IvanPSG commited on
Commit
1c250b5
·
verified ·
1 Parent(s): b605fd6

Modelo Fallback

Browse files
Files changed (1) hide show
  1. app.py +32 -39
app.py CHANGED
@@ -3,37 +3,25 @@ import gradio as gr
3
  from huggingface_hub import InferenceClient
4
  from huggingface_hub.utils import HfHubHTTPError
5
 
6
- # Modelo Mistral Instruct disponível no Hub
7
- MODEL_ID = "mistralai/Mistral-7B-Instruct-v0.2"
 
 
8
 
9
  # token vindo do secret HF_TOKEN do Space (ou env local)
10
  token = os.environ.get("HF_TOKEN")
11
 
12
- # Cliente (se token for None, o client tenta usar config local)
13
- client = InferenceClient(model=MODEL_ID, token=token)
14
-
15
  def _extract_text_from_response(resp):
16
- """
17
- Tenta extrair texto de várias possíveis formas de retorno da API.
18
- Retorna string sempre.
19
- """
20
- # string direta
21
  if isinstance(resp, str):
22
  return resp
23
-
24
- # dataclass-like (possível)
25
  try:
26
- # alguns SDKs retornam objeto com atributo 'generated_text' ou 'text'
27
  if hasattr(resp, "generated_text"):
28
  return getattr(resp, "generated_text") or ""
29
  if hasattr(resp, "text"):
30
  return getattr(resp, "text") or ""
31
  except Exception:
32
  pass
33
-
34
- # dict-like formas comuns
35
  if isinstance(resp, dict):
36
- # chaves óbvias
37
  for key in ("generated_text", "generated_texts", "text", "output_text", "result"):
38
  if key in resp:
39
  v = resp[key]
@@ -41,27 +29,31 @@ def _extract_text_from_response(resp):
41
  return v[0] if isinstance(v[0], str) else str(v[0])
42
  if isinstance(v, str):
43
  return v
44
-
45
- # choices -> message -> content (formato chat-like)
46
  if "choices" in resp and isinstance(resp["choices"], list) and resp["choices"]:
47
  first = resp["choices"][0]
48
  if isinstance(first, dict):
49
- # try message.content
50
  if "message" in first and isinstance(first["message"], dict) and "content" in first["message"]:
51
  maybe = first["message"]["content"]
52
  if isinstance(maybe, str):
53
  return maybe
54
- # try text or content directly
55
  for k in ("text", "content", "generated_text"):
56
  if k in first and isinstance(first[k], str):
57
  return first[k]
58
-
59
- # fallback
60
  try:
61
  return str(resp)
62
  except Exception:
63
  return "<unable to decode response>"
64
 
 
 
 
 
 
 
 
 
 
 
65
  def respond(
66
  message,
67
  history: list[tuple[str, str]],
@@ -70,12 +62,10 @@ def respond(
70
  temperature,
71
  top_p,
72
  ):
73
- # valida token
74
  if not token:
75
- yield "ERRO: variável de ambiente HF_TOKEN não encontrada. Adicione um secret HF_TOKEN no Settings do Space."
76
  return
77
 
78
- # monta prompt estilo chat (simples)
79
  prompt = f"{system_message}\n\n"
80
  for user_msg, bot_msg in history:
81
  if user_msg:
@@ -85,27 +75,30 @@ def respond(
85
  prompt += f"User: {message}\nAssistant:"
86
 
87
  try:
88
- # chamada sem streaming (resposta completa)
89
- out = client.text_generation(
90
- prompt,
91
- max_new_tokens=int(max_tokens),
92
- temperature=float(temperature),
93
- top_p=float(top_p),
94
- do_sample=True,
95
- )
96
  except HfHubHTTPError as e:
97
- # captura erros HTTP da Hugging Face e retorna mensagem legível
98
- yield f"ERRO na chamada de inferência: {e}\n(verifique HF_TOKEN, permissões e se o modelo está disponível via Inference API)"
99
- return
 
 
 
 
 
 
 
 
 
 
 
 
100
  except Exception as e:
101
  yield f"Erro inesperado ao chamar a API: {e}"
102
  return
103
 
104
- # extrai texto (robusto a vários formatos de retorno)
105
  text = _extract_text_from_response(out)
106
  yield text
107
 
108
-
109
  demo = gr.ChatInterface(
110
  respond,
111
  additional_inputs=[
@@ -114,7 +107,7 @@ demo = gr.ChatInterface(
114
  gr.Slider(minimum=0.0, maximum=2.0, value=0.7, step=0.05, label="Temperature"),
115
  gr.Slider(minimum=0.0, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
116
  ],
117
- title="Chat com Mistral-7B",
118
  )
119
 
120
  if __name__ == "__main__":
 
3
  from huggingface_hub import InferenceClient
4
  from huggingface_hub.utils import HfHubHTTPError
5
 
6
+ # Modelo preferido
7
+ PREFERRED_MODEL = os.environ.get("MODEL_ID", "mistralai/Mistral-7B-Instruct-v0.2")
8
+ # Modelo de fallback atualizado
9
+ FALLBACK_MODEL = os.environ.get("FALLBACK_MODEL", "unsloth/Llama-3.2-3B-Instruct")
10
 
11
  # token vindo do secret HF_TOKEN do Space (ou env local)
12
  token = os.environ.get("HF_TOKEN")
13
 
 
 
 
14
  def _extract_text_from_response(resp):
 
 
 
 
 
15
  if isinstance(resp, str):
16
  return resp
 
 
17
  try:
 
18
  if hasattr(resp, "generated_text"):
19
  return getattr(resp, "generated_text") or ""
20
  if hasattr(resp, "text"):
21
  return getattr(resp, "text") or ""
22
  except Exception:
23
  pass
 
 
24
  if isinstance(resp, dict):
 
25
  for key in ("generated_text", "generated_texts", "text", "output_text", "result"):
26
  if key in resp:
27
  v = resp[key]
 
29
  return v[0] if isinstance(v[0], str) else str(v[0])
30
  if isinstance(v, str):
31
  return v
 
 
32
  if "choices" in resp and isinstance(resp["choices"], list) and resp["choices"]:
33
  first = resp["choices"][0]
34
  if isinstance(first, dict):
 
35
  if "message" in first and isinstance(first["message"], dict) and "content" in first["message"]:
36
  maybe = first["message"]["content"]
37
  if isinstance(maybe, str):
38
  return maybe
 
39
  for k in ("text", "content", "generated_text"):
40
  if k in first and isinstance(first[k], str):
41
  return first[k]
 
 
42
  try:
43
  return str(resp)
44
  except Exception:
45
  return "<unable to decode response>"
46
 
47
+ def _call_model(model_id, prompt, max_new_tokens, temperature, top_p):
48
+ client = InferenceClient(model=model_id, token=token)
49
+ return client.text_generation(
50
+ prompt,
51
+ max_new_tokens=int(max_new_tokens),
52
+ temperature=float(temperature),
53
+ top_p=float(top_p),
54
+ do_sample=True,
55
+ )
56
+
57
  def respond(
58
  message,
59
  history: list[tuple[str, str]],
 
62
  temperature,
63
  top_p,
64
  ):
 
65
  if not token:
66
+ yield "ERRO: variável HF_TOKEN não encontrada. Adicione o secret HF_TOKEN no Settings do Space."
67
  return
68
 
 
69
  prompt = f"{system_message}\n\n"
70
  for user_msg, bot_msg in history:
71
  if user_msg:
 
75
  prompt += f"User: {message}\nAssistant:"
76
 
77
  try:
78
+ out = _call_model(PREFERRED_MODEL, prompt, max_tokens, temperature, top_p)
 
 
 
 
 
 
 
79
  except HfHubHTTPError as e:
80
+ try:
81
+ code = e.response.status_code if e.response is not None else None
82
+ except Exception:
83
+ code = None
84
+
85
+ if code == 404:
86
+ yield f"Aviso: modelo `{PREFERRED_MODEL}` não disponível via Inference API (404). Tentando fallback para `{FALLBACK_MODEL}`..."
87
+ try:
88
+ out = _call_model(FALLBACK_MODEL, prompt, max_tokens, temperature, top_p)
89
+ except Exception as e2:
90
+ yield f"Falha no fallback para {FALLBACK_MODEL}: {e2}"
91
+ return
92
+ else:
93
+ yield f"ERRO na chamada de inferência: {e}\n(verifique HF_TOKEN, permissões e se o modelo está disponível via Inference API)"
94
+ return
95
  except Exception as e:
96
  yield f"Erro inesperado ao chamar a API: {e}"
97
  return
98
 
 
99
  text = _extract_text_from_response(out)
100
  yield text
101
 
 
102
  demo = gr.ChatInterface(
103
  respond,
104
  additional_inputs=[
 
107
  gr.Slider(minimum=0.0, maximum=2.0, value=0.7, step=0.05, label="Temperature"),
108
  gr.Slider(minimum=0.0, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
109
  ],
110
+ title="Chat (Mistral fallback com Llama 3.2 3B)",
111
  )
112
 
113
  if __name__ == "__main__":