import os import gradio as gr from huggingface_hub import InferenceClient from huggingface_hub.utils import HfHubHTTPError # Modelo Mistral Instruct disponível no Hub MODEL_ID = "mistralai/Mistral-7B-Instruct-v0.2" # token vindo do secret HF_TOKEN do Space (ou env local) token = os.environ.get("HF_TOKEN") # Cliente (se token for None, o client tenta usar config local) client = InferenceClient(model=MODEL_ID, token=token) def _extract_text_from_response(resp): """ Tenta extrair texto de várias possíveis formas de retorno da API. Retorna string sempre. """ # string direta if isinstance(resp, str): return resp # dataclass-like (possível) try: # alguns SDKs retornam objeto com atributo 'generated_text' ou 'text' if hasattr(resp, "generated_text"): return getattr(resp, "generated_text") or "" if hasattr(resp, "text"): return getattr(resp, "text") or "" except Exception: pass # dict-like formas comuns if isinstance(resp, dict): # chaves óbvias for key in ("generated_text", "generated_texts", "text", "output_text", "result"): if key in resp: v = resp[key] if isinstance(v, list) and v: return v[0] if isinstance(v[0], str) else str(v[0]) if isinstance(v, str): return v # choices -> message -> content (formato chat-like) if "choices" in resp and isinstance(resp["choices"], list) and resp["choices"]: first = resp["choices"][0] if isinstance(first, dict): # try message.content if "message" in first and isinstance(first["message"], dict) and "content" in first["message"]: maybe = first["message"]["content"] if isinstance(maybe, str): return maybe # try text or content directly for k in ("text", "content", "generated_text"): if k in first and isinstance(first[k], str): return first[k] # fallback try: return str(resp) except Exception: return "" def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): # valida token if not token: yield "ERRO: variável de ambiente HF_TOKEN não encontrada. Adicione um secret HF_TOKEN no Settings do Space." return # monta prompt estilo chat (simples) prompt = f"{system_message}\n\n" for user_msg, bot_msg in history: if user_msg: prompt += f"User: {user_msg}\n" if bot_msg: prompt += f"Assistant: {bot_msg}\n" prompt += f"User: {message}\nAssistant:" try: # chamada sem streaming (resposta completa) out = client.text_generation( prompt, max_new_tokens=int(max_tokens), temperature=float(temperature), top_p=float(top_p), do_sample=True, ) except HfHubHTTPError as e: # captura erros HTTP da Hugging Face e retorna mensagem legível yield f"ERRO na chamada de inferência: {e}\n(verifique HF_TOKEN, permissões e se o modelo está disponível via Inference API)" return except Exception as e: yield f"Erro inesperado ao chamar a API: {e}" return # extrai texto (robusto a vários formatos de retorno) text = _extract_text_from_response(out) yield text demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a helpful assistant.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.0, maximum=2.0, value=0.7, step=0.05, label="Temperature"), gr.Slider(minimum=0.0, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ], title="Chat com Mistral-7B", ) if __name__ == "__main__": demo.launch()