self): - # - ajust learning rate, cosine learning schedule - learning_rate = (np.cos(np.pi * self.iter_step / self.end_iter) + 1.0) * 0.5 * 0.9 + 0.1 - learning_rate = self.learning_rate * learning_rate - for g in self.optimizer.param_groups: - g['lr'] = learning_rate - - def get_alpha_inter_ratio(self, start, end): - if end == 0.0: - return 1.0 - elif self.iter_step < start: - return 0.0 - else: - return np.min([1.0, (self.iter_step - start) / (end - start)]) - - def file_backup(self): - # copy python file - dir_lis = self.conf['general.recording'] - os.makedirs(os.path.join(self.base_exp_dir, 'recording'), exist_ok=True) - for dir_name in dir_lis: - cur_dir = os.path.join(self.base_exp_dir, 'recording', dir_name) - os.makedirs(cur_dir, exist_ok=True) - files = os.listdir(dir_name) - for f_name in files: - if f_name[-3:] == '.py': - copyfile(os.path.join(dir_name, f_name), os.path.join(cur_dir, f_name)) - - # copy configs - copyfile(self.conf_path, os.path.join(self.base_exp_dir, 'recording', 'config.conf')) - - def load_checkpoint(self, checkpoint_name): - - def load_state_dict(network, checkpoint, comment): - if network is not None: - try: - pretrained_dict = checkpoint[comment] - - model_dict = network.state_dict() - - # 1. filter out unnecessary keys - pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict} - # 2. overwrite entries in the existing state dict - model_dict.update(pretrained_dict) - # 3. load the new state dict - network.load_state_dict(pretrained_dict) - except: - print(comment + " load fails") - - checkpoint = torch.load(os.path.join(self.base_exp_dir, 'checkpoints', checkpoint_name), - map_location=self.device) - - load_state_dict(self.rendering_network_outside, checkpoint, 'rendering_network_outside') - - load_state_dict(self.sdf_network_lod0, checkpoint, 'sdf_network_lod0') - load_state_dict(self.sdf_network_lod1, checkpoint, 'sdf_network_lod1') - - load_state_dict(self.pyramid_feature_network, checkpoint, 'pyramid_feature_network') - load_state_dict(self.pyramid_feature_network_lod1, checkpoint, 'pyramid_feature_network_lod1') - - load_state_dict(self.variance_network_lod0, checkpoint, 'variance_network_lod0') - load_state_dict(self.variance_network_lod1, checkpoint, 'variance_network_lod1') - - load_state_dict(self.rendering_network_lod0, checkpoint, 'rendering_network_lod0') - load_state_dict(self.rendering_network_lod1, checkpoint, 'rendering_network_lod1') - - if self.restore_lod0: # use the trained lod0 networks to initialize lod1 networks - load_state_dict(self.sdf_network_lod1, checkpoint, 'sdf_network_lod0') - load_state_dict(self.pyramid_feature_network_lod1, checkpoint, 'pyramid_feature_network') - load_state_dict(self.rendering_network_lod1, checkpoint, 'rendering_network_lod0') - - if self.is_continue and (not self.restore_lod0): - try: - self.optimizer.load_state_dict(checkpoint['optimizer']) - except: - print("load optimizer fails") - self.iter_step = checkpoint['iter_step'] - self.val_step = checkpoint['val_step'] if 'val_step' in checkpoint.keys() else 0 - - self.logger.info('End') - - def save_checkpoint(self): - - def save_state_dict(network, checkpoint, comment): - if network is not None: - checkpoint[comment] = network.state_dict() - - checkpoint = { - 'optimizer': self.optimizer.state_dict(), - 'iter_step': self.iter_step, - 'val_step': self.val_step, - } - - save_state_dict(self.sdf_network_lod0, checkpoint, "sdf_network_lod0") - save_state_dict(self.sdf_network_lod1, checkpoint, "sdf_network_lod1") - - save_state_dict(self.rendering_network_outside, checkpoint, 'rendering_network_outside') - save_state_dict(self.rendering_network_lod0, checkpoint, "rendering_network_lod0") - save_state_dict(self.rendering_network_lod1, checkpoint, "rendering_network_lod1") - - save_state_dict(self.variance_network_lod0, checkpoint, 'variance_network_lod0') - save_state_dict(self.variance_network_lod1, checkpoint, 'variance_network_lod1') - - save_state_dict(self.pyramid_feature_network, checkpoint, 'pyramid_feature_network') - save_state_dict(self.pyramid_feature_network_lod1, checkpoint, 'pyramid_feature_network_lod1') - - os.makedirs(os.path.join(self.base_exp_dir, 'checkpoints'), exist_ok=True) - torch.save(checkpoint, - os.path.join(self.base_exp_dir, 'checkpoints', 'ckpt_{:0>6d}.pth'.format(self.iter_step))) - - def validate(self, resolution_level=-1): - # validate image - print("iter_step: ", self.iter_step) - self.logger.info('Validate begin') - self.val_step += 1 - - try: - batch = next(self.val_dataloader_iterator) - except: - self.val_dataloader_iterator = iter(self.val_dataloader) # reset - - batch = next(self.val_dataloader_iterator) - - - background_rgb = None - if self.use_white_bkgd: - # background_rgb = torch.ones([1, 3]).to(self.device) - background_rgb = 1.0 - - batch['batch_idx'] = torch.tensor([x for x in range(self.batch_size)]) - - # - warmup params - if self.num_lods == 1: - alpha_inter_ratio_lod0 = self.get_alpha_inter_ratio(self.anneal_start_lod0, self.anneal_end_lod0) - else: - alpha_inter_ratio_lod0 = 1. - alpha_inter_ratio_lod1 = self.get_alpha_inter_ratio(self.anneal_start_lod1, self.anneal_end_lod1) - - self.trainer( - batch, - background_rgb=background_rgb, - alpha_inter_ratio_lod0=alpha_inter_ratio_lod0, - alpha_inter_ratio_lod1=alpha_inter_ratio_lod1, - iter_step=self.iter_step, - save_vis=True, - mode='val', - ) - - - def export_mesh(self, resolution=360): - print("iter_step: ", self.iter_step) - self.logger.info('Validate begin') - self.val_step += 1 - - try: - batch = next(self.val_dataloader_iterator) - except: - self.val_dataloader_iterator = iter(self.val_dataloader) # reset - - batch = next(self.val_dataloader_iterator) - - - background_rgb = None - if self.use_white_bkgd: - background_rgb = 1.0 - - batch['batch_idx'] = torch.tensor([x for x in range(self.batch_size)]) - - # - warmup params - if self.num_lods == 1: - alpha_inter_ratio_lod0 = self.get_alpha_inter_ratio(self.anneal_start_lod0, self.anneal_end_lod0) - else: - alpha_inter_ratio_lod0 = 1. - alpha_inter_ratio_lod1 = self.get_alpha_inter_ratio(self.anneal_start_lod1, self.anneal_end_lod1) - self.trainer( - batch, - background_rgb=background_rgb, - alpha_inter_ratio_lod0=alpha_inter_ratio_lod0, - alpha_inter_ratio_lod1=alpha_inter_ratio_lod1, - iter_step=self.iter_step, - save_vis=True, - mode='export_mesh', - resolution=resolution, - ) - - -if __name__ == '__main__': - # torch.set_default_tensor_type('torch.cuda.FloatTensor') - torch.set_default_dtype(torch.float32) - FORMAT = "[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s" - logging.basicConfig(level=logging.INFO, format=FORMAT) - - parser = argparse.ArgumentParser() - parser.add_argument('--conf', type=str, default='./confs/base.conf') - parser.add_argument('--mode', type=str, default='train') - parser.add_argument('--threshold', type=float, default=0.0) - parser.add_argument('--is_continue', default=False, action="store_true") - parser.add_argument('--is_restore', default=False, action="store_true") - parser.add_argument('--is_finetune', default=False, action="store_true") - parser.add_argument('--train_from_scratch', default=False, action="store_true") - parser.add_argument('--restore_lod0', default=False, action="store_true") - parser.add_argument('--local_rank', type=int, default=0) - parser.add_argument('--specific_dataset_name', type=str, default='GSO') - parser.add_argument('--resolution', type=int, default=360) - - - args = parser.parse_args() - - torch.cuda.set_device(args.local_rank) - torch.backends.cudnn.benchmark = True # ! make training 2x faster - - runner = Runner(args.conf, args.mode, args.is_continue, args.is_restore, args.restore_lod0, - args.local_rank) - - if args.mode == 'train': - runner.train() - elif args.mode == 'val': - for i in range(len(runner.val_dataset)): - runner.validate() - elif args.mode == 'export_mesh': - for i in range(len(runner.val_dataset)): - runner.export_mesh(resolution=args.resolution) diff --git a/One-2-3-45-master 2/reconstruction/loss/__init__.py b/One-2-3-45-master 2/reconstruction/loss/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/One-2-3-45-master 2/reconstruction/loss/color_loss.py b/One-2-3-45-master 2/reconstruction/loss/color_loss.py deleted file mode 100644 index abf3f0eb51c6ed29799a870d5833b23c4c41dde8..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/reconstruction/loss/color_loss.py +++ /dev/null @@ -1,152 +0,0 @@ -import torch -import torch.nn as nn -from loss.ncc import NCC - - -class Normalize(nn.Module): - def __init__(self): - super(Normalize, self).__init__() - - def forward(self, bottom): - qn = torch.norm(bottom, p=2, dim=1).unsqueeze(dim=1) + 1e-12 - top = bottom.div(qn) - - return top - - -class OcclusionColorLoss(nn.Module): - def __init__(self, alpha=1, beta=0.025, gama=0.01, occlusion_aware=True, weight_thred=[0.6]): - super(OcclusionColorLoss, self).__init__() - self.alpha = alpha - self.beta = beta - self.gama = gama - self.occlusion_aware = occlusion_aware - self.eps = 1e-4 - - self.weight_thred = weight_thred - self.adjuster = ParamAdjuster(self.weight_thred, self.beta) - - def forward(self, pred, gt, weight, mask, detach=False, occlusion_aware=True): - """ - - :param pred: [N_pts, 3] - :param gt: [N_pts, 3] - :param weight: [N_pts] - :param mask: [N_pts] - :return: - """ - if detach: - weight = weight.detach() - - error = torch.abs(pred - gt).sum(dim=-1, keepdim=False) # [N_pts] - error = error[mask] - - if not (self.occlusion_aware and occlusion_aware): - return torch.mean(error), torch.mean(error) - - beta = self.adjuster(weight.mean()) - - # weight = weight[mask] - weight = weight.clamp(0.0, 1.0) - term1 = self.alpha * torch.mean(weight[mask] * error) - term2 = beta * torch.log(1 - weight + self.eps).mean() - term3 = self.gama * torch.log(weight + self.eps).mean() - - return term1 + term2 + term3, term1 - - -class OcclusionColorPatchLoss(nn.Module): - def __init__(self, alpha=1, beta=0.025, gama=0.015, - occlusion_aware=True, type='l1', h_patch_size=3, weight_thred=[0.6]): - super(OcclusionColorPatchLoss, self).__init__() - self.alpha = alpha - self.beta = beta - self.gama = gama - self.occlusion_aware = occlusion_aware - self.type = type # 'l1' or 'ncc' loss - self.ncc = NCC(h_patch_size=h_patch_size) - self.eps = 1e-4 - self.weight_thred = weight_thred - - self.adjuster = ParamAdjuster(self.weight_thred, self.beta) - - print("type {} patch_size {} beta {} gama {} weight_thred {}".format(type, h_patch_size, beta, gama, - weight_thred)) - - def forward(self, pred, gt, weight, mask, penalize_ratio=0.9, detach=False, occlusion_aware=True): - """ - - :param pred: [N_pts, Npx, 3] - :param gt: [N_pts, Npx, 3] - :param weight: [N_pts] - :param mask: [N_pts] - :return: - """ - - if detach: - weight = weight.detach() - - if self.type == 'l1': - error = torch.abs(pred - gt).mean(dim=-1, keepdim=False).sum(dim=-1, keepdim=False) # [N_pts] - elif self.type == 'ncc': - error = 1 - self.ncc(pred[:, None, :, :], gt)[:, 0] # ncc 1 positive, -1 negative - error, indices = torch.sort(error) - mask = torch.index_select(mask, 0, index=indices) - mask[int(penalize_ratio * mask.shape[0]):] = False # can help boundaries - elif self.type == 'ssd': - error = ((pred - gt) ** 2).mean(dim=-1, keepdim=False).sum(dim=-1, keepdims=False) - - error = error[mask] - if not (self.occlusion_aware and occlusion_aware): - return torch.mean(error), torch.mean(error), 0. - - # * weight adjuster - beta = self.adjuster(weight.mean()) - - # weight = weight[mask] - weight = weight.clamp(0.0, 1.0) - - term1 = self.alpha * torch.mean(weight[mask] * error) - term2 = beta * torch.log(1 - weight + self.eps).mean() - term3 = self.gama * torch.log(weight + self.eps).mean() - - return term1 + term2 + term3, term1, beta - - -class ParamAdjuster(nn.Module): - def __init__(self, weight_thred, param): - super(ParamAdjuster, self).__init__() - self.weight_thred = weight_thred - self.thred_num = len(weight_thred) - self.param = param - self.global_step = 0 - self.statis_window = 100 - self.counter = 0 - self.adjusted = False - self.adjusted_step = 0 - self.thred_idx = 0 - - def reset(self): - self.counter = 0 - self.adjusted = False - - def adjust(self): - if (self.counter / self.statis_window) > 0.3: - self.param = self.param + 0.005 - self.adjusted = True - self.adjusted_step = self.global_step - self.thred_idx += 1 - print("adjusted param, now {}".format(self.param)) - - def forward(self, weight_mean): - self.global_step += 1 - - if (self.global_step % self.statis_window == 0) and self.adjusted is False: - self.adjust() - self.reset() - - if self.thred_idx < self.thred_num: - if weight_mean < self.weight_thred[self.thred_idx] and (not self.adjusted): - self.counter += 1 - - return self.param diff --git a/One-2-3-45-master 2/reconstruction/loss/depth_loss.py b/One-2-3-45-master 2/reconstruction/loss/depth_loss.py deleted file mode 100644 index cba92851a79857ff6edd5c2f2eb12a2972b85bdc..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/reconstruction/loss/depth_loss.py +++ /dev/null @@ -1,71 +0,0 @@ -import torch -import torch.nn as nn -import torch.nn.functional as F - - -class DepthLoss(nn.Module): - def __init__(self, type='l1'): - super(DepthLoss, self).__init__() - self.type = type - - - def forward(self, depth_pred, depth_gt, mask=None): - if (depth_gt < 0).sum() > 0: - # print("no depth loss") - return torch.tensor(0.0).to(depth_pred.device) - if mask is not None: - mask_d = (depth_gt > 0).float() - - mask = mask * mask_d - - mask_sum = mask.sum() + 1e-5 - depth_error = (depth_pred - depth_gt) * mask - depth_loss = F.l1_loss(depth_error, torch.zeros_like(depth_error).to(depth_error.device), - reduction='sum') / mask_sum - else: - depth_error = depth_pred - depth_gt - depth_loss = F.l1_loss(depth_error, torch.zeros_like(depth_error).to(depth_error.device), - reduction='mean') - return depth_loss - -def forward(self, depth_pred, depth_gt, mask=None): - if mask is not None: - mask_d = (depth_gt > 0).float() - - mask = mask * mask_d - - mask_sum = mask.sum() + 1e-5 - depth_error = (depth_pred - depth_gt) * mask - depth_loss = F.l1_loss(depth_error, torch.zeros_like(depth_error).to(depth_error.device), - reduction='sum') / mask_sum - else: - depth_error = depth_pred - depth_gt - depth_loss = F.l1_loss(depth_error, torch.zeros_like(depth_error).to(depth_error.device), - reduction='mean') - return depth_loss - -class DepthSmoothLoss(nn.Module): - def __init__(self): - super(DepthSmoothLoss, self).__init__() - - def forward(self, disp, img, mask): - """ - Computes the smoothness loss for a disparity image - The color image is used for edge-aware smoothness - :param disp: [B, 1, H, W] - :param img: [B, 1, H, W] - :param mask: [B, 1, H, W] - :return: - """ - grad_disp_x = torch.abs(disp[:, :, :, :-1] - disp[:, :, :, 1:]) - grad_disp_y = torch.abs(disp[:, :, :-1, :] - disp[:, :, 1:, :]) - - grad_img_x = torch.mean(torch.abs(img[:, :, :, :-1] - img[:, :, :, 1:]), 1, keepdim=True) - grad_img_y = torch.mean(torch.abs(img[:, :, :-1, :] - img[:, :, 1:, :]), 1, keepdim=True) - - grad_disp_x *= torch.exp(-grad_img_x) - grad_disp_y *= torch.exp(-grad_img_y) - - grad_disp = (grad_disp_x * mask[:, :, :, :-1]).mean() + (grad_disp_y * mask[:, :, :-1, :]).mean() - - return grad_disp diff --git a/One-2-3-45-master 2/reconstruction/loss/depth_metric.py b/One-2-3-45-master 2/reconstruction/loss/depth_metric.py deleted file mode 100644 index e8b6249ac6a06906e20a344f468fc1c6e4b992ae..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/reconstruction/loss/depth_metric.py +++ /dev/null @@ -1,240 +0,0 @@ -import numpy as np - - -def l1(depth1, depth2): - """ - Computes the l1 errors between the two depth maps. - Takes preprocessed depths (no nans, infs and non-positive values) - - depth1: one depth map - depth2: another depth map - - Returns: - L1(log) - - """ - assert (np.all(np.isfinite(depth1) & np.isfinite(depth2) & (depth1 >= 0) & (depth2 >= 0))) - diff = depth1 - depth2 - num_pixels = float(diff.size) - - if num_pixels == 0: - return np.nan - else: - return np.sum(np.absolute(diff)) / num_pixels - - -def l1_inverse(depth1, depth2): - """ - Computes the l1 errors between inverses of two depth maps. - Takes preprocessed depths (no nans, infs and non-positive values) - - depth1: one depth map - depth2: another depth map - - Returns: - L1(log) - - """ - assert (np.all(np.isfinite(depth1) & np.isfinite(depth2) & (depth1 >= 0) & (depth2 >= 0))) - diff = np.reciprocal(depth1) - np.reciprocal(depth2) - num_pixels = float(diff.size) - - if num_pixels == 0: - return np.nan - else: - return np.sum(np.absolute(diff)) / num_pixels - - -def rmse_log(depth1, depth2): - """ - Computes the root min square errors between the logs of two depth maps. - Takes preprocessed depths (no nans, infs and non-positive values) - - depth1: one depth map - depth2: another depth map - - Returns: - RMSE(log) - - """ - assert (np.all(np.isfinite(depth1) & np.isfinite(depth2) & (depth1 >= 0) & (depth2 >= 0))) - log_diff = np.log(depth1) - np.log(depth2) - num_pixels = float(log_diff.size) - - if num_pixels == 0: - return np.nan - else: - return np.sqrt(np.sum(np.square(log_diff)) / num_pixels) - - -def rmse(depth1, depth2): - """ - Computes the root min square errors between the two depth maps. - Takes preprocessed depths (no nans, infs and non-positive values) - - depth1: one depth map - depth2: another depth map - - Returns: - RMSE(log) - - """ - assert (np.all(np.isfinite(depth1) & np.isfinite(depth2) & (depth1 >= 0) & (depth2 >= 0))) - diff = depth1 - depth2 - num_pixels = float(diff.size) - - if num_pixels == 0: - return np.nan - else: - return np.sqrt(np.sum(np.square(diff)) / num_pixels) - - -def scale_invariant(depth1, depth2): - """ - Computes the scale invariant loss based on differences of logs of depth maps. - Takes preprocessed depths (no nans, infs and non-positive values) - - depth1: one depth map - depth2: another depth map - - Returns: - scale_invariant_distance - - """ - # sqrt(Eq. 3) - assert (np.all(np.isfinite(depth1) & np.isfinite(depth2) & (depth1 >= 0) & (depth2 >= 0))) - log_diff = np.log(depth1) - np.log(depth2) - num_pixels = float(log_diff.size) - - if num_pixels == 0: - return np.nan - else: - return np.sqrt(np.sum(np.square(log_diff)) / num_pixels - np.square(np.sum(log_diff)) / np.square(num_pixels)) - - -def abs_relative(depth_pred, depth_gt): - """ - Computes relative absolute distance. - Takes preprocessed depths (no nans, infs and non-positive values) - - depth_pred: depth map prediction - depth_gt: depth map ground truth - - Returns: - abs_relative_distance - - """ - assert (np.all(np.isfinite(depth_pred) & np.isfinite(depth_gt) & (depth_pred >= 0) & (depth_gt >= 0))) - diff = depth_pred - depth_gt - num_pixels = float(diff.size) - - if num_pixels == 0: - return np.nan - else: - return np.sum(np.absolute(diff) / depth_gt) / num_pixels - - -def avg_log10(depth1, depth2): - """ - Computes average log_10 error (Liu, Neural Fields, 2015). - Takes preprocessed depths (no nans, infs and non-positive values) - - depth1: one depth map - depth2: another depth map - - Returns: - abs_relative_distance - - """ - assert (np.all(np.isfinite(depth1) & np.isfinite(depth2) & (depth1 >= 0) & (depth2 >= 0))) - log_diff = np.log10(depth1) - np.log10(depth2) - num_pixels = float(log_diff.size) - - if num_pixels == 0: - return np.nan - else: - return np.sum(np.absolute(log_diff)) / num_pixels - - -def sq_relative(depth_pred, depth_gt): - """ - Computes relative squared distance. - Takes preprocessed depths (no nans, infs and non-positive values) - - depth_pred: depth map prediction - depth_gt: depth map ground truth - - Returns: - squared_relative_distance - - """ - assert (np.all(np.isfinite(depth_pred) & np.isfinite(depth_gt) & (depth_pred >= 0) & (depth_gt >= 0))) - diff = depth_pred - depth_gt - num_pixels = float(diff.size) - - if num_pixels == 0: - return np.nan - else: - return np.sum(np.square(diff) / depth_gt) / num_pixels - - -def ratio_threshold(depth1, depth2, threshold): - """ - Computes the percentage of pixels for which the ratio of the two depth maps is less than a given threshold. - Takes preprocessed depths (no nans, infs and non-positive values) - - depth1: one depth map - depth2: another depth map - - Returns: - percentage of pixels with ratio less than the threshold - - """ - assert (threshold > 0.) - assert (np.all(np.isfinite(depth1) & np.isfinite(depth2) & (depth1 >= 0) & (depth2 >= 0))) - log_diff = np.log(depth1) - np.log(depth2) - num_pixels = float(log_diff.size) - - if num_pixels == 0: - return np.nan - else: - return float(np.sum(np.absolute(log_diff) < np.log(threshold))) / num_pixels - - -def compute_depth_errors(depth_pred, depth_gt, valid_mask): - """ - Computes different distance measures between two depth maps. - - depth_pred: depth map prediction - depth_gt: depth map ground truth - distances_to_compute: which distances to compute - - Returns: - a dictionary with computed distances, and the number of valid pixels - - """ - depth_pred = depth_pred[valid_mask] - depth_gt = depth_gt[valid_mask] - num_valid = np.sum(valid_mask) - - distances_to_compute = ['l1', - 'l1_inverse', - 'scale_invariant', - 'abs_relative', - 'sq_relative', - 'avg_log10', - 'rmse_log', - 'rmse', - 'ratio_threshold_1.25', - 'ratio_threshold_1.5625', - 'ratio_threshold_1.953125'] - - results = {'num_valid': num_valid} - for dist in distances_to_compute: - if dist.startswith('ratio_threshold'): - threshold = float(dist.split('_')[-1]) - results[dist] = ratio_threshold(depth_pred, depth_gt, threshold) - else: - results[dist] = globals()[dist](depth_pred, depth_gt) - - return results diff --git a/One-2-3-45-master 2/reconstruction/loss/ncc.py b/One-2-3-45-master 2/reconstruction/loss/ncc.py deleted file mode 100644 index 768fcefc3aab55d8e3fed49f23ffb4a974eec4ec..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/reconstruction/loss/ncc.py +++ /dev/null @@ -1,65 +0,0 @@ -import torch -import torch.nn.functional as F -import numpy as np -from math import exp, sqrt - - -class NCC(torch.nn.Module): - def __init__(self, h_patch_size, mode='rgb'): - super(NCC, self).__init__() - self.window_size = 2 * h_patch_size + 1 - self.mode = mode # 'rgb' or 'gray' - self.channel = 3 - self.register_buffer("window", create_window(self.window_size, self.channel)) - - def forward(self, img_pred, img_gt): - """ - :param img_pred: [Npx, nviews, npatch, c] - :param img_gt: [Npx, npatch, c] - :return: - """ - ntotpx, nviews, npatch, channels = img_pred.shape - - patch_size = int(sqrt(npatch)) - patch_img_pred = img_pred.reshape(ntotpx, nviews, patch_size, patch_size, channels).permute(0, 1, 4, 2, - 3).contiguous() - patch_img_gt = img_gt.reshape(ntotpx, patch_size, patch_size, channels).permute(0, 3, 1, 2) - - return _ncc(patch_img_pred, patch_img_gt, self.window, self.channel) - - -def gaussian(window_size, sigma): - gauss = torch.Tensor([exp(-(x - window_size // 2) ** 2 / float(2 * sigma ** 2)) for x in range(window_size)]) - return gauss / gauss.sum() - - -def create_window(window_size, channel, std=1.5): - _1D_window = gaussian(window_size, std).unsqueeze(1) - _2D_window = _1D_window.mm(_1D_window.t()).unsqueeze(0).unsqueeze(0) - window = _2D_window.expand(channel, 1, window_size, window_size).contiguous() - return window - - -def _ncc(pred, gt, window, channel): - ntotpx, nviews, nc, h, w = pred.shape - flat_pred = pred.view(-1, nc, h, w) - mu1 = F.conv2d(flat_pred, window, padding=0, groups=channel).view(ntotpx, nviews, nc) - mu2 = F.conv2d(gt, window, padding=0, groups=channel).view(ntotpx, nc) - - mu1_sq = mu1.pow(2) - mu2_sq = mu2.pow(2).unsqueeze(1) # (ntotpx, 1, nc) - - sigma1_sq = F.conv2d(flat_pred * flat_pred, window, padding=0, groups=channel).view(ntotpx, nviews, nc) - mu1_sq - sigma2_sq = F.conv2d(gt * gt, window, padding=0, groups=channel).view(ntotpx, 1, 3) - mu2_sq - - sigma1 = torch.sqrt(sigma1_sq + 1e-4) - sigma2 = torch.sqrt(sigma2_sq + 1e-4) - - pred_norm = (pred - mu1[:, :, :, None, None]) / (sigma1[:, :, :, None, None] + 1e-8) # [ntotpx, nviews, nc, h, w] - gt_norm = (gt[:, None, :, :, :] - mu2[:, None, :, None, None]) / ( - sigma2[:, :, :, None, None] + 1e-8) # ntotpx, nc, h, w - - ncc = F.conv2d((pred_norm * gt_norm).view(-1, nc, h, w), window, padding=0, groups=channel).view( - ntotpx, nviews, nc) - - return torch.mean(ncc, dim=2) diff --git a/One-2-3-45-master 2/reconstruction/models/__init__.py b/One-2-3-45-master 2/reconstruction/models/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/One-2-3-45-master 2/reconstruction/models/embedder.py b/One-2-3-45-master 2/reconstruction/models/embedder.py deleted file mode 100644 index d327d92d9f64c0b32908dbee864160b65daa450e..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/reconstruction/models/embedder.py +++ /dev/null @@ -1,101 +0,0 @@ -import torch -import torch.nn as nn - -""" Positional encoding embedding. Code was taken from https://github.com/bmild/nerf. """ - - -class Embedder: - def __init__(self, **kwargs): - self.kwargs = kwargs - self.create_embedding_fn() - - def create_embedding_fn(self): - embed_fns = [] - d = self.kwargs['input_dims'] - out_dim = 0 - if self.kwargs['include_input']: - embed_fns.append(lambda x: x) - out_dim += d - - max_freq = self.kwargs['max_freq_log2'] - N_freqs = self.kwargs['num_freqs'] - - if self.kwargs['log_sampling']: - freq_bands = 2. ** torch.linspace(0., max_freq, N_freqs) - else: - freq_bands = torch.linspace(2. ** 0., 2. ** max_freq, N_freqs) - - for freq in freq_bands: - for p_fn in self.kwargs['periodic_fns']: - if self.kwargs['normalize']: - embed_fns.append(lambda x, p_fn=p_fn, - freq=freq: p_fn(x * freq) / freq) - else: - embed_fns.append(lambda x, p_fn=p_fn, - freq=freq: p_fn(x * freq)) - out_dim += d - - self.embed_fns = embed_fns - self.out_dim = out_dim - - def embed(self, inputs): - return torch.cat([fn(inputs) for fn in self.embed_fns], -1) - - -def get_embedder(multires, normalize=False, input_dims=3): - embed_kwargs = { - 'include_input': True, - 'input_dims': input_dims, - 'max_freq_log2': multires - 1, - 'num_freqs': multires, - 'normalize': normalize, - 'log_sampling': True, - 'periodic_fns': [torch.sin, torch.cos], - } - - embedder_obj = Embedder(**embed_kwargs) - - def embed(x, eo=embedder_obj): return eo.embed(x) - - return embed, embedder_obj.out_dim - - -class Embedding(nn.Module): - def __init__(self, in_channels, N_freqs, logscale=True, normalize=False): - """ - Defines a function that embeds x to (x, sin(2^k x), cos(2^k x), ...) - in_channels: number of input channels (3 for both xyz and direction) - """ - super(Embedding, self).__init__() - self.N_freqs = N_freqs - self.in_channels = in_channels - self.funcs = [torch.sin, torch.cos] - self.out_channels = in_channels * (len(self.funcs) * N_freqs + 1) - self.normalize = normalize - - if logscale: - self.freq_bands = 2 ** torch.linspace(0, N_freqs - 1, N_freqs) - else: - self.freq_bands = torch.linspace(1, 2 ** (N_freqs - 1), N_freqs) - - def forward(self, x): - """ - Embeds x to (x, sin(2^k x), cos(2^k x), ...) - Different from the paper, "x" is also in the output - See https://github.com/bmild/nerf/issues/12 - - Inputs: - x: (B, self.in_channels) - - Outputs: - out: (B, self.out_channels) - """ - out = [x] - for freq in self.freq_bands: - for func in self.funcs: - if self.normalize: - out += [func(freq * x) / freq] - else: - out += [func(freq * x)] - - return torch.cat(out, -1) diff --git a/One-2-3-45-master 2/reconstruction/models/fast_renderer.py b/One-2-3-45-master 2/reconstruction/models/fast_renderer.py deleted file mode 100644 index 1faeba85e5b156d0de12e430287d90f4a803aa92..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/reconstruction/models/fast_renderer.py +++ /dev/null @@ -1,316 +0,0 @@ -import torch -import torch.nn.functional as F -import torch.nn as nn -from icecream import ic - - -# - neus: use sphere-tracing to speed up depth maps extraction -# This code snippet is heavily borrowed from IDR. -class FastRenderer(nn.Module): - def __init__(self): - super(FastRenderer, self).__init__() - - self.sdf_threshold = 5e-5 - self.line_search_step = 0.5 - self.line_step_iters = 1 - self.sphere_tracing_iters = 10 - self.n_steps = 100 - self.n_secant_steps = 8 - - # - use sdf_network to inference sdf value or directly interpolate sdf value from precomputed sdf_volume - self.network_inference = False - - def extract_depth_maps(self, rays_o, rays_d, near, far, sdf_network, conditional_volume): - with torch.no_grad(): - curr_start_points, network_object_mask, acc_start_dis = self.get_intersection( - rays_o, rays_d, near, far, - sdf_network, conditional_volume) - - network_object_mask = network_object_mask.reshape(-1) - - return network_object_mask, acc_start_dis - - def get_intersection(self, rays_o, rays_d, near, far, sdf_network, conditional_volume): - device = rays_o.device - num_pixels, _ = rays_d.shape - - curr_start_points, unfinished_mask_start, acc_start_dis, acc_end_dis, min_dis, max_dis = \ - self.sphere_tracing(rays_o, rays_d, near, far, sdf_network, conditional_volume) - - network_object_mask = (acc_start_dis < acc_end_dis) - - # The non convergent rays should be handled by the sampler - sampler_mask = unfinished_mask_start - sampler_net_obj_mask = torch.zeros_like(sampler_mask).bool().to(device) - if sampler_mask.sum() > 0: - # sampler_min_max = torch.zeros((num_pixels, 2)).to(device) - # sampler_min_max[sampler_mask, 0] = acc_start_dis[sampler_mask] - # sampler_min_max[sampler_mask, 1] = acc_end_dis[sampler_mask] - - # ray_sampler(self, rays_o, rays_d, near, far, sampler_mask): - sampler_pts, sampler_net_obj_mask, sampler_dists = self.ray_sampler(rays_o, - rays_d, - acc_start_dis, - acc_end_dis, - sampler_mask, - sdf_network, - conditional_volume - ) - - curr_start_points[sampler_mask] = sampler_pts[sampler_mask] - acc_start_dis[sampler_mask] = sampler_dists[sampler_mask][:, None] - network_object_mask[sampler_mask] = sampler_net_obj_mask[sampler_mask][:, None] - - # print('----------------------------------------------------------------') - # print('RayTracing: object = {0}/{1}, secant on {2}/{3}.' - # .format(network_object_mask.sum(), len(network_object_mask), sampler_net_obj_mask.sum(), - # sampler_mask.sum())) - # print('----------------------------------------------------------------') - - return curr_start_points, network_object_mask, acc_start_dis - - def sphere_tracing(self, rays_o, rays_d, near, far, sdf_network, conditional_volume): - ''' Run sphere tracing algorithm for max iterations from both sides of unit sphere intersection ''' - - device = rays_o.device - - unfinished_mask_start = (near < far).reshape(-1).clone() - unfinished_mask_end = (near < far).reshape(-1).clone() - - # Initialize start current points - curr_start_points = rays_o + rays_d * near - acc_start_dis = near.clone() - - # Initialize end current points - curr_end_points = rays_o + rays_d * far - acc_end_dis = far.clone() - - # Initizlize min and max depth - min_dis = acc_start_dis.clone() - max_dis = acc_end_dis.clone() - - # Iterate on the rays (from both sides) till finding a surface - iters = 0 - - next_sdf_start = torch.zeros_like(acc_start_dis).to(device) - - if self.network_inference: - sdf_func = sdf_network.sdf - else: - sdf_func = sdf_network.sdf_from_sdfvolume - - next_sdf_start[unfinished_mask_start] = sdf_func( - curr_start_points[unfinished_mask_start], - conditional_volume, lod=0, gru_fusion=False)['sdf_pts_scale%d' % 0] - - next_sdf_end = torch.zeros_like(acc_end_dis).to(device) - next_sdf_end[unfinished_mask_end] = sdf_func(curr_end_points[unfinished_mask_end], - conditional_volume, lod=0, gru_fusion=False)[ - 'sdf_pts_scale%d' % 0] - - while True: - # Update sdf - curr_sdf_start = torch.zeros_like(acc_start_dis).to(device) - curr_sdf_start[unfinished_mask_start] = next_sdf_start[unfinished_mask_start] - curr_sdf_start[curr_sdf_start <= self.sdf_threshold] = 0 - - curr_sdf_end = torch.zeros_like(acc_end_dis).to(device) - curr_sdf_end[unfinished_mask_end] = next_sdf_end[unfinished_mask_end] - curr_sdf_end[curr_sdf_end <= self.sdf_threshold] = 0 - - # Update masks - unfinished_mask_start = unfinished_mask_start & (curr_sdf_start > self.sdf_threshold).reshape(-1) - unfinished_mask_end = unfinished_mask_end & (curr_sdf_end > self.sdf_threshold).reshape(-1) - - if ( - unfinished_mask_start.sum() == 0 and unfinished_mask_end.sum() == 0) or iters == self.sphere_tracing_iters: - break - iters += 1 - - # Make step - # Update distance - acc_start_dis = acc_start_dis + curr_sdf_start - acc_end_dis = acc_end_dis - curr_sdf_end - - # Update points - curr_start_points = rays_o + acc_start_dis * rays_d - curr_end_points = rays_o + acc_end_dis * rays_d - - # Fix points which wrongly crossed the surface - next_sdf_start = torch.zeros_like(acc_start_dis).to(device) - if unfinished_mask_start.sum() > 0: - next_sdf_start[unfinished_mask_start] = sdf_func(curr_start_points[unfinished_mask_start], - conditional_volume, lod=0, gru_fusion=False)[ - 'sdf_pts_scale%d' % 0] - - next_sdf_end = torch.zeros_like(acc_end_dis).to(device) - if unfinished_mask_end.sum() > 0: - next_sdf_end[unfinished_mask_end] = sdf_func(curr_end_points[unfinished_mask_end], - conditional_volume, lod=0, gru_fusion=False)[ - 'sdf_pts_scale%d' % 0] - - not_projected_start = (next_sdf_start < 0).reshape(-1) - not_projected_end = (next_sdf_end < 0).reshape(-1) - not_proj_iters = 0 - - while ( - not_projected_start.sum() > 0 or not_projected_end.sum() > 0) and not_proj_iters < self.line_step_iters: - # Step backwards - if not_projected_start.sum() > 0: - acc_start_dis[not_projected_start] -= ((1 - self.line_search_step) / (2 ** not_proj_iters)) * \ - curr_sdf_start[not_projected_start] - curr_start_points[not_projected_start] = (rays_o + acc_start_dis * rays_d)[not_projected_start] - - next_sdf_start[not_projected_start] = sdf_func( - curr_start_points[not_projected_start], - conditional_volume, lod=0, gru_fusion=False)['sdf_pts_scale%d' % 0] - - if not_projected_end.sum() > 0: - acc_end_dis[not_projected_end] += ((1 - self.line_search_step) / (2 ** not_proj_iters)) * \ - curr_sdf_end[ - not_projected_end] - curr_end_points[not_projected_end] = (rays_o + acc_end_dis * rays_d)[not_projected_end] - - # Calc sdf - - next_sdf_end[not_projected_end] = sdf_func( - curr_end_points[not_projected_end], - conditional_volume, lod=0, gru_fusion=False)['sdf_pts_scale%d' % 0] - - # Update mask - not_projected_start = (next_sdf_start < 0).reshape(-1) - not_projected_end = (next_sdf_end < 0).reshape(-1) - not_proj_iters += 1 - - unfinished_mask_start = unfinished_mask_start & (acc_start_dis < acc_end_dis).reshape(-1) - unfinished_mask_end = unfinished_mask_end & (acc_start_dis < acc_end_dis).reshape(-1) - - return curr_start_points, unfinished_mask_start, acc_start_dis, acc_end_dis, min_dis, max_dis - - def ray_sampler(self, rays_o, rays_d, near, far, sampler_mask, sdf_network, conditional_volume): - ''' Sample the ray in a given range and run secant on rays which have sign transition ''' - device = rays_o.device - num_pixels, _ = rays_d.shape - sampler_pts = torch.zeros(num_pixels, 3).to(device).float() - sampler_dists = torch.zeros(num_pixels).to(device).float() - - intervals_dist = torch.linspace(0, 1, steps=self.n_steps).to(device).view(1, -1) - - pts_intervals = near + intervals_dist * (far - near) - points = rays_o[:, None, :] + pts_intervals[:, :, None] * rays_d[:, None, :] - - # Get the non convergent rays - mask_intersect_idx = torch.nonzero(sampler_mask).flatten() - points = points.reshape((-1, self.n_steps, 3))[sampler_mask, :, :] - pts_intervals = pts_intervals.reshape((-1, self.n_steps))[sampler_mask] - - if self.network_inference: - sdf_func = sdf_network.sdf - else: - sdf_func = sdf_network.sdf_from_sdfvolume - - sdf_val_all = [] - for pnts in torch.split(points.reshape(-1, 3), 100000, dim=0): - sdf_val_all.append(sdf_func(pnts, - conditional_volume, lod=0, gru_fusion=False)['sdf_pts_scale%d' % 0]) - sdf_val = torch.cat(sdf_val_all).reshape(-1, self.n_steps) - - tmp = torch.sign(sdf_val) * torch.arange(self.n_steps, 0, -1).to(device).float().reshape( - (1, self.n_steps)) # Force argmin to return the first min value - sampler_pts_ind = torch.argmin(tmp, -1) - sampler_pts[mask_intersect_idx] = points[torch.arange(points.shape[0]), sampler_pts_ind, :] - sampler_dists[mask_intersect_idx] = pts_intervals[torch.arange(pts_intervals.shape[0]), sampler_pts_ind] - - net_surface_pts = (sdf_val[torch.arange(sdf_val.shape[0]), sampler_pts_ind] < 0) - - # take points with minimal SDF value for P_out pixels - p_out_mask = ~net_surface_pts - n_p_out = p_out_mask.sum() - if n_p_out > 0: - out_pts_idx = torch.argmin(sdf_val[p_out_mask, :], -1) - sampler_pts[mask_intersect_idx[p_out_mask]] = points[p_out_mask, :, :][torch.arange(n_p_out), out_pts_idx, - :] - sampler_dists[mask_intersect_idx[p_out_mask]] = pts_intervals[p_out_mask, :][ - torch.arange(n_p_out), out_pts_idx] - - # Get Network object mask - sampler_net_obj_mask = sampler_mask.clone() - sampler_net_obj_mask[mask_intersect_idx[~net_surface_pts]] = False - - # Run Secant method - secant_pts = net_surface_pts - n_secant_pts = secant_pts.sum() - if n_secant_pts > 0: - # Get secant z predictions - z_high = pts_intervals[torch.arange(pts_intervals.shape[0]), sampler_pts_ind][secant_pts] - sdf_high = sdf_val[torch.arange(sdf_val.shape[0]), sampler_pts_ind][secant_pts] - z_low = pts_intervals[secant_pts][torch.arange(n_secant_pts), sampler_pts_ind[secant_pts] - 1] - sdf_low = sdf_val[secant_pts][torch.arange(n_secant_pts), sampler_pts_ind[secant_pts] - 1] - - cam_loc_secant = rays_o[mask_intersect_idx[secant_pts]] - ray_directions_secant = rays_d[mask_intersect_idx[secant_pts]] - z_pred_secant = self.secant(sdf_low, sdf_high, z_low, z_high, cam_loc_secant, ray_directions_secant, - sdf_network, conditional_volume) - - # Get points - sampler_pts[mask_intersect_idx[secant_pts]] = cam_loc_secant + z_pred_secant[:, - None] * ray_directions_secant - sampler_dists[mask_intersect_idx[secant_pts]] = z_pred_secant - - return sampler_pts, sampler_net_obj_mask, sampler_dists - - def secant(self, sdf_low, sdf_high, z_low, z_high, rays_o, rays_d, sdf_network, conditional_volume): - ''' Runs the secant method for interval [z_low, z_high] for n_secant_steps ''' - - if self.network_inference: - sdf_func = sdf_network.sdf - else: - sdf_func = sdf_network.sdf_from_sdfvolume - - z_pred = -sdf_low * (z_high - z_low) / (sdf_high - sdf_low) + z_low - for i in range(self.n_secant_steps): - p_mid = rays_o + z_pred[:, None] * rays_d - sdf_mid = sdf_func(p_mid, - conditional_volume, lod=0, gru_fusion=False)['sdf_pts_scale%d' % 0].reshape(-1) - ind_low = (sdf_mid > 0).reshape(-1) - if ind_low.sum() > 0: - z_low[ind_low] = z_pred[ind_low] - sdf_low[ind_low] = sdf_mid[ind_low] - ind_high = sdf_mid < 0 - if ind_high.sum() > 0: - z_high[ind_high] = z_pred[ind_high] - sdf_high[ind_high] = sdf_mid[ind_high] - - z_pred = - sdf_low * (z_high - z_low) / (sdf_high - sdf_low) + z_low - - return z_pred # 1D tensor - - def minimal_sdf_points(self, num_pixels, sdf, cam_loc, ray_directions, mask, min_dis, max_dis): - ''' Find points with minimal SDF value on rays for P_out pixels ''' - device = sdf.device - n_mask_points = mask.sum() - - n = self.n_steps - # steps = torch.linspace(0.0, 1.0,n).to(device) - steps = torch.empty(n).uniform_(0.0, 1.0).to(device) - mask_max_dis = max_dis[mask].unsqueeze(-1) - mask_min_dis = min_dis[mask].unsqueeze(-1) - steps = steps.unsqueeze(0).repeat(n_mask_points, 1) * (mask_max_dis - mask_min_dis) + mask_min_dis - - mask_points = cam_loc.unsqueeze(1).repeat(1, num_pixels, 1).reshape(-1, 3)[mask] - mask_rays = ray_directions[mask, :] - - mask_points_all = mask_points.unsqueeze(1).repeat(1, n, 1) + steps.unsqueeze(-1) * mask_rays.unsqueeze( - 1).repeat(1, n, 1) - points = mask_points_all.reshape(-1, 3) - - mask_sdf_all = [] - for pnts in torch.split(points, 100000, dim=0): - mask_sdf_all.append(sdf(pnts)) - - mask_sdf_all = torch.cat(mask_sdf_all).reshape(-1, n) - min_vals, min_idx = mask_sdf_all.min(-1) - min_mask_points = mask_points_all.reshape(-1, n, 3)[torch.arange(0, n_mask_points), min_idx] - min_mask_dist = steps.reshape(-1, n)[torch.arange(0, n_mask_points), min_idx] - - return min_mask_points, min_mask_dist diff --git a/One-2-3-45-master 2/reconstruction/models/featurenet.py b/One-2-3-45-master 2/reconstruction/models/featurenet.py deleted file mode 100644 index 652e65967708f57a1722c5951d53e72f05ddf1d3..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/reconstruction/models/featurenet.py +++ /dev/null @@ -1,91 +0,0 @@ -import torch - -# ! amazing!!!! autograd.grad with set_detect_anomaly(True) will cause memory leak -# ! https://github.com/pytorch/pytorch/issues/51349 -# torch.autograd.set_detect_anomaly(True) -import torch.nn as nn -import torch.nn.functional as F -from inplace_abn import InPlaceABN - - -############################################# MVS Net models ################################################ -class ConvBnReLU(nn.Module): - def __init__(self, in_channels, out_channels, - kernel_size=3, stride=1, pad=1, - norm_act=InPlaceABN): - super(ConvBnReLU, self).__init__() - self.conv = nn.Conv2d(in_channels, out_channels, - kernel_size, stride=stride, padding=pad, bias=False) - self.bn = norm_act(out_channels) - - def forward(self, x): - return self.bn(self.conv(x)) - - -class ConvBnReLU3D(nn.Module): - def __init__(self, in_channels, out_channels, - kernel_size=3, stride=1, pad=1, - norm_act=InPlaceABN): - super(ConvBnReLU3D, self).__init__() - self.conv = nn.Conv3d(in_channels, out_channels, - kernel_size, stride=stride, padding=pad, bias=False) - self.bn = norm_act(out_channels) - # self.bn = nn.ReLU() - - def forward(self, x): - return self.bn(self.conv(x)) - - -################################### feature net ###################################### -class FeatureNet(nn.Module): - """ - output 3 levels of features using a FPN structure - """ - - def __init__(self, norm_act=InPlaceABN): - super(FeatureNet, self).__init__() - - self.conv0 = nn.Sequential( - ConvBnReLU(3, 8, 3, 1, 1, norm_act=norm_act), - ConvBnReLU(8, 8, 3, 1, 1, norm_act=norm_act)) - - self.conv1 = nn.Sequential( - ConvBnReLU(8, 16, 5, 2, 2, norm_act=norm_act), - ConvBnReLU(16, 16, 3, 1, 1, norm_act=norm_act), - ConvBnReLU(16, 16, 3, 1, 1, norm_act=norm_act)) - - self.conv2 = nn.Sequential( - ConvBnReLU(16, 32, 5, 2, 2, norm_act=norm_act), - ConvBnReLU(32, 32, 3, 1, 1, norm_act=norm_act), - ConvBnReLU(32, 32, 3, 1, 1, norm_act=norm_act)) - - self.toplayer = nn.Conv2d(32, 32, 1) - self.lat1 = nn.Conv2d(16, 32, 1) - self.lat0 = nn.Conv2d(8, 32, 1) - - # to reduce channel size of the outputs from FPN - self.smooth1 = nn.Conv2d(32, 16, 3, padding=1) - self.smooth0 = nn.Conv2d(32, 8, 3, padding=1) - - def _upsample_add(self, x, y): - return F.interpolate(x, scale_factor=2, - mode="bilinear", align_corners=True) + y - - def forward(self, x): - # x: (B, 3, H, W) - conv0 = self.conv0(x) # (B, 8, H, W) - conv1 = self.conv1(conv0) # (B, 16, H//2, W//2) - conv2 = self.conv2(conv1) # (B, 32, H//4, W//4) - feat2 = self.toplayer(conv2) # (B, 32, H//4, W//4) - feat1 = self._upsample_add(feat2, self.lat1(conv1)) # (B, 32, H//2, W//2) - feat0 = self._upsample_add(feat1, self.lat0(conv0)) # (B, 32, H, W) - - # reduce output channels - feat1 = self.smooth1(feat1) # (B, 16, H//2, W//2) - feat0 = self.smooth0(feat0) # (B, 8, H, W) - - # feats = {"level_0": feat0, - # "level_1": feat1, - # "level_2": feat2} - - return [feat2, feat1, feat0] # coarser to finer features diff --git a/One-2-3-45-master 2/reconstruction/models/fields.py b/One-2-3-45-master 2/reconstruction/models/fields.py deleted file mode 100644 index 184e4a55399f56f8f505379ce4a14add8821c4c4..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/reconstruction/models/fields.py +++ /dev/null @@ -1,333 +0,0 @@ -# The codes are from NeuS - -import torch -import torch.nn as nn -import torch.nn.functional as F -import numpy as np -from models.embedder import get_embedder - - -class SDFNetwork(nn.Module): - def __init__(self, - d_in, - d_out, - d_hidden, - n_layers, - skip_in=(4,), - multires=0, - bias=0.5, - scale=1, - geometric_init=True, - weight_norm=True, - activation='softplus', - conditional_type='multiply'): - super(SDFNetwork, self).__init__() - - dims = [d_in] + [d_hidden for _ in range(n_layers)] + [d_out] - - self.embed_fn_fine = None - - if multires > 0: - embed_fn, input_ch = get_embedder(multires, input_dims=d_in, normalize=False) - self.embed_fn_fine = embed_fn - dims[0] = input_ch - - self.num_layers = len(dims) - self.skip_in = skip_in - self.scale = scale - - for l in range(0, self.num_layers - 1): - if l + 1 in self.skip_in: - out_dim = dims[l + 1] - dims[0] - else: - out_dim = dims[l + 1] - - lin = nn.Linear(dims[l], out_dim) - - if geometric_init: - if l == self.num_layers - 2: - torch.nn.init.normal_(lin.weight, mean=np.sqrt(np.pi) / np.sqrt(dims[l]), std=0.0001) - torch.nn.init.constant_(lin.bias, -bias) - elif multires > 0 and l == 0: - torch.nn.init.constant_(lin.bias, 0.0) - torch.nn.init.constant_(lin.weight[:, 3:], 0.0) - torch.nn.init.normal_(lin.weight[:, :3], 0.0, np.sqrt(2) / np.sqrt(out_dim)) - elif multires > 0 and l in self.skip_in: - torch.nn.init.constant_(lin.bias, 0.0) - torch.nn.init.normal_(lin.weight, 0.0, np.sqrt(2) / np.sqrt(out_dim)) - torch.nn.init.constant_(lin.weight[:, -(dims[0] - 3):], 0.0) # ? why dims[0] - 3 - else: - torch.nn.init.constant_(lin.bias, 0.0) - torch.nn.init.normal_(lin.weight, 0.0, np.sqrt(2) / np.sqrt(out_dim)) - - if weight_norm: - lin = nn.utils.weight_norm(lin) - - setattr(self, "lin" + str(l), lin) - - if activation == 'softplus': - self.activation = nn.Softplus(beta=100) - else: - assert activation == 'relu' - self.activation = nn.ReLU() - - def forward(self, inputs): - inputs = inputs * self.scale - if self.embed_fn_fine is not None: - inputs = self.embed_fn_fine(inputs) - - x = inputs - for l in range(0, self.num_layers - 1): - lin = getattr(self, "lin" + str(l)) - - if l in self.skip_in: - x = torch.cat([x, inputs], 1) / np.sqrt(2) - - x = lin(x) - - if l < self.num_layers - 2: - x = self.activation(x) - return torch.cat([x[:, :1] / self.scale, x[:, 1:]], dim=-1) - - def sdf(self, x): - return self.forward(x)[:, :1] - - def sdf_hidden_appearance(self, x): - return self.forward(x) - - def gradient(self, x): - x.requires_grad_(True) - y = self.sdf(x) - d_output = torch.ones_like(y, requires_grad=False, device=y.device) - gradients = torch.autograd.grad( - outputs=y, - inputs=x, - grad_outputs=d_output, - create_graph=True, - retain_graph=True, - only_inputs=True)[0] - return gradients.unsqueeze(1) - - -class VarianceNetwork(nn.Module): - def __init__(self, d_in, d_out, d_hidden, n_layers, skip_in=(4,), multires=0): - super(VarianceNetwork, self).__init__() - - dims = [d_in] + [d_hidden for _ in range(n_layers)] + [d_out] - - self.embed_fn_fine = None - - if multires > 0: - embed_fn, input_ch = get_embedder(multires, normalize=False) - self.embed_fn_fine = embed_fn - dims[0] = input_ch - - self.num_layers = len(dims) - self.skip_in = skip_in - - for l in range(0, self.num_layers - 1): - if l + 1 in self.skip_in: - out_dim = dims[l + 1] - dims[0] - else: - out_dim = dims[l + 1] - - lin = nn.Linear(dims[l], out_dim) - setattr(self, "lin" + str(l), lin) - - self.relu = nn.ReLU() - self.softplus = nn.Softplus(beta=100) - - def forward(self, inputs): - if self.embed_fn_fine is not None: - inputs = self.embed_fn_fine(inputs) - - x = inputs - for l in range(0, self.num_layers - 1): - lin = getattr(self, "lin" + str(l)) - - if l in self.skip_in: - x = torch.cat([x, inputs], 1) / np.sqrt(2) - - x = lin(x) - - if l < self.num_layers - 2: - x = self.relu(x) - - # return torch.exp(x) - return 1.0 / (self.softplus(x + 0.5) + 1e-3) - - def coarse(self, inputs): - return self.forward(inputs)[:, :1] - - def fine(self, inputs): - return self.forward(inputs)[:, 1:] - - -class FixVarianceNetwork(nn.Module): - def __init__(self, base): - super(FixVarianceNetwork, self).__init__() - self.base = base - self.iter_step = 0 - - def set_iter_step(self, iter_step): - self.iter_step = iter_step - - def forward(self, x): - return torch.ones([len(x), 1]) * np.exp(-self.iter_step / self.base) - - -class SingleVarianceNetwork(nn.Module): - def __init__(self, init_val=1.0): - super(SingleVarianceNetwork, self).__init__() - self.register_parameter('variance', nn.Parameter(torch.tensor(init_val))) - - def forward(self, x): - return torch.ones([len(x), 1]).to(x.device) * torch.exp(self.variance * 10.0) - - - -class RenderingNetwork(nn.Module): - def __init__( - self, - d_feature, - mode, - d_in, - d_out, - d_hidden, - n_layers, - weight_norm=True, - multires_view=0, - squeeze_out=True, - d_conditional_colors=0 - ): - super().__init__() - - self.mode = mode - self.squeeze_out = squeeze_out - dims = [d_in + d_feature] + [d_hidden for _ in range(n_layers)] + [d_out] - - self.embedview_fn = None - if multires_view > 0: - embedview_fn, input_ch = get_embedder(multires_view) - self.embedview_fn = embedview_fn - dims[0] += (input_ch - 3) - - self.num_layers = len(dims) - - for l in range(0, self.num_layers - 1): - out_dim = dims[l + 1] - lin = nn.Linear(dims[l], out_dim) - - if weight_norm: - lin = nn.utils.weight_norm(lin) - - setattr(self, "lin" + str(l), lin) - - self.relu = nn.ReLU() - - def forward(self, points, normals, view_dirs, feature_vectors): - if self.embedview_fn is not None: - view_dirs = self.embedview_fn(view_dirs) - - rendering_input = None - - if self.mode == 'idr': - rendering_input = torch.cat([points, view_dirs, normals, feature_vectors], dim=-1) - elif self.mode == 'no_view_dir': - rendering_input = torch.cat([points, normals, feature_vectors], dim=-1) - elif self.mode == 'no_normal': - rendering_input = torch.cat([points, view_dirs, feature_vectors], dim=-1) - elif self.mode == 'no_points': - rendering_input = torch.cat([view_dirs, normals, feature_vectors], dim=-1) - elif self.mode == 'no_points_no_view_dir': - rendering_input = torch.cat([normals, feature_vectors], dim=-1) - - x = rendering_input - - for l in range(0, self.num_layers - 1): - lin = getattr(self, "lin" + str(l)) - - x = lin(x) - - if l < self.num_layers - 2: - x = self.relu(x) - - if self.squeeze_out: - x = torch.sigmoid(x) - return x - - -# Code from nerf-pytorch -class NeRF(nn.Module): - def __init__(self, D=8, W=256, d_in=3, d_in_view=3, multires=0, multires_view=0, output_ch=4, skips=[4], - use_viewdirs=False): - """ - """ - super(NeRF, self).__init__() - self.D = D - self.W = W - self.d_in = d_in - self.d_in_view = d_in_view - self.input_ch = 3 - self.input_ch_view = 3 - self.embed_fn = None - self.embed_fn_view = None - - if multires > 0: - embed_fn, input_ch = get_embedder(multires, input_dims=d_in, normalize=False) - self.embed_fn = embed_fn - self.input_ch = input_ch - - if multires_view > 0: - embed_fn_view, input_ch_view = get_embedder(multires_view, input_dims=d_in_view, normalize=False) - self.embed_fn_view = embed_fn_view - self.input_ch_view = input_ch_view - - self.skips = skips - self.use_viewdirs = use_viewdirs - - self.pts_linears = nn.ModuleList( - [nn.Linear(self.input_ch, W)] + [nn.Linear(W, W) if i not in self.skips else nn.Linear(W + self.input_ch, W) - for i in - range(D - 1)]) - - ### Implementation according to the official code release (https://github.com/bmild/nerf/blob/master/run_nerf_helpers.py#L104-L105) - self.views_linears = nn.ModuleList([nn.Linear(self.input_ch_view + W, W // 2)]) - - ### Implementation according to the paper - # self.views_linears = nn.ModuleList( - # [nn.Linear(input_ch_views + W, W//2)] + [nn.Linear(W//2, W//2) for i in range(D//2)]) - - if use_viewdirs: - self.feature_linear = nn.Linear(W, W) - self.alpha_linear = nn.Linear(W, 1) - self.rgb_linear = nn.Linear(W // 2, 3) - else: - self.output_linear = nn.Linear(W, output_ch) - - def forward(self, input_pts, input_views): - if self.embed_fn is not None: - input_pts = self.embed_fn(input_pts) - if self.embed_fn_view is not None: - input_views = self.embed_fn_view(input_views) - - h = input_pts - for i, l in enumerate(self.pts_linears): - h = self.pts_linears[i](h) - h = F.relu(h) - if i in self.skips: - h = torch.cat([input_pts, h], -1) - - if self.use_viewdirs: - alpha = self.alpha_linear(h) - feature = self.feature_linear(h) - h = torch.cat([feature, input_views], -1) - - for i, l in enumerate(self.views_linears): - h = self.views_linears[i](h) - h = F.relu(h) - - rgb = self.rgb_linear(h) - return alpha + 1.0, rgb - else: - assert False diff --git a/One-2-3-45-master 2/reconstruction/models/patch_projector.py b/One-2-3-45-master 2/reconstruction/models/patch_projector.py deleted file mode 100644 index 24bb64527a1f9a9a1c6db8cd290d38f65b63b6d4..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/reconstruction/models/patch_projector.py +++ /dev/null @@ -1,211 +0,0 @@ -""" -Patch Projector -""" -import torch -import torch.nn as nn -import torch.nn.functional as F -import numpy as np -from models.render_utils import sample_ptsFeatures_from_featureMaps - - -class PatchProjector(): - def __init__(self, patch_size): - self.h_patch_size = patch_size - self.offsets = build_patch_offset(patch_size) # the warping patch offsets index - - self.z_axis = torch.tensor([0, 0, 1]).float() - - self.plane_dist_thresh = 0.001 - - # * correctness checked - def pixel_warp(self, pts, imgs, intrinsics, - w2cs, img_wh=None): - """ - - :param pts: [N_rays, n_samples, 3] - :param imgs: [N_views, 3, H, W] - :param intrinsics: [N_views, 4, 4] - :param c2ws: [N_views, 4, 4] - :param img_wh: - :return: - """ - if img_wh is None: - N_views, _, sizeH, sizeW = imgs.shape - img_wh = [sizeW, sizeH] - - pts_color, valid_mask = sample_ptsFeatures_from_featureMaps( - pts, imgs, w2cs, intrinsics, img_wh, - proj_matrix=None, return_mask=True) # [N_views, c, N_rays, n_samples], [N_views, N_rays, n_samples] - - pts_color = pts_color.permute(2, 3, 0, 1) - valid_mask = valid_mask.permute(1, 2, 0) - - return pts_color, valid_mask # [N_rays, n_samples, N_views, 3] , [N_rays, n_samples, N_views] - - def patch_warp(self, pts, uv, normals, src_imgs, - ref_intrinsic, src_intrinsics, - ref_c2w, src_c2ws, img_wh=None - ): - """ - - :param pts: [N_rays, n_samples, 3] - :param uv : [N_rays, 2] normalized in (-1, 1) - :param normals: [N_rays, n_samples, 3] The normal of pt in world space - :param src_imgs: [N_src, 3, h, w] - :param ref_intrinsic: [4,4] - :param src_intrinsics: [N_src, 4, 4] - :param ref_c2w: [4,4] - :param src_c2ws: [N_src, 4, 4] - :return: - """ - device = pts.device - - N_rays, n_samples, _ = pts.shape - N_pts = N_rays * n_samples - - N_src, _, sizeH, sizeW = src_imgs.shape - - if img_wh is not None: - sizeW, sizeH = img_wh[0], img_wh[1] - - # scale uv from (-1, 1) to (0, W/H) - uv[:, 0] = (uv[:, 0] + 1) / 2. * (sizeW - 1) - uv[:, 1] = (uv[:, 1] + 1) / 2. * (sizeH - 1) - - ref_intr = ref_intrinsic[:3, :3] - inv_ref_intr = torch.inverse(ref_intr) - src_intrs = src_intrinsics[:, :3, :3] - inv_src_intrs = torch.inverse(src_intrs) - - ref_pose = ref_c2w - inv_ref_pose = torch.inverse(ref_pose) - src_poses = src_c2ws - inv_src_poses = torch.inverse(src_poses) - - ref_cam_loc = ref_pose[:3, 3].unsqueeze(0) # [1, 3] - sampled_dists = torch.norm(pts - ref_cam_loc, dim=-1) # [N_pts, 1] - - relative_proj = inv_src_poses @ ref_pose - R_rel = relative_proj[:, :3, :3] - t_rel = relative_proj[:, :3, 3:] - R_ref = inv_ref_pose[:3, :3] - t_ref = inv_ref_pose[:3, 3:] - - pts = pts.view(-1, 3) - normals = normals.view(-1, 3) - - with torch.no_grad(): - rot_normals = R_ref @ normals.unsqueeze(-1) # [N_pts, 3, 1] - points_in_ref = R_ref @ pts.unsqueeze( - -1) + t_ref # [N_pts, 3, 1] points in the reference frame coordiantes system - d1 = torch.sum(rot_normals * points_in_ref, dim=1).unsqueeze( - 1) # distance from the plane to ref camera center - - d2 = torch.sum(rot_normals.unsqueeze(1) * (-R_rel.transpose(1, 2) @ t_rel).unsqueeze(0), - dim=2) # distance from the plane to src camera center - valid_hom = (torch.abs(d1) > self.plane_dist_thresh) & ( - torch.abs(d1 - d2) > self.plane_dist_thresh) & ((d2 / d1) < 1) - - d1 = d1.squeeze() - sign = torch.sign(d1) - sign[sign == 0] = 1 - d = torch.clamp(torch.abs(d1), 1e-8) * sign - - H = src_intrs.unsqueeze(1) @ ( - R_rel.unsqueeze(1) + t_rel.unsqueeze(1) @ rot_normals.view(1, N_pts, 1, 3) / d.view(1, - N_pts, - 1, 1) - ) @ inv_ref_intr.view(1, 1, 3, 3) - - # replace invalid homs with fronto-parallel homographies - H_invalid = src_intrs.unsqueeze(1) @ ( - R_rel.unsqueeze(1) + t_rel.unsqueeze(1) @ self.z_axis.to(device).view(1, 1, 1, 3).expand(-1, N_pts, - -1, - -1) / sampled_dists.view( - 1, N_pts, 1, 1) - ) @ inv_ref_intr.view(1, 1, 3, 3) - tmp_m = ~valid_hom.view(-1, N_src).t() - H[tmp_m] = H_invalid[tmp_m] - - pixels = uv.view(N_rays, 1, 2) + self.offsets.float().to(device) - Npx = pixels.shape[1] - grid, warp_mask_full = self.patch_homography(H, pixels) - - warp_mask_full = warp_mask_full & (grid[..., 0] < (sizeW - self.h_patch_size)) & ( - grid[..., 1] < (sizeH - self.h_patch_size)) & (grid >= self.h_patch_size).all(dim=-1) - warp_mask_full = warp_mask_full.view(N_src, N_rays, n_samples, Npx) - - grid = torch.clamp(normalize(grid, sizeH, sizeW), -10, 10) - - sampled_rgb_val = F.grid_sample(src_imgs, grid.view(N_src, -1, 1, 2), align_corners=True).squeeze( - -1).transpose(1, 2) - sampled_rgb_val = sampled_rgb_val.view(N_src, N_rays, n_samples, Npx, 3) - - warp_mask_full = warp_mask_full.permute(1, 2, 0, 3).contiguous() # (N_rays, n_samples, N_src, Npx) - sampled_rgb_val = sampled_rgb_val.permute(1, 2, 0, 3, 4).contiguous() # (N_rays, n_samples, N_src, Npx, 3) - - return sampled_rgb_val, warp_mask_full - - def patch_homography(self, H, uv): - N, Npx = uv.shape[:2] - Nsrc = H.shape[0] - H = H.view(Nsrc, N, -1, 3, 3) - hom_uv = add_hom(uv) - - # einsum is 30 times faster - # tmp = (H.view(Nsrc, N, -1, 1, 3, 3) @ hom_uv.view(1, N, 1, -1, 3, 1)).squeeze(-1).view(Nsrc, -1, 3) - tmp = torch.einsum("vprik,pok->vproi", H, hom_uv).reshape(Nsrc, -1, 3) - - grid = tmp[..., :2] / torch.clamp(tmp[..., 2:], 1e-8) - mask = tmp[..., 2] > 0 - return grid, mask - - -def add_hom(pts): - try: - dev = pts.device - ones = torch.ones(pts.shape[:-1], device=dev).unsqueeze(-1) - return torch.cat((pts, ones), dim=-1) - - except AttributeError: - ones = np.ones((pts.shape[0], 1)) - return np.concatenate((pts, ones), axis=1) - - -def normalize(flow, h, w, clamp=None): - # either h and w are simple float or N torch.tensor where N batch size - try: - h.device - - except AttributeError: - h = torch.tensor(h, device=flow.device).float().unsqueeze(0) - w = torch.tensor(w, device=flow.device).float().unsqueeze(0) - - if len(flow.shape) == 4: - w = w.unsqueeze(1).unsqueeze(2) - h = h.unsqueeze(1).unsqueeze(2) - elif len(flow.shape) == 3: - w = w.unsqueeze(1) - h = h.unsqueeze(1) - elif len(flow.shape) == 5: - w = w.unsqueeze(0).unsqueeze(2).unsqueeze(2) - h = h.unsqueeze(0).unsqueeze(2).unsqueeze(2) - - res = torch.empty_like(flow) - if res.shape[-1] == 3: - res[..., 2] = 1 - - # for grid_sample with align_corners=True - # https://github.com/pytorch/pytorch/blob/c371542efc31b1abfe6f388042aa3ab0cef935f2/aten/src/ATen/native/GridSampler.h#L33 - res[..., 0] = 2 * flow[..., 0] / (w - 1) - 1 - res[..., 1] = 2 * flow[..., 1] / (h - 1) - 1 - - if clamp: - return torch.clamp(res, -clamp, clamp) - else: - return res - - -def build_patch_offset(h_patch_size): - offsets = torch.arange(-h_patch_size, h_patch_size + 1) - return torch.stack(torch.meshgrid(offsets, offsets, indexing="ij")[::-1], dim=-1).view(1, -1, 2) # nb_pixels_patch * 2 diff --git a/One-2-3-45-master 2/reconstruction/models/projector.py b/One-2-3-45-master 2/reconstruction/models/projector.py deleted file mode 100644 index aa58d3f896edefff25cbb6fa713e7342d9b84a1d..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/reconstruction/models/projector.py +++ /dev/null @@ -1,425 +0,0 @@ -# The codes are partly from IBRNet - -import torch -import torch.nn.functional as F -from models.render_utils import sample_ptsFeatures_from_featureMaps, sample_ptsFeatures_from_featureVolume - -def safe_l2_normalize(x, dim=None, eps=1e-6): - return F.normalize(x, p=2, dim=dim, eps=eps) - -class Projector(): - """ - Obtain features from geometryVolume and rendering_feature_maps for generalized rendering - """ - - def compute_angle(self, xyz, query_c2w, supporting_c2ws): - """ - - :param xyz: [N_rays, n_samples,3 ] - :param query_c2w: [1,4,4] - :param supporting_c2ws: [n,4,4] - :return: - """ - N_rays, n_samples, _ = xyz.shape - num_views = supporting_c2ws.shape[0] - xyz = xyz.reshape(-1, 3) - - ray2tar_pose = (query_c2w[:, :3, 3].unsqueeze(1) - xyz.unsqueeze(0)) - ray2tar_pose /= (torch.norm(ray2tar_pose, dim=-1, keepdim=True) + 1e-6) - ray2support_pose = (supporting_c2ws[:, :3, 3].unsqueeze(1) - xyz.unsqueeze(0)) - ray2support_pose /= (torch.norm(ray2support_pose, dim=-1, keepdim=True) + 1e-6) - ray_diff = ray2tar_pose - ray2support_pose - ray_diff_norm = torch.norm(ray_diff, dim=-1, keepdim=True) - ray_diff_dot = torch.sum(ray2tar_pose * ray2support_pose, dim=-1, keepdim=True) - ray_diff_direction = ray_diff / torch.clamp(ray_diff_norm, min=1e-6) - ray_diff = torch.cat([ray_diff_direction, ray_diff_dot], dim=-1) - ray_diff = ray_diff.reshape((num_views, N_rays, n_samples, 4)) # the last dimension (4) is dot-product - return ray_diff.detach() - - - def compute_angle_view_independent(self, xyz, surface_normals, supporting_c2ws): - """ - - :param xyz: [N_rays, n_samples,3 ] - :param surface_normals: [N_rays, n_samples,3 ] - :param supporting_c2ws: [n,4,4] - :return: - """ - N_rays, n_samples, _ = xyz.shape - num_views = supporting_c2ws.shape[0] - xyz = xyz.reshape(-1, 3) - - ray2tar_pose = surface_normals - ray2support_pose = (supporting_c2ws[:, :3, 3].unsqueeze(1) - xyz.unsqueeze(0)) - ray2support_pose /= (torch.norm(ray2support_pose, dim=-1, keepdim=True) + 1e-6) - ray_diff = ray2tar_pose - ray2support_pose - ray_diff_norm = torch.norm(ray_diff, dim=-1, keepdim=True) - ray_diff_dot = torch.sum(ray2tar_pose * ray2support_pose, dim=-1, keepdim=True) - ray_diff_direction = ray_diff / torch.clamp(ray_diff_norm, min=1e-6) - ray_diff = torch.cat([ray_diff_direction, ray_diff_dot], dim=-1) - ray_diff = ray_diff.reshape((num_views, N_rays, n_samples, 4)) # the last dimension (4) is dot-product, - # and the first three dimensions is the normalized ray diff vector - return ray_diff.detach() - - @torch.no_grad() - def compute_z_diff(self, xyz, w2cs, intrinsics, pred_depth_values): - """ - compute the depth difference of query pts projected on the image and the predicted depth values of the image - :param xyz: [N_rays, n_samples,3 ] - :param w2cs: [N_views, 4, 4] - :param intrinsics: [N_views, 3, 3] - :param pred_depth_values: [N_views, N_rays, n_samples,1 ] - :param pred_depth_masks: [N_views, N_rays, n_samples] - :return: - """ - device = xyz.device - N_views = w2cs.shape[0] - N_rays, n_samples, _ = xyz.shape - proj_matrix = torch.matmul(intrinsics, w2cs[:, :3, :]) - - proj_rot = proj_matrix[:, :3, :3] - proj_trans = proj_matrix[:, :3, 3:] - - batch_xyz = xyz.permute(2, 0, 1).contiguous().view(1, 3, N_rays * n_samples).repeat(N_views, 1, 1) - - proj_xyz = proj_rot.bmm(batch_xyz) + proj_trans - - # X = proj_xyz[:, 0] - # Y = proj_xyz[:, 1] - Z = proj_xyz[:, 2].clamp(min=1e-3) # [N_views, N_rays*n_samples] - proj_z = Z.view(N_views, N_rays, n_samples, 1) - - z_diff = proj_z - pred_depth_values # [N_views, N_rays, n_samples,1 ] - - return z_diff - - def compute(self, - pts, - # * 3d geometry feature volumes - geometryVolume=None, - geometryVolumeMask=None, - vol_dims=None, - partial_vol_origin=None, - vol_size=None, - # * 2d rendering feature maps - rendering_feature_maps=None, - color_maps=None, - w2cs=None, - intrinsics=None, - img_wh=None, - query_img_idx=0, # the index of the N_views dim for rendering - query_c2w=None, - pred_depth_maps=None, # no use here - pred_depth_masks=None # no use here - ): - """ - extract features of pts for rendering - :param pts: - :param geometryVolume: - :param vol_dims: - :param partial_vol_origin: - :param vol_size: - :param rendering_feature_maps: - :param color_maps: - :param w2cs: - :param intrinsics: - :param img_wh: - :param rendering_img_idx: by default, we render the first view of w2cs - :return: - """ - device = pts.device - c2ws = torch.inverse(w2cs) - - if len(pts.shape) == 2: - pts = pts[None, :, :] - - N_rays, n_samples, _ = pts.shape - N_views = rendering_feature_maps.shape[0] # shape (N_views, C, H, W) - - supporting_img_idxs = torch.LongTensor([x for x in range(N_views) if x != query_img_idx]).to(device) - query_img_idx = torch.LongTensor([query_img_idx]).to(device) - - if query_c2w is None and query_img_idx > -1: - query_c2w = torch.index_select(c2ws, 0, query_img_idx) - supporting_c2ws = torch.index_select(c2ws, 0, supporting_img_idxs) - supporting_w2cs = torch.index_select(w2cs, 0, supporting_img_idxs) - supporting_rendering_feature_maps = torch.index_select(rendering_feature_maps, 0, supporting_img_idxs) - supporting_color_maps = torch.index_select(color_maps, 0, supporting_img_idxs) - supporting_intrinsics = torch.index_select(intrinsics, 0, supporting_img_idxs) - - if pred_depth_maps is not None: - supporting_depth_maps = torch.index_select(pred_depth_maps, 0, supporting_img_idxs) - supporting_depth_masks = torch.index_select(pred_depth_masks, 0, supporting_img_idxs) - # print("N_supporting_views: ", N_views - 1) - N_supporting_views = N_views - 1 - else: - supporting_c2ws = c2ws - supporting_w2cs = w2cs - supporting_rendering_feature_maps = rendering_feature_maps - supporting_color_maps = color_maps - supporting_intrinsics = intrinsics - supporting_depth_maps = pred_depth_masks - supporting_depth_masks = pred_depth_masks - # print("N_supporting_views: ", N_views) - N_supporting_views = N_views - # import ipdb; ipdb.set_trace() - if geometryVolume is not None: - # * sample feature of pts from 3D feature volume - pts_geometry_feature, pts_geometry_masks_0 = sample_ptsFeatures_from_featureVolume( - pts, geometryVolume, vol_dims, - partial_vol_origin, vol_size) # [N_rays, n_samples, C], [N_rays, n_samples] - - if len(geometryVolumeMask.shape) == 3: - geometryVolumeMask = geometryVolumeMask[None, :, :, :] - - pts_geometry_masks_1, _ = sample_ptsFeatures_from_featureVolume( - pts, geometryVolumeMask.to(geometryVolume.dtype), vol_dims, - partial_vol_origin, vol_size) # [N_rays, n_samples, C] - - pts_geometry_masks = pts_geometry_masks_0 & (pts_geometry_masks_1[..., 0] > 0) - else: - pts_geometry_feature = None - pts_geometry_masks = None - - # * sample feature of pts from 2D feature maps - pts_rendering_feats, pts_rendering_mask = sample_ptsFeatures_from_featureMaps( - pts, supporting_rendering_feature_maps, supporting_w2cs, - supporting_intrinsics, img_wh, - return_mask=True) # [N_views, C, N_rays, n_samples], # [N_views, N_rays, n_samples] - # import ipdb; ipdb.set_trace() - # * size (N_views, N_rays*n_samples, c) - pts_rendering_feats = pts_rendering_feats.permute(0, 2, 3, 1).contiguous() - - pts_rendering_colors = sample_ptsFeatures_from_featureMaps(pts, supporting_color_maps, supporting_w2cs, - supporting_intrinsics, img_wh) - # * size (N_views, N_rays*n_samples, c) - pts_rendering_colors = pts_rendering_colors.permute(0, 2, 3, 1).contiguous() - - rgb_feats = torch.cat([pts_rendering_colors, pts_rendering_feats], dim=-1) # [N_views, N_rays, n_samples, 3+c] - - - ray_diff = self.compute_angle(pts, query_c2w, supporting_c2ws) # [N_views, N_rays, n_samples, 4] - # import ipdb; ipdb.set_trace() - if pts_geometry_masks is not None: - final_mask = pts_geometry_masks[None, :, :].repeat(N_supporting_views, 1, 1) & \ - pts_rendering_mask # [N_views, N_rays, n_samples] - else: - final_mask = pts_rendering_mask - # import ipdb; ipdb.set_trace() - z_diff, pts_pred_depth_masks = None, None - - if pred_depth_maps is not None: - pts_pred_depth_values = sample_ptsFeatures_from_featureMaps(pts, supporting_depth_maps, supporting_w2cs, - supporting_intrinsics, img_wh) - pts_pred_depth_values = pts_pred_depth_values.permute(0, 2, 3, - 1).contiguous() # (N_views, N_rays*n_samples, 1) - - # - pts_pred_depth_masks are critical than final_mask, - # - the ray containing few invalid pts will be treated invalid - pts_pred_depth_masks = sample_ptsFeatures_from_featureMaps(pts, supporting_depth_masks.float(), - supporting_w2cs, - supporting_intrinsics, img_wh) - - pts_pred_depth_masks = pts_pred_depth_masks.permute(0, 2, 3, 1).contiguous()[:, :, :, - 0] # (N_views, N_rays*n_samples) - - z_diff = self.compute_z_diff(pts, supporting_w2cs, supporting_intrinsics, pts_pred_depth_values) - # import ipdb; ipdb.set_trace() - return pts_geometry_feature, rgb_feats, ray_diff, final_mask, z_diff, pts_pred_depth_masks - - - def compute_view_independent( - self, - pts, - # * 3d geometry feature volumes - geometryVolume=None, - geometryVolumeMask=None, - sdf_network=None, - lod=0, - vol_dims=None, - partial_vol_origin=None, - vol_size=None, - # * 2d rendering feature maps - rendering_feature_maps=None, - color_maps=None, - w2cs=None, - target_candidate_w2cs=None, - intrinsics=None, - img_wh=None, - query_img_idx=0, # the index of the N_views dim for rendering - query_c2w=None, - pred_depth_maps=None, # no use here - pred_depth_masks=None # no use here - ): - """ - extract features of pts for rendering - :param pts: - :param geometryVolume: - :param vol_dims: - :param partial_vol_origin: - :param vol_size: - :param rendering_feature_maps: - :param color_maps: - :param w2cs: - :param intrinsics: - :param img_wh: - :param rendering_img_idx: by default, we render the first view of w2cs - :return: - """ - device = pts.device - c2ws = torch.inverse(w2cs) - - if len(pts.shape) == 2: - pts = pts[None, :, :] - - N_rays, n_samples, _ = pts.shape - N_views = rendering_feature_maps.shape[0] # shape (N_views, C, H, W) - - supporting_img_idxs = torch.LongTensor([x for x in range(N_views) if x != query_img_idx]).to(device) - query_img_idx = torch.LongTensor([query_img_idx]).to(device) - - if query_c2w is None and query_img_idx > -1: - query_c2w = torch.index_select(c2ws, 0, query_img_idx) - supporting_c2ws = torch.index_select(c2ws, 0, supporting_img_idxs) - supporting_w2cs = torch.index_select(w2cs, 0, supporting_img_idxs) - supporting_rendering_feature_maps = torch.index_select(rendering_feature_maps, 0, supporting_img_idxs) - supporting_color_maps = torch.index_select(color_maps, 0, supporting_img_idxs) - supporting_intrinsics = torch.index_select(intrinsics, 0, supporting_img_idxs) - - if pred_depth_maps is not None: - supporting_depth_maps = torch.index_select(pred_depth_maps, 0, supporting_img_idxs) - supporting_depth_masks = torch.index_select(pred_depth_masks, 0, supporting_img_idxs) - # print("N_supporting_views: ", N_views - 1) - N_supporting_views = N_views - 1 - else: - supporting_c2ws = c2ws - supporting_w2cs = w2cs - supporting_rendering_feature_maps = rendering_feature_maps - supporting_color_maps = color_maps - supporting_intrinsics = intrinsics - supporting_depth_maps = pred_depth_masks - supporting_depth_masks = pred_depth_masks - # print("N_supporting_views: ", N_views) - N_supporting_views = N_views - # import ipdb; ipdb.set_trace() - if geometryVolume is not None: - # * sample feature of pts from 3D feature volume - pts_geometry_feature, pts_geometry_masks_0 = sample_ptsFeatures_from_featureVolume( - pts, geometryVolume, vol_dims, - partial_vol_origin, vol_size) # [N_rays, n_samples, C], [N_rays, n_samples] - - if len(geometryVolumeMask.shape) == 3: - geometryVolumeMask = geometryVolumeMask[None, :, :, :] - - pts_geometry_masks_1, _ = sample_ptsFeatures_from_featureVolume( - pts, geometryVolumeMask.to(geometryVolume.dtype), vol_dims, - partial_vol_origin, vol_size) # [N_rays, n_samples, C] - - pts_geometry_masks = pts_geometry_masks_0 & (pts_geometry_masks_1[..., 0] > 0) - else: - pts_geometry_feature = None - pts_geometry_masks = None - - # * sample feature of pts from 2D feature maps - pts_rendering_feats, pts_rendering_mask = sample_ptsFeatures_from_featureMaps( - pts, supporting_rendering_feature_maps, supporting_w2cs, - supporting_intrinsics, img_wh, - return_mask=True) # [N_views, C, N_rays, n_samples], # [N_views, N_rays, n_samples] - - # * size (N_views, N_rays*n_samples, c) - pts_rendering_feats = pts_rendering_feats.permute(0, 2, 3, 1).contiguous() - - pts_rendering_colors = sample_ptsFeatures_from_featureMaps(pts, supporting_color_maps, supporting_w2cs, - supporting_intrinsics, img_wh) - # * size (N_views, N_rays*n_samples, c) - pts_rendering_colors = pts_rendering_colors.permute(0, 2, 3, 1).contiguous() - - rgb_feats = torch.cat([pts_rendering_colors, pts_rendering_feats], dim=-1) # [N_views, N_rays, n_samples, 3+c] - - # import ipdb; ipdb.set_trace() - - gradients = sdf_network.gradient( - pts.reshape(-1, 3), # pts.squeeze(0), - geometryVolume.unsqueeze(0), - lod=lod - ).squeeze() - - surface_normals = safe_l2_normalize(gradients, dim=-1) # [npts, 3] - # input normals - ren_ray_diff = self.compute_angle_view_independent( - xyz=pts, - surface_normals=surface_normals, - supporting_c2ws=supporting_c2ws - ) - - # # choose closest target view direction from 32 candidate views - # # choose the closest source view as view direction instead of the normals vectors - # pts2src_centers = safe_l2_normalize((supporting_c2ws[:, :3, 3].unsqueeze(1) - pts)) # [N_views, npts, 3] - - # cosine_distance = torch.sum(pts2src_centers * surface_normals, dim=-1, keepdim=True) # [N_views, npts, 1] - # # choose the largest cosine distance as the view direction - # max_idx = torch.argmax(cosine_distance, dim=0) # [npts, 1] - - # chosen_view_direction = pts2src_centers[max_idx.squeeze(), torch.arange(pts.shape[1]), :] # [npts, 3] - # ren_ray_diff = self.compute_angle_view_independent( - # xyz=pts, - # surface_normals=chosen_view_direction, - # supporting_c2ws=supporting_c2ws - # ) - - - - # # choose closest target view direction from 8 candidate views - # # choose the closest source view as view direction instead of the normals vectors - # target_candidate_c2ws = torch.inverse(target_candidate_w2cs) - # pts2src_centers = safe_l2_normalize((target_candidate_c2ws[:, :3, 3].unsqueeze(1) - pts)) # [N_views, npts, 3] - - # cosine_distance = torch.sum(pts2src_centers * surface_normals, dim=-1, keepdim=True) # [N_views, npts, 1] - # # choose the largest cosine distance as the view direction - # max_idx = torch.argmax(cosine_distance, dim=0) # [npts, 1] - - # chosen_view_direction = pts2src_centers[max_idx.squeeze(), torch.arange(pts.shape[1]), :] # [npts, 3] - # ren_ray_diff = self.compute_angle_view_independent( - # xyz=pts, - # surface_normals=chosen_view_direction, - # supporting_c2ws=supporting_c2ws - # ) - - - # ray_diff = self.compute_angle(pts, query_c2w, supporting_c2ws) # [N_views, N_rays, n_samples, 4] - # import ipdb; ipdb.set_trace() - - - # input_directions = safe_l2_normalize(pts) - # ren_ray_diff = self.compute_angle_view_independent( - # xyz=pts, - # surface_normals=input_directions, - # supporting_c2ws=supporting_c2ws - # ) - - if pts_geometry_masks is not None: - final_mask = pts_geometry_masks[None, :, :].repeat(N_supporting_views, 1, 1) & \ - pts_rendering_mask # [N_views, N_rays, n_samples] - else: - final_mask = pts_rendering_mask - # import ipdb; ipdb.set_trace() - z_diff, pts_pred_depth_masks = None, None - - if pred_depth_maps is not None: - pts_pred_depth_values = sample_ptsFeatures_from_featureMaps(pts, supporting_depth_maps, supporting_w2cs, - supporting_intrinsics, img_wh) - pts_pred_depth_values = pts_pred_depth_values.permute(0, 2, 3, - 1).contiguous() # (N_views, N_rays*n_samples, 1) - - # - pts_pred_depth_masks are critical than final_mask, - # - the ray containing few invalid pts will be treated invalid - pts_pred_depth_masks = sample_ptsFeatures_from_featureMaps(pts, supporting_depth_masks.float(), - supporting_w2cs, - supporting_intrinsics, img_wh) - - pts_pred_depth_masks = pts_pred_depth_masks.permute(0, 2, 3, 1).contiguous()[:, :, :, - 0] # (N_views, N_rays*n_samples) - - z_diff = self.compute_z_diff(pts, supporting_w2cs, supporting_intrinsics, pts_pred_depth_values) - # import ipdb; ipdb.set_trace() - return pts_geometry_feature, rgb_feats, ren_ray_diff, final_mask, z_diff, pts_pred_depth_masks diff --git a/One-2-3-45-master 2/reconstruction/models/rays.py b/One-2-3-45-master 2/reconstruction/models/rays.py deleted file mode 100644 index 98f871c951ade0edb53b8f377e22170817e342f8..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/reconstruction/models/rays.py +++ /dev/null @@ -1,320 +0,0 @@ -import os, torch -import numpy as np - -import torch.nn.functional as F - -def build_patch_offset(h_patch_size): - offsets = torch.arange(-h_patch_size, h_patch_size + 1) - return torch.stack(torch.meshgrid(offsets, offsets, indexing="ij")[::-1], dim=-1).view(1, -1, 2) # nb_pixels_patch * 2 - - -def gen_rays_from_single_image(H, W, image, intrinsic, c2w, depth=None, mask=None): - """ - generate rays in world space, for image image - :param H: - :param W: - :param intrinsics: [3,3] - :param c2ws: [4,4] - :return: - """ - device = image.device - ys, xs = torch.meshgrid(torch.linspace(0, H - 1, H), - torch.linspace(0, W - 1, W), indexing="ij") # pytorch's meshgrid has indexing='ij' - p = torch.stack([xs, ys, torch.ones_like(ys)], dim=-1) # H, W, 3 - - # normalized ndc uv coordinates, (-1, 1) - ndc_u = 2 * xs / (W - 1) - 1 - ndc_v = 2 * ys / (H - 1) - 1 - rays_ndc_uv = torch.stack([ndc_u, ndc_v], dim=-1).view(-1, 2).float().to(device) - - intrinsic_inv = torch.inverse(intrinsic) - - p = p.view(-1, 3).float().to(device) # N_rays, 3 - p = torch.matmul(intrinsic_inv[None, :3, :3], p[:, :, None]).squeeze() # N_rays, 3 - rays_v = p / torch.linalg.norm(p, ord=2, dim=-1, keepdim=True) # N_rays, 3 - rays_v = torch.matmul(c2w[None, :3, :3], rays_v[:, :, None]).squeeze() # N_rays, 3 - rays_o = c2w[None, :3, 3].expand(rays_v.shape) # N_rays, 3 - - image = image.permute(1, 2, 0) - color = image.view(-1, 3) - depth = depth.view(-1, 1) if depth is not None else None - mask = mask.view(-1, 1) if mask is not None else torch.ones([H * W, 1]).to(device) - sample = { - 'rays_o': rays_o, - 'rays_v': rays_v, - 'rays_ndc_uv': rays_ndc_uv, - 'rays_color': color, - # 'rays_depth': depth, - 'rays_mask': mask, - 'rays_norm_XYZ_cam': p # - XYZ_cam, before multiply depth - } - if depth is not None: - sample['rays_depth'] = depth - - return sample - - -def gen_random_rays_from_single_image(H, W, N_rays, image, intrinsic, c2w, depth=None, mask=None, dilated_mask=None, - importance_sample=False, h_patch_size=3): - """ - generate random rays in world space, for a single image - :param H: - :param W: - :param N_rays: - :param image: [3, H, W] - :param intrinsic: [3,3] - :param c2w: [4,4] - :param depth: [H, W] - :param mask: [H, W] - :return: - """ - device = image.device - - if dilated_mask is None: - dilated_mask = mask - - if not importance_sample: - pixels_x = torch.randint(low=0, high=W, size=[N_rays]) - pixels_y = torch.randint(low=0, high=H, size=[N_rays]) - elif importance_sample and dilated_mask is not None: # sample more pts in the valid mask regions - pixels_x_1 = torch.randint(low=0, high=W, size=[N_rays // 4]) - pixels_y_1 = torch.randint(low=0, high=H, size=[N_rays // 4]) - - ys, xs = torch.meshgrid(torch.linspace(0, H - 1, H), - torch.linspace(0, W - 1, W), indexing="ij") # pytorch's meshgrid has indexing='ij' - p = torch.stack([xs, ys], dim=-1) # H, W, 2 - - try: - p_valid = p[dilated_mask > 0] # [num, 2] - random_idx = torch.randint(low=0, high=p_valid.shape[0], size=[N_rays // 4 * 3]) - except: - print("dilated_mask.shape: ", dilated_mask.shape) - print("dilated_mask valid number", dilated_mask.sum()) - - raise ValueError("hhhh") - p_select = p_valid[random_idx] # [N_rays//2, 2] - pixels_x_2 = p_select[:, 0] - pixels_y_2 = p_select[:, 1] - - pixels_x = torch.cat([pixels_x_1, pixels_x_2], dim=0).to(torch.int64) - pixels_y = torch.cat([pixels_y_1, pixels_y_2], dim=0).to(torch.int64) - - # - crop patch from images - offsets = build_patch_offset(h_patch_size).to(device) - grid_patch = torch.stack([pixels_x, pixels_y], dim=-1).view(-1, 1, 2) + offsets.float() # [N_pts, Npx, 2] - patch_mask = (pixels_x > h_patch_size) * (pixels_x < (W - h_patch_size)) * (pixels_y > h_patch_size) * ( - pixels_y < H - h_patch_size) # [N_pts] - grid_patch_u = 2 * grid_patch[:, :, 0] / (W - 1) - 1 - grid_patch_v = 2 * grid_patch[:, :, 1] / (H - 1) - 1 - grid_patch_uv = torch.stack([grid_patch_u, grid_patch_v], dim=-1) # [N_pts, Npx, 2] - patch_color = F.grid_sample(image[None, :, :, :], grid_patch_uv[None, :, :, :], mode='bilinear', - padding_mode='zeros',align_corners=True)[0] # [3, N_pts, Npx] - patch_color = patch_color.permute(1, 2, 0).contiguous() - - # normalized ndc uv coordinates, (-1, 1) - ndc_u = 2 * pixels_x / (W - 1) - 1 - ndc_v = 2 * pixels_y / (H - 1) - 1 - rays_ndc_uv = torch.stack([ndc_u, ndc_v], dim=-1).view(-1, 2).float().to(device) - - image = image.permute(1, 2, 0) # H ,W, C - color = image[(pixels_y, pixels_x)] # N_rays, 3 - - if mask is not None: - mask = mask[(pixels_y, pixels_x)] # N_rays - patch_mask = patch_mask * mask # N_rays - mask = mask.view(-1, 1) - else: - mask = torch.ones([N_rays, 1]) - - if depth is not None: - depth = depth[(pixels_y, pixels_x)] # N_rays - depth = depth.view(-1, 1) - - intrinsic_inv = torch.inverse(intrinsic) - - p = torch.stack([pixels_x, pixels_y, torch.ones_like(pixels_y)], dim=-1).float().to(device) # N_rays, 3 - p = torch.matmul(intrinsic_inv[None, :3, :3], p[:, :, None]).squeeze() # N_rays, 3 - rays_v = p / torch.linalg.norm(p, ord=2, dim=-1, keepdim=True) # N_rays, 3 - rays_v = torch.matmul(c2w[None, :3, :3], rays_v[:, :, None]).squeeze() # N_rays, 3 - rays_o = c2w[None, :3, 3].expand(rays_v.shape) # N_rays, 3 - - sample = { - 'rays_o': rays_o, - 'rays_v': rays_v, - 'rays_ndc_uv': rays_ndc_uv, - 'rays_color': color, - # 'rays_depth': depth, - 'rays_mask': mask, - 'rays_norm_XYZ_cam': p, # - XYZ_cam, before multiply depth, - 'rays_patch_color': patch_color, - 'rays_patch_mask': patch_mask.view(-1, 1) - } - - if depth is not None: - sample['rays_depth'] = depth - - return sample - - -def gen_random_rays_of_patch_from_single_image(H, W, N_rays, num_neighboring_pts, patch_size, - image, intrinsic, c2w, depth=None, mask=None): - """ - generate random rays in world space, for a single image - sample rays from local patches - :param H: - :param W: - :param N_rays: the number of center rays of patches - :param image: [3, H, W] - :param intrinsic: [3,3] - :param c2w: [4,4] - :param depth: [H, W] - :param mask: [H, W] - :return: - """ - device = image.device - patch_radius_max = patch_size // 2 - - unit_u = 2 / (W - 1) - unit_v = 2 / (H - 1) - - pixels_x_center = torch.randint(low=patch_size, high=W - patch_size, size=[N_rays]) - pixels_y_center = torch.randint(low=patch_size, high=H - patch_size, size=[N_rays]) - - # normalized ndc uv coordinates, (-1, 1) - ndc_u_center = 2 * pixels_x_center / (W - 1) - 1 - ndc_v_center = 2 * pixels_y_center / (H - 1) - 1 - ndc_uv_center = torch.stack([ndc_u_center, ndc_v_center], dim=-1).view(-1, 2).float().to(device)[:, None, - :] # [N_rays, 1, 2] - - shift_u, shift_v = torch.rand([N_rays, num_neighboring_pts, 1]), torch.rand( - [N_rays, num_neighboring_pts, 1]) # uniform distribution of [0,1) - shift_u = 2 * (shift_u - 0.5) # mapping to [-1, 1) - shift_v = 2 * (shift_v - 0.5) - - # - avoid sample points which are too close to center point - shift_uv = torch.cat([(shift_u * patch_radius_max) * unit_u, (shift_v * patch_radius_max) * unit_v], - dim=-1) # [N_rays, num_npts, 2] - neighboring_pts_uv = ndc_uv_center + shift_uv # [N_rays, num_npts, 2] - - sampled_pts_uv = torch.cat([ndc_uv_center, neighboring_pts_uv], dim=1) # concat the center point - - # sample the gts - color = F.grid_sample(image[None, :, :, :], sampled_pts_uv[None, :, :, :], mode='bilinear', - align_corners=True)[0] # [3, N_rays, num_npts] - depth = F.grid_sample(depth[None, None, :, :], sampled_pts_uv[None, :, :, :], mode='bilinear', - align_corners=True)[0] # [1, N_rays, num_npts] - - mask = F.grid_sample(mask[None, None, :, :].to(torch.float32), sampled_pts_uv[None, :, :, :], mode='nearest', - align_corners=True).to(torch.int64)[0] # [1, N_rays, num_npts] - - intrinsic_inv = torch.inverse(intrinsic) - - sampled_pts_uv = sampled_pts_uv.view(N_rays * (1 + num_neighboring_pts), 2) - color = color.permute(1, 2, 0).contiguous().view(N_rays * (1 + num_neighboring_pts), 3) - depth = depth.permute(1, 2, 0).contiguous().view(N_rays * (1 + num_neighboring_pts), 1) - mask = mask.permute(1, 2, 0).contiguous().view(N_rays * (1 + num_neighboring_pts), 1) - - pixels_x = (sampled_pts_uv[:, 0] + 1) * (W - 1) / 2 - pixels_y = (sampled_pts_uv[:, 1] + 1) * (H - 1) / 2 - p = torch.stack([pixels_x, pixels_y, torch.ones_like(pixels_y)], dim=-1).float().to(device) # N_rays*num_pts, 3 - p = torch.matmul(intrinsic_inv[None, :3, :3], p[:, :, None]).squeeze() # N_rays*num_pts, 3 - rays_v = p / torch.linalg.norm(p, ord=2, dim=-1, keepdim=True) # N_rays*num_pts, 3 - rays_v = torch.matmul(c2w[None, :3, :3], rays_v[:, :, None]).squeeze() # N_rays*num_pts, 3 - rays_o = c2w[None, :3, 3].expand(rays_v.shape) # N_rays*num_pts, 3 - - sample = { - 'rays_o': rays_o, - 'rays_v': rays_v, - 'rays_ndc_uv': sampled_pts_uv, - 'rays_color': color, - 'rays_depth': depth, - 'rays_mask': mask, - # 'rays_norm_XYZ_cam': p # - XYZ_cam, before multiply depth - } - - return sample - - -def gen_random_rays_from_batch_images(H, W, N_rays, images, intrinsics, c2ws, depths=None, masks=None): - """ - - :param H: - :param W: - :param N_rays: - :param images: [B,3,H,W] - :param intrinsics: [B, 3, 3] - :param c2ws: [B, 4, 4] - :param depths: [B,H,W] - :param masks: [B,H,W] - :return: - """ - assert len(images.shape) == 4 - - rays_o = [] - rays_v = [] - rays_color = [] - rays_depth = [] - rays_mask = [] - for i in range(images.shape[0]): - sample = gen_random_rays_from_single_image(H, W, N_rays, images[i], intrinsics[i], c2ws[i], - depth=depths[i] if depths is not None else None, - mask=masks[i] if masks is not None else None) - rays_o.append(sample['rays_o']) - rays_v.append(sample['rays_v']) - rays_color.append(sample['rays_color']) - if depths is not None: - rays_depth.append(sample['rays_depth']) - if masks is not None: - rays_mask.append(sample['rays_mask']) - - sample = { - 'rays_o': torch.stack(rays_o, dim=0), # [batch, N_rays, 3] - 'rays_v': torch.stack(rays_v, dim=0), - 'rays_color': torch.stack(rays_color, dim=0), - 'rays_depth': torch.stack(rays_depth, dim=0) if depths is not None else None, - 'rays_mask': torch.stack(rays_mask, dim=0) if masks is not None else None - } - return sample - - -from scipy.spatial.transform import Rotation as Rot -from scipy.spatial.transform import Slerp - - -def gen_rays_between(c2w_0, c2w_1, intrinsic, ratio, H, W, resolution_level=1): - device = c2w_0.device - - l = resolution_level - tx = torch.linspace(0, W - 1, W // l) - ty = torch.linspace(0, H - 1, H // l) - pixels_x, pixels_y = torch.meshgrid(tx, ty, indexing="ij") - p = torch.stack([pixels_x, pixels_y, torch.ones_like(pixels_y)], dim=-1).to(device) # W, H, 3 - - intrinsic_inv = torch.inverse(intrinsic[:3, :3]) - p = torch.matmul(intrinsic_inv[None, None, :3, :3], p[:, :, :, None]).squeeze() # W, H, 3 - rays_v = p / torch.linalg.norm(p, ord=2, dim=-1, keepdim=True) # W, H, 3 - trans = c2w_0[:3, 3] * (1.0 - ratio) + c2w_1[:3, 3] * ratio - - pose_0 = c2w_0.detach().cpu().numpy() - pose_1 = c2w_1.detach().cpu().numpy() - pose_0 = np.linalg.inv(pose_0) - pose_1 = np.linalg.inv(pose_1) - rot_0 = pose_0[:3, :3] - rot_1 = pose_1[:3, :3] - rots = Rot.from_matrix(np.stack([rot_0, rot_1])) - key_times = [0, 1] - key_rots = [rot_0, rot_1] - slerp = Slerp(key_times, rots) - rot = slerp(ratio) - pose = np.diag([1.0, 1.0, 1.0, 1.0]) - pose = pose.astype(np.float32) - pose[:3, :3] = rot.as_matrix() - pose[:3, 3] = ((1.0 - ratio) * pose_0 + ratio * pose_1)[:3, 3] - pose = np.linalg.inv(pose) - - c2w = torch.from_numpy(pose).to(device) - rot = torch.from_numpy(pose[:3, :3]).cuda() - trans = torch.from_numpy(pose[:3, 3]).cuda() - rays_v = torch.matmul(rot[None, None, :3, :3], rays_v[:, :, :, None]).squeeze() # W, H, 3 - rays_o = trans[None, None, :3].expand(rays_v.shape) # W, H, 3 - return c2w, rays_o.transpose(0, 1).contiguous().view(-1, 3), rays_v.transpose(0, 1).contiguous().view(-1, 3) diff --git a/One-2-3-45-master 2/reconstruction/models/render_utils.py b/One-2-3-45-master 2/reconstruction/models/render_utils.py deleted file mode 100644 index c14d5761234a16a19ed10509f9f0972adaf04c9a..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/reconstruction/models/render_utils.py +++ /dev/null @@ -1,120 +0,0 @@ -import torch -import torch.nn as nn -import torch.nn.functional as F - -from ops.back_project import cam2pixel - - -def sample_pdf(bins, weights, n_samples, det=False): - ''' - :param bins: tensor of shape [N_rays, M+1], M is the number of bins - :param weights: tensor of shape [N_rays, M] - :param N_samples: number of samples along each ray - :param det: if True, will perform deterministic sampling - :return: [N_rays, N_samples] - ''' - device = weights.device - - weights = weights + 1e-5 # prevent nans - pdf = weights / torch.sum(weights, -1, keepdim=True) - cdf = torch.cumsum(pdf, -1) - cdf = torch.cat([torch.zeros_like(cdf[..., :1]).to(device), cdf], -1) - - # if bins.shape[1] != weights.shape[1]: # - minor modification, add this constraint - # cdf = torch.cat([torch.zeros_like(cdf[..., :1]).to(device), cdf], -1) - # Take uniform samples - if det: - u = torch.linspace(0. + 0.5 / n_samples, 1. - 0.5 / n_samples, steps=n_samples).to(device) - u = u.expand(list(cdf.shape[:-1]) + [n_samples]) - else: - u = torch.rand(list(cdf.shape[:-1]) + [n_samples]).to(device) - - # Invert CDF - u = u.contiguous() - # inds = searchsorted(cdf, u, side='right') - inds = torch.searchsorted(cdf, u, right=True) - - below = torch.max(torch.zeros_like(inds - 1), inds - 1) - above = torch.min((cdf.shape[-1] - 1) * torch.ones_like(inds), inds) - inds_g = torch.stack([below, above], -1) # (batch, n_samples, 2) - - matched_shape = [inds_g.shape[0], inds_g.shape[1], cdf.shape[-1]] - cdf_g = torch.gather(cdf.unsqueeze(1).expand(matched_shape), 2, inds_g) - bins_g = torch.gather(bins.unsqueeze(1).expand(matched_shape), 2, inds_g) - - denom = (cdf_g[..., 1] - cdf_g[..., 0]) - denom = torch.where(denom < 1e-5, torch.ones_like(denom), denom) - t = (u - cdf_g[..., 0]) / denom - samples = bins_g[..., 0] + t * (bins_g[..., 1] - bins_g[..., 0]) - - # pdb.set_trace() - return samples - - -def sample_ptsFeatures_from_featureVolume(pts, featureVolume, vol_dims=None, partial_vol_origin=None, vol_size=None): - """ - sample feature of pts_wrd from featureVolume, all in world space - :param pts: [N_rays, n_samples, 3] - :param featureVolume: [C,wX,wY,wZ] - :param vol_dims: [3] "3" for dimX, dimY, dimZ - :param partial_vol_origin: [3] - :return: pts_feature: [N_rays, n_samples, C] - :return: valid_mask: [N_rays] - """ - - N_rays, n_samples, _ = pts.shape - - if vol_dims is None: - pts_normalized = pts - else: - # normalized to (-1, 1) - pts_normalized = 2 * (pts - partial_vol_origin[None, None, :]) / (vol_size * (vol_dims[None, None, :] - 1)) - 1 - - valid_mask = (torch.abs(pts_normalized[:, :, 0]) < 1.0) & ( - torch.abs(pts_normalized[:, :, 1]) < 1.0) & ( - torch.abs(pts_normalized[:, :, 2]) < 1.0) # (N_rays, n_samples) - - pts_normalized = torch.flip(pts_normalized, dims=[-1]) # ! reverse the xyz for grid_sample - - # ! checked grid_sample, (x,y,z) is for (D,H,W), reverse for (W,H,D) - pts_feature = F.grid_sample(featureVolume[None, :, :, :, :], pts_normalized[None, None, :, :, :], - padding_mode='zeros', - align_corners=True).view(-1, N_rays, n_samples) # [C, N_rays, n_samples] - - pts_feature = pts_feature.permute(1, 2, 0) # [N_rays, n_samples, C] - return pts_feature, valid_mask - - -def sample_ptsFeatures_from_featureMaps(pts, featureMaps, w2cs, intrinsics, WH, proj_matrix=None, return_mask=False): - """ - sample features of pts from 2d feature maps - :param pts: [N_rays, N_samples, 3] - :param featureMaps: [N_views, C, H, W] - :param w2cs: [N_views, 4, 4] - :param intrinsics: [N_views, 3, 3] - :param proj_matrix: [N_views, 4, 4] - :param HW: - :return: - """ - # normalized to (-1, 1) - N_rays, n_samples, _ = pts.shape - N_views = featureMaps.shape[0] - - if proj_matrix is None: - proj_matrix = torch.matmul(intrinsics, w2cs[:, :3, :]) - - pts = pts.permute(2, 0, 1).contiguous().view(1, 3, N_rays, n_samples).repeat(N_views, 1, 1, 1) - pixel_grids = cam2pixel(pts, proj_matrix[:, :3, :3], proj_matrix[:, :3, 3:], - 'zeros', sizeH=WH[1], sizeW=WH[0]) # (nviews, N_rays, n_samples, 2) - - valid_mask = (torch.abs(pixel_grids[:, :, :, 0]) < 1.0) & ( - torch.abs(pixel_grids[:, :, :, 1]) < 1.00) # (nviews, N_rays, n_samples) - - pts_feature = F.grid_sample(featureMaps, pixel_grids, - padding_mode='zeros', - align_corners=True) # [N_views, C, N_rays, n_samples] - - if return_mask: - return pts_feature, valid_mask - else: - return pts_feature diff --git a/One-2-3-45-master 2/reconstruction/models/rendering_network.py b/One-2-3-45-master 2/reconstruction/models/rendering_network.py deleted file mode 100644 index b2c919703e0eea0e0e86f5781d2216b03879d3e2..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/reconstruction/models/rendering_network.py +++ /dev/null @@ -1,129 +0,0 @@ -# the codes are partly borrowed from IBRNet - -import torch -import torch.nn as nn -import torch.nn.functional as F - -torch._C._jit_set_profiling_executor(False) -torch._C._jit_set_profiling_mode(False) - - -# default tensorflow initialization of linear layers -def weights_init(m): - if isinstance(m, nn.Linear): - nn.init.kaiming_normal_(m.weight.data) - if m.bias is not None: - nn.init.zeros_(m.bias.data) - - -@torch.jit.script -def fused_mean_variance(x, weight): - mean = torch.sum(x * weight, dim=2, keepdim=True) - var = torch.sum(weight * (x - mean) ** 2, dim=2, keepdim=True) - return mean, var - - -class GeneralRenderingNetwork(nn.Module): - """ - This model is not sensitive to finetuning - """ - - def __init__(self, in_geometry_feat_ch=8, in_rendering_feat_ch=56, anti_alias_pooling=True): - super(GeneralRenderingNetwork, self).__init__() - - self.in_geometry_feat_ch = in_geometry_feat_ch - self.in_rendering_feat_ch = in_rendering_feat_ch - self.anti_alias_pooling = anti_alias_pooling - - if self.anti_alias_pooling: - self.s = nn.Parameter(torch.tensor(0.2), requires_grad=True) - activation_func = nn.ELU(inplace=True) - - self.ray_dir_fc = nn.Sequential(nn.Linear(4, 16), - activation_func, - nn.Linear(16, in_rendering_feat_ch + 3), - activation_func) - - self.base_fc = nn.Sequential(nn.Linear((in_rendering_feat_ch + 3) * 3 + in_geometry_feat_ch, 64), - activation_func, - nn.Linear(64, 32), - activation_func) - - self.vis_fc = nn.Sequential(nn.Linear(32, 32), - activation_func, - nn.Linear(32, 33), - activation_func, - ) - - self.vis_fc2 = nn.Sequential(nn.Linear(32, 32), - activation_func, - nn.Linear(32, 1), - nn.Sigmoid() - ) - - self.rgb_fc = nn.Sequential(nn.Linear(32 + 1 + 4, 16), - activation_func, - nn.Linear(16, 8), - activation_func, - nn.Linear(8, 1)) - - self.base_fc.apply(weights_init) - self.vis_fc2.apply(weights_init) - self.vis_fc.apply(weights_init) - self.rgb_fc.apply(weights_init) - - def forward(self, geometry_feat, rgb_feat, ray_diff, mask): - ''' - :param geometry_feat: geometry features indicates sdf [n_rays, n_samples, n_feat] - :param rgb_feat: rgbs and image features [n_views, n_rays, n_samples, n_feat] - :param ray_diff: ray direction difference [n_views, n_rays, n_samples, 4], first 3 channels are directions, - last channel is inner product - :param mask: mask for whether each projection is valid or not. [n_views, n_rays, n_samples] - :return: rgb and density output, [n_rays, n_samples, 4] - ''' - - rgb_feat = rgb_feat.permute(1, 2, 0, 3).contiguous() - ray_diff = ray_diff.permute(1, 2, 0, 3).contiguous() - mask = mask[:, :, :, None].permute(1, 2, 0, 3).contiguous() - num_views = rgb_feat.shape[2] - geometry_feat = geometry_feat[:, :, None, :].repeat(1, 1, num_views, 1) - - direction_feat = self.ray_dir_fc(ray_diff) - rgb_in = rgb_feat[..., :3] - rgb_feat = rgb_feat + direction_feat - - if self.anti_alias_pooling: - _, dot_prod = torch.split(ray_diff, [3, 1], dim=-1) - exp_dot_prod = torch.exp(torch.abs(self.s) * (dot_prod - 1)) - weight = (exp_dot_prod - torch.min(exp_dot_prod, dim=2, keepdim=True)[0]) * mask - weight = weight / (torch.sum(weight, dim=2, keepdim=True) + 1e-8) - else: - weight = mask / (torch.sum(mask, dim=2, keepdim=True) + 1e-8) - - # compute mean and variance across different views for each point - mean, var = fused_mean_variance(rgb_feat, weight) # [n_rays, n_samples, 1, n_feat] - globalfeat = torch.cat([mean, var], dim=-1) # [n_rays, n_samples, 1, 2*n_feat] - - x = torch.cat([geometry_feat, globalfeat.expand(-1, -1, num_views, -1), rgb_feat], - dim=-1) # [n_rays, n_samples, n_views, 3*n_feat+n_geo_feat] - x = self.base_fc(x) - - x_vis = self.vis_fc(x * weight) - x_res, vis = torch.split(x_vis, [x_vis.shape[-1] - 1, 1], dim=-1) - vis = torch.sigmoid(vis) * mask - x = x + x_res - vis = self.vis_fc2(x * vis) * mask - - # rgb computation - x = torch.cat([x, vis, ray_diff], dim=-1) - x = self.rgb_fc(x) - x = x.masked_fill(mask == 0, -1e9) - blending_weights_valid = F.softmax(x, dim=2) # color blending - rgb_out = torch.sum(rgb_in * blending_weights_valid, dim=2) - - mask = mask.detach().to(rgb_out.dtype) # [n_rays, n_samples, n_views, 1] - mask = torch.sum(mask, dim=2, keepdim=False) - mask = mask >= 2 # more than 2 views see the point - mask = torch.sum(mask.to(rgb_out.dtype), dim=1, keepdim=False) - valid_mask = mask > 8 # valid rays, more than 8 valid samples - return rgb_out, valid_mask # (N_rays, n_samples, 3), (N_rays, 1) diff --git a/One-2-3-45-master 2/reconstruction/models/sparse_neus_renderer.py b/One-2-3-45-master 2/reconstruction/models/sparse_neus_renderer.py deleted file mode 100644 index 96ffc7b547e0f83a177a81f36be38375d9cd26fb..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/reconstruction/models/sparse_neus_renderer.py +++ /dev/null @@ -1,985 +0,0 @@ -""" -The codes are heavily borrowed from NeuS -""" - -import os -import cv2 as cv -import torch -import torch.nn as nn -import torch.nn.functional as F -import numpy as np -import logging -import mcubes -from icecream import ic -from models.render_utils import sample_pdf - -from models.projector import Projector -from tsparse.torchsparse_utils import sparse_to_dense_channel - -from models.fast_renderer import FastRenderer - -from models.patch_projector import PatchProjector - - -class SparseNeuSRenderer(nn.Module): - """ - conditional neus render; - optimize on normalized world space; - warped by nn.Module to support DataParallel traning - """ - - def __init__(self, - rendering_network_outside, - sdf_network, - variance_network, - rendering_network, - n_samples, - n_importance, - n_outside, - perturb, - alpha_type='div', - conf=None - ): - super(SparseNeuSRenderer, self).__init__() - - self.conf = conf - self.base_exp_dir = conf['general.base_exp_dir'] - - # network setups - self.rendering_network_outside = rendering_network_outside - self.sdf_network = sdf_network - self.variance_network = variance_network - self.rendering_network = rendering_network - - self.n_samples = n_samples - self.n_importance = n_importance - self.n_outside = n_outside - self.perturb = perturb - self.alpha_type = alpha_type - - self.rendering_projector = Projector() # used to obtain features for generalized rendering - - self.h_patch_size = self.conf.get_int('model.h_patch_size', default=3) - self.patch_projector = PatchProjector(self.h_patch_size) - - self.ray_tracer = FastRenderer() # ray_tracer to extract depth maps from sdf_volume - - # - fitted rendering or general rendering - try: - self.if_fitted_rendering = self.sdf_network.if_fitted_rendering - except: - self.if_fitted_rendering = False - - def up_sample(self, rays_o, rays_d, z_vals, sdf, n_importance, inv_variance, - conditional_valid_mask_volume=None): - device = rays_o.device - batch_size, n_samples = z_vals.shape - pts = rays_o[:, None, :] + rays_d[:, None, :] * z_vals[..., :, None] # n_rays, n_samples, 3 - - if conditional_valid_mask_volume is not None: - pts_mask = self.get_pts_mask_for_conditional_volume(pts.view(-1, 3), conditional_valid_mask_volume) - pts_mask = pts_mask.reshape(batch_size, n_samples) - pts_mask = pts_mask[:, :-1] * pts_mask[:, 1:] # [batch_size, n_samples-1] - else: - pts_mask = torch.ones([batch_size, n_samples]).to(pts.device) - - sdf = sdf.reshape(batch_size, n_samples) - prev_sdf, next_sdf = sdf[:, :-1], sdf[:, 1:] - prev_z_vals, next_z_vals = z_vals[:, :-1], z_vals[:, 1:] - mid_sdf = (prev_sdf + next_sdf) * 0.5 - dot_val = None - if self.alpha_type == 'uniform': - dot_val = torch.ones([batch_size, n_samples - 1]) * -1.0 - else: - dot_val = (next_sdf - prev_sdf) / (next_z_vals - prev_z_vals + 1e-5) - prev_dot_val = torch.cat([torch.zeros([batch_size, 1]).to(device), dot_val[:, :-1]], dim=-1) - dot_val = torch.stack([prev_dot_val, dot_val], dim=-1) - dot_val, _ = torch.min(dot_val, dim=-1, keepdim=False) - dot_val = dot_val.clip(-10.0, 0.0) * pts_mask - dist = (next_z_vals - prev_z_vals) - prev_esti_sdf = mid_sdf - dot_val * dist * 0.5 - next_esti_sdf = mid_sdf + dot_val * dist * 0.5 - prev_cdf = torch.sigmoid(prev_esti_sdf * inv_variance) - next_cdf = torch.sigmoid(next_esti_sdf * inv_variance) - alpha_sdf = (prev_cdf - next_cdf + 1e-5) / (prev_cdf + 1e-5) - - alpha = alpha_sdf - - # - apply pts_mask - alpha = pts_mask * alpha - - weights = alpha * torch.cumprod( - torch.cat([torch.ones([batch_size, 1]).to(device), 1. - alpha + 1e-7], -1), -1)[:, :-1] - - z_samples = sample_pdf(z_vals, weights, n_importance, det=True).detach() - return z_samples - - def cat_z_vals(self, rays_o, rays_d, z_vals, new_z_vals, sdf, lod, - sdf_network, gru_fusion, - # * related to conditional feature - conditional_volume=None, - conditional_valid_mask_volume=None - ): - device = rays_o.device - batch_size, n_samples = z_vals.shape - _, n_importance = new_z_vals.shape - pts = rays_o[:, None, :] + rays_d[:, None, :] * new_z_vals[..., :, None] - - if conditional_valid_mask_volume is not None: - pts_mask = self.get_pts_mask_for_conditional_volume(pts.view(-1, 3), conditional_valid_mask_volume) - pts_mask = pts_mask.reshape(batch_size, n_importance) - pts_mask_bool = (pts_mask > 0).view(-1) - else: - pts_mask = torch.ones([batch_size, n_importance]).to(pts.device) - - new_sdf = torch.ones([batch_size * n_importance, 1]).to(pts.dtype).to(device) * 100 - - if torch.sum(pts_mask) > 1: - new_outputs = sdf_network.sdf(pts.reshape(-1, 3)[pts_mask_bool], conditional_volume, lod=lod) - new_sdf[pts_mask_bool] = new_outputs['sdf_pts_scale%d' % lod] # .reshape(batch_size, n_importance) - - new_sdf = new_sdf.view(batch_size, n_importance) - - z_vals = torch.cat([z_vals, new_z_vals], dim=-1) - sdf = torch.cat([sdf, new_sdf], dim=-1) - - z_vals, index = torch.sort(z_vals, dim=-1) - xx = torch.arange(batch_size)[:, None].expand(batch_size, n_samples + n_importance).reshape(-1) - index = index.reshape(-1) - sdf = sdf[(xx, index)].reshape(batch_size, n_samples + n_importance) - - return z_vals, sdf - - @torch.no_grad() - def get_pts_mask_for_conditional_volume(self, pts, mask_volume): - """ - - :param pts: [N, 3] - :param mask_volume: [1, 1, X, Y, Z] - :return: - """ - num_pts = pts.shape[0] - pts = pts.view(1, 1, 1, num_pts, 3) # - should be in range (-1, 1) - - pts = torch.flip(pts, dims=[-1]) - - pts_mask = F.grid_sample(mask_volume, pts, mode='nearest') # [1, c, 1, 1, num_pts] - pts_mask = pts_mask.view(-1, num_pts).permute(1, 0).contiguous() # [num_pts, 1] - - return pts_mask - - def render_core(self, - rays_o, - rays_d, - z_vals, - sample_dist, - lod, - sdf_network, - rendering_network, - background_alpha=None, # - no use here - background_sampled_color=None, # - no use here - background_rgb=None, # - no use here - alpha_inter_ratio=0.0, - # * related to conditional feature - conditional_volume=None, - conditional_valid_mask_volume=None, - # * 2d feature maps - feature_maps=None, - color_maps=None, - w2cs=None, - intrinsics=None, - img_wh=None, - query_c2w=None, # - used for testing - if_general_rendering=True, - if_render_with_grad=True, - # * used for blending mlp rendering network - img_index=None, - rays_uv=None, - # * used for clear bg and fg - bg_num=0 - ): - device = rays_o.device - N_rays = rays_o.shape[0] - _, n_samples = z_vals.shape - dists = z_vals[..., 1:] - z_vals[..., :-1] - dists = torch.cat([dists, torch.Tensor([sample_dist]).expand(dists[..., :1].shape).to(device)], -1) - - mid_z_vals = z_vals + dists * 0.5 - mid_dists = mid_z_vals[..., 1:] - mid_z_vals[..., :-1] - - pts = rays_o[:, None, :] + rays_d[:, None, :] * mid_z_vals[..., :, None] # n_rays, n_samples, 3 - dirs = rays_d[:, None, :].expand(pts.shape) - - pts = pts.reshape(-1, 3) - dirs = dirs.reshape(-1, 3) - - # * if conditional_volume is restored from sparse volume, need mask for pts - if conditional_valid_mask_volume is not None: - pts_mask = self.get_pts_mask_for_conditional_volume(pts, conditional_valid_mask_volume) - pts_mask = pts_mask.reshape(N_rays, n_samples).float().detach() - pts_mask_bool = (pts_mask > 0).view(-1) - - if torch.sum(pts_mask_bool.float()) < 1: # ! when render out image, may meet this problem - pts_mask_bool[:100] = True - - else: - pts_mask = torch.ones([N_rays, n_samples]).to(pts.device) - # import ipdb; ipdb.set_trace() - # pts_valid = pts[pts_mask_bool] - sdf_nn_output = sdf_network.sdf(pts[pts_mask_bool], conditional_volume, lod=lod) - - sdf = torch.ones([N_rays * n_samples, 1]).to(pts.dtype).to(device) * 100 - sdf[pts_mask_bool] = sdf_nn_output['sdf_pts_scale%d' % lod] # [N_rays*n_samples, 1] - feature_vector_valid = sdf_nn_output['sdf_features_pts_scale%d' % lod] - feature_vector = torch.zeros([N_rays * n_samples, feature_vector_valid.shape[1]]).to(pts.dtype).to(device) - feature_vector[pts_mask_bool] = feature_vector_valid - - # * estimate alpha from sdf - gradients = torch.zeros([N_rays * n_samples, 3]).to(pts.dtype).to(device) - # import ipdb; ipdb.set_trace() - gradients[pts_mask_bool] = sdf_network.gradient( - pts[pts_mask_bool], conditional_volume, lod=lod).squeeze() - - sampled_color_mlp = None - rendering_valid_mask_mlp = None - sampled_color_patch = None - rendering_patch_mask = None - - if self.if_fitted_rendering: # used for fine-tuning - position_latent = sdf_nn_output['sampled_latent_scale%d' % lod] - sampled_color_mlp = torch.zeros([N_rays * n_samples, 3]).to(pts.dtype).to(device) - sampled_color_mlp_mask = torch.zeros([N_rays * n_samples, 1]).to(pts.dtype).to(device) - - # - extract pixel - pts_pixel_color, pts_pixel_mask = self.patch_projector.pixel_warp( - pts[pts_mask_bool][:, None, :], color_maps, intrinsics, - w2cs, img_wh=None) # [N_rays * n_samples,1, N_views, 3] , [N_rays*n_samples, 1, N_views] - pts_pixel_color = pts_pixel_color[:, 0, :, :] # [N_rays * n_samples, N_views, 3] - pts_pixel_mask = pts_pixel_mask[:, 0, :] # [N_rays*n_samples, N_views] - - # - extract patch - if_patch_blending = False if rays_uv is None else True - pts_patch_color, pts_patch_mask = None, None - if if_patch_blending: - pts_patch_color, pts_patch_mask = self.patch_projector.patch_warp( - pts.reshape([N_rays, n_samples, 3]), - rays_uv, gradients.reshape([N_rays, n_samples, 3]), - color_maps, - intrinsics[0], intrinsics, - query_c2w[0], torch.inverse(w2cs), img_wh=None - ) # (N_rays, n_samples, N_src, Npx, 3), (N_rays, n_samples, N_src, Npx) - N_src, Npx = pts_patch_mask.shape[2:] - pts_patch_color = pts_patch_color.view(N_rays * n_samples, N_src, Npx, 3)[pts_mask_bool] - pts_patch_mask = pts_patch_mask.view(N_rays * n_samples, N_src, Npx)[pts_mask_bool] - - sampled_color_patch = torch.zeros([N_rays * n_samples, Npx, 3]).to(device) - sampled_color_patch_mask = torch.zeros([N_rays * n_samples, 1]).to(device) - - sampled_color_mlp_, sampled_color_mlp_mask_, \ - sampled_color_patch_, sampled_color_patch_mask_ = sdf_network.color_blend( - pts[pts_mask_bool], - position_latent, - gradients[pts_mask_bool], - dirs[pts_mask_bool], - feature_vector[pts_mask_bool], - img_index=img_index, - pts_pixel_color=pts_pixel_color, - pts_pixel_mask=pts_pixel_mask, - pts_patch_color=pts_patch_color, - pts_patch_mask=pts_patch_mask - - ) # [n, 3], [n, 1] - sampled_color_mlp[pts_mask_bool] = sampled_color_mlp_ - sampled_color_mlp_mask[pts_mask_bool] = sampled_color_mlp_mask_.float() - sampled_color_mlp = sampled_color_mlp.view(N_rays, n_samples, 3) - sampled_color_mlp_mask = sampled_color_mlp_mask.view(N_rays, n_samples) - rendering_valid_mask_mlp = torch.mean(pts_mask * sampled_color_mlp_mask, dim=-1, keepdim=True) > 0.5 - - # patch blending - if if_patch_blending: - sampled_color_patch[pts_mask_bool] = sampled_color_patch_ - sampled_color_patch_mask[pts_mask_bool] = sampled_color_patch_mask_.float() - sampled_color_patch = sampled_color_patch.view(N_rays, n_samples, Npx, 3) - sampled_color_patch_mask = sampled_color_patch_mask.view(N_rays, n_samples) - rendering_patch_mask = torch.mean(pts_mask * sampled_color_patch_mask, dim=-1, - keepdim=True) > 0.5 # [N_rays, 1] - else: - sampled_color_patch, rendering_patch_mask = None, None - - if if_general_rendering: # used for general training - # [512, 128, 16]; [4, 512, 128, 59]; [4, 512, 128, 4] - ren_geo_feats, ren_rgb_feats, ren_ray_diff, ren_mask, _, _ = self.rendering_projector.compute( - pts.view(N_rays, n_samples, 3), - # * 3d geometry feature volumes - geometryVolume=conditional_volume[0], - geometryVolumeMask=conditional_valid_mask_volume[0], - # * 2d rendering feature maps - rendering_feature_maps=feature_maps, # [n_views, 56, 256, 256] - color_maps=color_maps, - w2cs=w2cs, - intrinsics=intrinsics, - img_wh=img_wh, - query_img_idx=0, # the index of the N_views dim for rendering - query_c2w=query_c2w, - ) - - # (N_rays, n_samples, 3) - if if_render_with_grad: - # import ipdb; ipdb.set_trace() - # [nrays, 3] [nrays, 1] - sampled_color, rendering_valid_mask = rendering_network( - ren_geo_feats, ren_rgb_feats, ren_ray_diff, ren_mask) - # import ipdb; ipdb.set_trace() - else: - with torch.no_grad(): - sampled_color, rendering_valid_mask = rendering_network( - ren_geo_feats, ren_rgb_feats, ren_ray_diff, ren_mask) - else: - sampled_color, rendering_valid_mask = None, None - - inv_variance = self.variance_network(feature_vector)[:, :1].clip(1e-6, 1e6) - - true_dot_val = (dirs * gradients).sum(-1, keepdim=True) # * calculate - - iter_cos = -(F.relu(-true_dot_val * 0.5 + 0.5) * (1.0 - alpha_inter_ratio) + F.relu( - -true_dot_val) * alpha_inter_ratio) # always non-positive - - iter_cos = iter_cos * pts_mask.view(-1, 1) - - true_estimate_sdf_half_next = sdf + iter_cos.clip(-10.0, 10.0) * dists.reshape(-1, 1) * 0.5 - true_estimate_sdf_half_prev = sdf - iter_cos.clip(-10.0, 10.0) * dists.reshape(-1, 1) * 0.5 - - prev_cdf = torch.sigmoid(true_estimate_sdf_half_prev * inv_variance) - next_cdf = torch.sigmoid(true_estimate_sdf_half_next * inv_variance) - - p = prev_cdf - next_cdf - c = prev_cdf - - if self.alpha_type == 'div': - alpha_sdf = ((p + 1e-5) / (c + 1e-5)).reshape(N_rays, n_samples).clip(0.0, 1.0) - elif self.alpha_type == 'uniform': - uniform_estimate_sdf_half_next = sdf - dists.reshape(-1, 1) * 0.5 - uniform_estimate_sdf_half_prev = sdf + dists.reshape(-1, 1) * 0.5 - uniform_prev_cdf = torch.sigmoid(uniform_estimate_sdf_half_prev * inv_variance) - uniform_next_cdf = torch.sigmoid(uniform_estimate_sdf_half_next * inv_variance) - uniform_alpha = F.relu( - (uniform_prev_cdf - uniform_next_cdf + 1e-5) / (uniform_prev_cdf + 1e-5)).reshape( - N_rays, n_samples).clip(0.0, 1.0) - alpha_sdf = uniform_alpha - else: - assert False - - alpha = alpha_sdf - - # - apply pts_mask - alpha = alpha * pts_mask - - # pts_radius = torch.linalg.norm(pts, ord=2, dim=-1, keepdim=True).reshape(N_rays, n_samples) - # inside_sphere = (pts_radius < 1.0).float().detach() - # relax_inside_sphere = (pts_radius < 1.2).float().detach() - inside_sphere = pts_mask - relax_inside_sphere = pts_mask - - weights = alpha * torch.cumprod(torch.cat([torch.ones([N_rays, 1]).to(device), 1. - alpha + 1e-7], -1), -1)[:, - :-1] # n_rays, n_samples - weights_sum = weights.sum(dim=-1, keepdim=True) - alpha_sum = alpha.sum(dim=-1, keepdim=True) - - if bg_num > 0: - weights_sum_fg = weights[:, :-bg_num].sum(dim=-1, keepdim=True) - else: - weights_sum_fg = weights_sum - - if sampled_color is not None: - color = (sampled_color * weights[:, :, None]).sum(dim=1) - else: - color = None - # import ipdb; ipdb.set_trace() - - if background_rgb is not None and color is not None: - color = color + background_rgb * (1.0 - weights_sum) - # print("color device:" + str(color.device)) - # if color is not None: - # # import ipdb; ipdb.set_trace() - # color = color + (1.0 - weights_sum) - - - ###################* mlp color rendering ##################### - color_mlp = None - # import ipdb; ipdb.set_trace() - if sampled_color_mlp is not None: - color_mlp = (sampled_color_mlp * weights[:, :, None]).sum(dim=1) - - if background_rgb is not None and color_mlp is not None: - color_mlp = color_mlp + background_rgb * (1.0 - weights_sum) - - ############################ * patch blending ################ - blended_color_patch = None - if sampled_color_patch is not None: - blended_color_patch = (sampled_color_patch * weights[:, :, None, None]).sum(dim=1) # [N_rays, Npx, 3] - - ###################################################### - - gradient_error = (torch.linalg.norm(gradients.reshape(N_rays, n_samples, 3), ord=2, - dim=-1) - 1.0) ** 2 - # ! the gradient normal should be masked out, the pts out of the bounding box should also be penalized - gradient_error = (pts_mask * gradient_error).sum() / ( - (pts_mask).sum() + 1e-5) - - depth = (mid_z_vals * weights[:, :n_samples]).sum(dim=1, keepdim=True) - # print("[TEST]: weights_sum in render_core", weights_sum.mean()) - # print("[TEST]: weights_sum in render_core NAN number", weights_sum.isnan().sum()) - # if weights_sum.isnan().sum() > 0: - # import ipdb; ipdb.set_trace() - return { - 'color': color, - 'color_mask': rendering_valid_mask, # (N_rays, 1) - 'color_mlp': color_mlp, - 'color_mlp_mask': rendering_valid_mask_mlp, - 'sdf': sdf, # (N_rays, n_samples) - 'depth': depth, # (N_rays, 1) - 'dists': dists, - 'gradients': gradients.reshape(N_rays, n_samples, 3), - 'variance': 1.0 / inv_variance, - 'mid_z_vals': mid_z_vals, - 'weights': weights, - 'weights_sum': weights_sum, - 'alpha_sum': alpha_sum, - 'alpha_mean': alpha.mean(), - 'cdf': c.reshape(N_rays, n_samples), - 'gradient_error': gradient_error, - 'inside_sphere': inside_sphere, - 'blended_color_patch': blended_color_patch, - 'blended_color_patch_mask': rendering_patch_mask, - 'weights_sum_fg': weights_sum_fg - } - - def render(self, rays_o, rays_d, near, far, sdf_network, rendering_network, - perturb_overwrite=-1, - background_rgb=None, - alpha_inter_ratio=0.0, - # * related to conditional feature - lod=None, - conditional_volume=None, - conditional_valid_mask_volume=None, - # * 2d feature maps - feature_maps=None, - color_maps=None, - w2cs=None, - intrinsics=None, - img_wh=None, - query_c2w=None, # -used for testing - if_general_rendering=True, - if_render_with_grad=True, - # * used for blending mlp rendering network - img_index=None, - rays_uv=None, - # * importance sample for second lod network - pre_sample=False, # no use here - # * for clear foreground - bg_ratio=0.0 - ): - device = rays_o.device - N_rays = len(rays_o) - # sample_dist = 2.0 / self.n_samples - sample_dist = ((far - near) / self.n_samples).mean().item() - z_vals = torch.linspace(0.0, 1.0, self.n_samples).to(device) - z_vals = near + (far - near) * z_vals[None, :] - - bg_num = int(self.n_samples * bg_ratio) - - if z_vals.shape[0] == 1: - z_vals = z_vals.repeat(N_rays, 1) - - if bg_num > 0: - z_vals_bg = z_vals[:, self.n_samples - bg_num:] - z_vals = z_vals[:, :self.n_samples - bg_num] - - n_samples = self.n_samples - bg_num - perturb = self.perturb - - # - significantly speed up training, for the second lod network - if pre_sample: - z_vals = self.sample_z_vals_from_maskVolume(rays_o, rays_d, near, far, - conditional_valid_mask_volume) - - if perturb_overwrite >= 0: - perturb = perturb_overwrite - if perturb > 0: - # get intervals between samples - mids = .5 * (z_vals[..., 1:] + z_vals[..., :-1]) - upper = torch.cat([mids, z_vals[..., -1:]], -1) - lower = torch.cat([z_vals[..., :1], mids], -1) - # stratified samples in those intervals - t_rand = torch.rand(z_vals.shape).to(device) - z_vals = lower + (upper - lower) * t_rand - - background_alpha = None - background_sampled_color = None - z_val_before = z_vals.clone() - # Up sample - if self.n_importance > 0: - with torch.no_grad(): - pts = rays_o[:, None, :] + rays_d[:, None, :] * z_vals[..., :, None] - - sdf_outputs = sdf_network.sdf( - pts.reshape(-1, 3), conditional_volume, lod=lod) - # pdb.set_trace() - sdf = sdf_outputs['sdf_pts_scale%d' % lod].reshape(N_rays, self.n_samples - bg_num) - - n_steps = 4 - for i in range(n_steps): - new_z_vals = self.up_sample(rays_o, rays_d, z_vals, sdf, self.n_importance // n_steps, - 64 * 2 ** i, - conditional_valid_mask_volume=conditional_valid_mask_volume, - ) - - # if new_z_vals.isnan().sum() > 0: - # import ipdb; ipdb.set_trace() - - z_vals, sdf = self.cat_z_vals( - rays_o, rays_d, z_vals, new_z_vals, sdf, lod, - sdf_network, gru_fusion=False, - conditional_volume=conditional_volume, - conditional_valid_mask_volume=conditional_valid_mask_volume, - ) - - del sdf - - n_samples = self.n_samples + self.n_importance - - # Background - ret_outside = None - - # Render - if bg_num > 0: - z_vals = torch.cat([z_vals, z_vals_bg], dim=1) - # if z_vals.isnan().sum() > 0: - # import ipdb; ipdb.set_trace() - ret_fine = self.render_core(rays_o, - rays_d, - z_vals, - sample_dist, - lod, - sdf_network, - rendering_network, - background_rgb=background_rgb, - background_alpha=background_alpha, - background_sampled_color=background_sampled_color, - alpha_inter_ratio=alpha_inter_ratio, - # * related to conditional feature - conditional_volume=conditional_volume, - conditional_valid_mask_volume=conditional_valid_mask_volume, - # * 2d feature maps - feature_maps=feature_maps, - color_maps=color_maps, - w2cs=w2cs, - intrinsics=intrinsics, - img_wh=img_wh, - query_c2w=query_c2w, - if_general_rendering=if_general_rendering, - if_render_with_grad=if_render_with_grad, - # * used for blending mlp rendering network - img_index=img_index, - rays_uv=rays_uv - ) - - color_fine = ret_fine['color'] - - if self.n_outside > 0: - color_fine_mask = torch.logical_or(ret_fine['color_mask'], ret_outside['color_mask']) - else: - color_fine_mask = ret_fine['color_mask'] - - weights = ret_fine['weights'] - weights_sum = ret_fine['weights_sum'] - - gradients = ret_fine['gradients'] - mid_z_vals = ret_fine['mid_z_vals'] - - # depth = (mid_z_vals * weights[:, :n_samples]).sum(dim=1, keepdim=True) - depth = ret_fine['depth'] - depth_varaince = ((mid_z_vals - depth) ** 2 * weights[:, :n_samples]).sum(dim=-1, keepdim=True) - variance = ret_fine['variance'].reshape(N_rays, n_samples).mean(dim=-1, keepdim=True) - - # - randomly sample points from the volume, and maximize the sdf - pts_random = torch.rand([1024, 3]).float().to(device) * 2 - 1 # normalized to (-1, 1) - sdf_random = sdf_network.sdf(pts_random, conditional_volume, lod=lod)['sdf_pts_scale%d' % lod] - - result = { - 'depth': depth, - 'color_fine': color_fine, - 'color_fine_mask': color_fine_mask, - 'color_outside': ret_outside['color'] if ret_outside is not None else None, - 'color_outside_mask': ret_outside['color_mask'] if ret_outside is not None else None, - 'color_mlp': ret_fine['color_mlp'], - 'color_mlp_mask': ret_fine['color_mlp_mask'], - 'variance': variance.mean(), - 'cdf_fine': ret_fine['cdf'], - 'depth_variance': depth_varaince, - 'weights_sum': weights_sum, - 'weights_max': torch.max(weights, dim=-1, keepdim=True)[0], - 'alpha_sum': ret_fine['alpha_sum'].mean(), - 'alpha_mean': ret_fine['alpha_mean'], - 'gradients': gradients, - 'weights': weights, - 'gradient_error_fine': ret_fine['gradient_error'], - 'inside_sphere': ret_fine['inside_sphere'], - 'sdf': ret_fine['sdf'], - 'sdf_random': sdf_random, - 'blended_color_patch': ret_fine['blended_color_patch'], - 'blended_color_patch_mask': ret_fine['blended_color_patch_mask'], - 'weights_sum_fg': ret_fine['weights_sum_fg'] - } - - return result - - @torch.no_grad() - def sample_z_vals_from_sdfVolume(self, rays_o, rays_d, near, far, sdf_volume, mask_volume): - # ? based on sdf to do importance sampling, seems that too biased on pre-estimation - device = rays_o.device - N_rays = len(rays_o) - n_samples = self.n_samples * 2 - - z_vals = torch.linspace(0.0, 1.0, n_samples).to(device) - z_vals = near + (far - near) * z_vals[None, :] - - if z_vals.shape[0] == 1: - z_vals = z_vals.repeat(N_rays, 1) - - pts = rays_o[:, None, :] + rays_d[:, None, :] * z_vals[..., :, None] - - sdf = self.get_pts_mask_for_conditional_volume(pts.view(-1, 3), sdf_volume).reshape([N_rays, n_samples]) - - new_z_vals = self.up_sample(rays_o, rays_d, z_vals, sdf, self.n_samples, - 200, - conditional_valid_mask_volume=mask_volume, - ) - return new_z_vals - - @torch.no_grad() - def sample_z_vals_from_maskVolume(self, rays_o, rays_d, near, far, mask_volume): # don't use - device = rays_o.device - N_rays = len(rays_o) - n_samples = self.n_samples * 2 - - z_vals = torch.linspace(0.0, 1.0, n_samples).to(device) - z_vals = near + (far - near) * z_vals[None, :] - - if z_vals.shape[0] == 1: - z_vals = z_vals.repeat(N_rays, 1) - - mid_z_vals = (z_vals[:, 1:] + z_vals[:, :-1]) * 0.5 - - pts = rays_o[:, None, :] + rays_d[:, None, :] * mid_z_vals[..., :, None] - - pts_mask = self.get_pts_mask_for_conditional_volume(pts.view(-1, 3), mask_volume).reshape( - [N_rays, n_samples - 1]) - - # empty voxel set to 0.1, non-empty voxel set to 1 - weights = torch.where(pts_mask > 0, torch.ones_like(pts_mask).to(device), - 0.1 * torch.ones_like(pts_mask).to(device)) - - # sample more pts in non-empty voxels - z_samples = sample_pdf(z_vals, weights, self.n_samples, det=True).detach() - return z_samples - - @torch.no_grad() - def filter_pts_by_depthmaps(self, coords, pred_depth_maps, proj_matrices, - partial_vol_origin, voxel_size, - near, far, depth_interval, d_plane_nums): - """ - Use the pred_depthmaps to remove redundant pts (pruned by sdf, sdf always have two sides, the back side is useless) - :param coords: [n, 3] int coords - :param pred_depth_maps: [N_views, 1, h, w] - :param proj_matrices: [N_views, 4, 4] - :param partial_vol_origin: [3] - :param voxel_size: 1 - :param near: 1 - :param far: 1 - :param depth_interval: 1 - :param d_plane_nums: 1 - :return: - """ - device = pred_depth_maps.device - n_views, _, sizeH, sizeW = pred_depth_maps.shape - - if len(partial_vol_origin.shape) == 1: - partial_vol_origin = partial_vol_origin[None, :] - pts = coords * voxel_size + partial_vol_origin - - rs_grid = pts.unsqueeze(0).expand(n_views, -1, -1) - rs_grid = rs_grid.permute(0, 2, 1).contiguous() # [n_views, 3, n_pts] - nV = rs_grid.shape[-1] - rs_grid = torch.cat([rs_grid, torch.ones([n_views, 1, nV]).to(device)], dim=1) # [n_views, 4, n_pts] - - # Project grid - im_p = proj_matrices @ rs_grid # - transform world pts to image UV space # [n_views, 4, n_pts] - im_x, im_y, im_z = im_p[:, 0], im_p[:, 1], im_p[:, 2] - im_x = im_x / im_z - im_y = im_y / im_z - - im_grid = torch.stack([2 * im_x / (sizeW - 1) - 1, 2 * im_y / (sizeH - 1) - 1], dim=-1) - - im_grid = im_grid.view(n_views, 1, -1, 2) - sampled_depths = torch.nn.functional.grid_sample(pred_depth_maps, im_grid, mode='bilinear', - padding_mode='zeros', - align_corners=True)[:, 0, 0, :] # [n_views, n_pts] - sampled_depths_valid = (sampled_depths > 0.5 * near).float() - valid_d_min = (sampled_depths - d_plane_nums * depth_interval).clamp(near.item(), - far.item()) * sampled_depths_valid - valid_d_max = (sampled_depths + d_plane_nums * depth_interval).clamp(near.item(), - far.item()) * sampled_depths_valid - - mask = im_grid.abs() <= 1 - mask = mask[:, 0] # [n_views, n_pts, 2] - mask = (mask.sum(dim=-1) == 2) & (im_z > valid_d_min) & (im_z < valid_d_max) - - mask = mask.view(n_views, -1) - mask = mask.permute(1, 0).contiguous() # [num_pts, nviews] - - mask_final = torch.sum(mask.float(), dim=1, keepdim=False) > 0 - - return mask_final - - @torch.no_grad() - def get_valid_sparse_coords_by_sdf_depthfilter(self, sdf_volume, coords_volume, mask_volume, feature_volume, - pred_depth_maps, proj_matrices, - partial_vol_origin, voxel_size, - near, far, depth_interval, d_plane_nums, - threshold=0.02, maximum_pts=110000): - """ - assume batch size == 1, from the first lod to get sparse voxels - :param sdf_volume: [1, X, Y, Z] - :param coords_volume: [3, X, Y, Z] - :param mask_volume: [1, X, Y, Z] - :param feature_volume: [C, X, Y, Z] - :param threshold: - :return: - """ - device = coords_volume.device - _, dX, dY, dZ = coords_volume.shape - - def prune(sdf_pts, coords_pts, mask_volume, threshold): - occupancy_mask = (torch.abs(sdf_pts) < threshold).squeeze(1) # [num_pts] - valid_coords = coords_pts[occupancy_mask] - - # - filter backside surface by depth maps - mask_filtered = self.filter_pts_by_depthmaps(valid_coords, pred_depth_maps, proj_matrices, - partial_vol_origin, voxel_size, - near, far, depth_interval, d_plane_nums) - valid_coords = valid_coords[mask_filtered] - - # - dilate - occupancy_mask = sparse_to_dense_channel(valid_coords, 1, [dX, dY, dZ], 1, 0, device) # [dX, dY, dZ, 1] - - # - dilate - occupancy_mask = occupancy_mask.float() - occupancy_mask = occupancy_mask.view(1, 1, dX, dY, dZ) - occupancy_mask = F.avg_pool3d(occupancy_mask, kernel_size=7, stride=1, padding=3) - occupancy_mask = occupancy_mask.view(-1, 1) > 0 - - final_mask = torch.logical_and(mask_volume, occupancy_mask)[:, 0] # [num_pts] - - return final_mask, torch.sum(final_mask.float()) - - C, dX, dY, dZ = feature_volume.shape - sdf_volume = sdf_volume.permute(1, 2, 3, 0).contiguous().view(-1, 1) - coords_volume = coords_volume.permute(1, 2, 3, 0).contiguous().view(-1, 3) - mask_volume = mask_volume.permute(1, 2, 3, 0).contiguous().view(-1, 1) - feature_volume = feature_volume.permute(1, 2, 3, 0).contiguous().view(-1, C) - - # - for check - # sdf_volume = torch.rand_like(sdf_volume).float().to(sdf_volume.device) * 0.02 - - final_mask, valid_num = prune(sdf_volume, coords_volume, mask_volume, threshold) - - while (valid_num > maximum_pts) and (threshold > 0.003): - threshold = threshold - 0.002 - final_mask, valid_num = prune(sdf_volume, coords_volume, mask_volume, threshold) - - valid_coords = coords_volume[final_mask] # [N, 3] - valid_feature = feature_volume[final_mask] # [N, C] - - valid_coords = torch.cat([torch.ones([valid_coords.shape[0], 1]).to(valid_coords.device) * 0, - valid_coords], dim=1) # [N, 4], append batch idx - - # ! if the valid_num is still larger than maximum_pts, sample part of pts - if valid_num > maximum_pts: - valid_num = valid_num.long() - occupancy = torch.ones([valid_num]).to(device) > 0 - choice = np.random.choice(valid_num.cpu().numpy(), valid_num.cpu().numpy() - maximum_pts, - replace=False) - ind = torch.nonzero(occupancy).to(device) - occupancy[ind[choice]] = False - valid_coords = valid_coords[occupancy] - valid_feature = valid_feature[occupancy] - - print(threshold, "randomly sample to save memory") - - return valid_coords, valid_feature - - @torch.no_grad() - def get_valid_sparse_coords_by_sdf(self, sdf_volume, coords_volume, mask_volume, feature_volume, threshold=0.02, - maximum_pts=110000): - """ - assume batch size == 1, from the first lod to get sparse voxels - :param sdf_volume: [num_pts, 1] - :param coords_volume: [3, X, Y, Z] - :param mask_volume: [1, X, Y, Z] - :param feature_volume: [C, X, Y, Z] - :param threshold: - :return: - """ - - def prune(sdf_volume, mask_volume, threshold): - occupancy_mask = torch.abs(sdf_volume) < threshold # [num_pts, 1] - - # - dilate - occupancy_mask = occupancy_mask.float() - occupancy_mask = occupancy_mask.view(1, 1, dX, dY, dZ) - occupancy_mask = F.avg_pool3d(occupancy_mask, kernel_size=7, stride=1, padding=3) - occupancy_mask = occupancy_mask.view(-1, 1) > 0 - - final_mask = torch.logical_and(mask_volume, occupancy_mask)[:, 0] # [num_pts] - - return final_mask, torch.sum(final_mask.float()) - - C, dX, dY, dZ = feature_volume.shape - coords_volume = coords_volume.permute(1, 2, 3, 0).contiguous().view(-1, 3) - mask_volume = mask_volume.permute(1, 2, 3, 0).contiguous().view(-1, 1) - feature_volume = feature_volume.permute(1, 2, 3, 0).contiguous().view(-1, C) - - final_mask, valid_num = prune(sdf_volume, mask_volume, threshold) - - while (valid_num > maximum_pts) and (threshold > 0.003): - threshold = threshold - 0.002 - final_mask, valid_num = prune(sdf_volume, mask_volume, threshold) - - valid_coords = coords_volume[final_mask] # [N, 3] - valid_feature = feature_volume[final_mask] # [N, C] - - valid_coords = torch.cat([torch.ones([valid_coords.shape[0], 1]).to(valid_coords.device) * 0, - valid_coords], dim=1) # [N, 4], append batch idx - - # ! if the valid_num is still larger than maximum_pts, sample part of pts - if valid_num > maximum_pts: - device = sdf_volume.device - valid_num = valid_num.long() - occupancy = torch.ones([valid_num]).to(device) > 0 - choice = np.random.choice(valid_num.cpu().numpy(), valid_num.cpu().numpy() - maximum_pts, - replace=False) - ind = torch.nonzero(occupancy).to(device) - occupancy[ind[choice]] = False - valid_coords = valid_coords[occupancy] - valid_feature = valid_feature[occupancy] - - print(threshold, "randomly sample to save memory") - - return valid_coords, valid_feature - - @torch.no_grad() - def extract_fields(self, bound_min, bound_max, resolution, query_func, device, - # * related to conditional feature - **kwargs - ): - N = 64 - X = torch.linspace(bound_min[0], bound_max[0], resolution).to(device).split(N) - Y = torch.linspace(bound_min[1], bound_max[1], resolution).to(device).split(N) - Z = torch.linspace(bound_min[2], bound_max[2], resolution).to(device).split(N) - - u = np.zeros([resolution, resolution, resolution], dtype=np.float32) - with torch.no_grad(): - for xi, xs in enumerate(X): - for yi, ys in enumerate(Y): - for zi, zs in enumerate(Z): - xx, yy, zz = torch.meshgrid(xs, ys, zs, indexing="ij") - pts = torch.cat([xx.reshape(-1, 1), yy.reshape(-1, 1), zz.reshape(-1, 1)], dim=-1) - - # ! attention, the query function is different for extract geometry and fields - output = query_func(pts, **kwargs) - sdf = output['sdf_pts_scale%d' % kwargs['lod']].reshape(len(xs), len(ys), - len(zs)).detach().cpu().numpy() - - u[xi * N: xi * N + len(xs), yi * N: yi * N + len(ys), zi * N: zi * N + len(zs)] = -1 * sdf - return u - - @torch.no_grad() - def extract_geometry(self, sdf_network, bound_min, bound_max, resolution, threshold, device, occupancy_mask=None, - # * 3d feature volume - **kwargs - ): - # logging.info('threshold: {}'.format(threshold)) - - u = self.extract_fields(bound_min, bound_max, resolution, - lambda pts, **kwargs: sdf_network.sdf(pts, **kwargs), - # - sdf need to be multiplied by -1 - device, - # * 3d feature volume - **kwargs - ) - if occupancy_mask is not None: - dX, dY, dZ = occupancy_mask.shape - empty_mask = 1 - occupancy_mask - empty_mask = empty_mask.view(1, 1, dX, dY, dZ) - # - dilation - # empty_mask = F.avg_pool3d(empty_mask, kernel_size=7, stride=1, padding=3) - empty_mask = F.interpolate(empty_mask, [resolution, resolution, resolution], mode='nearest') - empty_mask = empty_mask.view(resolution, resolution, resolution).cpu().numpy() > 0 - u[empty_mask] = -100 - del empty_mask - - vertices, triangles = mcubes.marching_cubes(u, threshold) - b_max_np = bound_max.detach().cpu().numpy() - b_min_np = bound_min.detach().cpu().numpy() - - vertices = vertices / (resolution - 1.0) * (b_max_np - b_min_np)[None, :] + b_min_np[None, :] - return vertices, triangles, u - - @torch.no_grad() - def extract_depth_maps(self, sdf_network, con_volume, intrinsics, c2ws, H, W, near, far): - """ - extract depth maps from the density volume - :param con_volume: [1, 1+C, dX, dY, dZ] can by con_volume or sdf_volume - :param c2ws: [B, 4, 4] - :param H: - :param W: - :param near: - :param far: - :return: - """ - device = con_volume.device - batch_size = intrinsics.shape[0] - - with torch.no_grad(): - ys, xs = torch.meshgrid(torch.linspace(0, H - 1, H), - torch.linspace(0, W - 1, W), indexing="ij") # pytorch's meshgrid has indexing='ij' - p = torch.stack([xs, ys, torch.ones_like(ys)], dim=-1) # H, W, 3 - - intrinsics_inv = torch.inverse(intrinsics) - - p = p.view(-1, 3).float().to(device) # N_rays, 3 - p = torch.matmul(intrinsics_inv[:, None, :3, :3], p[:, :, None]).squeeze() # Batch, N_rays, 3 - rays_v = p / torch.linalg.norm(p, ord=2, dim=-1, keepdim=True) # Batch, N_rays, 3 - rays_v = torch.matmul(c2ws[:, None, :3, :3], rays_v[:, :, :, None]).squeeze() # Batch, N_rays, 3 - rays_o = c2ws[:, None, :3, 3].expand(rays_v.shape) # Batch, N_rays, 3 - rays_d = rays_v - - rays_o = rays_o.contiguous().view(-1, 3) - rays_d = rays_d.contiguous().view(-1, 3) - - ################## - sphere tracer to extract depth maps ###################### - depth_masks_sphere, depth_maps_sphere = self.ray_tracer.extract_depth_maps( - rays_o, rays_d, - near[None, :].repeat(rays_o.shape[0], 1), - far[None, :].repeat(rays_o.shape[0], 1), - sdf_network, con_volume - ) - - depth_maps = depth_maps_sphere.view(batch_size, 1, H, W) - depth_masks = depth_masks_sphere.view(batch_size, 1, H, W) - - depth_maps = torch.where(depth_masks, depth_maps, - torch.zeros_like(depth_masks.float()).to(device)) # fill invalid pixels by 0 - - return depth_maps, depth_masks diff --git a/One-2-3-45-master 2/reconstruction/models/sparse_sdf_network.py b/One-2-3-45-master 2/reconstruction/models/sparse_sdf_network.py deleted file mode 100644 index 817f40ed08b7cb65fb284a4666d6f6a4a3c52683..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/reconstruction/models/sparse_sdf_network.py +++ /dev/null @@ -1,907 +0,0 @@ -import numpy as np -import torch -import torch.nn as nn -import torch.nn.functional as F -from torchsparse.tensor import PointTensor, SparseTensor -import torchsparse.nn as spnn - -from tsparse.modules import SparseCostRegNet -from tsparse.torchsparse_utils import sparse_to_dense_channel -from ops.grid_sampler import grid_sample_3d, tricubic_sample_3d - -# from .gru_fusion import GRUFusion -from ops.back_project import back_project_sparse_type -from ops.generate_grids import generate_grid - -from inplace_abn import InPlaceABN - -from models.embedder import Embedding -from models.featurenet import ConvBnReLU - -import pdb -import random - -torch._C._jit_set_profiling_executor(False) -torch._C._jit_set_profiling_mode(False) - - -@torch.jit.script -def fused_mean_variance(x, weight): - mean = torch.sum(x * weight, dim=1, keepdim=True) - var = torch.sum(weight * (x - mean) ** 2, dim=1, keepdim=True) - return mean, var - - -class LatentSDFLayer(nn.Module): - def __init__(self, - d_in=3, - d_out=129, - d_hidden=128, - n_layers=4, - skip_in=(4,), - multires=0, - bias=0.5, - geometric_init=True, - weight_norm=True, - activation='softplus', - d_conditional_feature=16): - super(LatentSDFLayer, self).__init__() - - self.d_conditional_feature = d_conditional_feature - - # concat latent code for ench layer input excepting the first layer and the last layer - dims_in = [d_in] + [d_hidden + d_conditional_feature for _ in range(n_layers - 2)] + [d_hidden] - dims_out = [d_hidden for _ in range(n_layers - 1)] + [d_out] - - self.embed_fn_fine = None - - if multires > 0: - embed_fn = Embedding(in_channels=d_in, N_freqs=multires) # * include the input - self.embed_fn_fine = embed_fn - dims_in[0] = embed_fn.out_channels - - self.num_layers = n_layers - self.skip_in = skip_in - - for l in range(0, self.num_layers - 1): - if l in self.skip_in: - in_dim = dims_in[l] + dims_in[0] - else: - in_dim = dims_in[l] - - out_dim = dims_out[l] - lin = nn.Linear(in_dim, out_dim) - - if geometric_init: # - from IDR code, - if l == self.num_layers - 2: - torch.nn.init.normal_(lin.weight, mean=np.sqrt(np.pi) / np.sqrt(in_dim), std=0.0001) - torch.nn.init.constant_(lin.bias, -bias) - # the channels for latent codes are set to 0 - torch.nn.init.constant_(lin.weight[:, -d_conditional_feature:], 0.0) - torch.nn.init.constant_(lin.bias[-d_conditional_feature:], 0.0) - - elif multires > 0 and l == 0: # the first layer - torch.nn.init.constant_(lin.bias, 0.0) - # * the channels for position embeddings are set to 0 - torch.nn.init.constant_(lin.weight[:, 3:], 0.0) - # * the channels for the xyz coordinate (3 channels) for initialized by normal distribution - torch.nn.init.normal_(lin.weight[:, :3], 0.0, np.sqrt(2) / np.sqrt(out_dim)) - elif multires > 0 and l in self.skip_in: - torch.nn.init.constant_(lin.bias, 0.0) - torch.nn.init.normal_(lin.weight, 0.0, np.sqrt(2) / np.sqrt(out_dim)) - # * the channels for position embeddings (and conditional_feature) are initialized to 0 - torch.nn.init.constant_(lin.weight[:, -(dims_in[0] - 3 + d_conditional_feature):], 0.0) - else: - torch.nn.init.constant_(lin.bias, 0.0) - torch.nn.init.normal_(lin.weight, 0.0, np.sqrt(2) / np.sqrt(out_dim)) - # the channels for latent code are initialized to 0 - torch.nn.init.constant_(lin.weight[:, -d_conditional_feature:], 0.0) - - if weight_norm: - lin = nn.utils.weight_norm(lin) - - setattr(self, "lin" + str(l), lin) - - if activation == 'softplus': - self.activation = nn.Softplus(beta=100) - else: - assert activation == 'relu' - self.activation = nn.ReLU() - - def forward(self, inputs, latent): - inputs = inputs - if self.embed_fn_fine is not None: - inputs = self.embed_fn_fine(inputs) - - # - only for lod1 network can use the pretrained params of lod0 network - if latent.shape[1] != self.d_conditional_feature: - latent = torch.cat([latent, latent], dim=1) - - x = inputs - for l in range(0, self.num_layers - 1): - lin = getattr(self, "lin" + str(l)) - - # * due to the conditional bias, different from original neus version - if l in self.skip_in: - x = torch.cat([x, inputs], 1) / np.sqrt(2) - - if 0 < l < self.num_layers - 1: - x = torch.cat([x, latent], 1) - - x = lin(x) - - if l < self.num_layers - 2: - x = self.activation(x) - - return x - - -class SparseSdfNetwork(nn.Module): - ''' - Coarse-to-fine sparse cost regularization network - return sparse volume feature for extracting sdf - ''' - - def __init__(self, lod, ch_in, voxel_size, vol_dims, - hidden_dim=128, activation='softplus', - cost_type='variance_mean', - d_pyramid_feature_compress=16, - regnet_d_out=8, num_sdf_layers=4, - multires=6, - ): - super(SparseSdfNetwork, self).__init__() - - self.lod = lod # - gradually training, the current regularization lod - self.ch_in = ch_in - self.voxel_size = voxel_size # - the voxel size of the current volume - self.vol_dims = torch.tensor(vol_dims) # - the dims of the current volume - - self.selected_views_num = 2 # the number of selected views for feature aggregation - self.hidden_dim = hidden_dim - self.activation = activation - self.cost_type = cost_type - self.d_pyramid_feature_compress = d_pyramid_feature_compress - self.gru_fusion = None - - self.regnet_d_out = regnet_d_out - self.multires = multires - - self.pos_embedder = Embedding(3, self.multires) - - self.compress_layer = ConvBnReLU( - self.ch_in, self.d_pyramid_feature_compress, 3, 1, 1, - norm_act=InPlaceABN) - sparse_ch_in = self.d_pyramid_feature_compress * 2 - - sparse_ch_in = sparse_ch_in + 16 if self.lod > 0 else sparse_ch_in - self.sparse_costreg_net = SparseCostRegNet( - d_in=sparse_ch_in, d_out=self.regnet_d_out) - # self.regnet_d_out = self.sparse_costreg_net.d_out - - if activation == 'softplus': - self.activation = nn.Softplus(beta=100) - else: - assert activation == 'relu' - self.activation = nn.ReLU() - - self.sdf_layer = LatentSDFLayer(d_in=3, - d_out=self.hidden_dim + 1, - d_hidden=self.hidden_dim, - n_layers=num_sdf_layers, - multires=multires, - geometric_init=True, - weight_norm=True, - activation=activation, - d_conditional_feature=16 # self.regnet_d_out - ) - - def upsample(self, pre_feat, pre_coords, interval, num=8): - ''' - - :param pre_feat: (Tensor), features from last level, (N, C) - :param pre_coords: (Tensor), coordinates from last level, (N, 4) (4 : Batch ind, x, y, z) - :param interval: interval of voxels, interval = scale ** 2 - :param num: 1 -> 8 - :return: up_feat : (Tensor), upsampled features, (N*8, C) - :return: up_coords: (N*8, 4), upsampled coordinates, (4 : Batch ind, x, y, z) - ''' - with torch.no_grad(): - pos_list = [1, 2, 3, [1, 2], [1, 3], [2, 3], [1, 2, 3]] - n, c = pre_feat.shape - up_feat = pre_feat.unsqueeze(1).expand(-1, num, -1).contiguous() - up_coords = pre_coords.unsqueeze(1).repeat(1, num, 1).contiguous() - for i in range(num - 1): - up_coords[:, i + 1, pos_list[i]] += interval - - up_feat = up_feat.view(-1, c) - up_coords = up_coords.view(-1, 4) - - return up_feat, up_coords - - def aggregate_multiview_features(self, multiview_features, multiview_masks): - """ - aggregate mutli-view features by compute their cost variance - :param multiview_features: (num of voxels, num_of_views, c) - :param multiview_masks: (num of voxels, num_of_views) - :return: - """ - num_pts, n_views, C = multiview_features.shape - - counts = torch.sum(multiview_masks, dim=1, keepdim=False) # [num_pts] - - assert torch.all(counts > 0) # the point is visible for at least 1 view - - volume_sum = torch.sum(multiview_features, dim=1, keepdim=False) # [num_pts, C] - volume_sq_sum = torch.sum(multiview_features ** 2, dim=1, keepdim=False) - - if volume_sum.isnan().sum() > 0: - import ipdb; ipdb.set_trace() - - del multiview_features - - counts = 1. / (counts + 1e-5) - costvar = volume_sq_sum * counts[:, None] - (volume_sum * counts[:, None]) ** 2 - - costvar_mean = torch.cat([costvar, volume_sum * counts[:, None]], dim=1) - del volume_sum, volume_sq_sum, counts - - - - return costvar_mean - - def sparse_to_dense_volume(self, coords, feature, vol_dims, interval, device=None): - """ - convert the sparse volume into dense volume to enable trilinear sampling - to save GPU memory; - :param coords: [num_pts, 3] - :param feature: [num_pts, C] - :param vol_dims: [3] dX, dY, dZ - :param interval: - :return: - """ - - # * assume batch size is 1 - if device is None: - device = feature.device - - coords_int = (coords / interval).to(torch.int64) - vol_dims = (vol_dims / interval).to(torch.int64) - - # - if stored in CPU, too slow - dense_volume = sparse_to_dense_channel( - coords_int.to(device), feature.to(device), vol_dims.to(device), - feature.shape[1], 0, device) # [X, Y, Z, C] - - valid_mask_volume = sparse_to_dense_channel( - coords_int.to(device), - torch.ones([feature.shape[0], 1]).to(feature.device), - vol_dims.to(device), - 1, 0, device) # [X, Y, Z, 1] - - dense_volume = dense_volume.permute(3, 0, 1, 2).contiguous().unsqueeze(0) # [1, C, X, Y, Z] - valid_mask_volume = valid_mask_volume.permute(3, 0, 1, 2).contiguous().unsqueeze(0) # [1, 1, X, Y, Z] - - return dense_volume, valid_mask_volume - - def get_conditional_volume(self, feature_maps, partial_vol_origin, proj_mats, sizeH=None, sizeW=None, lod=0, - pre_coords=None, pre_feats=None, - ): - """ - - :param feature_maps: pyramid features (B,V,C0+C1+C2,H,W) fused pyramid features - :param partial_vol_origin: [B, 3] the world coordinates of the volume origin (0,0,0) - :param proj_mats: projection matrix transform world pts into image space [B,V,4,4] suitable for original image size - :param sizeH: the H of original image size - :param sizeW: the W of original image size - :param pre_coords: the coordinates of sparse volume from the prior lod - :param pre_feats: the features of sparse volume from the prior lod - :return: - """ - device = proj_mats.device - bs = feature_maps.shape[0] - N_views = feature_maps.shape[1] - minimum_visible_views = np.min([1, N_views - 1]) - # import ipdb; ipdb.set_trace() - outputs = {} - pts_samples = [] - - # ----coarse to fine---- - - # * use fused pyramid feature maps are very important - if self.compress_layer is not None: - feats = self.compress_layer(feature_maps[0]) - else: - feats = feature_maps[0] - feats = feats[:, None, :, :, :] # [V, B, C, H, W] - KRcam = proj_mats.permute(1, 0, 2, 3).contiguous() # [V, B, 4, 4] - interval = 1 - - if self.lod == 0: - # ----generate new coords---- - coords = generate_grid(self.vol_dims, 1)[0] - coords = coords.view(3, -1).to(device) # [3, num_pts] - up_coords = [] - for b in range(bs): - up_coords.append(torch.cat([torch.ones(1, coords.shape[-1]).to(coords.device) * b, coords])) - up_coords = torch.cat(up_coords, dim=1).permute(1, 0).contiguous() - # * since we only estimate the geometry of input reference image at one time; - # * mask the outside of the camera frustum - # import ipdb; ipdb.set_trace() - frustum_mask = back_project_sparse_type( - up_coords, partial_vol_origin, self.voxel_size, - feats, KRcam, sizeH=sizeH, sizeW=sizeW, only_mask=True) # [num_pts, n_views] - frustum_mask = torch.sum(frustum_mask, dim=-1) > minimum_visible_views # ! here should be large - up_coords = up_coords[frustum_mask] # [num_pts_valid, 4] - - else: - # ----upsample coords---- - assert pre_feats is not None - assert pre_coords is not None - up_feat, up_coords = self.upsample(pre_feats, pre_coords, 1) - - # ----back project---- - # give each valid 3d grid point all valid 2D features and masks - multiview_features, multiview_masks = back_project_sparse_type( - up_coords, partial_vol_origin, self.voxel_size, feats, - KRcam, sizeH=sizeH, sizeW=sizeW) # (num of voxels, num_of_views, c), (num of voxels, num_of_views) - # num_of_views = all views - - # if multiview_features.isnan().sum() > 0: - # import ipdb; ipdb.set_trace() - - # import ipdb; ipdb.set_trace() - if self.lod > 0: - # ! need another invalid voxels filtering - frustum_mask = torch.sum(multiview_masks, dim=-1) > 1 - up_feat = up_feat[frustum_mask] - up_coords = up_coords[frustum_mask] - multiview_features = multiview_features[frustum_mask] - multiview_masks = multiview_masks[frustum_mask] - # if multiview_features.isnan().sum() > 0: - # import ipdb; ipdb.set_trace() - volume = self.aggregate_multiview_features(multiview_features, multiview_masks) # compute variance for all images features - # import ipdb; ipdb.set_trace() - - # if volume.isnan().sum() > 0: - # import ipdb; ipdb.set_trace() - - del multiview_features, multiview_masks - - # ----concat feature from last stage---- - if self.lod != 0: - feat = torch.cat([volume, up_feat], dim=1) - else: - feat = volume - - # batch index is in the last position - r_coords = up_coords[:, [1, 2, 3, 0]] - - # if feat.isnan().sum() > 0: - # print('feat has nan:', feat.isnan().sum()) - # import ipdb; ipdb.set_trace() - - sparse_feat = SparseTensor(feat, r_coords.to( - torch.int32)) # - directly use sparse tensor to avoid point2voxel operations - # import ipdb; ipdb.set_trace() - feat = self.sparse_costreg_net(sparse_feat) - - dense_volume, valid_mask_volume = self.sparse_to_dense_volume(up_coords[:, 1:], feat, self.vol_dims, interval, - device=None) # [1, C/1, X, Y, Z] - - # if dense_volume.isnan().sum() > 0: - # import ipdb; ipdb.set_trace() - - - outputs['dense_volume_scale%d' % self.lod] = dense_volume # [1, 16, 96, 96, 96] - outputs['valid_mask_volume_scale%d' % self.lod] = valid_mask_volume # [1, 1, 96, 96, 96] - outputs['visible_mask_scale%d' % self.lod] = valid_mask_volume # [1, 1, 96, 96, 96] - outputs['coords_scale%d' % self.lod] = generate_grid(self.vol_dims, interval).to(device) - # import ipdb; ipdb.set_trace() - return outputs - - def sdf(self, pts, conditional_volume, lod): - num_pts = pts.shape[0] - device = pts.device - pts_ = pts.clone() - pts = pts.view(1, 1, 1, num_pts, 3) # - should be in range (-1, 1) - - pts = torch.flip(pts, dims=[-1]) - # import ipdb; ipdb.set_trace() - sampled_feature = grid_sample_3d(conditional_volume, pts) # [1, c, 1, 1, num_pts] - sampled_feature = sampled_feature.view(-1, num_pts).permute(1, 0).contiguous().to(device) - - sdf_pts = self.sdf_layer(pts_, sampled_feature) - - outputs = {} - outputs['sdf_pts_scale%d' % lod] = sdf_pts[:, :1] - outputs['sdf_features_pts_scale%d' % lod] = sdf_pts[:, 1:] - outputs['sampled_latent_scale%d' % lod] = sampled_feature - - return outputs - - @torch.no_grad() - def sdf_from_sdfvolume(self, pts, sdf_volume, lod=0): - num_pts = pts.shape[0] - device = pts.device - pts_ = pts.clone() - pts = pts.view(1, 1, 1, num_pts, 3) # - should be in range (-1, 1) - - pts = torch.flip(pts, dims=[-1]) - - sdf = torch.nn.functional.grid_sample(sdf_volume, pts, mode='bilinear', align_corners=True, - padding_mode='border') - sdf = sdf.view(-1, num_pts).permute(1, 0).contiguous().to(device) - - outputs = {} - outputs['sdf_pts_scale%d' % lod] = sdf - - return outputs - - @torch.no_grad() - def get_sdf_volume(self, conditional_volume, mask_volume, coords_volume, partial_origin): - """ - - :param conditional_volume: [1,C, dX,dY,dZ] - :param mask_volume: [1,1, dX,dY,dZ] - :param coords_volume: [1,3, dX,dY,dZ] - :return: - """ - device = conditional_volume.device - chunk_size = 10240 - - _, C, dX, dY, dZ = conditional_volume.shape - conditional_volume = conditional_volume.view(C, dX * dY * dZ).permute(1, 0).contiguous() - mask_volume = mask_volume.view(-1) - coords_volume = coords_volume.view(3, dX * dY * dZ).permute(1, 0).contiguous() - - pts = coords_volume * self.voxel_size + partial_origin # [dX*dY*dZ, 3] - - sdf_volume = torch.ones([dX * dY * dZ, 1]).float().to(device) - - conditional_volume = conditional_volume[mask_volume > 0] - pts = pts[mask_volume > 0] - conditional_volume = conditional_volume.split(chunk_size) - pts = pts.split(chunk_size) - - sdf_all = [] - for pts_part, feature_part in zip(pts, conditional_volume): - sdf_part = self.sdf_layer(pts_part, feature_part)[:, :1] - sdf_all.append(sdf_part) - - sdf_all = torch.cat(sdf_all, dim=0) - sdf_volume[mask_volume > 0] = sdf_all - sdf_volume = sdf_volume.view(1, 1, dX, dY, dZ) - return sdf_volume - - def gradient(self, x, conditional_volume, lod): - """ - return the gradient of specific lod - :param x: - :param lod: - :return: - """ - x.requires_grad_(True) - # import ipdb; ipdb.set_trace() - with torch.enable_grad(): - output = self.sdf(x, conditional_volume, lod) - y = output['sdf_pts_scale%d' % lod] - - d_output = torch.ones_like(y, requires_grad=False, device=y.device) - # ! Distributed Data Parallel doesn’t work with torch.autograd.grad() - # ! (i.e. it will only work if gradients are to be accumulated in .grad attributes of parameters). - gradients = torch.autograd.grad( - outputs=y, - inputs=x, - grad_outputs=d_output, - create_graph=True, - retain_graph=True, - only_inputs=True)[0] - return gradients.unsqueeze(1) - - -def sparse_to_dense_volume(coords, feature, vol_dims, interval, device=None): - """ - convert the sparse volume into dense volume to enable trilinear sampling - to save GPU memory; - :param coords: [num_pts, 3] - :param feature: [num_pts, C] - :param vol_dims: [3] dX, dY, dZ - :param interval: - :return: - """ - - # * assume batch size is 1 - if device is None: - device = feature.device - - coords_int = (coords / interval).to(torch.int64) - vol_dims = (vol_dims / interval).to(torch.int64) - - # - if stored in CPU, too slow - dense_volume = sparse_to_dense_channel( - coords_int.to(device), feature.to(device), vol_dims.to(device), - feature.shape[1], 0, device) # [X, Y, Z, C] - - valid_mask_volume = sparse_to_dense_channel( - coords_int.to(device), - torch.ones([feature.shape[0], 1]).to(feature.device), - vol_dims.to(device), - 1, 0, device) # [X, Y, Z, 1] - - dense_volume = dense_volume.permute(3, 0, 1, 2).contiguous().unsqueeze(0) # [1, C, X, Y, Z] - valid_mask_volume = valid_mask_volume.permute(3, 0, 1, 2).contiguous().unsqueeze(0) # [1, 1, X, Y, Z] - - return dense_volume, valid_mask_volume - - -class SdfVolume(nn.Module): - def __init__(self, volume, coords=None, type='dense'): - super(SdfVolume, self).__init__() - self.volume = torch.nn.Parameter(volume, requires_grad=True) - self.coords = coords - self.type = type - - def forward(self): - return self.volume - - -class FinetuneOctreeSdfNetwork(nn.Module): - ''' - After obtain the conditional volume from generalized network; - directly optimize the conditional volume - The conditional volume is still sparse - ''' - - def __init__(self, voxel_size, vol_dims, - origin=[-1., -1., -1.], - hidden_dim=128, activation='softplus', - regnet_d_out=8, - multires=6, - if_fitted_rendering=True, - num_sdf_layers=4, - ): - super(FinetuneOctreeSdfNetwork, self).__init__() - - self.voxel_size = voxel_size # - the voxel size of the current volume - self.vol_dims = torch.tensor(vol_dims) # - the dims of the current volume - - self.origin = torch.tensor(origin).to(torch.float32) - - self.hidden_dim = hidden_dim - self.activation = activation - - self.regnet_d_out = regnet_d_out - - self.if_fitted_rendering = if_fitted_rendering - self.multires = multires - # d_in_embedding = self.regnet_d_out if self.pos_add_type == 'latent' else 3 - # self.pos_embedder = Embedding(d_in_embedding, self.multires) - - # - the optimized parameters - self.sparse_volume_lod0 = None - self.sparse_coords_lod0 = None - - if activation == 'softplus': - self.activation = nn.Softplus(beta=100) - else: - assert activation == 'relu' - self.activation = nn.ReLU() - - self.sdf_layer = LatentSDFLayer(d_in=3, - d_out=self.hidden_dim + 1, - d_hidden=self.hidden_dim, - n_layers=num_sdf_layers, - multires=multires, - geometric_init=True, - weight_norm=True, - activation=activation, - d_conditional_feature=16 # self.regnet_d_out - ) - - # - add mlp rendering when finetuning - self.renderer = None - - d_in_renderer = 3 + self.regnet_d_out + 3 + 3 - self.renderer = BlendingRenderingNetwork( - d_feature=self.hidden_dim - 1, - mode='idr', # ! the view direction influence a lot - d_in=d_in_renderer, - d_out=50, # maximum 50 images - d_hidden=self.hidden_dim, - n_layers=3, - weight_norm=True, - multires_view=4, - squeeze_out=True, - ) - - def initialize_conditional_volumes(self, dense_volume_lod0, dense_volume_mask_lod0, - sparse_volume_lod0=None, sparse_coords_lod0=None): - """ - - :param dense_volume_lod0: [1,C,dX,dY,dZ] - :param dense_volume_mask_lod0: [1,1,dX,dY,dZ] - :param dense_volume_lod1: - :param dense_volume_mask_lod1: - :return: - """ - - if sparse_volume_lod0 is None: - device = dense_volume_lod0.device - _, C, dX, dY, dZ = dense_volume_lod0.shape - - dense_volume_lod0 = dense_volume_lod0.view(C, dX * dY * dZ).permute(1, 0).contiguous() - mask_lod0 = dense_volume_mask_lod0.view(dX * dY * dZ) > 0 - - self.sparse_volume_lod0 = SdfVolume(dense_volume_lod0[mask_lod0], type='sparse') - - coords = generate_grid(self.vol_dims, 1)[0] # [3, dX, dY, dZ] - coords = coords.view(3, dX * dY * dZ).permute(1, 0).to(device) - self.sparse_coords_lod0 = torch.nn.Parameter(coords[mask_lod0], requires_grad=False) - else: - self.sparse_volume_lod0 = SdfVolume(sparse_volume_lod0, type='sparse') - self.sparse_coords_lod0 = torch.nn.Parameter(sparse_coords_lod0, requires_grad=False) - - def get_conditional_volume(self): - dense_volume, valid_mask_volume = sparse_to_dense_volume( - self.sparse_coords_lod0, - self.sparse_volume_lod0(), self.vol_dims, interval=1, - device=None) # [1, C/1, X, Y, Z] - - # valid_mask_volume = self.dense_volume_mask_lod0 - - outputs = {} - outputs['dense_volume_scale%d' % 0] = dense_volume - outputs['valid_mask_volume_scale%d' % 0] = valid_mask_volume - - return outputs - - def tv_regularizer(self): - dense_volume, valid_mask_volume = sparse_to_dense_volume( - self.sparse_coords_lod0, - self.sparse_volume_lod0(), self.vol_dims, interval=1, - device=None) # [1, C/1, X, Y, Z] - - dx = (dense_volume[:, :, 1:, :, :] - dense_volume[:, :, :-1, :, :]) ** 2 # [1, C/1, X-1, Y, Z] - dy = (dense_volume[:, :, :, 1:, :] - dense_volume[:, :, :, :-1, :]) ** 2 # [1, C/1, X, Y-1, Z] - dz = (dense_volume[:, :, :, :, 1:] - dense_volume[:, :, :, :, :-1]) ** 2 # [1, C/1, X, Y, Z-1] - - tv = dx[:, :, :, :-1, :-1] + dy[:, :, :-1, :, :-1] + dz[:, :, :-1, :-1, :] # [1, C/1, X-1, Y-1, Z-1] - - mask = valid_mask_volume[:, :, :-1, :-1, :-1] * valid_mask_volume[:, :, 1:, :-1, :-1] * \ - valid_mask_volume[:, :, :-1, 1:, :-1] * valid_mask_volume[:, :, :-1, :-1, 1:] - - tv = torch.sqrt(tv + 1e-6).mean(dim=1, keepdim=True) * mask - # tv = tv.mean(dim=1, keepdim=True) * mask - - assert torch.all(~torch.isnan(tv)) - - return torch.mean(tv) - - def sdf(self, pts, conditional_volume, lod): - - outputs = {} - - num_pts = pts.shape[0] - device = pts.device - pts_ = pts.clone() - pts = pts.view(1, 1, 1, num_pts, 3) # - should be in range (-1, 1) - - pts = torch.flip(pts, dims=[-1]) - - sampled_feature = grid_sample_3d(conditional_volume, pts) # [1, c, 1, 1, num_pts] - sampled_feature = sampled_feature.view(-1, num_pts).permute(1, 0).contiguous() - outputs['sampled_latent_scale%d' % lod] = sampled_feature - - sdf_pts = self.sdf_layer(pts_, sampled_feature) - - lod = 0 - outputs['sdf_pts_scale%d' % lod] = sdf_pts[:, :1] - outputs['sdf_features_pts_scale%d' % lod] = sdf_pts[:, 1:] - - return outputs - - def color_blend(self, pts, position, normals, view_dirs, feature_vectors, img_index, - pts_pixel_color, pts_pixel_mask, pts_patch_color=None, pts_patch_mask=None): - - return self.renderer(torch.cat([pts, position], dim=-1), normals, view_dirs, feature_vectors, - img_index, pts_pixel_color, pts_pixel_mask, - pts_patch_color=pts_patch_color, pts_patch_mask=pts_patch_mask) - - def gradient(self, x, conditional_volume, lod): - """ - return the gradient of specific lod - :param x: - :param lod: - :return: - """ - x.requires_grad_(True) - output = self.sdf(x, conditional_volume, lod) - y = output['sdf_pts_scale%d' % 0] - - d_output = torch.ones_like(y, requires_grad=False, device=y.device) - - gradients = torch.autograd.grad( - outputs=y, - inputs=x, - grad_outputs=d_output, - create_graph=True, - retain_graph=True, - only_inputs=True)[0] - return gradients.unsqueeze(1) - - @torch.no_grad() - def prune_dense_mask(self, threshold=0.02): - """ - Just gradually prune the mask of dense volume to decrease the number of sdf network inference - :return: - """ - chunk_size = 10240 - coords = generate_grid(self.vol_dims_lod0, 1)[0] # [3, dX, dY, dZ] - - _, dX, dY, dZ = coords.shape - - pts = coords.view(3, -1).permute(1, - 0).contiguous() * self.voxel_size_lod0 + self.origin[None, :] # [dX*dY*dZ, 3] - - # dense_volume = self.dense_volume_lod0() # [1,C,dX,dY,dZ] - dense_volume, _ = sparse_to_dense_volume( - self.sparse_coords_lod0, - self.sparse_volume_lod0(), self.vol_dims_lod0, interval=1, - device=None) # [1, C/1, X, Y, Z] - - sdf_volume = torch.ones([dX * dY * dZ, 1]).float().to(dense_volume.device) * 100 - - mask = self.dense_volume_mask_lod0.view(-1) > 0 - - pts_valid = pts[mask].to(dense_volume.device) - feature_valid = dense_volume.view(self.regnet_d_out, -1).permute(1, 0).contiguous()[mask] - - pts_valid = pts_valid.split(chunk_size) - feature_valid = feature_valid.split(chunk_size) - - sdf_list = [] - - for pts_part, feature_part in zip(pts_valid, feature_valid): - sdf_part = self.sdf_layer(pts_part, feature_part)[:, :1] - sdf_list.append(sdf_part) - - sdf_list = torch.cat(sdf_list, dim=0) - - sdf_volume[mask] = sdf_list - - occupancy_mask = torch.abs(sdf_volume) < threshold # [num_pts, 1] - - # - dilate - occupancy_mask = occupancy_mask.float() - occupancy_mask = occupancy_mask.view(1, 1, dX, dY, dZ) - occupancy_mask = F.avg_pool3d(occupancy_mask, kernel_size=7, stride=1, padding=3) - occupancy_mask = occupancy_mask > 0 - - self.dense_volume_mask_lod0 = torch.logical_and(self.dense_volume_mask_lod0, - occupancy_mask).float() # (1, 1, dX, dY, dZ) - - -class BlendingRenderingNetwork(nn.Module): - def __init__( - self, - d_feature, - mode, - d_in, - d_out, - d_hidden, - n_layers, - weight_norm=True, - multires_view=0, - squeeze_out=True, - ): - super(BlendingRenderingNetwork, self).__init__() - - self.mode = mode - self.squeeze_out = squeeze_out - dims = [d_in + d_feature] + [d_hidden for _ in range(n_layers)] + [d_out] - - self.embedder = None - if multires_view > 0: - self.embedder = Embedding(3, multires_view) - dims[0] += (self.embedder.out_channels - 3) - - self.num_layers = len(dims) - - for l in range(0, self.num_layers - 1): - out_dim = dims[l + 1] - lin = nn.Linear(dims[l], out_dim) - - if weight_norm: - lin = nn.utils.weight_norm(lin) - - setattr(self, "lin" + str(l), lin) - - self.relu = nn.ReLU() - - self.color_volume = None - - self.softmax = nn.Softmax(dim=1) - - self.type = 'blending' - - def sample_pts_from_colorVolume(self, pts): - device = pts.device - num_pts = pts.shape[0] - pts_ = pts.clone() - pts = pts.view(1, 1, 1, num_pts, 3) # - should be in range (-1, 1) - - pts = torch.flip(pts, dims=[-1]) - - sampled_color = grid_sample_3d(self.color_volume, pts) # [1, c, 1, 1, num_pts] - sampled_color = sampled_color.view(-1, num_pts).permute(1, 0).contiguous().to(device) - - return sampled_color - - def forward(self, position, normals, view_dirs, feature_vectors, img_index, - pts_pixel_color, pts_pixel_mask, pts_patch_color=None, pts_patch_mask=None): - """ - - :param position: can be 3d coord or interpolated volume latent - :param normals: - :param view_dirs: - :param feature_vectors: - :param img_index: [N_views], used to extract corresponding weights - :param pts_pixel_color: [N_pts, N_views, 3] - :param pts_pixel_mask: [N_pts, N_views] - :param pts_patch_color: [N_pts, N_views, Npx, 3] - :return: - """ - if self.embedder is not None: - view_dirs = self.embedder(view_dirs) - - rendering_input = None - - if self.mode == 'idr': - rendering_input = torch.cat([position, view_dirs, normals, feature_vectors], dim=-1) - elif self.mode == 'no_view_dir': - rendering_input = torch.cat([position, normals, feature_vectors], dim=-1) - elif self.mode == 'no_normal': - rendering_input = torch.cat([position, view_dirs, feature_vectors], dim=-1) - elif self.mode == 'no_points': - rendering_input = torch.cat([view_dirs, normals, feature_vectors], dim=-1) - elif self.mode == 'no_points_no_view_dir': - rendering_input = torch.cat([normals, feature_vectors], dim=-1) - - x = rendering_input - - for l in range(0, self.num_layers - 1): - lin = getattr(self, "lin" + str(l)) - - x = lin(x) - - if l < self.num_layers - 2: - x = self.relu(x) # [n_pts, d_out] - - ## extract value based on img_index - x_extracted = torch.index_select(x, 1, img_index.long()) - - weights_pixel = self.softmax(x_extracted) # [n_pts, N_views] - weights_pixel = weights_pixel * pts_pixel_mask - weights_pixel = weights_pixel / ( - torch.sum(weights_pixel.float(), dim=1, keepdim=True) + 1e-8) # [n_pts, N_views] - final_pixel_color = torch.sum(pts_pixel_color * weights_pixel[:, :, None], dim=1, - keepdim=False) # [N_pts, 3] - - final_pixel_mask = torch.sum(pts_pixel_mask.float(), dim=1, keepdim=True) > 0 # [N_pts, 1] - - final_patch_color, final_patch_mask = None, None - # pts_patch_color [N_pts, N_views, Npx, 3]; pts_patch_mask [N_pts, N_views, Npx] - if pts_patch_color is not None: - N_pts, N_views, Npx, _ = pts_patch_color.shape - patch_mask = torch.sum(pts_patch_mask, dim=-1, keepdim=False) > Npx - 1 # [N_pts, N_views] - - weights_patch = self.softmax(x_extracted) # [N_pts, N_views] - weights_patch = weights_patch * patch_mask - weights_patch = weights_patch / ( - torch.sum(weights_patch.float(), dim=1, keepdim=True) + 1e-8) # [n_pts, N_views] - - final_patch_color = torch.sum(pts_patch_color * weights_patch[:, :, None, None], dim=1, - keepdim=False) # [N_pts, Npx, 3] - final_patch_mask = torch.sum(patch_mask, dim=1, keepdim=True) > 0 # [N_pts, 1] at least one image sees - - return final_pixel_color, final_pixel_mask, final_patch_color, final_patch_mask diff --git a/One-2-3-45-master 2/reconstruction/models/trainer_generic.py b/One-2-3-45-master 2/reconstruction/models/trainer_generic.py deleted file mode 100644 index 18fe3ee1f9cb4c36550f4e8a3b7d2033995a0175..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/reconstruction/models/trainer_generic.py +++ /dev/null @@ -1,1380 +0,0 @@ -""" -decouple the trainer with the renderer -""" -import os -import cv2 as cv -import torch -import torch.nn as nn -import torch.nn.functional as F - -import numpy as np - -import trimesh - -from utils.misc_utils import visualize_depth_numpy - -from utils.training_utils import numpy2tensor - -from loss.depth_loss import DepthLoss, DepthSmoothLoss - -from models.sparse_neus_renderer import SparseNeuSRenderer - - -class GenericTrainer(nn.Module): - def __init__(self, - rendering_network_outside, - pyramid_feature_network_lod0, - pyramid_feature_network_lod1, - sdf_network_lod0, - sdf_network_lod1, - variance_network_lod0, - variance_network_lod1, - rendering_network_lod0, - rendering_network_lod1, - n_samples_lod0, - n_importance_lod0, - n_samples_lod1, - n_importance_lod1, - n_outside, - perturb, - alpha_type='div', - conf=None, - timestamp="", - mode='train', - base_exp_dir=None, - ): - super(GenericTrainer, self).__init__() - - self.conf = conf - self.timestamp = timestamp - - - self.base_exp_dir = base_exp_dir - - - self.anneal_start = self.conf.get_float('train.anneal_start', default=0.0) - self.anneal_end = self.conf.get_float('train.anneal_end', default=0.0) - self.anneal_start_lod1 = self.conf.get_float('train.anneal_start_lod1', default=0.0) - self.anneal_end_lod1 = self.conf.get_float('train.anneal_end_lod1', default=0.0) - - # network setups - self.rendering_network_outside = rendering_network_outside - self.pyramid_feature_network_geometry_lod0 = pyramid_feature_network_lod0 # 2D pyramid feature network for geometry - self.pyramid_feature_network_geometry_lod1 = pyramid_feature_network_lod1 # use differnet networks for the two lods - - # when num_lods==2, may consume too much memeory - self.sdf_network_lod0 = sdf_network_lod0 - self.sdf_network_lod1 = sdf_network_lod1 - - # - warpped by ModuleList to support DataParallel - self.variance_network_lod0 = variance_network_lod0 - self.variance_network_lod1 = variance_network_lod1 - - self.rendering_network_lod0 = rendering_network_lod0 - self.rendering_network_lod1 = rendering_network_lod1 - - self.n_samples_lod0 = n_samples_lod0 - self.n_importance_lod0 = n_importance_lod0 - self.n_samples_lod1 = n_samples_lod1 - self.n_importance_lod1 = n_importance_lod1 - self.n_outside = n_outside - self.num_lods = conf.get_int('model.num_lods') # the number of octree lods - self.perturb = perturb - self.alpha_type = alpha_type - - # - the two renderers - self.sdf_renderer_lod0 = SparseNeuSRenderer( - self.rendering_network_outside, - self.sdf_network_lod0, - self.variance_network_lod0, - self.rendering_network_lod0, - self.n_samples_lod0, - self.n_importance_lod0, - self.n_outside, - self.perturb, - alpha_type='div', - conf=self.conf) - - self.sdf_renderer_lod1 = SparseNeuSRenderer( - self.rendering_network_outside, - self.sdf_network_lod1, - self.variance_network_lod1, - self.rendering_network_lod1, - self.n_samples_lod1, - self.n_importance_lod1, - self.n_outside, - self.perturb, - alpha_type='div', - conf=self.conf) - - self.if_fix_lod0_networks = self.conf.get_bool('train.if_fix_lod0_networks') - - # sdf network weights - self.sdf_igr_weight = self.conf.get_float('train.sdf_igr_weight') - self.sdf_sparse_weight = self.conf.get_float('train.sdf_sparse_weight', default=0) - self.sdf_decay_param = self.conf.get_float('train.sdf_decay_param', default=100) - self.fg_bg_weight = self.conf.get_float('train.fg_bg_weight', default=0.00) - self.bg_ratio = self.conf.get_float('train.bg_ratio', default=0.0) - - self.depth_loss_weight = self.conf.get_float('train.depth_loss_weight', default=1.00) - - print("depth_loss_weight: ", self.depth_loss_weight) - self.depth_criterion = DepthLoss() - - # - DataParallel mode, cannot modify attributes in forward() - # self.iter_step = 0 - self.val_mesh_freq = self.conf.get_int('train.val_mesh_freq') - - # - True for finetuning; False for general training - self.if_fitted_rendering = self.conf.get_bool('train.if_fitted_rendering', default=False) - - self.prune_depth_filter = self.conf.get_bool('model.prune_depth_filter', default=False) - - def get_trainable_params(self): - # set trainable params - - self.params_to_train = [] - - if not self.if_fix_lod0_networks: - # load pretrained featurenet - self.params_to_train += list(self.pyramid_feature_network_geometry_lod0.parameters()) - self.params_to_train += list(self.sdf_network_lod0.parameters()) - self.params_to_train += list(self.variance_network_lod0.parameters()) - - if self.rendering_network_lod0 is not None: - self.params_to_train += list(self.rendering_network_lod0.parameters()) - - if self.sdf_network_lod1 is not None: - # load pretrained featurenet - self.params_to_train += list(self.pyramid_feature_network_geometry_lod1.parameters()) - - self.params_to_train += list(self.sdf_network_lod1.parameters()) - self.params_to_train += list(self.variance_network_lod1.parameters()) - if self.rendering_network_lod1 is not None: - self.params_to_train += list(self.rendering_network_lod1.parameters()) - - return self.params_to_train - - def train_step(self, sample, - perturb_overwrite=-1, - background_rgb=None, - alpha_inter_ratio_lod0=0.0, - alpha_inter_ratio_lod1=0.0, - iter_step=0, - ): - # * only support batch_size==1 - # ! attention: the list of string cannot be splited in DataParallel - batch_idx = sample['batch_idx'][0] - meta = sample['meta'][batch_idx] # the scan lighting ref_view info - - sizeW = sample['img_wh'][0][0] - sizeH = sample['img_wh'][0][1] - partial_vol_origin = sample['partial_vol_origin'] # [B, 3] - near, far = sample['near_fars'][0, 0, :1], sample['near_fars'][0, 0, 1:] - - # the full-size ray variables - sample_rays = sample['rays'] - rays_o = sample_rays['rays_o'][0] - rays_d = sample_rays['rays_v'][0] - - imgs = sample['images'][0] - intrinsics = sample['intrinsics'][0] - intrinsics_l_4x = intrinsics.clone() - intrinsics_l_4x[:, :2] *= 0.25 - w2cs = sample['w2cs'][0] - c2ws = sample['c2ws'][0] - proj_matrices = sample['affine_mats'] - scale_mat = sample['scale_mat'] - trans_mat = sample['trans_mat'] - - # *********************** Lod==0 *********************** - if not self.if_fix_lod0_networks: - geometry_feature_maps = self.obtain_pyramid_feature_maps(imgs) - - conditional_features_lod0 = self.sdf_network_lod0.get_conditional_volume( - feature_maps=geometry_feature_maps[None, 1:, :, :, :], - partial_vol_origin=partial_vol_origin, - proj_mats=proj_matrices[:,1:], - # proj_mats=proj_matrices, - sizeH=sizeH, - sizeW=sizeW, - lod=0, - ) - - else: - with torch.no_grad(): - geometry_feature_maps = self.obtain_pyramid_feature_maps(imgs, lod=0) - conditional_features_lod0 = self.sdf_network_lod0.get_conditional_volume( - feature_maps=geometry_feature_maps[None, 1:, :, :, :], - partial_vol_origin=partial_vol_origin, - proj_mats=proj_matrices[:,1:], - # proj_mats=proj_matrices, - sizeH=sizeH, - sizeW=sizeW, - lod=0, - ) - - con_volume_lod0 = conditional_features_lod0['dense_volume_scale0'] - - con_valid_mask_volume_lod0 = conditional_features_lod0['valid_mask_volume_scale0'] - - coords_lod0 = conditional_features_lod0['coords_scale0'] # [1,3,wX,wY,wZ] - - # * extract depth maps for all the images - depth_maps_lod0, depth_masks_lod0 = None, None - if self.num_lods > 1: - sdf_volume_lod0 = self.sdf_network_lod0.get_sdf_volume( - con_volume_lod0, con_valid_mask_volume_lod0, - coords_lod0, partial_vol_origin) # [1, 1, dX, dY, dZ] - - if self.prune_depth_filter: - depth_maps_lod0_l4x, depth_masks_lod0_l4x = self.sdf_renderer_lod0.extract_depth_maps( - self.sdf_network_lod0, sdf_volume_lod0, intrinsics_l_4x, c2ws, - sizeH // 4, sizeW // 4, near * 1.5, far) - depth_maps_lod0 = F.interpolate(depth_maps_lod0_l4x, size=(sizeH, sizeW), mode='bilinear', - align_corners=True) - - # *************** losses - loss_lod0, losses_lod0, depth_statis_lod0 = None, None, None - - if not self.if_fix_lod0_networks: - - render_out = self.sdf_renderer_lod0.render( - rays_o, rays_d, near, far, - self.sdf_network_lod0, - self.rendering_network_lod0, - background_rgb=background_rgb, - alpha_inter_ratio=alpha_inter_ratio_lod0, - # * related to conditional feature - lod=0, - conditional_volume=con_volume_lod0, - conditional_valid_mask_volume=con_valid_mask_volume_lod0, - # * 2d feature maps - feature_maps=geometry_feature_maps, - color_maps=imgs, - w2cs=w2cs, - intrinsics=intrinsics, - img_wh=[sizeW, sizeH], - if_general_rendering=True, - if_render_with_grad=True, - ) - - loss_lod0, losses_lod0, depth_statis_lod0 = self.cal_losses_sdf(render_out, sample_rays, - iter_step, lod=0) - - # *********************** Lod==1 *********************** - - loss_lod1, losses_lod1, depth_statis_lod1 = None, None, None - - if self.num_lods > 1: - geometry_feature_maps_lod1 = self.obtain_pyramid_feature_maps(imgs, lod=1) - # geometry_feature_maps_lod1 = self.obtain_pyramid_feature_maps(imgs, lod=1) - if self.prune_depth_filter: - pre_coords, pre_feats = self.sdf_renderer_lod0.get_valid_sparse_coords_by_sdf_depthfilter( - sdf_volume_lod0[0], coords_lod0[0], con_valid_mask_volume_lod0[0], con_volume_lod0[0], - depth_maps_lod0, proj_matrices[0], - partial_vol_origin, self.sdf_network_lod0.voxel_size, - near, far, self.sdf_network_lod0.voxel_size, 12) - else: - pre_coords, pre_feats = self.sdf_renderer_lod0.get_valid_sparse_coords_by_sdf( - sdf_volume_lod0[0], coords_lod0[0], con_valid_mask_volume_lod0[0], con_volume_lod0[0]) - - pre_coords[:, 1:] = pre_coords[:, 1:] * 2 - - # ? It seems that training gru_fusion, this part should be trainable too - conditional_features_lod1 = self.sdf_network_lod1.get_conditional_volume( - feature_maps=geometry_feature_maps_lod1[None, 1:, :, :, :], - partial_vol_origin=partial_vol_origin, - proj_mats=proj_matrices[:,1:], - # proj_mats=proj_matrices, - sizeH=sizeH, - sizeW=sizeW, - pre_coords=pre_coords, - pre_feats=pre_feats, - ) - - con_volume_lod1 = conditional_features_lod1['dense_volume_scale1'] - con_valid_mask_volume_lod1 = conditional_features_lod1['valid_mask_volume_scale1'] - - # if not self.if_gru_fusion_lod1: - render_out_lod1 = self.sdf_renderer_lod1.render( - rays_o, rays_d, near, far, - self.sdf_network_lod1, - self.rendering_network_lod1, - background_rgb=background_rgb, - alpha_inter_ratio=alpha_inter_ratio_lod1, - # * related to conditional feature - lod=1, - conditional_volume=con_volume_lod1, - conditional_valid_mask_volume=con_valid_mask_volume_lod1, - # * 2d feature maps - feature_maps=geometry_feature_maps_lod1, - color_maps=imgs, - w2cs=w2cs, - intrinsics=intrinsics, - img_wh=[sizeW, sizeH], - bg_ratio=self.bg_ratio, - ) - loss_lod1, losses_lod1, depth_statis_lod1 = self.cal_losses_sdf(render_out_lod1, sample_rays, - iter_step, lod=1) - - - # # - extract mesh - if iter_step % self.val_mesh_freq == 0: - torch.cuda.empty_cache() - self.validate_mesh(self.sdf_network_lod0, - self.sdf_renderer_lod0.extract_geometry, - conditional_volume=con_volume_lod0, lod=0, - threshold=0, - # occupancy_mask=con_valid_mask_volume_lod0[0, 0], - mode='train_bg', meta=meta, - iter_step=iter_step, scale_mat=scale_mat, - trans_mat=trans_mat) - torch.cuda.empty_cache() - - if self.num_lods > 1: - self.validate_mesh(self.sdf_network_lod1, - self.sdf_renderer_lod1.extract_geometry, - conditional_volume=con_volume_lod1, lod=1, - # occupancy_mask=con_valid_mask_volume_lod1[0, 0].detach(), - mode='train_bg', meta=meta, - iter_step=iter_step, scale_mat=scale_mat, - trans_mat=trans_mat) - - losses = { - # - lod 0 - 'loss_lod0': loss_lod0, - 'losses_lod0': losses_lod0, - 'depth_statis_lod0': depth_statis_lod0, - - # - lod 1 - 'loss_lod1': loss_lod1, - 'losses_lod1': losses_lod1, - 'depth_statis_lod1': depth_statis_lod1, - - } - - return losses - - def val_step(self, sample, - perturb_overwrite=-1, - background_rgb=None, - alpha_inter_ratio_lod0=0.0, - alpha_inter_ratio_lod1=0.0, - iter_step=0, - chunk_size=512, - save_vis=False, - ): - # * only support batch_size==1 - # ! attention: the list of string cannot be splited in DataParallel - batch_idx = sample['batch_idx'][0] - meta = sample['meta'][batch_idx] # the scan lighting ref_view info - - sizeW = sample['img_wh'][0][0] - sizeH = sample['img_wh'][0][1] - H, W = sizeH, sizeW - - partial_vol_origin = sample['partial_vol_origin'] # [B, 3] - near, far = sample['query_near_far'][0, :1], sample['query_near_far'][0, 1:] - - # the ray variables - sample_rays = sample['rays'] - rays_o = sample_rays['rays_o'][0] - rays_d = sample_rays['rays_v'][0] - rays_ndc_uv = sample_rays['rays_ndc_uv'][0] - - imgs = sample['images'][0] - intrinsics = sample['intrinsics'][0] - intrinsics_l_4x = intrinsics.clone() - intrinsics_l_4x[:, :2] *= 0.25 - w2cs = sample['w2cs'][0] - c2ws = sample['c2ws'][0] - proj_matrices = sample['affine_mats'] - - # render_img_idx = sample['render_img_idx'][0] - # true_img = sample['images'][0][render_img_idx] - - # - the image to render - scale_mat = sample['scale_mat'] # [1,4,4] used to convert mesh into true scale - trans_mat = sample['trans_mat'] - query_c2w = sample['query_c2w'] # [1,4,4] - query_w2c = sample['query_w2c'] # [1,4,4] - true_img = sample['query_image'][0] - true_img = np.uint8(true_img.permute(1, 2, 0).cpu().numpy() * 255) - - depth_min, depth_max = near.cpu().numpy(), far.cpu().numpy() - - scale_factor = sample['scale_factor'][0].cpu().numpy() - true_depth = sample['query_depth'] if 'query_depth' in sample.keys() else None - if true_depth is not None: - true_depth = true_depth[0].cpu().numpy() - true_depth_colored = visualize_depth_numpy(true_depth, [depth_min, depth_max])[0] - else: - true_depth_colored = None - - rays_o = rays_o.reshape(-1, 3).split(chunk_size) - rays_d = rays_d.reshape(-1, 3).split(chunk_size) - - # - obtain conditional features - with torch.no_grad(): - # - obtain conditional features - geometry_feature_maps = self.obtain_pyramid_feature_maps(imgs, lod=0) - - # - lod 0 - conditional_features_lod0 = self.sdf_network_lod0.get_conditional_volume( - feature_maps=geometry_feature_maps[None, :, :, :, :], - partial_vol_origin=partial_vol_origin, - proj_mats=proj_matrices, - sizeH=sizeH, - sizeW=sizeW, - lod=0, - ) - - con_volume_lod0 = conditional_features_lod0['dense_volume_scale0'] - con_valid_mask_volume_lod0 = conditional_features_lod0['valid_mask_volume_scale0'] - coords_lod0 = conditional_features_lod0['coords_scale0'] # [1,3,wX,wY,wZ] - - if self.num_lods > 1: - sdf_volume_lod0 = self.sdf_network_lod0.get_sdf_volume( - con_volume_lod0, con_valid_mask_volume_lod0, - coords_lod0, partial_vol_origin) # [1, 1, dX, dY, dZ] - - depth_maps_lod0, depth_masks_lod0 = None, None - if self.prune_depth_filter: - depth_maps_lod0_l4x, depth_masks_lod0_l4x = self.sdf_renderer_lod0.extract_depth_maps( - self.sdf_network_lod0, sdf_volume_lod0, - intrinsics_l_4x, c2ws, - sizeH // 4, sizeW // 4, near * 1.5, far) # - near*1.5 is a experienced number - depth_maps_lod0 = F.interpolate(depth_maps_lod0_l4x, size=(sizeH, sizeW), mode='bilinear', - align_corners=True) - depth_masks_lod0 = F.interpolate(depth_masks_lod0_l4x.float(), size=(sizeH, sizeW), mode='nearest') - - #### visualize the depth_maps_lod0 for checking - colored_depth_maps_lod0 = [] - for i in range(depth_maps_lod0.shape[0]): - colored_depth_maps_lod0.append( - visualize_depth_numpy(depth_maps_lod0[i, 0].cpu().numpy(), [depth_min, depth_max])[0]) - - colored_depth_maps_lod0 = np.concatenate(colored_depth_maps_lod0, axis=0).astype(np.uint8) - os.makedirs(os.path.join(self.base_exp_dir, 'depth_maps_lod0'), exist_ok=True) - cv.imwrite(os.path.join(self.base_exp_dir, 'depth_maps_lod0', - '{:0>8d}_{}.png'.format(iter_step, meta)), - colored_depth_maps_lod0[:, :, ::-1]) - - if self.num_lods > 1: - geometry_feature_maps_lod1 = self.obtain_pyramid_feature_maps(imgs, lod=1) - - if self.prune_depth_filter: - pre_coords, pre_feats = self.sdf_renderer_lod0.get_valid_sparse_coords_by_sdf_depthfilter( - sdf_volume_lod0[0], coords_lod0[0], con_valid_mask_volume_lod0[0], con_volume_lod0[0], - depth_maps_lod0, proj_matrices[0], - partial_vol_origin, self.sdf_network_lod0.voxel_size, - near, far, self.sdf_network_lod0.voxel_size, 12) - else: - pre_coords, pre_feats = self.sdf_renderer_lod0.get_valid_sparse_coords_by_sdf( - sdf_volume_lod0[0], coords_lod0[0], con_valid_mask_volume_lod0[0], con_volume_lod0[0]) - - pre_coords[:, 1:] = pre_coords[:, 1:] * 2 - - with torch.no_grad(): - conditional_features_lod1 = self.sdf_network_lod1.get_conditional_volume( - feature_maps=geometry_feature_maps_lod1[None, :, :, :, :], - partial_vol_origin=partial_vol_origin, - proj_mats=proj_matrices, - sizeH=sizeH, - sizeW=sizeW, - pre_coords=pre_coords, - pre_feats=pre_feats, - ) - - con_volume_lod1 = conditional_features_lod1['dense_volume_scale1'] - con_valid_mask_volume_lod1 = conditional_features_lod1['valid_mask_volume_scale1'] - - out_rgb_fine = [] - out_normal_fine = [] - out_depth_fine = [] - - out_rgb_fine_lod1 = [] - out_normal_fine_lod1 = [] - out_depth_fine_lod1 = [] - - # out_depth_fine_explicit = [] - if save_vis: - for rays_o_batch, rays_d_batch in zip(rays_o, rays_d): - - # ****** lod 0 **** - render_out = self.sdf_renderer_lod0.render( - rays_o_batch, rays_d_batch, near, far, - self.sdf_network_lod0, - self.rendering_network_lod0, - background_rgb=background_rgb, - alpha_inter_ratio=alpha_inter_ratio_lod0, - # * related to conditional feature - lod=0, - conditional_volume=con_volume_lod0, - conditional_valid_mask_volume=con_valid_mask_volume_lod0, - # * 2d feature maps - feature_maps=geometry_feature_maps, - color_maps=imgs, - w2cs=w2cs, - intrinsics=intrinsics, - img_wh=[sizeW, sizeH], - query_c2w=query_c2w, - if_render_with_grad=False, - ) - - feasible = lambda key: ((key in render_out) and (render_out[key] is not None)) - - if feasible('depth'): - out_depth_fine.append(render_out['depth'].detach().cpu().numpy()) - - # if render_out['color_coarse'] is not None: - if feasible('color_fine'): - out_rgb_fine.append(render_out['color_fine'].detach().cpu().numpy()) - if feasible('gradients') and feasible('weights'): - if render_out['inside_sphere'] is not None: - out_normal_fine.append((render_out['gradients'] * render_out['weights'][:, - :self.n_samples_lod0 + self.n_importance_lod0, - None] * render_out['inside_sphere'][ - ..., None]).sum(dim=1).detach().cpu().numpy()) - else: - out_normal_fine.append((render_out['gradients'] * render_out['weights'][:, - :self.n_samples_lod0 + self.n_importance_lod0, - None]).sum(dim=1).detach().cpu().numpy()) - del render_out - - # ****************** lod 1 ************************** - if self.num_lods > 1: - for rays_o_batch, rays_d_batch in zip(rays_o, rays_d): - render_out_lod1 = self.sdf_renderer_lod1.render( - rays_o_batch, rays_d_batch, near, far, - self.sdf_network_lod1, - self.rendering_network_lod1, - background_rgb=background_rgb, - alpha_inter_ratio=alpha_inter_ratio_lod1, - # * related to conditional feature - lod=1, - conditional_volume=con_volume_lod1, - conditional_valid_mask_volume=con_valid_mask_volume_lod1, - # * 2d feature maps - feature_maps=geometry_feature_maps_lod1, - color_maps=imgs, - w2cs=w2cs, - intrinsics=intrinsics, - img_wh=[sizeW, sizeH], - query_c2w=query_c2w, - if_render_with_grad=False, - ) - - feasible = lambda key: ((key in render_out_lod1) and (render_out_lod1[key] is not None)) - - if feasible('depth'): - out_depth_fine_lod1.append(render_out_lod1['depth'].detach().cpu().numpy()) - - # if render_out['color_coarse'] is not None: - if feasible('color_fine'): - out_rgb_fine_lod1.append(render_out_lod1['color_fine'].detach().cpu().numpy()) - if feasible('gradients') and feasible('weights'): - if render_out_lod1['inside_sphere'] is not None: - out_normal_fine_lod1.append((render_out_lod1['gradients'] * render_out_lod1['weights'][:, - :self.n_samples_lod1 + self.n_importance_lod1, - None] * - render_out_lod1['inside_sphere'][ - ..., None]).sum(dim=1).detach().cpu().numpy()) - else: - out_normal_fine_lod1.append((render_out_lod1['gradients'] * render_out_lod1['weights'][:, - :self.n_samples_lod1 + self.n_importance_lod1, - None]).sum( - dim=1).detach().cpu().numpy()) - del render_out_lod1 - - # - save visualization of lod 0 - - self.save_visualization(true_img, true_depth_colored, out_depth_fine, out_normal_fine, - query_w2c[0], out_rgb_fine, H, W, - depth_min, depth_max, iter_step, meta, "val_lod0", true_depth=true_depth, scale_factor=scale_factor) - - if self.num_lods > 1: - self.save_visualization(true_img, true_depth_colored, out_depth_fine_lod1, out_normal_fine_lod1, - query_w2c[0], out_rgb_fine_lod1, H, W, - depth_min, depth_max, iter_step, meta, "val_lod1", true_depth=true_depth, scale_factor=scale_factor) - - # - extract mesh - if (iter_step % self.val_mesh_freq == 0): - torch.cuda.empty_cache() - self.validate_mesh(self.sdf_network_lod0, - self.sdf_renderer_lod0.extract_geometry, - conditional_volume=con_volume_lod0, lod=0, - threshold=0, - # occupancy_mask=con_valid_mask_volume_lod0[0, 0], - mode='val_bg', meta=meta, - iter_step=iter_step, scale_mat=scale_mat, trans_mat=trans_mat) - torch.cuda.empty_cache() - - if self.num_lods > 1: - self.validate_mesh(self.sdf_network_lod1, - self.sdf_renderer_lod1.extract_geometry, - conditional_volume=con_volume_lod1, lod=1, - # occupancy_mask=con_valid_mask_volume_lod1[0, 0].detach(), - mode='val_bg', meta=meta, - iter_step=iter_step, scale_mat=scale_mat, trans_mat=trans_mat) - - torch.cuda.empty_cache() - - @torch.no_grad() - def get_metrics_step(self, sample, - perturb_overwrite=-1, - background_rgb=None, - alpha_inter_ratio_lod0=0.0, - alpha_inter_ratio_lod1=0.0, - iter_step=0, - ): - # * only support batch_size==1 - # ! attention: the list of string cannot be splited in DataParallel - batch_idx = sample['batch_idx'][0] - meta = sample['meta'][batch_idx] # the scan lighting ref_view info - - sizeW = sample['img_wh'][0][0] - sizeH = sample['img_wh'][0][1] - partial_vol_origin = sample['partial_vol_origin'] # [B, 3] - near, far = sample['near_fars'][0, 0, :1], sample['near_fars'][0, 0, 1:] - - # the full-size ray variables - sample_rays = sample['rays'] - rays_o = sample_rays['rays_o'][0] - rays_d = sample_rays['rays_v'][0] - - imgs = sample['images'][0] - intrinsics = sample['intrinsics'][0] - intrinsics_l_4x = intrinsics.clone() - intrinsics_l_4x[:, :2] *= 0.25 - w2cs = sample['w2cs'][0] - c2ws = sample['c2ws'][0] - proj_matrices = sample['affine_mats'] - scale_mat = sample['scale_mat'] - trans_mat = sample['trans_mat'] - - # *********************** Lod==0 *********************** - if not self.if_fix_lod0_networks: - geometry_feature_maps = self.obtain_pyramid_feature_maps(imgs) - - conditional_features_lod0 = self.sdf_network_lod0.get_conditional_volume( - feature_maps=geometry_feature_maps[None, 1:, :, :, :], - partial_vol_origin=partial_vol_origin, - proj_mats=proj_matrices[:,1:], - # proj_mats=proj_matrices, - sizeH=sizeH, - sizeW=sizeW, - lod=0, - ) - - else: - with torch.no_grad(): - geometry_feature_maps = self.obtain_pyramid_feature_maps(imgs, lod=0) - # geometry_feature_maps = self.obtain_pyramid_feature_maps(imgs, lod=0) - conditional_features_lod0 = self.sdf_network_lod0.get_conditional_volume( - feature_maps=geometry_feature_maps[None, 1:, :, :, :], - partial_vol_origin=partial_vol_origin, - proj_mats=proj_matrices[:,1:], - # proj_mats=proj_matrices, - sizeH=sizeH, - sizeW=sizeW, - lod=0, - ) - con_volume_lod0 = conditional_features_lod0['dense_volume_scale0'] - - con_valid_mask_volume_lod0 = conditional_features_lod0['valid_mask_volume_scale0'] - coords_lod0 = conditional_features_lod0['coords_scale0'] # [1,3,wX,wY,wZ] - - # * extract depth maps for all the images - depth_maps_lod0, depth_masks_lod0 = None, None - if self.num_lods > 1: - sdf_volume_lod0 = self.sdf_network_lod0.get_sdf_volume( - con_volume_lod0, con_valid_mask_volume_lod0, - coords_lod0, partial_vol_origin) # [1, 1, dX, dY, dZ] - - if self.prune_depth_filter: - depth_maps_lod0_l4x, depth_masks_lod0_l4x = self.sdf_renderer_lod0.extract_depth_maps( - self.sdf_network_lod0, sdf_volume_lod0, intrinsics_l_4x, c2ws, - sizeH // 4, sizeW // 4, near * 1.5, far) - depth_maps_lod0 = F.interpolate(depth_maps_lod0_l4x, size=(sizeH, sizeW), mode='bilinear', - align_corners=True) - depth_masks_lod0 = F.interpolate(depth_masks_lod0_l4x.float(), size=(sizeH, sizeW), mode='nearest') - - # *************** losses - loss_lod0, losses_lod0, depth_statis_lod0 = None, None, None - - if not self.if_fix_lod0_networks: - - render_out = self.sdf_renderer_lod0.render( - rays_o, rays_d, near, far, - self.sdf_network_lod0, - self.rendering_network_lod0, - background_rgb=background_rgb, - alpha_inter_ratio=alpha_inter_ratio_lod0, - # * related to conditional feature - lod=0, - conditional_volume=con_volume_lod0, - conditional_valid_mask_volume=con_valid_mask_volume_lod0, - # * 2d feature maps - feature_maps=geometry_feature_maps, - color_maps=imgs, - w2cs=w2cs, - intrinsics=intrinsics, - img_wh=[sizeW, sizeH], - if_general_rendering=True, - if_render_with_grad=True, - ) - - loss_lod0, losses_lod0, depth_statis_lod0 = self.cal_losses_sdf(render_out, sample_rays, - iter_step, lod=0) - - # *********************** Lod==1 *********************** - - loss_lod1, losses_lod1, depth_statis_lod1 = None, None, None - - if self.num_lods > 1: - geometry_feature_maps_lod1 = self.obtain_pyramid_feature_maps(imgs, lod=1) - # geometry_feature_maps_lod1 = self.obtain_pyramid_feature_maps(imgs, lod=1) - if self.prune_depth_filter: - pre_coords, pre_feats = self.sdf_renderer_lod0.get_valid_sparse_coords_by_sdf_depthfilter( - sdf_volume_lod0[0], coords_lod0[0], con_valid_mask_volume_lod0[0], con_volume_lod0[0], - depth_maps_lod0, proj_matrices[0], - partial_vol_origin, self.sdf_network_lod0.voxel_size, - near, far, self.sdf_network_lod0.voxel_size, 12) - else: - pre_coords, pre_feats = self.sdf_renderer_lod0.get_valid_sparse_coords_by_sdf( - sdf_volume_lod0[0], coords_lod0[0], con_valid_mask_volume_lod0[0], con_volume_lod0[0]) - - pre_coords[:, 1:] = pre_coords[:, 1:] * 2 - - # ? It seems that training gru_fusion, this part should be trainable too - conditional_features_lod1 = self.sdf_network_lod1.get_conditional_volume( - feature_maps=geometry_feature_maps_lod1[None, 1:, :, :, :], - partial_vol_origin=partial_vol_origin, - proj_mats=proj_matrices[:,1:], - # proj_mats=proj_matrices, - sizeH=sizeH, - sizeW=sizeW, - pre_coords=pre_coords, - pre_feats=pre_feats, - ) - - con_volume_lod1 = conditional_features_lod1['dense_volume_scale1'] - con_valid_mask_volume_lod1 = conditional_features_lod1['valid_mask_volume_scale1'] - - # if not self.if_gru_fusion_lod1: - render_out_lod1 = self.sdf_renderer_lod1.render( - rays_o, rays_d, near, far, - self.sdf_network_lod1, - self.rendering_network_lod1, - background_rgb=background_rgb, - alpha_inter_ratio=alpha_inter_ratio_lod1, - # * related to conditional feature - lod=1, - conditional_volume=con_volume_lod1, - conditional_valid_mask_volume=con_valid_mask_volume_lod1, - # * 2d feature maps - feature_maps=geometry_feature_maps_lod1, - color_maps=imgs, - w2cs=w2cs, - intrinsics=intrinsics, - img_wh=[sizeW, sizeH], - bg_ratio=self.bg_ratio, - ) - loss_lod1, losses_lod1, depth_statis_lod1 = self.cal_losses_sdf(render_out_lod1, sample_rays, - iter_step, lod=1) - - - # # - extract mesh - if iter_step % self.val_mesh_freq == 0: - torch.cuda.empty_cache() - self.validate_mesh(self.sdf_network_lod0, - self.sdf_renderer_lod0.extract_geometry, - conditional_volume=con_volume_lod0, lod=0, - threshold=0, - # occupancy_mask=con_valid_mask_volume_lod0[0, 0], - mode='train_bg', meta=meta, - iter_step=iter_step, scale_mat=scale_mat, - trans_mat=trans_mat) - torch.cuda.empty_cache() - - if self.num_lods > 1: - self.validate_mesh(self.sdf_network_lod1, - self.sdf_renderer_lod1.extract_geometry, - conditional_volume=con_volume_lod1, lod=1, - # occupancy_mask=con_valid_mask_volume_lod1[0, 0].detach(), - mode='train_bg', meta=meta, - iter_step=iter_step, scale_mat=scale_mat, - trans_mat=trans_mat) - - losses = { - # - lod 0 - 'loss_lod0': loss_lod0, - 'losses_lod0': losses_lod0, - 'depth_statis_lod0': depth_statis_lod0, - - # - lod 1 - 'loss_lod1': loss_lod1, - 'losses_lod1': losses_lod1, - 'depth_statis_lod1': depth_statis_lod1, - - } - - return losses - - - def export_mesh_step(self, sample, - iter_step=0, - chunk_size=512, - resolution=360, - save_vis=False, - ): - # * only support batch_size==1 - # ! attention: the list of string cannot be splited in DataParallel - batch_idx = sample['batch_idx'][0] - meta = sample['meta'][batch_idx] # the scan lighting ref_view info - - sizeW = sample['img_wh'][0][0] - sizeH = sample['img_wh'][0][1] - H, W = sizeH, sizeW - - partial_vol_origin = sample['partial_vol_origin'] # [B, 3] - near, far = sample['query_near_far'][0, :1], sample['query_near_far'][0, 1:] - - # the ray variables - sample_rays = sample['rays'] - rays_o = sample_rays['rays_o'][0] - rays_d = sample_rays['rays_v'][0] - - imgs = sample['images'][0] - intrinsics = sample['intrinsics'][0] - intrinsics_l_4x = intrinsics.clone() - intrinsics_l_4x[:, :2] *= 0.25 - w2cs = sample['w2cs'][0] - # target_candidate_w2cs = sample['target_candidate_w2cs'][0] - proj_matrices = sample['affine_mats'] - - - # - the image to render - scale_mat = sample['scale_mat'] # [1,4,4] used to convert mesh into true scale - trans_mat = sample['trans_mat'] - query_c2w = sample['query_c2w'] # [1,4,4] - true_img = sample['query_image'][0] - true_img = np.uint8(true_img.permute(1, 2, 0).cpu().numpy() * 255) - - # depth_min, depth_max = near.cpu().numpy(), far.cpu().numpy() - - # scale_factor = sample['scale_factor'][0].cpu().numpy() - # true_depth = sample['query_depth'] if 'query_depth' in sample.keys() else None - # # if true_depth is not None: - # # true_depth = true_depth[0].cpu().numpy() - # # true_depth_colored = visualize_depth_numpy(true_depth, [depth_min, depth_max])[0] - # # else: - # # true_depth_colored = None - - rays_o = rays_o.reshape(-1, 3).split(chunk_size) - rays_d = rays_d.reshape(-1, 3).split(chunk_size) - - # - obtain conditional features - with torch.no_grad(): - # - obtain conditional features - geometry_feature_maps = self.obtain_pyramid_feature_maps(imgs, lod=0) - # - lod 0 - conditional_features_lod0 = self.sdf_network_lod0.get_conditional_volume( - feature_maps=geometry_feature_maps[None, :, :, :, :], - partial_vol_origin=partial_vol_origin, - proj_mats=proj_matrices, - sizeH=sizeH, - sizeW=sizeW, - lod=0, - ) - - con_volume_lod0 = conditional_features_lod0['dense_volume_scale0'] - con_valid_mask_volume_lod0 = conditional_features_lod0['valid_mask_volume_scale0'] - coords_lod0 = conditional_features_lod0['coords_scale0'] # [1,3,wX,wY,wZ] - - if self.num_lods > 1: - sdf_volume_lod0 = self.sdf_network_lod0.get_sdf_volume( - con_volume_lod0, con_valid_mask_volume_lod0, - coords_lod0, partial_vol_origin) # [1, 1, dX, dY, dZ] - - depth_maps_lod0, depth_masks_lod0 = None, None - - - if self.num_lods > 1: - geometry_feature_maps_lod1 = self.obtain_pyramid_feature_maps(imgs, lod=1) - - if self.prune_depth_filter: - pre_coords, pre_feats = self.sdf_renderer_lod0.get_valid_sparse_coords_by_sdf_depthfilter( - sdf_volume_lod0[0], coords_lod0[0], con_valid_mask_volume_lod0[0], con_volume_lod0[0], - depth_maps_lod0, proj_matrices[0], - partial_vol_origin, self.sdf_network_lod0.voxel_size, - near, far, self.sdf_network_lod0.voxel_size, 12) - else: - pre_coords, pre_feats = self.sdf_renderer_lod0.get_valid_sparse_coords_by_sdf( - sdf_volume_lod0[0], coords_lod0[0], con_valid_mask_volume_lod0[0], con_volume_lod0[0]) - - pre_coords[:, 1:] = pre_coords[:, 1:] * 2 - - with torch.no_grad(): - conditional_features_lod1 = self.sdf_network_lod1.get_conditional_volume( - feature_maps=geometry_feature_maps_lod1[None, :, :, :, :], - partial_vol_origin=partial_vol_origin, - proj_mats=proj_matrices, - sizeH=sizeH, - sizeW=sizeW, - pre_coords=pre_coords, - pre_feats=pre_feats, - ) - - con_volume_lod1 = conditional_features_lod1['dense_volume_scale1'] - con_valid_mask_volume_lod1 = conditional_features_lod1['valid_mask_volume_scale1'] - - - # - extract mesh - if (iter_step % self.val_mesh_freq == 0): - torch.cuda.empty_cache() - self.validate_colored_mesh( - density_or_sdf_network=self.sdf_network_lod0, - func_extract_geometry=self.sdf_renderer_lod0.extract_geometry, - resolution=resolution, - conditional_volume=con_volume_lod0, - conditional_valid_mask_volume = con_valid_mask_volume_lod0, - feature_maps=geometry_feature_maps, - color_maps=imgs, - w2cs=w2cs, - target_candidate_w2cs=None, - intrinsics=intrinsics, - rendering_network=self.rendering_network_lod0, - rendering_projector=self.sdf_renderer_lod0.rendering_projector, - lod=0, - threshold=0, - query_c2w=query_c2w, - mode='val_bg', meta=meta, - iter_step=iter_step, scale_mat=scale_mat, trans_mat=trans_mat - ) - torch.cuda.empty_cache() - - if self.num_lods > 1: - self.validate_colored_mesh( - density_or_sdf_network=self.sdf_network_lod1, - func_extract_geometry=self.sdf_renderer_lod1.extract_geometry, - resolution=resolution, - conditional_volume=con_volume_lod1, - conditional_valid_mask_volume = con_valid_mask_volume_lod1, - feature_maps=geometry_feature_maps, - color_maps=imgs, - w2cs=w2cs, - target_candidate_w2cs=None, - intrinsics=intrinsics, - rendering_network=self.rendering_network_lod1, - rendering_projector=self.sdf_renderer_lod1.rendering_projector, - lod=1, - threshold=0, - query_c2w=query_c2w, - mode='val_bg', meta=meta, - iter_step=iter_step, scale_mat=scale_mat, trans_mat=trans_mat - ) - torch.cuda.empty_cache() - - - - - def save_visualization(self, true_img, true_colored_depth, out_depth, out_normal, w2cs, out_color, H, W, - depth_min, depth_max, iter_step, meta, comment, out_color_mlp=[], true_depth=None, scale_factor=1.0): - if len(out_color) > 0: - img_fine = (np.concatenate(out_color, axis=0).reshape([H, W, 3]) * 256).clip(0, 255) - - if len(out_color_mlp) > 0: - img_mlp = (np.concatenate(out_color_mlp, axis=0).reshape([H, W, 3]) * 256).clip(0, 255) - - if len(out_normal) > 0: - normal_img = np.concatenate(out_normal, axis=0) - rot = w2cs[:3, :3].detach().cpu().numpy() - # - convert normal from world space to camera space - normal_img = (np.matmul(rot[None, :, :], - normal_img[:, :, None]).reshape([H, W, 3]) * 128 + 128).clip(0, 255) - if len(out_depth) > 0: - pred_depth = np.concatenate(out_depth, axis=0).reshape([H, W]) - pred_depth_colored = visualize_depth_numpy(pred_depth, [depth_min, depth_max])[0] - - if len(out_depth) > 0: - os.makedirs(os.path.join(self.base_exp_dir, 'depths_' + comment), exist_ok=True) - if true_colored_depth is not None: - - if true_depth is not None: - depth_error_map = np.abs(true_depth - pred_depth) * 2.0 / scale_factor - # [256, 256, 1] -> [256, 256, 3] - depth_error_map = np.tile(depth_error_map[:, :, None], [1, 1, 3]) - - depth_visualized = np.concatenate( - [(depth_error_map * 255).astype(np.uint8), true_colored_depth, pred_depth_colored, true_img], axis=1)[:, :, ::-1] - # print("depth_visualized.shape: ", depth_visualized.shape) - # write depth error result text on img, the input is a numpy array of [256, 1024, 3] - # cv.putText(depth_visualized.copy(), "depth_error_mean: {:.4f}".format(depth_error_map.mean()), (10, 30), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2) - else: - depth_visualized = np.concatenate( - [true_colored_depth, pred_depth_colored, true_img])[:, :, ::-1] - cv.imwrite( - os.path.join(self.base_exp_dir, 'depths_' + comment, - '{:0>8d}_{}.png'.format(iter_step, meta)), depth_visualized - ) - else: - cv.imwrite( - os.path.join(self.base_exp_dir, 'depths_' + comment, - '{:0>8d}_{}.png'.format(iter_step, meta)), - np.concatenate( - [pred_depth_colored, true_img])[:, :, ::-1]) - if len(out_color) > 0: - os.makedirs(os.path.join(self.base_exp_dir, 'synthesized_color_' + comment), exist_ok=True) - cv.imwrite(os.path.join(self.base_exp_dir, 'synthesized_color_' + comment, - '{:0>8d}_{}.png'.format(iter_step, meta)), - np.concatenate( - [img_fine, true_img])[:, :, ::-1]) # bgr2rgb - # compute psnr (image pixel lie in [0, 255]) - # mse_loss = np.mean((img_fine - true_img) ** 2) - # psnr = 10 * np.log10(255 ** 2 / mse_loss) - - if len(out_color_mlp) > 0: - os.makedirs(os.path.join(self.base_exp_dir, 'synthesized_color_mlp_' + comment), exist_ok=True) - cv.imwrite(os.path.join(self.base_exp_dir, 'synthesized_color_mlp_' + comment, - '{:0>8d}_{}.png'.format(iter_step, meta)), - np.concatenate( - [img_mlp, true_img])[:, :, ::-1]) # bgr2rgb - - if len(out_normal) > 0: - os.makedirs(os.path.join(self.base_exp_dir, 'normals_' + comment), exist_ok=True) - cv.imwrite(os.path.join(self.base_exp_dir, 'normals_' + comment, - '{:0>8d}_{}.png'.format(iter_step, meta)), - normal_img[:, :, ::-1]) - - def forward(self, sample, - perturb_overwrite=-1, - background_rgb=None, - alpha_inter_ratio_lod0=0.0, - alpha_inter_ratio_lod1=0.0, - iter_step=0, - mode='train', - save_vis=False, - resolution=360, - ): - - if mode == 'train': - return self.train_step(sample, - perturb_overwrite=perturb_overwrite, - background_rgb=background_rgb, - alpha_inter_ratio_lod0=alpha_inter_ratio_lod0, - alpha_inter_ratio_lod1=alpha_inter_ratio_lod1, - iter_step=iter_step - ) - elif mode == 'val': - import time - begin = time.time() - result = self.val_step(sample, - perturb_overwrite=perturb_overwrite, - background_rgb=background_rgb, - alpha_inter_ratio_lod0=alpha_inter_ratio_lod0, - alpha_inter_ratio_lod1=alpha_inter_ratio_lod1, - iter_step=iter_step, - save_vis=save_vis, - ) - end = time.time() - print("val_step time: ", end - begin) - return result - elif mode == 'export_mesh': - import time - begin = time.time() - result = self.export_mesh_step(sample, - iter_step=iter_step, - save_vis=save_vis, - resolution=resolution, - ) - end = time.time() - print("export mesh time: ", end - begin) - return result - elif mode == 'get_metrics': - return self.get_metrics_step(sample, - perturb_overwrite=perturb_overwrite, - background_rgb=background_rgb, - alpha_inter_ratio_lod0=alpha_inter_ratio_lod0, - alpha_inter_ratio_lod1=alpha_inter_ratio_lod1, - iter_step=iter_step - ) - def obtain_pyramid_feature_maps(self, imgs, lod=0): - """ - get feature maps of all conditional images - :param imgs: - :return: - """ - - if lod == 0: - extractor = self.pyramid_feature_network_geometry_lod0 - elif lod >= 1: - extractor = self.pyramid_feature_network_geometry_lod1 - - pyramid_feature_maps = extractor(imgs) - - # * the pyramid features are very important, if only use the coarst features, hard to optimize - fused_feature_maps = torch.cat([ - F.interpolate(pyramid_feature_maps[0], scale_factor=4, mode='bilinear', align_corners=True), - F.interpolate(pyramid_feature_maps[1], scale_factor=2, mode='bilinear', align_corners=True), - pyramid_feature_maps[2] - ], dim=1) - - return fused_feature_maps - - def cal_losses_sdf(self, render_out, sample_rays, iter_step=-1, lod=0): - - # loss weight schedule; the regularization terms should be added in later training stage - def get_weight(iter_step, weight): - if lod == 1: - anneal_start = self.anneal_end if lod == 0 else self.anneal_end_lod1 - anneal_end = self.anneal_end if lod == 0 else self.anneal_end_lod1 - anneal_end = anneal_end * 2 - else: - anneal_start = self.anneal_start if lod == 0 else self.anneal_start_lod1 - anneal_end = self.anneal_end if lod == 0 else self.anneal_end_lod1 - anneal_end = anneal_end * 2 - - if iter_step < 0: - return weight - - if anneal_end == 0.0: - return weight - elif iter_step < anneal_start: - return 0.0 - else: - return np.min( - [1.0, - (iter_step - anneal_start) / (anneal_end - anneal_start)]) * weight - - rays_o = sample_rays['rays_o'][0] - rays_d = sample_rays['rays_v'][0] - true_rgb = sample_rays['rays_color'][0] - - if 'rays_depth' in sample_rays.keys(): - true_depth = sample_rays['rays_depth'][0] - else: - true_depth = None - mask = sample_rays['rays_mask'][0] - - color_fine = render_out['color_fine'] - color_fine_mask = render_out['color_fine_mask'] - depth_pred = render_out['depth'] - - variance = render_out['variance'] - cdf_fine = render_out['cdf_fine'] - weight_sum = render_out['weights_sum'] - - gradient_error_fine = render_out['gradient_error_fine'] - - sdf = render_out['sdf'] - - # * color generated by mlp - color_mlp = render_out['color_mlp'] - color_mlp_mask = render_out['color_mlp_mask'] - - if color_fine is not None: - # Color loss - color_mask = color_fine_mask if color_fine_mask is not None else mask - color_mask = color_mask[..., 0] - color_error = (color_fine[color_mask] - true_rgb[color_mask]) - color_fine_loss = F.l1_loss(color_error, torch.zeros_like(color_error).to(color_error.device), - reduction='mean') - psnr = 20.0 * torch.log10( - 1.0 / (((color_fine[color_mask] - true_rgb[color_mask]) ** 2).mean() / (3.0)).sqrt()) - else: - color_fine_loss = 0. - psnr = 0. - - if color_mlp is not None: - # Color loss - color_mlp_mask = color_mlp_mask[..., 0] - color_error_mlp = (color_mlp[color_mlp_mask] - true_rgb[color_mlp_mask]) - color_mlp_loss = F.l1_loss(color_error_mlp, - torch.zeros_like(color_error_mlp).to(color_error_mlp.device), - reduction='mean') - - psnr_mlp = 20.0 * torch.log10( - 1.0 / (((color_mlp[color_mlp_mask] - true_rgb[color_mlp_mask]) ** 2).mean() / (3.0)).sqrt()) - else: - color_mlp_loss = 0. - psnr_mlp = 0. - - # depth loss is only used for inference, not included in total loss - if true_depth is not None: - # depth_loss = self.depth_criterion(depth_pred, true_depth, mask) - depth_loss = self.depth_criterion(depth_pred, true_depth) - - depth_statis = None - else: - depth_loss = 0. - depth_statis = None - - sparse_loss_1 = torch.exp( - -1 * torch.abs(render_out['sdf_random']) * self.sdf_decay_param).mean() # - should equal - sparse_loss_2 = torch.exp(-1 * torch.abs(sdf) * self.sdf_decay_param).mean() - sparse_loss = (sparse_loss_1 + sparse_loss_2) / 2 - - sdf_mean = torch.abs(sdf).mean() - sparseness_1 = (torch.abs(sdf) < 0.01).to(torch.float32).mean() - sparseness_2 = (torch.abs(sdf) < 0.02).to(torch.float32).mean() - - # Eikonal loss - gradient_error_loss = gradient_error_fine - # ! the first 50k, don't use bg constraint - fg_bg_weight = 0.0 if iter_step < 50000 else get_weight(iter_step, self.fg_bg_weight) - - # Mask loss, optional - # The images of DTU dataset contain large black regions (0 rgb values), - # can use this data prior to make fg more clean - background_loss = 0.0 - fg_bg_loss = 0.0 - if self.fg_bg_weight > 0 and torch.mean((mask < 0.5).to(torch.float32)) > 0.02: - weights_sum_fg = render_out['weights_sum_fg'] - fg_bg_error = (weights_sum_fg - mask) - fg_bg_loss = F.l1_loss(fg_bg_error, - torch.zeros_like(fg_bg_error).to(fg_bg_error.device), - reduction='mean') - - - loss = self.depth_loss_weight * depth_loss + color_fine_loss + color_mlp_loss + \ - sparse_loss * get_weight(iter_step, self.sdf_sparse_weight) + \ - fg_bg_loss * fg_bg_weight + \ - gradient_error_loss * self.sdf_igr_weight # ! gradient_error_loss need a mask - - losses = { - "loss": loss, - "depth_loss": depth_loss, - "color_fine_loss": color_fine_loss, - "color_mlp_loss": color_mlp_loss, - "gradient_error_loss": gradient_error_loss, - "background_loss": background_loss, - "sparse_loss": sparse_loss, - "sparseness_1": sparseness_1, - "sparseness_2": sparseness_2, - "sdf_mean": sdf_mean, - "psnr": psnr, - "psnr_mlp": psnr_mlp, - "weights_sum": render_out['weights_sum'], - "weights_sum_fg": render_out['weights_sum_fg'], - "alpha_sum": render_out['alpha_sum'], - "variance": render_out['variance'], - "sparse_weight": get_weight(iter_step, self.sdf_sparse_weight), - "fg_bg_weight": fg_bg_weight, - "fg_bg_loss": fg_bg_loss, - } - losses = numpy2tensor(losses, device=rays_o.device) - return loss, losses, depth_statis - - @torch.no_grad() - def validate_mesh(self, density_or_sdf_network, func_extract_geometry, world_space=True, resolution=360, - threshold=0.0, mode='val', - # * 3d feature volume - conditional_volume=None, lod=None, occupancy_mask=None, - bound_min=[-1, -1, -1], bound_max=[1, 1, 1], meta='', iter_step=0, scale_mat=None, - trans_mat=None - ): - - bound_min = torch.tensor(bound_min, dtype=torch.float32) - bound_max = torch.tensor(bound_max, dtype=torch.float32) - - vertices, triangles, fields = func_extract_geometry( - density_or_sdf_network, - bound_min, bound_max, resolution=resolution, - threshold=threshold, device=conditional_volume.device, - # * 3d feature volume - conditional_volume=conditional_volume, lod=lod, - occupancy_mask=occupancy_mask - ) - - - if scale_mat is not None: - scale_mat_np = scale_mat.cpu().numpy() - vertices = vertices * scale_mat_np[0][0, 0] + scale_mat_np[0][:3, 3][None] - - if trans_mat is not None: # w2c_ref_inv - trans_mat_np = trans_mat.cpu().numpy() - vertices_homo = np.concatenate([vertices, np.ones_like(vertices[:, :1])], axis=1) - vertices = np.matmul(trans_mat_np, vertices_homo[:, :, None])[:, :3, 0] - - mesh = trimesh.Trimesh(vertices, triangles) - os.makedirs(os.path.join(self.base_exp_dir, 'meshes_' + mode), exist_ok=True) - mesh.export(os.path.join(self.base_exp_dir, 'meshes_' + mode, - 'mesh_{:0>8d}_{}_lod{:0>1d}.ply'.format(iter_step, meta, lod))) - - - - def validate_colored_mesh(self, density_or_sdf_network, func_extract_geometry, world_space=True, resolution=360, - threshold=0.0, mode='val', - # * 3d feature volume - conditional_volume=None, - conditional_valid_mask_volume=None, - feature_maps=None, - color_maps = None, - w2cs=None, - target_candidate_w2cs=None, - intrinsics=None, - rendering_network=None, - rendering_projector=None, - query_c2w=None, - lod=None, occupancy_mask=None, - bound_min=[-1, -1, -1], bound_max=[1, 1, 1], meta='', iter_step=0, scale_mat=None, - trans_mat=None - ): - - bound_min = torch.tensor(bound_min, dtype=torch.float32) - bound_max = torch.tensor(bound_max, dtype=torch.float32) - - vertices, triangles, fields = func_extract_geometry( - density_or_sdf_network, - bound_min, bound_max, resolution=resolution, - threshold=threshold, device=conditional_volume.device, - # * 3d feature volume - conditional_volume=conditional_volume, lod=lod, - occupancy_mask=occupancy_mask - ) - - - with torch.no_grad(): - ren_geo_feats, ren_rgb_feats, ren_ray_diff, ren_mask, _, _ = rendering_projector.compute_view_independent( - torch.tensor(vertices).to(conditional_volume), - lod=lod, - # * 3d geometry feature volumes - geometryVolume=conditional_volume[0], - geometryVolumeMask=conditional_valid_mask_volume[0], - sdf_network=density_or_sdf_network, - # * 2d rendering feature maps - rendering_feature_maps=feature_maps, # [n_view, 56, 256, 256] - color_maps=color_maps, - w2cs=w2cs, - target_candidate_w2cs=target_candidate_w2cs, - intrinsics=intrinsics, - img_wh=[256,256], - query_img_idx=0, # the index of the N_views dim for rendering - query_c2w=query_c2w, - ) - - - vertices_color, rendering_valid_mask = rendering_network( - ren_geo_feats, ren_rgb_feats, ren_ray_diff, ren_mask) - - - - if scale_mat is not None: - scale_mat_np = scale_mat.cpu().numpy() - vertices = vertices * scale_mat_np[0][0, 0] + scale_mat_np[0][:3, 3][None] - - if trans_mat is not None: # w2c_ref_inv - trans_mat_np = trans_mat.cpu().numpy() - vertices_homo = np.concatenate([vertices, np.ones_like(vertices[:, :1])], axis=1) - vertices = np.matmul(trans_mat_np, vertices_homo[:, :, None])[:, :3, 0] - - vertices_color = np.array(vertices_color.squeeze(0).cpu() * 255, dtype=np.uint8) - mesh = trimesh.Trimesh(vertices, triangles, vertex_colors=vertices_color) - # os.makedirs(os.path.join(self.base_exp_dir, 'meshes_' + mode, 'lod{:0>1d}'.format(lod)), exist_ok=True) - # mesh.export(os.path.join(self.base_exp_dir, 'meshes_' + mode, 'lod{:0>1d}'.format(lod), - # 'mesh_{:0>8d}_{}_lod{:0>1d}.ply'.format(iter_step, meta, lod))) - - mesh.export(os.path.join(self.base_exp_dir, 'mesh.ply')) \ No newline at end of file diff --git a/One-2-3-45-master 2/reconstruction/ops/__init__.py b/One-2-3-45-master 2/reconstruction/ops/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/One-2-3-45-master 2/reconstruction/ops/back_project.py b/One-2-3-45-master 2/reconstruction/ops/back_project.py deleted file mode 100644 index 5398f285f786a0e6c7a029138aa8a6554aae6e58..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/reconstruction/ops/back_project.py +++ /dev/null @@ -1,175 +0,0 @@ -import torch -from torch.nn.functional import grid_sample - - -def back_project_sparse_type(coords, origin, voxel_size, feats, KRcam, sizeH=None, sizeW=None, only_mask=False, - with_proj_z=False): - # - modified version from NeuRecon - ''' - Unproject the image fetures to form a 3D (sparse) feature volume - - :param coords: coordinates of voxels, - dim: (num of voxels, 4) (4 : batch ind, x, y, z) - :param origin: origin of the partial voxel volume (xyz position of voxel (0, 0, 0)) - dim: (batch size, 3) (3: x, y, z) - :param voxel_size: floats specifying the size of a voxel - :param feats: image features - dim: (num of views, batch size, C, H, W) - :param KRcam: projection matrix - dim: (num of views, batch size, 4, 4) - :return: feature_volume_all: 3D feature volumes - dim: (num of voxels, num_of_views, c) - :return: mask_volume_all: indicate the voxel of sampled feature volume is valid or not - dim: (num of voxels, num_of_views) - ''' - n_views, bs, c, h, w = feats.shape - device = feats.device - - if sizeH is None: - sizeH, sizeW = h, w # - if the KRcam is not suitable for the current feats - - feature_volume_all = torch.zeros(coords.shape[0], n_views, c).to(device) - mask_volume_all = torch.zeros([coords.shape[0], n_views], dtype=torch.int32).to(device) - # import ipdb; ipdb.set_trace() - for batch in range(bs): - # import ipdb; ipdb.set_trace() - batch_ind = torch.nonzero(coords[:, 0] == batch).squeeze(1) - coords_batch = coords[batch_ind][:, 1:] - - coords_batch = coords_batch.view(-1, 3) - origin_batch = origin[batch].unsqueeze(0) - feats_batch = feats[:, batch] - proj_batch = KRcam[:, batch] - - grid_batch = coords_batch * voxel_size + origin_batch.float() - rs_grid = grid_batch.unsqueeze(0).expand(n_views, -1, -1) - rs_grid = rs_grid.permute(0, 2, 1).contiguous() - nV = rs_grid.shape[-1] - rs_grid = torch.cat([rs_grid, torch.ones([n_views, 1, nV]).to(device)], dim=1) - - # Project grid - im_p = proj_batch @ rs_grid # - transform world pts to image UV space - im_x, im_y, im_z = im_p[:, 0], im_p[:, 1], im_p[:, 2] - - im_z[im_z >= 0] = im_z[im_z >= 0].clamp(min=1e-6) - - im_x = im_x / im_z - im_y = im_y / im_z - - im_grid = torch.stack([2 * im_x / (sizeW - 1) - 1, 2 * im_y / (sizeH - 1) - 1], dim=-1) - mask = im_grid.abs() <= 1 - mask = (mask.sum(dim=-1) == 2) & (im_z > 0) - - mask = mask.view(n_views, -1) - mask = mask.permute(1, 0).contiguous() # [num_pts, nviews] - - mask_volume_all[batch_ind] = mask.to(torch.int32) - - if only_mask: - return mask_volume_all - - feats_batch = feats_batch.view(n_views, c, h, w) - im_grid = im_grid.view(n_views, 1, -1, 2) - features = grid_sample(feats_batch, im_grid, padding_mode='zeros', align_corners=True) - # if features.isnan().sum() > 0: - # import ipdb; ipdb.set_trace() - features = features.view(n_views, c, -1) - features = features.permute(2, 0, 1).contiguous() # [num_pts, nviews, c] - - feature_volume_all[batch_ind] = features - - if with_proj_z: - im_z = im_z.view(n_views, 1, -1).permute(2, 0, 1).contiguous() # [num_pts, nviews, 1] - return feature_volume_all, mask_volume_all, im_z - # if feature_volume_all.isnan().sum() > 0: - # import ipdb; ipdb.set_trace() - return feature_volume_all, mask_volume_all - - -def cam2pixel(cam_coords, proj_c2p_rot, proj_c2p_tr, padding_mode, sizeH=None, sizeW=None, with_depth=False): - """Transform coordinates in the camera frame to the pixel frame. - Args: - cam_coords: pixel coordinates defined in the first camera coordinates system -- [B, 3, H, W] - proj_c2p_rot: rotation matrix of cameras -- [B, 3, 3] - proj_c2p_tr: translation vectors of cameras -- [B, 3, 1] - Returns: - array of [-1,1] coordinates -- [B, H, W, 2] - """ - b, _, h, w = cam_coords.size() - if sizeH is None: - sizeH = h - sizeW = w - - cam_coords_flat = cam_coords.view(b, 3, -1) # [B, 3, H*W] - if proj_c2p_rot is not None: - pcoords = proj_c2p_rot.bmm(cam_coords_flat) - else: - pcoords = cam_coords_flat - - if proj_c2p_tr is not None: - pcoords = pcoords + proj_c2p_tr # [B, 3, H*W] - X = pcoords[:, 0] - Y = pcoords[:, 1] - Z = pcoords[:, 2].clamp(min=1e-3) - - X_norm = 2 * (X / Z) / (sizeW - 1) - 1 # Normalized, -1 if on extreme left, - # 1 if on extreme right (x = w-1) [B, H*W] - Y_norm = 2 * (Y / Z) / (sizeH - 1) - 1 # Idem [B, H*W] - if padding_mode == 'zeros': - X_mask = ((X_norm > 1) + (X_norm < -1)).detach() - X_norm[X_mask] = 2 # make sure that no point in warped image is a combinaison of im and gray - Y_mask = ((Y_norm > 1) + (Y_norm < -1)).detach() - Y_norm[Y_mask] = 2 - - if with_depth: - pixel_coords = torch.stack([X_norm, Y_norm, Z], dim=2) # [B, H*W, 3] - return pixel_coords.view(b, h, w, 3) - else: - pixel_coords = torch.stack([X_norm, Y_norm], dim=2) # [B, H*W, 2] - return pixel_coords.view(b, h, w, 2) - - -# * have already checked, should check whether proj_matrix is for right coordinate system and resolution -def back_project_dense_type(coords, origin, voxel_size, feats, proj_matrix, sizeH=None, sizeW=None): - ''' - Unproject the image fetures to form a 3D (dense) feature volume - - :param coords: coordinates of voxels, - dim: (batch, nviews, 3, X,Y,Z) - :param origin: origin of the partial voxel volume (xyz position of voxel (0, 0, 0)) - dim: (batch size, 3) (3: x, y, z) - :param voxel_size: floats specifying the size of a voxel - :param feats: image features - dim: (batch size, num of views, C, H, W) - :param proj_matrix: projection matrix - dim: (batch size, num of views, 4, 4) - :return: feature_volume_all: 3D feature volumes - dim: (batch, nviews, C, X,Y,Z) - :return: count: number of times each voxel can be seen - dim: (batch, nviews, 1, X,Y,Z) - ''' - - batch, nviews, _, wX, wY, wZ = coords.shape - - if sizeH is None: - sizeH, sizeW = feats.shape[-2:] - proj_matrix = proj_matrix.view(batch * nviews, *proj_matrix.shape[2:]) - - coords_wrd = coords * voxel_size + origin.view(batch, 1, 3, 1, 1, 1) - coords_wrd = coords_wrd.view(batch * nviews, 3, wX * wY * wZ, 1) # (b*nviews,3,wX*wY*wZ, 1) - - pixel_grids = cam2pixel(coords_wrd, proj_matrix[:, :3, :3], proj_matrix[:, :3, 3:], - 'zeros', sizeH=sizeH, sizeW=sizeW) # (b*nviews,wX*wY*wZ, 2) - pixel_grids = pixel_grids.view(batch * nviews, 1, wX * wY * wZ, 2) - - feats = feats.view(batch * nviews, *feats.shape[2:]) # (b*nviews,c,h,w) - - ones = torch.ones((batch * nviews, 1, *feats.shape[2:])).to(feats.dtype).to(feats.device) - - features_volume = torch.nn.functional.grid_sample(feats, pixel_grids, padding_mode='zeros', align_corners=True) - counts_volume = torch.nn.functional.grid_sample(ones, pixel_grids, padding_mode='zeros', align_corners=True) - - features_volume = features_volume.view(batch, nviews, -1, wX, wY, wZ) # (batch, nviews, C, X,Y,Z) - counts_volume = counts_volume.view(batch, nviews, -1, wX, wY, wZ) - return features_volume, counts_volume - diff --git a/One-2-3-45-master 2/reconstruction/ops/generate_grids.py b/One-2-3-45-master 2/reconstruction/ops/generate_grids.py deleted file mode 100644 index 304c1c4c1a424c4bc219f39815ed43fea1d9de5d..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/reconstruction/ops/generate_grids.py +++ /dev/null @@ -1,33 +0,0 @@ -import torch - - -def generate_grid(n_vox, interval): - """ - generate grid - if 3D volume, grid[:,:,x,y,z] = (x,y,z) - :param n_vox: - :param interval: - :return: - """ - with torch.no_grad(): - # Create voxel grid - grid_range = [torch.arange(0, n_vox[axis], interval) for axis in range(3)] - grid = torch.stack(torch.meshgrid(grid_range[0], grid_range[1], grid_range[2], indexing="ij")) # 3 dx dy dz - # ! don't create tensor on gpu; imbalanced gpu memory in ddp mode - grid = grid.unsqueeze(0).type(torch.float32) # 1 3 dx dy dz - - return grid - - -if __name__ == "__main__": - import torch.nn.functional as F - grid = generate_grid([5, 6, 8], 1) - - pts = 2 * torch.tensor([1, 2, 3]) / (torch.tensor([5, 6, 8]) - 1) - 1 - pts = pts.view(1, 1, 1, 1, 3) - - pts = torch.flip(pts, dims=[-1]) - - sampled = F.grid_sample(grid, pts, mode='nearest') - - print(sampled) diff --git a/One-2-3-45-master 2/reconstruction/ops/grid_sampler.py b/One-2-3-45-master 2/reconstruction/ops/grid_sampler.py deleted file mode 100644 index 44113faa705f0b98a5689c0e4fb9e7a95865d6c1..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/reconstruction/ops/grid_sampler.py +++ /dev/null @@ -1,467 +0,0 @@ -""" -pytorch grid_sample doesn't support second-order derivative -implement custom version -""" - -import torch -import torch.nn.functional as F -import numpy as np - - -def grid_sample_2d(image, optical): - N, C, IH, IW = image.shape - _, H, W, _ = optical.shape - - ix = optical[..., 0] - iy = optical[..., 1] - - ix = ((ix + 1) / 2) * (IW - 1); - iy = ((iy + 1) / 2) * (IH - 1); - with torch.no_grad(): - ix_nw = torch.floor(ix); - iy_nw = torch.floor(iy); - ix_ne = ix_nw + 1; - iy_ne = iy_nw; - ix_sw = ix_nw; - iy_sw = iy_nw + 1; - ix_se = ix_nw + 1; - iy_se = iy_nw + 1; - - nw = (ix_se - ix) * (iy_se - iy) - ne = (ix - ix_sw) * (iy_sw - iy) - sw = (ix_ne - ix) * (iy - iy_ne) - se = (ix - ix_nw) * (iy - iy_nw) - - with torch.no_grad(): - torch.clamp(ix_nw, 0, IW - 1, out=ix_nw) - torch.clamp(iy_nw, 0, IH - 1, out=iy_nw) - - torch.clamp(ix_ne, 0, IW - 1, out=ix_ne) - torch.clamp(iy_ne, 0, IH - 1, out=iy_ne) - - torch.clamp(ix_sw, 0, IW - 1, out=ix_sw) - torch.clamp(iy_sw, 0, IH - 1, out=iy_sw) - - torch.clamp(ix_se, 0, IW - 1, out=ix_se) - torch.clamp(iy_se, 0, IH - 1, out=iy_se) - - image = image.view(N, C, IH * IW) - - nw_val = torch.gather(image, 2, (iy_nw * IW + ix_nw).long().view(N, 1, H * W).repeat(1, C, 1)) - ne_val = torch.gather(image, 2, (iy_ne * IW + ix_ne).long().view(N, 1, H * W).repeat(1, C, 1)) - sw_val = torch.gather(image, 2, (iy_sw * IW + ix_sw).long().view(N, 1, H * W).repeat(1, C, 1)) - se_val = torch.gather(image, 2, (iy_se * IW + ix_se).long().view(N, 1, H * W).repeat(1, C, 1)) - - out_val = (nw_val.view(N, C, H, W) * nw.view(N, 1, H, W) + - ne_val.view(N, C, H, W) * ne.view(N, 1, H, W) + - sw_val.view(N, C, H, W) * sw.view(N, 1, H, W) + - se_val.view(N, C, H, W) * se.view(N, 1, H, W)) - - return out_val - - -# - checked for correctness -def grid_sample_3d(volume, optical): - """ - bilinear sampling cannot guarantee continuous first-order gradient - mimic pytorch grid_sample function - The 8 corner points of a volume noted as: 4 points (front view); 4 points (back view) - fnw (front north west) point - bse (back south east) point - :param volume: [B, C, X, Y, Z] - :param optical: [B, x, y, z, 3] - :return: - """ - N, C, ID, IH, IW = volume.shape - _, D, H, W, _ = optical.shape - - ix = optical[..., 0] - iy = optical[..., 1] - iz = optical[..., 2] - - ix = ((ix + 1) / 2) * (IW - 1) - iy = ((iy + 1) / 2) * (IH - 1) - iz = ((iz + 1) / 2) * (ID - 1) - - mask_x = (ix > 0) & (ix < IW) - mask_y = (iy > 0) & (iy < IH) - mask_z = (iz > 0) & (iz < ID) - - mask = mask_x & mask_y & mask_z # [B, x, y, z] - mask = mask[:, None, :, :, :].repeat(1, C, 1, 1, 1) # [B, C, x, y, z] - - with torch.no_grad(): - # back north west - ix_bnw = torch.floor(ix) - iy_bnw = torch.floor(iy) - iz_bnw = torch.floor(iz) - - ix_bne = ix_bnw + 1 - iy_bne = iy_bnw - iz_bne = iz_bnw - - ix_bsw = ix_bnw - iy_bsw = iy_bnw + 1 - iz_bsw = iz_bnw - - ix_bse = ix_bnw + 1 - iy_bse = iy_bnw + 1 - iz_bse = iz_bnw - - # front view - ix_fnw = ix_bnw - iy_fnw = iy_bnw - iz_fnw = iz_bnw + 1 - - ix_fne = ix_bnw + 1 - iy_fne = iy_bnw - iz_fne = iz_bnw + 1 - - ix_fsw = ix_bnw - iy_fsw = iy_bnw + 1 - iz_fsw = iz_bnw + 1 - - ix_fse = ix_bnw + 1 - iy_fse = iy_bnw + 1 - iz_fse = iz_bnw + 1 - - # back view - bnw = (ix_fse - ix) * (iy_fse - iy) * (iz_fse - iz) # smaller volume, larger weight - bne = (ix - ix_fsw) * (iy_fsw - iy) * (iz_fsw - iz) - bsw = (ix_fne - ix) * (iy - iy_fne) * (iz_fne - iz) - bse = (ix - ix_fnw) * (iy - iy_fnw) * (iz_fnw - iz) - - # front view - fnw = (ix_bse - ix) * (iy_bse - iy) * (iz - iz_bse) # smaller volume, larger weight - fne = (ix - ix_bsw) * (iy_bsw - iy) * (iz - iz_bsw) - fsw = (ix_bne - ix) * (iy - iy_bne) * (iz - iz_bne) - fse = (ix - ix_bnw) * (iy - iy_bnw) * (iz - iz_bnw) - - with torch.no_grad(): - # back view - torch.clamp(ix_bnw, 0, IW - 1, out=ix_bnw) - torch.clamp(iy_bnw, 0, IH - 1, out=iy_bnw) - torch.clamp(iz_bnw, 0, ID - 1, out=iz_bnw) - - torch.clamp(ix_bne, 0, IW - 1, out=ix_bne) - torch.clamp(iy_bne, 0, IH - 1, out=iy_bne) - torch.clamp(iz_bne, 0, ID - 1, out=iz_bne) - - torch.clamp(ix_bsw, 0, IW - 1, out=ix_bsw) - torch.clamp(iy_bsw, 0, IH - 1, out=iy_bsw) - torch.clamp(iz_bsw, 0, ID - 1, out=iz_bsw) - - torch.clamp(ix_bse, 0, IW - 1, out=ix_bse) - torch.clamp(iy_bse, 0, IH - 1, out=iy_bse) - torch.clamp(iz_bse, 0, ID - 1, out=iz_bse) - - # front view - torch.clamp(ix_fnw, 0, IW - 1, out=ix_fnw) - torch.clamp(iy_fnw, 0, IH - 1, out=iy_fnw) - torch.clamp(iz_fnw, 0, ID - 1, out=iz_fnw) - - torch.clamp(ix_fne, 0, IW - 1, out=ix_fne) - torch.clamp(iy_fne, 0, IH - 1, out=iy_fne) - torch.clamp(iz_fne, 0, ID - 1, out=iz_fne) - - torch.clamp(ix_fsw, 0, IW - 1, out=ix_fsw) - torch.clamp(iy_fsw, 0, IH - 1, out=iy_fsw) - torch.clamp(iz_fsw, 0, ID - 1, out=iz_fsw) - - torch.clamp(ix_fse, 0, IW - 1, out=ix_fse) - torch.clamp(iy_fse, 0, IH - 1, out=iy_fse) - torch.clamp(iz_fse, 0, ID - 1, out=iz_fse) - - # xxx = volume[:, :, iz_bnw.long(), iy_bnw.long(), ix_bnw.long()] - volume = volume.view(N, C, ID * IH * IW) - # yyy = volume[:, :, (iz_bnw * ID + iy_bnw * IW + ix_bnw).long()] - - # back view - bnw_val = torch.gather(volume, 2, - (iz_bnw * ID ** 2 + iy_bnw * IW + ix_bnw).long().view(N, 1, D * H * W).repeat(1, C, 1)) - bne_val = torch.gather(volume, 2, - (iz_bne * ID ** 2 + iy_bne * IW + ix_bne).long().view(N, 1, D * H * W).repeat(1, C, 1)) - bsw_val = torch.gather(volume, 2, - (iz_bsw * ID ** 2 + iy_bsw * IW + ix_bsw).long().view(N, 1, D * H * W).repeat(1, C, 1)) - bse_val = torch.gather(volume, 2, - (iz_bse * ID ** 2 + iy_bse * IW + ix_bse).long().view(N, 1, D * H * W).repeat(1, C, 1)) - - # front view - fnw_val = torch.gather(volume, 2, - (iz_fnw * ID ** 2 + iy_fnw * IW + ix_fnw).long().view(N, 1, D * H * W).repeat(1, C, 1)) - fne_val = torch.gather(volume, 2, - (iz_fne * ID ** 2 + iy_fne * IW + ix_fne).long().view(N, 1, D * H * W).repeat(1, C, 1)) - fsw_val = torch.gather(volume, 2, - (iz_fsw * ID ** 2 + iy_fsw * IW + ix_fsw).long().view(N, 1, D * H * W).repeat(1, C, 1)) - fse_val = torch.gather(volume, 2, - (iz_fse * ID ** 2 + iy_fse * IW + ix_fse).long().view(N, 1, D * H * W).repeat(1, C, 1)) - - out_val = ( - # back - bnw_val.view(N, C, D, H, W) * bnw.view(N, 1, D, H, W) + - bne_val.view(N, C, D, H, W) * bne.view(N, 1, D, H, W) + - bsw_val.view(N, C, D, H, W) * bsw.view(N, 1, D, H, W) + - bse_val.view(N, C, D, H, W) * bse.view(N, 1, D, H, W) + - # front - fnw_val.view(N, C, D, H, W) * fnw.view(N, 1, D, H, W) + - fne_val.view(N, C, D, H, W) * fne.view(N, 1, D, H, W) + - fsw_val.view(N, C, D, H, W) * fsw.view(N, 1, D, H, W) + - fse_val.view(N, C, D, H, W) * fse.view(N, 1, D, H, W) - - ) - - # * zero padding - out_val = torch.where(mask, out_val, torch.zeros_like(out_val).float().to(out_val.device)) - - return out_val - - -# Interpolation kernel -def get_weight(s, a=-0.5): - mask_0 = (torch.abs(s) >= 0) & (torch.abs(s) <= 1) - mask_1 = (torch.abs(s) > 1) & (torch.abs(s) <= 2) - mask_2 = torch.abs(s) > 2 - - weight = torch.zeros_like(s).to(s.device) - weight = torch.where(mask_0, (a + 2) * (torch.abs(s) ** 3) - (a + 3) * (torch.abs(s) ** 2) + 1, weight) - weight = torch.where(mask_1, - a * (torch.abs(s) ** 3) - (5 * a) * (torch.abs(s) ** 2) + (8 * a) * torch.abs(s) - 4 * a, - weight) - - # if (torch.abs(s) >= 0) & (torch.abs(s) <= 1): - # return (a + 2) * (torch.abs(s) ** 3) - (a + 3) * (torch.abs(s) ** 2) + 1 - # - # elif (torch.abs(s) > 1) & (torch.abs(s) <= 2): - # return a * (torch.abs(s) ** 3) - (5 * a) * (torch.abs(s) ** 2) + (8 * a) * torch.abs(s) - 4 * a - # return 0 - - return weight - - -def cubic_interpolate(p, x): - """ - one dimensional cubic interpolation - :param p: [N, 4] (4) should be in order - :param x: [N] - :return: - """ - return p[:, 1] + 0.5 * x * (p[:, 2] - p[:, 0] + x * ( - 2.0 * p[:, 0] - 5.0 * p[:, 1] + 4.0 * p[:, 2] - p[:, 3] + x * ( - 3.0 * (p[:, 1] - p[:, 2]) + p[:, 3] - p[:, 0]))) - - -def bicubic_interpolate(p, x, y, if_batch=True): - """ - two dimensional cubic interpolation - :param p: [N, 4, 4] - :param x: [N] - :param y: [N] - :return: - """ - num = p.shape[0] - - if not if_batch: - arr0 = cubic_interpolate(p[:, 0, :], x) # [N] - arr1 = cubic_interpolate(p[:, 1, :], x) - arr2 = cubic_interpolate(p[:, 2, :], x) - arr3 = cubic_interpolate(p[:, 3, :], x) - return cubic_interpolate(torch.stack([arr0, arr1, arr2, arr3], dim=-1), y) # [N] - else: - x = x[:, None].repeat(1, 4).view(-1) - p = p.contiguous().view(num * 4, 4) - arr = cubic_interpolate(p, x) - arr = arr.view(num, 4) - - return cubic_interpolate(arr, y) - - -def tricubic_interpolate(p, x, y, z): - """ - three dimensional cubic interpolation - :param p: [N,4,4,4] - :param x: [N] - :param y: [N] - :param z: [N] - :return: - """ - num = p.shape[0] - - arr0 = bicubic_interpolate(p[:, 0, :, :], x, y) # [N] - arr1 = bicubic_interpolate(p[:, 1, :, :], x, y) - arr2 = bicubic_interpolate(p[:, 2, :, :], x, y) - arr3 = bicubic_interpolate(p[:, 3, :, :], x, y) - - return cubic_interpolate(torch.stack([arr0, arr1, arr2, arr3], dim=-1), z) # [N] - - -def cubic_interpolate_batch(p, x): - """ - one dimensional cubic interpolation - :param p: [B, N, 4] (4) should be in order - :param x: [B, N] - :return: - """ - return p[:, :, 1] + 0.5 * x * (p[:, :, 2] - p[:, :, 0] + x * ( - 2.0 * p[:, :, 0] - 5.0 * p[:, :, 1] + 4.0 * p[:, :, 2] - p[:, :, 3] + x * ( - 3.0 * (p[:, :, 1] - p[:, :, 2]) + p[:, :, 3] - p[:, :, 0]))) - - -def bicubic_interpolate_batch(p, x, y): - """ - two dimensional cubic interpolation - :param p: [B, N, 4, 4] - :param x: [B, N] - :param y: [B, N] - :return: - """ - B, N, _, _ = p.shape - - x = x[:, :, None].repeat(1, 1, 4).view(B, N * 4) # [B, N*4] - arr = cubic_interpolate_batch(p.contiguous().view(B, N * 4, 4), x) - arr = arr.view(B, N, 4) - return cubic_interpolate_batch(arr, y) # [B, N] - - -# * batch version cannot speed up training -def tricubic_interpolate_batch(p, x, y, z): - """ - three dimensional cubic interpolation - :param p: [N,4,4,4] - :param x: [N] - :param y: [N] - :param z: [N] - :return: - """ - N = p.shape[0] - - x = x[None, :].repeat(4, 1) - y = y[None, :].repeat(4, 1) - - p = p.permute(1, 0, 2, 3).contiguous() - - arr = bicubic_interpolate_batch(p[:, :, :, :], x, y) # [4, N] - - arr = arr.permute(1, 0).contiguous() # [N, 4] - - return cubic_interpolate(arr, z) # [N] - - -def tricubic_sample_3d(volume, optical): - """ - tricubic sampling; can guarantee continuous gradient (interpolation border) - :param volume: [B, C, ID, IH, IW] - :param optical: [B, D, H, W, 3] - :param sample_num: - :return: - """ - - @torch.no_grad() - def get_shifts(x): - x1 = -1 * (1 + x - torch.floor(x)) - x2 = -1 * (x - torch.floor(x)) - x3 = torch.floor(x) + 1 - x - x4 = torch.floor(x) + 2 - x - - return torch.stack([x1, x2, x3, x4], dim=-1) # (B,d,h,w,4) - - N, C, ID, IH, IW = volume.shape - _, D, H, W, _ = optical.shape - - device = volume.device - - ix = optical[..., 0] - iy = optical[..., 1] - iz = optical[..., 2] - - ix = ((ix + 1) / 2) * (IW - 1) # (B,d,h,w) - iy = ((iy + 1) / 2) * (IH - 1) - iz = ((iz + 1) / 2) * (ID - 1) - - ix = ix.view(-1) - iy = iy.view(-1) - iz = iz.view(-1) - - with torch.no_grad(): - shifts_x = get_shifts(ix).view(-1, 4) # (B*d*h*w,4) - shifts_y = get_shifts(iy).view(-1, 4) - shifts_z = get_shifts(iz).view(-1, 4) - - perm_weights = torch.ones([N * D * H * W, 4 * 4 * 4]).long().to(device) - perm = torch.cumsum(perm_weights, dim=-1) - 1 # (B*d*h*w,64) - - perm_z = perm // 16 # [N*D*H*W, num] - perm_y = (perm - perm_z * 16) // 4 - perm_x = (perm - perm_z * 16 - perm_y * 4) - - shifts_x = torch.gather(shifts_x, 1, perm_x) # [N*D*H*W, num] - shifts_y = torch.gather(shifts_y, 1, perm_y) - shifts_z = torch.gather(shifts_z, 1, perm_z) - - ix_target = (ix[:, None] + shifts_x).long() # [N*D*H*W, num] - iy_target = (iy[:, None] + shifts_y).long() - iz_target = (iz[:, None] + shifts_z).long() - - torch.clamp(ix_target, 0, IW - 1, out=ix_target) - torch.clamp(iy_target, 0, IH - 1, out=iy_target) - torch.clamp(iz_target, 0, ID - 1, out=iz_target) - - local_dist_x = ix - ix_target[:, 1] # ! attention here is [:, 1] - local_dist_y = iy - iy_target[:, 1 + 4] - local_dist_z = iz - iz_target[:, 1 + 16] - - local_dist_x = local_dist_x.view(N, 1, D * H * W).repeat(1, C, 1).view(-1) - local_dist_y = local_dist_y.view(N, 1, D * H * W).repeat(1, C, 1).view(-1) - local_dist_z = local_dist_z.view(N, 1, D * H * W).repeat(1, C, 1).view(-1) - - # ! attention: IW is correct - idx_target = iz_target * ID ** 2 + iy_target * IW + ix_target # [N*D*H*W, num] - - volume = volume.view(N, C, ID * IH * IW) - - out = torch.gather(volume, 2, - idx_target.view(N, 1, D * H * W * 64).repeat(1, C, 1)) - out = out.view(N * C * D * H * W, 4, 4, 4) - - # - tricubic_interpolate() is a bit faster than tricubic_interpolate_batch() - final = tricubic_interpolate(out, local_dist_x, local_dist_y, local_dist_z).view(N, C, D, H, W) # [N,C,D,H,W] - - return final - - - -if __name__ == "__main__": - # image = torch.Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]).view(1, 3, 1, 3) - # - # optical = torch.Tensor([0.9, 0.5, 0.6, -0.7]).view(1, 1, 2, 2) - # - # print(grid_sample_2d(image, optical)) - # - # print(F.grid_sample(image, optical, padding_mode='border', align_corners=True)) - - from ops.generate_grids import generate_grid - - p = torch.tensor([x for x in range(4)]).view(1, 4).float() - - v = cubic_interpolate(p, torch.tensor([0.5]).view(1)) - # v = bicubic_interpolate(p, torch.tensor([2/3]).view(1) , torch.tensor([2/3]).view(1)) - - vsize = 9 - volume = generate_grid([vsize, vsize, vsize], 1) # [1,3,10,10,10] - # volume = torch.tensor([x for x in range(1000)]).view(1, 1, 10, 10, 10).float() - X, Y, Z = 0, 0, 6 - x = 2 * X / (vsize - 1) - 1 - y = 2 * Y / (vsize - 1) - 1 - z = 2 * Z / (vsize - 1) - 1 - - # print(volume[:, :, Z, Y, X]) - - # volume = volume.view(1, 3, -1) - # xx = volume[:, :, Z * 9*9 + Y * 9 + X] - - optical = torch.Tensor([-0.6, -0.7, 0.5, 0.3, 0.5, 0.5]).view(1, 1, 1, 2, 3) - - print(F.grid_sample(volume, optical, padding_mode='border', align_corners=True)) - print(grid_sample_3d(volume, optical)) - print(tricubic_sample_3d(volume, optical)) - # target, relative_coords = implicit_sample_3d(volume, optical, 1) - # print(target) diff --git a/One-2-3-45-master 2/reconstruction/tsparse/__init__.py b/One-2-3-45-master 2/reconstruction/tsparse/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/One-2-3-45-master 2/reconstruction/tsparse/modules.py b/One-2-3-45-master 2/reconstruction/tsparse/modules.py deleted file mode 100644 index 520809144718d84b77708bbc7a582a64078958b4..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/reconstruction/tsparse/modules.py +++ /dev/null @@ -1,326 +0,0 @@ -import torch -import torch.nn as nn -import torchsparse -import torchsparse.nn as spnn -from torchsparse.tensor import PointTensor - -from tsparse.torchsparse_utils import * - - -# __all__ = ['SPVCNN', 'SConv3d', 'SparseConvGRU'] - - -class ConvBnReLU(nn.Module): - def __init__(self, in_channels, out_channels, - kernel_size=3, stride=1, pad=1): - super(ConvBnReLU, self).__init__() - self.conv = nn.Conv2d(in_channels, out_channels, - kernel_size, stride=stride, padding=pad, bias=False) - self.bn = nn.BatchNorm2d(out_channels) - self.activation = nn.ReLU(inplace=True) - - def forward(self, x): - return self.activation(self.bn(self.conv(x))) - - -class ConvBnReLU3D(nn.Module): - def __init__(self, in_channels, out_channels, - kernel_size=3, stride=1, pad=1): - super(ConvBnReLU3D, self).__init__() - self.conv = nn.Conv3d(in_channels, out_channels, - kernel_size, stride=stride, padding=pad, bias=False) - self.bn = nn.BatchNorm3d(out_channels) - self.activation = nn.ReLU(inplace=True) - - def forward(self, x): - return self.activation(self.bn(self.conv(x))) - - -################################### feature net ###################################### -class FeatureNet(nn.Module): - """ - output 3 levels of features using a FPN structure - """ - - def __init__(self): - super(FeatureNet, self).__init__() - - self.conv0 = nn.Sequential( - ConvBnReLU(3, 8, 3, 1, 1), - ConvBnReLU(8, 8, 3, 1, 1)) - - self.conv1 = nn.Sequential( - ConvBnReLU(8, 16, 5, 2, 2), - ConvBnReLU(16, 16, 3, 1, 1), - ConvBnReLU(16, 16, 3, 1, 1)) - - self.conv2 = nn.Sequential( - ConvBnReLU(16, 32, 5, 2, 2), - ConvBnReLU(32, 32, 3, 1, 1), - ConvBnReLU(32, 32, 3, 1, 1)) - - self.toplayer = nn.Conv2d(32, 32, 1) - self.lat1 = nn.Conv2d(16, 32, 1) - self.lat0 = nn.Conv2d(8, 32, 1) - - # to reduce channel size of the outputs from FPN - self.smooth1 = nn.Conv2d(32, 16, 3, padding=1) - self.smooth0 = nn.Conv2d(32, 8, 3, padding=1) - - def _upsample_add(self, x, y): - return torch.nn.functional.interpolate(x, scale_factor=2, - mode="bilinear", align_corners=True) + y - - def forward(self, x): - # x: (B, 3, H, W) - conv0 = self.conv0(x) # (B, 8, H, W) - conv1 = self.conv1(conv0) # (B, 16, H//2, W//2) - conv2 = self.conv2(conv1) # (B, 32, H//4, W//4) - feat2 = self.toplayer(conv2) # (B, 32, H//4, W//4) - feat1 = self._upsample_add(feat2, self.lat1(conv1)) # (B, 32, H//2, W//2) - feat0 = self._upsample_add(feat1, self.lat0(conv0)) # (B, 32, H, W) - - # reduce output channels - feat1 = self.smooth1(feat1) # (B, 16, H//2, W//2) - feat0 = self.smooth0(feat0) # (B, 8, H, W) - - # feats = {"level_0": feat0, - # "level_1": feat1, - # "level_2": feat2} - - return [feat2, feat1, feat0] # coarser to finer features - - -class BasicSparseConvolutionBlock(nn.Module): - def __init__(self, inc, outc, ks=3, stride=1, dilation=1): - super().__init__() - self.net = nn.Sequential( - spnn.Conv3d(inc, - outc, - kernel_size=ks, - dilation=dilation, - stride=stride), - spnn.BatchNorm(outc), - spnn.ReLU(True)) - - def forward(self, x): - out = self.net(x) - return out - - -class BasicSparseDeconvolutionBlock(nn.Module): - def __init__(self, inc, outc, ks=3, stride=1): - super().__init__() - self.net = nn.Sequential( - spnn.Conv3d(inc, - outc, - kernel_size=ks, - stride=stride, - transposed=True), - spnn.BatchNorm(outc), - spnn.ReLU(True)) - - def forward(self, x): - return self.net(x) - - -class SparseResidualBlock(nn.Module): - def __init__(self, inc, outc, ks=3, stride=1, dilation=1): - super().__init__() - self.net = nn.Sequential( - spnn.Conv3d(inc, - outc, - kernel_size=ks, - dilation=dilation, - stride=stride), spnn.BatchNorm(outc), - spnn.ReLU(True), - spnn.Conv3d(outc, - outc, - kernel_size=ks, - dilation=dilation, - stride=1), spnn.BatchNorm(outc)) - - self.downsample = nn.Sequential() if (inc == outc and stride == 1) else \ - nn.Sequential( - spnn.Conv3d(inc, outc, kernel_size=1, dilation=1, stride=stride), - spnn.BatchNorm(outc) - ) - - self.relu = spnn.ReLU(True) - - def forward(self, x): - out = self.relu(self.net(x) + self.downsample(x)) - return out - - -class SPVCNN(nn.Module): - def __init__(self, **kwargs): - super().__init__() - - self.dropout = kwargs['dropout'] - - cr = kwargs.get('cr', 1.0) - cs = [32, 64, 128, 96, 96] - cs = [int(cr * x) for x in cs] - - if 'pres' in kwargs and 'vres' in kwargs: - self.pres = kwargs['pres'] - self.vres = kwargs['vres'] - - self.stem = nn.Sequential( - spnn.Conv3d(kwargs['in_channels'], cs[0], kernel_size=3, stride=1), - spnn.BatchNorm(cs[0]), spnn.ReLU(True) - ) - - self.stage1 = nn.Sequential( - BasicSparseConvolutionBlock(cs[0], cs[0], ks=2, stride=2, dilation=1), - SparseResidualBlock(cs[0], cs[1], ks=3, stride=1, dilation=1), - SparseResidualBlock(cs[1], cs[1], ks=3, stride=1, dilation=1), - ) - - self.stage2 = nn.Sequential( - BasicSparseConvolutionBlock(cs[1], cs[1], ks=2, stride=2, dilation=1), - SparseResidualBlock(cs[1], cs[2], ks=3, stride=1, dilation=1), - SparseResidualBlock(cs[2], cs[2], ks=3, stride=1, dilation=1), - ) - - self.up1 = nn.ModuleList([ - BasicSparseDeconvolutionBlock(cs[2], cs[3], ks=2, stride=2), - nn.Sequential( - SparseResidualBlock(cs[3] + cs[1], cs[3], ks=3, stride=1, - dilation=1), - SparseResidualBlock(cs[3], cs[3], ks=3, stride=1, dilation=1), - ) - ]) - - self.up2 = nn.ModuleList([ - BasicSparseDeconvolutionBlock(cs[3], cs[4], ks=2, stride=2), - nn.Sequential( - SparseResidualBlock(cs[4] + cs[0], cs[4], ks=3, stride=1, - dilation=1), - SparseResidualBlock(cs[4], cs[4], ks=3, stride=1, dilation=1), - ) - ]) - - self.point_transforms = nn.ModuleList([ - nn.Sequential( - nn.Linear(cs[0], cs[2]), - nn.BatchNorm1d(cs[2]), - nn.ReLU(True), - ), - nn.Sequential( - nn.Linear(cs[2], cs[4]), - nn.BatchNorm1d(cs[4]), - nn.ReLU(True), - ) - ]) - - self.weight_initialization() - - if self.dropout: - self.dropout = nn.Dropout(0.3, True) - - def weight_initialization(self): - for m in self.modules(): - if isinstance(m, nn.BatchNorm1d): - nn.init.constant_(m.weight, 1) - nn.init.constant_(m.bias, 0) - - def forward(self, z): - # x: SparseTensor z: PointTensor - x0 = initial_voxelize(z, self.pres, self.vres) - - x0 = self.stem(x0) - z0 = voxel_to_point(x0, z, nearest=False) - z0.F = z0.F - - x1 = point_to_voxel(x0, z0) - x1 = self.stage1(x1) - x2 = self.stage2(x1) - z1 = voxel_to_point(x2, z0) - z1.F = z1.F + self.point_transforms[0](z0.F) - - y3 = point_to_voxel(x2, z1) - if self.dropout: - y3.F = self.dropout(y3.F) - y3 = self.up1[0](y3) - y3 = torchsparse.cat([y3, x1]) - y3 = self.up1[1](y3) - - y4 = self.up2[0](y3) - y4 = torchsparse.cat([y4, x0]) - y4 = self.up2[1](y4) - z3 = voxel_to_point(y4, z1) - z3.F = z3.F + self.point_transforms[1](z1.F) - - return z3.F - - -class SparseCostRegNet(nn.Module): - """ - Sparse cost regularization network; - require sparse tensors as input - """ - - def __init__(self, d_in, d_out=8): - super(SparseCostRegNet, self).__init__() - self.d_in = d_in - self.d_out = d_out - - self.conv0 = BasicSparseConvolutionBlock(d_in, d_out) - - self.conv1 = BasicSparseConvolutionBlock(d_out, 16, stride=2) - self.conv2 = BasicSparseConvolutionBlock(16, 16) - - self.conv3 = BasicSparseConvolutionBlock(16, 32, stride=2) - self.conv4 = BasicSparseConvolutionBlock(32, 32) - - self.conv5 = BasicSparseConvolutionBlock(32, 64, stride=2) - self.conv6 = BasicSparseConvolutionBlock(64, 64) - - self.conv7 = BasicSparseDeconvolutionBlock(64, 32, ks=3, stride=2) - - self.conv9 = BasicSparseDeconvolutionBlock(32, 16, ks=3, stride=2) - - self.conv11 = BasicSparseDeconvolutionBlock(16, d_out, ks=3, stride=2) - - def forward(self, x): - """ - - :param x: sparse tensor - :return: sparse tensor - """ - conv0 = self.conv0(x) - conv2 = self.conv2(self.conv1(conv0)) - conv4 = self.conv4(self.conv3(conv2)) - - x = self.conv6(self.conv5(conv4)) - x = conv4 + self.conv7(x) - del conv4 - x = conv2 + self.conv9(x) - del conv2 - x = conv0 + self.conv11(x) - del conv0 - return x.F - - -class SConv3d(nn.Module): - def __init__(self, inc, outc, pres, vres, ks=3, stride=1, dilation=1): - super().__init__() - self.net = spnn.Conv3d(inc, - outc, - kernel_size=ks, - dilation=dilation, - stride=stride) - self.point_transforms = nn.Sequential( - nn.Linear(inc, outc), - ) - self.pres = pres - self.vres = vres - - def forward(self, z): - x = initial_voxelize(z, self.pres, self.vres) - x = self.net(x) - out = voxel_to_point(x, z, nearest=False) - out.F = out.F + self.point_transforms(z.F) - return out diff --git a/One-2-3-45-master 2/reconstruction/tsparse/torchsparse_utils.py b/One-2-3-45-master 2/reconstruction/tsparse/torchsparse_utils.py deleted file mode 100644 index 32f5b92ae5ef4bf9836b1e4c1dc17eaf3f7c93f9..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/reconstruction/tsparse/torchsparse_utils.py +++ /dev/null @@ -1,137 +0,0 @@ -""" -Copied from: -https://github.com/mit-han-lab/spvnas/blob/b24f50379ed888d3a0e784508a809d4e92e820c0/core/models/utils.py -""" -import torch -import torchsparse.nn.functional as F -from torchsparse import PointTensor, SparseTensor -from torchsparse.nn.utils import get_kernel_offsets - -import numpy as np - -# __all__ = ['initial_voxelize', 'point_to_voxel', 'voxel_to_point'] - - -# z: PointTensor -# return: SparseTensor -def initial_voxelize(z, init_res, after_res): - new_float_coord = torch.cat( - [(z.C[:, :3] * init_res) / after_res, z.C[:, -1].view(-1, 1)], 1) - - pc_hash = F.sphash(torch.floor(new_float_coord).int()) - sparse_hash = torch.unique(pc_hash) - idx_query = F.sphashquery(pc_hash, sparse_hash) - counts = F.spcount(idx_query.int(), len(sparse_hash)) - - inserted_coords = F.spvoxelize(torch.floor(new_float_coord), idx_query, - counts) - inserted_coords = torch.round(inserted_coords).int() - inserted_feat = F.spvoxelize(z.F, idx_query, counts) - - new_tensor = SparseTensor(inserted_feat, inserted_coords, 1) - new_tensor.cmaps.setdefault(new_tensor.stride, new_tensor.coords) - z.additional_features['idx_query'][1] = idx_query - z.additional_features['counts'][1] = counts - z.C = new_float_coord - - return new_tensor - - -# x: SparseTensor, z: PointTensor -# return: SparseTensor -def point_to_voxel(x, z): - if z.additional_features is None or z.additional_features.get('idx_query') is None \ - or z.additional_features['idx_query'].get(x.s) is None: - # pc_hash = hash_gpu(torch.floor(z.C).int()) - pc_hash = F.sphash( - torch.cat([ - torch.floor(z.C[:, :3] / x.s[0]).int() * x.s[0], - z.C[:, -1].int().view(-1, 1) - ], 1)) - sparse_hash = F.sphash(x.C) - idx_query = F.sphashquery(pc_hash, sparse_hash) - counts = F.spcount(idx_query.int(), x.C.shape[0]) - z.additional_features['idx_query'][x.s] = idx_query - z.additional_features['counts'][x.s] = counts - else: - idx_query = z.additional_features['idx_query'][x.s] - counts = z.additional_features['counts'][x.s] - - inserted_feat = F.spvoxelize(z.F, idx_query, counts) - new_tensor = SparseTensor(inserted_feat, x.C, x.s) - new_tensor.cmaps = x.cmaps - new_tensor.kmaps = x.kmaps - - return new_tensor - - -# x: SparseTensor, z: PointTensor -# return: PointTensor -def voxel_to_point(x, z, nearest=False): - if z.idx_query is None or z.weights is None or z.idx_query.get( - x.s) is None or z.weights.get(x.s) is None: - off = get_kernel_offsets(2, x.s, 1, device=z.F.device) - # old_hash = kernel_hash_gpu(torch.floor(z.C).int(), off) - old_hash = F.sphash( - torch.cat([ - torch.floor(z.C[:, :3] / x.s[0]).int() * x.s[0], - z.C[:, -1].int().view(-1, 1) - ], 1), off) - mm = x.C.to(z.F.device) - pc_hash = F.sphash(x.C.to(z.F.device)) - idx_query = F.sphashquery(old_hash, pc_hash) - weights = F.calc_ti_weights(z.C, idx_query, - scale=x.s[0]).transpose(0, 1).contiguous() - idx_query = idx_query.transpose(0, 1).contiguous() - if nearest: - weights[:, 1:] = 0. - idx_query[:, 1:] = -1 - new_feat = F.spdevoxelize(x.F, idx_query, weights) - new_tensor = PointTensor(new_feat, - z.C, - idx_query=z.idx_query, - weights=z.weights) - new_tensor.additional_features = z.additional_features - new_tensor.idx_query[x.s] = idx_query - new_tensor.weights[x.s] = weights - z.idx_query[x.s] = idx_query - z.weights[x.s] = weights - - else: - new_feat = F.spdevoxelize(x.F, z.idx_query.get(x.s), - z.weights.get(x.s)) # - sparse trilinear interpoltation operation - new_tensor = PointTensor(new_feat, - z.C, - idx_query=z.idx_query, - weights=z.weights) - new_tensor.additional_features = z.additional_features - - return new_tensor - - -def sparse_to_dense_torch_batch(locs, values, dim, default_val): - dense = torch.full([dim[0], dim[1], dim[2], dim[3]], float(default_val), device=locs.device) - dense[locs[:, 0], locs[:, 1], locs[:, 2], locs[:, 3]] = values - return dense - - -def sparse_to_dense_torch(locs, values, dim, default_val, device): - dense = torch.full([dim[0], dim[1], dim[2]], float(default_val), device=device) - if locs.shape[0] > 0: - dense[locs[:, 0], locs[:, 1], locs[:, 2]] = values - return dense - - -def sparse_to_dense_channel(locs, values, dim, c, default_val, device): - locs = locs.to(torch.int64) - dense = torch.full([dim[0], dim[1], dim[2], c], float(default_val), device=device) - if locs.shape[0] > 0: - dense[locs[:, 0], locs[:, 1], locs[:, 2]] = values - return dense - - -def sparse_to_dense_np(locs, values, dim, default_val): - dense = np.zeros([dim[0], dim[1], dim[2]], dtype=values.dtype) - dense.fill(default_val) - dense[locs[:, 0], locs[:, 1], locs[:, 2]] = values - return dense diff --git a/One-2-3-45-master 2/reconstruction/utils/__init__.py b/One-2-3-45-master 2/reconstruction/utils/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/One-2-3-45-master 2/reconstruction/utils/misc_utils.py b/One-2-3-45-master 2/reconstruction/utils/misc_utils.py deleted file mode 100644 index 85e80cf4e2bcf8bed0086e2b6c8a3bf3da40a056..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/reconstruction/utils/misc_utils.py +++ /dev/null @@ -1,219 +0,0 @@ -import os, torch, cv2, re -import numpy as np - -from PIL import Image -import torch.nn.functional as F -import torchvision.transforms as T - -# Misc -img2mse = lambda x, y: torch.mean((x - y) ** 2) -mse2psnr = lambda x: -10. * torch.log(x) / torch.log(torch.Tensor([10.])) -to8b = lambda x: (255 * np.clip(x, 0, 1)).astype(np.uint8) -mse2psnr2 = lambda x: -10. * np.log(x) / np.log(10.) - - -def get_psnr(imgs_pred, imgs_gt): - psnrs = [] - for (img, tar) in zip(imgs_pred, imgs_gt): - psnrs.append(mse2psnr2(np.mean((img - tar.cpu().numpy()) ** 2))) - return np.array(psnrs) - - -def init_log(log, keys): - for key in keys: - log[key] = torch.tensor([0.0], dtype=float) - return log - - -def visualize_depth_numpy(depth, minmax=None, cmap=cv2.COLORMAP_JET): - """ - depth: (H, W) - """ - - x = np.nan_to_num(depth) # change nan to 0 - if minmax is None: - mi = np.min(x[x > 0]) # get minimum positive depth (ignore background) - ma = np.max(x) - else: - mi, ma = minmax - - x = (x - mi) / (ma - mi + 1e-8) # normalize to 0~1 - x = (255 * x).astype(np.uint8) - x_ = cv2.applyColorMap(x, cmap) - return x_, [mi, ma] - - -def visualize_depth(depth, minmax=None, cmap=cv2.COLORMAP_JET): - """ - depth: (H, W) - """ - if type(depth) is not np.ndarray: - depth = depth.cpu().numpy() - - x = np.nan_to_num(depth) # change nan to 0 - if minmax is None: - mi = np.min(x[x > 0]) # get minimum positive depth (ignore background) - ma = np.max(x) - else: - mi, ma = minmax - - x = (x - mi) / (ma - mi + 1e-8) # normalize to 0~1 - x = (255 * x).astype(np.uint8) - x_ = Image.fromarray(cv2.applyColorMap(x, cmap)) - x_ = T.ToTensor()(x_) # (3, H, W) - return x_, [mi, ma] - - -def abs_error_numpy(depth_pred, depth_gt, mask): - depth_pred, depth_gt = depth_pred[mask], depth_gt[mask] - return np.abs(depth_pred - depth_gt) - - -def abs_error(depth_pred, depth_gt, mask): - depth_pred, depth_gt = depth_pred[mask], depth_gt[mask] - err = depth_pred - depth_gt - return np.abs(err) if type(depth_pred) is np.ndarray else err.abs() - - -def acc_threshold(depth_pred, depth_gt, mask, threshold): - """ - computes the percentage of pixels whose depth error is less than @threshold - """ - errors = abs_error(depth_pred, depth_gt, mask) - acc_mask = errors < threshold - return acc_mask.astype('float') if type(depth_pred) is np.ndarray else acc_mask.float() - - -def to_tensor_cuda(data, device, filter): - for item in data.keys(): - - if item in filter: - continue - - if type(data[item]) is np.ndarray: - data[item] = torch.tensor(data[item], dtype=torch.float32, device=device) - else: - data[item] = data[item].float().to(device) - return data - - -def to_cuda(data, device, filter): - for item in data.keys(): - if item in filter: - continue - - data[item] = data[item].float().to(device) - return data - - -def tensor_unsqueeze(data, filter): - for item in data.keys(): - if item in filter: - continue - - data[item] = data[item][None] - return data - - -def filter_keys(dict): - dict.pop('N_samples') - if 'ndc' in dict.keys(): - dict.pop('ndc') - if 'lindisp' in dict.keys(): - dict.pop('lindisp') - return dict - - -def sub_selete_data(data_batch, device, idx, filtKey=[], - filtIndex=['view_ids_all', 'c2ws_all', 'scan', 'bbox', 'w2ref', 'ref2w', 'light_id', 'ckpt', - 'idx']): - data_sub_selete = {} - for item in data_batch.keys(): - data_sub_selete[item] = data_batch[item][:, idx].float() if ( - item not in filtIndex and torch.is_tensor(item) and item.dim() > 2) else data_batch[item].float() - if not data_sub_selete[item].is_cuda: - data_sub_selete[item] = data_sub_selete[item].to(device) - return data_sub_selete - - -def detach_data(dictionary): - dictionary_new = {} - for key in dictionary.keys(): - dictionary_new[key] = dictionary[key].detach().clone() - return dictionary_new - - -def read_pfm(filename): - file = open(filename, 'rb') - color = None - width = None - height = None - scale = None - endian = None - - header = file.readline().decode('utf-8').rstrip() - if header == 'PF': - color = True - elif header == 'Pf': - color = False - else: - raise Exception('Not a PFM file.') - - dim_match = re.match(r'^(\d+)\s(\d+)\s$', file.readline().decode('utf-8')) - if dim_match: - width, height = map(int, dim_match.groups()) - else: - raise Exception('Malformed PFM header.') - - scale = float(file.readline().rstrip()) - if scale < 0: # little-endian - endian = '<' - scale = -scale - else: - endian = '>' # big-endian - - data = np.fromfile(file, endian + 'f') - shape = (height, width, 3) if color else (height, width) - - data = np.reshape(data, shape) - data = np.flipud(data) - file.close() - return data, scale - - -from torch.optim.lr_scheduler import CosineAnnealingLR, MultiStepLR - - -# from warmup_scheduler import GradualWarmupScheduler -def get_scheduler(hparams, optimizer): - eps = 1e-8 - if hparams.lr_scheduler == 'steplr': - scheduler = MultiStepLR(optimizer, milestones=hparams.decay_step, - gamma=hparams.decay_gamma) - elif hparams.lr_scheduler == 'cosine': - scheduler = CosineAnnealingLR(optimizer, T_max=hparams.num_epochs, eta_min=eps) - - else: - raise ValueError('scheduler not recognized!') - - # if hparams.warmup_epochs > 0 and hparams.optimizer not in ['radam', 'ranger']: - # scheduler = GradualWarmupScheduler(optimizer, multiplier=hparams.warmup_multiplier, - # total_epoch=hparams.warmup_epochs, after_scheduler=scheduler) - return scheduler - - -#### pairing #### -def get_nearest_pose_ids(tar_pose, ref_poses, num_select): - ''' - Args: - tar_pose: target pose [N, 4, 4] - ref_poses: reference poses [M, 4, 4] - num_select: the number of nearest views to select - Returns: the selected indices - ''' - - dists = np.linalg.norm(tar_pose[:, None, :3, 3] - ref_poses[None, :, :3, 3], axis=-1) - - sorted_ids = np.argsort(dists, axis=-1) - selected_ids = sorted_ids[:, :num_select] - return selected_ids diff --git a/One-2-3-45-master 2/reconstruction/utils/training_utils.py b/One-2-3-45-master 2/reconstruction/utils/training_utils.py deleted file mode 100644 index 5d128ba2beda39b708850bd4c17c4603a8a17848..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/reconstruction/utils/training_utils.py +++ /dev/null @@ -1,129 +0,0 @@ -import numpy as np -import torchvision.utils as vutils -import torch, random -import torch.nn.functional as F - - -# print arguments -def print_args(args): - print("################################ args ################################") - for k, v in args.__dict__.items(): - print("{0: <10}\t{1: <30}\t{2: <20}".format(k, str(v), str(type(v)))) - print("########################################################################") - - -# torch.no_grad warpper for functions -def make_nograd_func(func): - def wrapper(*f_args, **f_kwargs): - with torch.no_grad(): - ret = func(*f_args, **f_kwargs) - return ret - - return wrapper - - -# convert a function into recursive style to handle nested dict/list/tuple variables -def make_recursive_func(func): - def wrapper(vars, device=None): - if isinstance(vars, list): - return [wrapper(x, device) for x in vars] - elif isinstance(vars, tuple): - return tuple([wrapper(x, device) for x in vars]) - elif isinstance(vars, dict): - return {k: wrapper(v, device) for k, v in vars.items()} - else: - return func(vars, device) - - return wrapper - - -@make_recursive_func -def tensor2float(vars): - if isinstance(vars, float): - return vars - elif isinstance(vars, torch.Tensor): - return vars.data.item() - else: - raise NotImplementedError("invalid input type {} for tensor2float".format(type(vars))) - - -@make_recursive_func -def tensor2numpy(vars): - if isinstance(vars, np.ndarray): - return vars - elif isinstance(vars, torch.Tensor): - return vars.detach().cpu().numpy().copy() - else: - raise NotImplementedError("invalid input type {} for tensor2numpy".format(type(vars))) - - -@make_recursive_func -def numpy2tensor(vars, device='cpu'): - if not isinstance(vars, torch.Tensor) and vars is not None : - return torch.tensor(vars, device=device) - elif isinstance(vars, torch.Tensor): - return vars - elif vars is None: - return vars - else: - raise NotImplementedError("invalid input type {} for float2tensor".format(type(vars))) - - -@make_recursive_func -def tocuda(vars, device='cuda'): - if isinstance(vars, torch.Tensor): - return vars.to(device) - elif isinstance(vars, str): - return vars - else: - raise NotImplementedError("invalid input type {} for tocuda".format(type(vars))) - - -import torch.distributed as dist - - -def synchronize(): - """ - Helper function to synchronize (barrier) among all processes when - using distributed training - """ - if not dist.is_available(): - return - if not dist.is_initialized(): - return - world_size = dist.get_world_size() - if world_size == 1: - return - dist.barrier() - - -def get_world_size(): - if not dist.is_available(): - return 1 - if not dist.is_initialized(): - return 1 - return dist.get_world_size() - - -def reduce_scalar_outputs(scalar_outputs): - world_size = get_world_size() - if world_size < 2: - return scalar_outputs - with torch.no_grad(): - names = [] - scalars = [] - for k in sorted(scalar_outputs.keys()): - names.append(k) - if isinstance(scalar_outputs[k], torch.Tensor): - scalars.append(scalar_outputs[k]) - else: - scalars.append(torch.tensor(scalar_outputs[k], device='cuda')) - scalars = torch.stack(scalars, dim=0) - dist.reduce(scalars, dst=0) - if dist.get_rank() == 0: - # only main process gets accumulated, so only divide by - # world_size in this case - scalars /= world_size - reduced_scalars = {k: v for k, v in zip(names, scalars)} - - return reduced_scalars diff --git a/One-2-3-45-master 2/requirements.txt b/One-2-3-45-master 2/requirements.txt deleted file mode 100644 index 90d1b4f0dd1df35205d682ce814002513ae4ca70..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/requirements.txt +++ /dev/null @@ -1,60 +0,0 @@ -albumentations>=1.3.1 -opencv-python>=4.8.0.76 -pudb>=2022.1.3 -imageio>=2.31.1 -imageio-ffmpeg>=0.4.8 -pytorch-lightning>=2.0.6 -omegaconf>=2.3.0 -test-tube>=0.7.5 -streamlit>=1.25.0 -einops>=0.6.1 -torch-fidelity>=0.3.0 -transformers>=4.31.0 -kornia>=0.7.0 -webdataset>=0.2.48 -torchmetrics>=1.0.3 -fire>=0.5.0 -gradio>=3.40.1 -diffusers>=0.19.3 -datasets[vision]>=2.14.4 -rich>=13.5.2 -plotly>=5.16.0 --e git+https://github.com/CompVis/taming-transformers.git#egg=taming-transformers -# elev est -dl_ext>=1.3.4 -loguru>=0.7.0 -matplotlib>=3.7.2 -multipledispatch>=1.0.0 -packaging>=23.1 -Pillow>=9.3.0 -PyYAML>=6.0.1 -scikit_image>=0.21.0 -scikit_learn>=1.3.0 -scipy>=1.11.1 -setuptools>=59.6.0 -tensorboardX>=2.6.2 -tqdm>=4.66.1 -transforms3d>=0.4.1 -trimesh>=3.23.1 -yacs>=0.1.8 -gdown>=4.7.1 -git+https://github.com/NVlabs/nvdiffrast.git -git+https://github.com/openai/CLIP.git -# segment anything -onnxruntime>=1.15.1 -onnx>=1.14.0 -git+https://github.com/facebookresearch/segment-anything.git -# rembg -rembg>=2.0.50 -# reconstruction -pyhocon>=0.3.60 -icecream>=2.1.3 -PyMCubes>=0.1.4 -ninja>=1.11.1 -# juypter -jupyter>=1.0.0 -jupyterlab>=4.0.5 -ipywidgets>=8.1.0 -ipykernel>=6.25.1 -panel>=1.2.1 -jupyter_bokeh>=3.0.7 \ No newline at end of file diff --git a/One-2-3-45-master 2/run.py b/One-2-3-45-master 2/run.py deleted file mode 100644 index 70e3cd96ce9259da79658882a35bc9c32fb84647..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/run.py +++ /dev/null @@ -1,119 +0,0 @@ -import os -import torch -import argparse -from PIL import Image -from utils.zero123_utils import init_model, predict_stage1_gradio, zero123_infer -from utils.sam_utils import sam_init, sam_out_nosave -from utils.utils import pred_bbox, image_preprocess_nosave, gen_poses, convert_mesh_format -from elevation_estimate.estimate_wild_imgs import estimate_elev - - -def preprocess(predictor, raw_im, lower_contrast=False): - raw_im.thumbnail([512, 512], Image.Resampling.LANCZOS) - image_sam = sam_out_nosave(predictor, raw_im.convert("RGB"), pred_bbox(raw_im)) - input_256 = image_preprocess_nosave(image_sam, lower_contrast=lower_contrast, rescale=True) - torch.cuda.empty_cache() - return input_256 - -def stage1_run(model, device, exp_dir, - input_im, scale, ddim_steps): - # folder to save the stage 1 images - stage1_dir = os.path.join(exp_dir, "stage1_8") - os.makedirs(stage1_dir, exist_ok=True) - - # stage 1: generate 4 views at the same elevation as the input - output_ims = predict_stage1_gradio(model, input_im, save_path=stage1_dir, adjust_set=list(range(4)), device=device, ddim_steps=ddim_steps, scale=scale) - - # stage 2 for the first image - # infer 4 nearby views for an image to estimate the polar angle of the input - stage2_steps = 50 # ddim_steps - zero123_infer(model, exp_dir, indices=[0], device=device, ddim_steps=stage2_steps, scale=scale) - # estimate the camera pose (elevation) of the input image. - try: - polar_angle = estimate_elev(exp_dir) - except: - print("Failed to estimate polar angle") - polar_angle = 90 - print("Estimated polar angle:", polar_angle) - gen_poses(exp_dir, polar_angle) - - # stage 1: generate another 4 views at a different elevation - if polar_angle <= 75: - output_ims_2 = predict_stage1_gradio(model, input_im, save_path=stage1_dir, adjust_set=list(range(4,8)), device=device, ddim_steps=ddim_steps, scale=scale) - else: - output_ims_2 = predict_stage1_gradio(model, input_im, save_path=stage1_dir, adjust_set=list(range(8,12)), device=device, ddim_steps=ddim_steps, scale=scale) - torch.cuda.empty_cache() - return 90-polar_angle, output_ims+output_ims_2 - -def stage2_run(model, device, exp_dir, - elev, scale, stage2_steps=50): - # stage 2 for the remaining 7 images, generate 7*4=28 views - if 90-elev <= 75: - zero123_infer(model, exp_dir, indices=list(range(1,8)), device=device, ddim_steps=stage2_steps, scale=scale) - else: - zero123_infer(model, exp_dir, indices=list(range(1,4))+list(range(8,12)), device=device, ddim_steps=stage2_steps, scale=scale) - -def reconstruct(exp_dir, output_format=".ply", device_idx=0, resolution=256): - exp_dir = os.path.abspath(exp_dir) - main_dir_path = os.path.abspath(os.path.dirname("./")) - os.chdir('reconstruction/') - - bash_script = f'CUDA_VISIBLE_DEVICES={device_idx} python exp_runner_generic_blender_val.py \ - --specific_dataset_name {exp_dir} \ - --mode export_mesh \ - --conf confs/one2345_lod0_val_demo.conf \ - --resolution {resolution}' - print(bash_script) - os.system(bash_script) - os.chdir(main_dir_path) - - ply_path = os.path.join(exp_dir, f"mesh.ply") - if output_format == ".ply": - return ply_path - if output_format not in [".obj", ".glb"]: - print("Invalid output format, must be one of .ply, .obj, .glb") - return ply_path - return convert_mesh_format(exp_dir, output_format=output_format) - - -def predict_multiview(shape_dir, args): - device = f"cuda:{args.gpu_idx}" - - # initialize the zero123 model - models = init_model(device, 'zero123-xl.ckpt', half_precision=args.half_precision) - model_zero123 = models["turncam"] - - # initialize the Segment Anything model - predictor = sam_init(args.gpu_idx) - input_raw = Image.open(args.img_path) - - # preprocess the input image - input_256 = preprocess(predictor, input_raw) - - # generate multi-view images in two stages with Zero123. - # first stage: generate N=8 views cover 360 degree of the input shape. - elev, stage1_imgs = stage1_run(model_zero123, device, shape_dir, input_256, scale=3, ddim_steps=75) - # second stage: 4 local views for each of the first-stage view, resulting in N*4=32 source view images. - stage2_run(model_zero123, device, shape_dir, elev, scale=3, stage2_steps=50) - -if __name__ == "__main__": - parser = argparse.ArgumentParser(description='Process some integers.') - parser.add_argument('--img_path', type=str, default="./demo/demo_examples/01_wild_hydrant.png", help='Path to the input image') - parser.add_argument('--gpu_idx', type=int, default=0, help='GPU index') - parser.add_argument('--half_precision', action='store_true', help='Use half precision') - parser.add_argument('--mesh_resolution', type=int, default=256, help='Mesh resolution') - parser.add_argument('--output_format', type=str, default=".ply", help='Output format: .ply, .obj, .glb') - - args = parser.parse_args() - - assert(torch.cuda.is_available()) - - shape_id = args.img_path.split('/')[-1].split('.')[0] - shape_dir = f"./exp/{shape_id}" - os.makedirs(shape_dir, exist_ok=True) - - predict_multiview(shape_dir, args) - - # utilize cost volume-based 3D reconstruction to generate textured 3D mesh - mesh_path = reconstruct(shape_dir, output_format=args.output_format, device_idx=args.gpu_idx, resolution=args.mesh_resolution) - print("Mesh saved to:", mesh_path) diff --git a/One-2-3-45-master 2/utils/sam_utils.py b/One-2-3-45-master 2/utils/sam_utils.py deleted file mode 100644 index 0c01bb3ca4cdc0692271f769f24f65d611a744dd..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/utils/sam_utils.py +++ /dev/null @@ -1,50 +0,0 @@ -import os -import numpy as np -import torch -from PIL import Image -import time - -from segment_anything import sam_model_registry, SamPredictor - -def sam_init(device_id=0): - sam_checkpoint = os.path.join(os.path.dirname(__file__), "../sam_vit_h_4b8939.pth") - model_type = "vit_h" - - device = "cuda:{}".format(device_id) if torch.cuda.is_available() else "cpu" - - sam = sam_model_registry[model_type](checkpoint=sam_checkpoint).to(device=device) - predictor = SamPredictor(sam) - return predictor - -def sam_out_nosave(predictor, input_image, *bbox_sliders): - bbox = np.array(bbox_sliders) - image = np.asarray(input_image) - - start_time = time.time() - predictor.set_image(image) - - h, w, _ = image.shape - input_point = np.array([[h//2, w//2]]) - input_label = np.array([1]) - - masks, scores, logits = predictor.predict( - point_coords=input_point, - point_labels=input_label, - multimask_output=True, - ) - - masks_bbox, scores_bbox, logits_bbox = predictor.predict( - box=bbox, - multimask_output=True - ) - - print(f"SAM Time: {time.time() - start_time:.3f}s") - opt_idx = np.argmax(scores) - mask = masks[opt_idx] - out_image = np.zeros((image.shape[0], image.shape[1], 4), dtype=np.uint8) - out_image[:, :, :3] = image - out_image_bbox = out_image.copy() - out_image[:, :, 3] = mask.astype(np.uint8) * 255 - out_image_bbox[:, :, 3] = masks_bbox[-1].astype(np.uint8) * 255 # np.argmax(scores_bbox) - torch.cuda.empty_cache() - return Image.fromarray(out_image_bbox, mode='RGBA') \ No newline at end of file diff --git a/One-2-3-45-master 2/utils/utils.py b/One-2-3-45-master 2/utils/utils.py deleted file mode 100644 index 8dc244bb5725bac9280e955086ebfb5144d694c5..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/utils/utils.py +++ /dev/null @@ -1,145 +0,0 @@ -import os -import json -import numpy as np -import cv2 -from PIL import Image -from rembg import remove -import trimesh - -# predict bbox of the foreground -def pred_bbox(image): - image_nobg = remove(image.convert('RGBA'), alpha_matting=True) - alpha = np.asarray(image_nobg)[:,:,-1] - x_nonzero = np.nonzero(alpha.sum(axis=0)) - y_nonzero = np.nonzero(alpha.sum(axis=1)) - x_min = int(x_nonzero[0].min()) - y_min = int(y_nonzero[0].min()) - x_max = int(x_nonzero[0].max()) - y_max = int(y_nonzero[0].max()) - return x_min, y_min, x_max, y_max - -def image_grid(imgs, rows, cols): - assert len(imgs) == rows*cols - w, h = imgs[0].size - grid = Image.new('RGB', size=(cols*w, rows*h)) - grid_w, grid_h = grid.size - - for i, img in enumerate(imgs): - grid.paste(img, box=(i%cols*w, i//cols*h)) - return grid - -def convert_mesh_format(exp_dir, output_format=".obj"): - ply_path = os.path.join(exp_dir, "mesh.ply") - mesh_path = os.path.join(exp_dir, f"mesh{output_format}") - mesh = trimesh.load_mesh(ply_path) - rotation_matrix = trimesh.transformations.rotation_matrix(np.pi/2, [1, 0, 0]) - mesh.apply_transform(rotation_matrix) - rotation_matrix = trimesh.transformations.rotation_matrix(np.pi, [0, 0, 1]) - mesh.apply_transform(rotation_matrix) - # flip x - mesh.vertices[:, 0] = -mesh.vertices[:, 0] - mesh.faces = np.fliplr(mesh.faces) - if output_format == ".obj": - # Export the mesh as .obj file with colors - mesh.export(mesh_path, file_type='obj', include_color=True) - else: - mesh.export(mesh_path, file_type='glb') - return mesh_path - -# contrast correction, rescale and recenter -def image_preprocess_nosave(input_image, lower_contrast=True, rescale=True): - - image_arr = np.array(input_image) - in_w, in_h = image_arr.shape[:2] - - if lower_contrast: - alpha = 0.8 # Contrast control (1.0-3.0) - beta = 0 # Brightness control (0-100) - # Apply the contrast adjustment - image_arr = cv2.convertScaleAbs(image_arr, alpha=alpha, beta=beta) - image_arr[image_arr[...,-1]>200, -1] = 255 - - ret, mask = cv2.threshold(np.array(input_image.split()[-1]), 0, 255, cv2.THRESH_BINARY) - x, y, w, h = cv2.boundingRect(mask) - max_size = max(w, h) - ratio = 0.75 - if rescale: - side_len = int(max_size / ratio) - else: - side_len = in_w - padded_image = np.zeros((side_len, side_len, 4), dtype=np.uint8) - center = side_len//2 - padded_image[center-h//2:center-h//2+h, center-w//2:center-w//2+w] = image_arr[y:y+h, x:x+w] - rgba = Image.fromarray(padded_image).resize((256, 256), Image.LANCZOS) - - rgba_arr = np.array(rgba) / 255.0 - rgb = rgba_arr[...,:3] * rgba_arr[...,-1:] + (1 - rgba_arr[...,-1:]) - return Image.fromarray((rgb * 255).astype(np.uint8)) - -# pose generation -def calc_pose(phis, thetas, size, radius = 1.2, device='cuda'): - import torch - def normalize(vectors): - return vectors / (torch.norm(vectors, dim=-1, keepdim=True) + 1e-10) - thetas = torch.FloatTensor(thetas).to(device) - phis = torch.FloatTensor(phis).to(device) - - centers = torch.stack([ - radius * torch.sin(thetas) * torch.sin(phis), - -radius * torch.cos(thetas) * torch.sin(phis), - radius * torch.cos(phis), - ], dim=-1) # [B, 3] - - # lookat - forward_vector = normalize(centers).squeeze(0) - up_vector = torch.FloatTensor([0, 0, 1]).to(device).unsqueeze(0).repeat(size, 1) - right_vector = normalize(torch.cross(up_vector, forward_vector, dim=-1)) - if right_vector.pow(2).sum() < 0.01: - right_vector = torch.FloatTensor([0, 1, 0]).to(device).unsqueeze(0).repeat(size, 1) - up_vector = normalize(torch.cross(forward_vector, right_vector, dim=-1)) - - poses = torch.eye(4, dtype=torch.float, device=device)[:3].unsqueeze(0).repeat(size, 1, 1) - poses[:, :3, :3] = torch.stack((right_vector, up_vector, forward_vector), dim=-1) - poses[:, :3, 3] = centers - return poses - -def get_poses(init_elev): - mid = init_elev - deg = 10 - if init_elev <= 75: - low = init_elev + 30 - # e.g. 30, 60, 20, 40, 30, 30, 50, 70, 50, 50 - - elevations = np.radians([mid]*4 + [low]*4 + [mid-deg,mid+deg,mid,mid]*4 + [low-deg,low+deg,low,low]*4) - img_ids = [f"{num}.png" for num in range(8)] + [f"{num}_{view_num}.png" for num in range(8) for view_num in range(4)] - else: - - high = init_elev - 30 - elevations = np.radians([mid]*4 + [high]*4 + [mid-deg,mid+deg,mid,mid]*4 + [high-deg,high+deg,high,high]*4) - img_ids = [f"{num}.png" for num in list(range(4)) + list(range(8,12))] + \ - [f"{num}_{view_num}.png" for num in list(range(4)) + list(range(8,12)) for view_num in range(4)] - overlook_theta = [30+x*90 for x in range(4)] - eyelevel_theta = [60+x*90 for x in range(4)] - source_theta_delta = [0, 0, -deg, deg] - azimuths = np.radians(overlook_theta + eyelevel_theta + \ - [view_theta + source for view_theta in overlook_theta for source in source_theta_delta] + \ - [view_theta + source for view_theta in eyelevel_theta for source in source_theta_delta]) - return img_ids, calc_pose(elevations, azimuths, len(azimuths)).cpu().numpy() - - -def gen_poses(shape_dir, pose_est): - img_ids, input_poses = get_poses(pose_est) - - out_dict = {} - focal = 560/2; h = w = 256 - out_dict['intrinsics'] = [[focal, 0, w / 2], [0, focal, h / 2], [0, 0, 1]] - out_dict['near_far'] = [1.2-0.7, 1.2+0.6] - out_dict['c2ws'] = {} - for view_id, img_id in enumerate(img_ids): - pose = input_poses[view_id] - pose = pose.tolist() - pose = [pose[0], pose[1], pose[2], [0, 0, 0, 1]] - out_dict['c2ws'][img_id] = pose - json_path = os.path.join(shape_dir, 'pose.json') - with open(json_path, 'w') as f: - json.dump(out_dict, f, indent=4) diff --git a/One-2-3-45-master 2/utils/zero123_utils.py b/One-2-3-45-master 2/utils/zero123_utils.py deleted file mode 100644 index 62a31a58be0b33fc71010621fb84bf8274088da8..0000000000000000000000000000000000000000 --- a/One-2-3-45-master 2/utils/zero123_utils.py +++ /dev/null @@ -1,178 +0,0 @@ -import os -import numpy as np -import torch -from contextlib import nullcontext -from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker -from einops import rearrange -from ldm.util import instantiate_from_config -from ldm.models.diffusion.ddim import DDIMSampler -from omegaconf import OmegaConf -from PIL import Image -from rich import print -from transformers import CLIPImageProcessor -from torch import autocast -from torchvision import transforms - - -def load_model_from_config(config, ckpt, device, verbose=False): - print(f'Loading model from {ckpt}') - pl_sd = torch.load(ckpt, map_location='cpu') - if 'global_step' in pl_sd: - print(f'Global Step: {pl_sd["global_step"]}') - sd = pl_sd['state_dict'] - model = instantiate_from_config(config.model) - m, u = model.load_state_dict(sd, strict=False) - if len(m) > 0 and verbose: - print('missing keys:') - print(m) - if len(u) > 0 and verbose: - print('unexpected keys:') - print(u) - - model.to(device) - model.eval() - return model - - -def init_model(device, ckpt, half_precision=False): - config = os.path.join(os.path.dirname(__file__), '../configs/sd-objaverse-finetune-c_concat-256.yaml') - config = OmegaConf.load(config) - - # Instantiate all models beforehand for efficiency. - models = dict() - print('Instantiating LatentDiffusion...') - if half_precision: - models['turncam'] = torch.compile(load_model_from_config(config, ckpt, device=device)).half() - else: - models['turncam'] = torch.compile(load_model_from_config(config, ckpt, device=device)) - print('Instantiating StableDiffusionSafetyChecker...') - models['nsfw'] = StableDiffusionSafetyChecker.from_pretrained( - 'CompVis/stable-diffusion-safety-checker').to(device) - models['clip_fe'] = CLIPImageProcessor.from_pretrained( - "openai/clip-vit-large-patch14") - # We multiply all by some factor > 1 to make them less likely to be triggered. - models['nsfw'].concept_embeds_weights *= 1.2 - models['nsfw'].special_care_embeds_weights *= 1.2 - - return models - -@torch.no_grad() -def sample_model_batch(model, sampler, input_im, xs, ys, n_samples=4, precision='autocast', ddim_eta=1.0, ddim_steps=75, scale=3.0, h=256, w=256): - precision_scope = autocast if precision == 'autocast' else nullcontext - with precision_scope("cuda"): - with model.ema_scope(): - c = model.get_learned_conditioning(input_im).tile(n_samples, 1, 1) - T = [] - for x, y in zip(xs, ys): - T.append([np.radians(x), np.sin(np.radians(y)), np.cos(np.radians(y)), 0]) - T = torch.tensor(np.array(T))[:, None, :].float().to(c.device) - c = torch.cat([c, T], dim=-1) - c = model.cc_projection(c) - cond = {} - cond['c_crossattn'] = [c] - cond['c_concat'] = [model.encode_first_stage(input_im).mode().detach() - .repeat(n_samples, 1, 1, 1)] - if scale != 1.0: - uc = {} - uc['c_concat'] = [torch.zeros(n_samples, 4, h // 8, w // 8).to(c.device)] - uc['c_crossattn'] = [torch.zeros_like(c).to(c.device)] - else: - uc = None - - shape = [4, h // 8, w // 8] - samples_ddim, _ = sampler.sample(S=ddim_steps, - conditioning=cond, - batch_size=n_samples, - shape=shape, - verbose=False, - unconditional_guidance_scale=scale, - unconditional_conditioning=uc, - eta=ddim_eta, - x_T=None) - # print(samples_ddim.shape) - # samples_ddim = torch.nn.functional.interpolate(samples_ddim, 64, mode='nearest', antialias=False) - x_samples_ddim = model.decode_first_stage(samples_ddim) - ret_imgs = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0).cpu() - del cond, c, x_samples_ddim, samples_ddim, uc, input_im - torch.cuda.empty_cache() - return ret_imgs - -@torch.no_grad() -def predict_stage1_gradio(model, raw_im, save_path = "", adjust_set=[], device="cuda", ddim_steps=75, scale=3.0): - # raw_im = raw_im.resize([256, 256], Image.LANCZOS) - # input_im_init = preprocess_image(models, raw_im, preprocess=False) - input_im_init = np.asarray(raw_im, dtype=np.float32) / 255.0 - input_im = transforms.ToTensor()(input_im_init).unsqueeze(0).to(device) - input_im = input_im * 2 - 1 - - # stage 1: 8 - delta_x_1_8 = [0] * 4 + [30] * 4 + [-30] * 4 - delta_y_1_8 = [0+90*(i%4) if i < 4 else 30+90*(i%4) for i in range(8)] + [30+90*(i%4) for i in range(4)] - - ret_imgs = [] - sampler = DDIMSampler(model) - # sampler.to(device) - if adjust_set != []: - x_samples_ddims_8 = sample_model_batch(model, sampler, input_im, - [delta_x_1_8[i] for i in adjust_set], [delta_y_1_8[i] for i in adjust_set], - n_samples=len(adjust_set), ddim_steps=ddim_steps, scale=scale) - else: - x_samples_ddims_8 = sample_model_batch(model, sampler, input_im, delta_x_1_8, delta_y_1_8, n_samples=len(delta_x_1_8), ddim_steps=ddim_steps, scale=scale) - sample_idx = 0 - for stage1_idx in range(len(delta_x_1_8)): - if adjust_set != [] and stage1_idx not in adjust_set: - continue - x_sample = 255.0 * rearrange(x_samples_ddims_8[sample_idx].numpy(), 'c h w -> h w c') - out_image = Image.fromarray(x_sample.astype(np.uint8)) - ret_imgs.append(out_image) - if save_path: - out_image.save(os.path.join(save_path, '%d.png'%(stage1_idx))) - sample_idx += 1 - del x_samples_ddims_8 - del sampler - torch.cuda.empty_cache() - return ret_imgs - -def infer_stage_2(model, save_path_stage1, save_path_stage2, delta_x_2, delta_y_2, indices, device, ddim_steps=75, scale=3.0): - for stage1_idx in indices: - # save stage 1 image - # x_sample = 255.0 * rearrange(x_samples_ddims[stage1_idx].cpu().numpy(), 'c h w -> h w c') - # Image.fromarray(x_sample.astype(np.uint8)).save() - stage1_image_path = os.path.join(save_path_stage1, '%d.png'%(stage1_idx)) - - raw_im = Image.open(stage1_image_path) - # input_im_init = preprocess_image(models, raw_im, preprocess=False) - input_im_init = np.asarray(raw_im, dtype=np.float32) #/ 255.0 - input_im_init[input_im_init >= 253.0] = 255.0 - input_im_init = input_im_init / 255.0 - input_im = transforms.ToTensor()(input_im_init).unsqueeze(0).to(device) - input_im = input_im * 2 - 1 - # infer stage 2 - sampler = DDIMSampler(model) - # sampler.to(device) - # stage2_in = x_samples_ddims[stage1_idx][None, ...].to(device) * 2 - 1 - x_samples_ddims_stage2 = sample_model_batch(model, sampler, input_im, delta_x_2, delta_y_2, n_samples=len(delta_x_2), ddim_steps=ddim_steps, scale=scale) - for stage2_idx in range(len(delta_x_2)): - x_sample_stage2 = 255.0 * rearrange(x_samples_ddims_stage2[stage2_idx].numpy(), 'c h w -> h w c') - Image.fromarray(x_sample_stage2.astype(np.uint8)).save(os.path.join(save_path_stage2, '%d_%d.png'%(stage1_idx, stage2_idx))) - del input_im - del x_samples_ddims_stage2 - torch.cuda.empty_cache() - -def zero123_infer(model, input_dir_path, start_idx=0, end_idx=12, indices=None, device="cuda", ddim_steps=75, scale=3.0): - # input_img_path = os.path.join(input_dir_path, "input_256.png") - save_path_8 = os.path.join(input_dir_path, "stage1_8") - save_path_8_2 = os.path.join(input_dir_path, "stage2_8") - os.makedirs(save_path_8_2, exist_ok=True) - - # raw_im = Image.open(input_img_path) - # # input_im_init = preprocess_image(models, raw_im, preprocess=False) - # input_im_init = np.asarray(raw_im, dtype=np.float32) / 255.0 - # input_im = transforms.ToTensor()(input_im_init).unsqueeze(0).to(device) - # input_im = input_im * 2 - 1 - - # stage 2: 6*4 or 8*4 - delta_x_2 = [-10, 10, 0, 0] - delta_y_2 = [0, 0, -10, 10] - - infer_stage_2(model, save_path_8, save_path_8_2, delta_x_2, delta_y_2, indices=indices if indices else list(range(start_idx,end_idx)), device=device, ddim_steps=ddim_steps, scale=scale)