# A3C++ a modified version of Asynchronous Advantage actor critic algorithm # ----------------------------------- # # A3C paper: https://arxiv.org/abs/1602.01783 # # The A3C implementation is available at: # https://jaromiru.com/2017/02/16/lets-make-an-a3c-theory/ # by: Jaromir Janisch, 2017 # Two variations are implemented: A memory replay and a deterministic search following argmax(pi) instead of pi as a probability distribution # Every action selection is made following the action with the highest probability pi # Author: Taha Nakabi # Args: 'train' for training the model anything else will skip the training and try to use already saved models import gradio as gr from gradio.components import * import subprocess def main(use_default, file): subprocess.run(['python', './A3C_plusplus.py']) base = './RESULT/' img_path = [] for i in range(1, 11): img_path.append(base + 'Day' + str(i) + '.png') # else: # 根据上传的文件执行相应的逻辑 # 请根据您的实际需求自行编写代码 return [img for img in img_path] # 创建一个复选框来表示是否选择默认文件 default_checkbox = gr.inputs.Checkbox(label="使用默认文件", default=False) inputs = [ default_checkbox, File(label="上传文件", optional=True) ] outputs = [ Image(label="DAY" + str(day + 1), type='filepath') for day in range(10) ] iface = gr.Interface(fn=main, inputs=inputs, outputs=outputs) iface.launch()