import os import gradio as gr from huggingface_hub import InferenceClient from huggingface_hub.utils import HfHubHTTPError # Modelo preferido PREFERRED_MODEL = os.environ.get("MODEL_ID", "mistralai/Mistral-7B-Instruct-v0.2") # Modelo de fallback atualizado FALLBACK_MODEL = os.environ.get("FALLBACK_MODEL", "unsloth/Llama-3.2-3B-Instruct") # token vindo do secret HF_TOKEN do Space (ou env local) token = os.environ.get("HF_TOKEN") def _extract_text_from_response(resp): if isinstance(resp, str): return resp try: if hasattr(resp, "generated_text"): return getattr(resp, "generated_text") or "" if hasattr(resp, "text"): return getattr(resp, "text") or "" except Exception: pass if isinstance(resp, dict): for key in ("generated_text", "generated_texts", "text", "output_text", "result"): if key in resp: v = resp[key] if isinstance(v, list) and v: return v[0] if isinstance(v[0], str) else str(v[0]) if isinstance(v, str): return v if "choices" in resp and isinstance(resp["choices"], list) and resp["choices"]: first = resp["choices"][0] if isinstance(first, dict): if "message" in first and isinstance(first["message"], dict) and "content" in first["message"]: maybe = first["message"]["content"] if isinstance(maybe, str): return maybe for k in ("text", "content", "generated_text"): if k in first and isinstance(first[k], str): return first[k] try: return str(resp) except Exception: return "" def _call_model(model_id, prompt, max_new_tokens, temperature, top_p): client = InferenceClient(model=model_id, token=token) return client.text_generation( prompt, max_new_tokens=int(max_new_tokens), temperature=float(temperature), top_p=float(top_p), do_sample=True, ) def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): if not token: yield "ERRO: variável HF_TOKEN não encontrada. Adicione o secret HF_TOKEN no Settings do Space." return prompt = f"{system_message}\n\n" for user_msg, bot_msg in history: if user_msg: prompt += f"User: {user_msg}\n" if bot_msg: prompt += f"Assistant: {bot_msg}\n" prompt += f"User: {message}\nAssistant:" try: out = _call_model(PREFERRED_MODEL, prompt, max_tokens, temperature, top_p) except HfHubHTTPError as e: try: code = e.response.status_code if e.response is not None else None except Exception: code = None if code == 404: yield f"Aviso: modelo `{PREFERRED_MODEL}` não disponível via Inference API (404). Tentando fallback para `{FALLBACK_MODEL}`..." try: out = _call_model(FALLBACK_MODEL, prompt, max_tokens, temperature, top_p) except Exception as e2: yield f"Falha no fallback para {FALLBACK_MODEL}: {e2}" return else: yield f"ERRO na chamada de inferência: {e}\n(verifique HF_TOKEN, permissões e se o modelo está disponível via Inference API)" return except Exception as e: yield f"Erro inesperado ao chamar a API: {e}" return text = _extract_text_from_response(out) yield text demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a helpful assistant.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.0, maximum=2.0, value=0.7, step=0.05, label="Temperature"), gr.Slider(minimum=0.0, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ], title="Chat (Mistral fallback com Llama 3.2 3B)", ) if __name__ == "__main__": demo.launch()