import os from dotenv import load_dotenv from tools.python_interpreter import CodeInterpreter interpreter_instance = CodeInterpreter() from tools.image import * """Langraph""" from langgraph.graph import START, StateGraph, MessagesState from langgraph.prebuilt import ToolNode, tools_condition from langchain_groq import ChatGroq from langchain_huggingface import ( ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings, ) from langchain_community.vectorstores import SupabaseVectorStore from langchain_core.messages import SystemMessage, HumanMessage from langchain.tools.retriever import create_retriever_tool from supabase.client import Client, create_client # ------- Tools from tools.browse import web_search, wiki_search, arxiv_search from tools.document_process import save_and_read_file, analyze_csv_file, analyze_excel_file, extract_text_from_image, download_file_from_url from tools.image_tools import analyze_image, generate_simple_image , transform_image, draw_on_image, combine_images from tools.simple_math import multiply, add, subtract, divide, modulus, power, square_root from tools.python_interpreter import execute_code_lang load_dotenv() with open("system_prompt.txt", "r", encoding="utf-8") as f: system_prompt = f.read() print(system_prompt) # System message sys_msg = SystemMessage(content=system_prompt) # build a retriever embeddings = HuggingFaceEmbeddings( model_name="sentence-transformers/all-mpnet-base-v2", ) # dim=768 supabase: Client = create_client( os.environ.get("SUPABASE_URL_HUGGING_FACE"), os.environ.get("SUPABASE_SERVICE_ROLE_HUGGING_FACE") ) vector_store = SupabaseVectorStore( client=supabase, embedding=embeddings, table_name="documents", query_name="match_documents_langchain", ) create_retriever_tool = create_retriever_tool( retriever=vector_store.as_retriever(), name="Question Search", description="A tool to retrieve similar questions from a vector store.", ) tools = [ web_search, wiki_search, arxiv_search, multiply, add, subtract, divide, modulus, power, square_root, save_and_read_file, download_file_from_url, extract_text_from_image, analyze_csv_file, analyze_excel_file, execute_code_lang, analyze_image, transform_image, draw_on_image, generate_simple_image, combine_images, ] def build_graph(provider: str = "groq"): if provider == "groq": # Groq https://console.groq.com/docs/models llm = ChatGroq(model="qwen-qwq-32b", temperature=0) # llm = ChatGroq(model="deepseek-r1-distill-llama-70b", temperature=0) elif provider == "huggingface": llm = ChatHuggingFace( llm=HuggingFaceEndpoint( repo_id="TinyLlama/TinyLlama-1.1B-Chat-v1.0", task="text-generation", # for chat‐style use “text-generation” max_new_tokens=1024, do_sample=False, repetition_penalty=1.03, temperature=0, ), verbose=True, ) else: raise ValueError("Invalid provider. Choose 'groq' or 'huggingface'.") llm_with_tools = llm.bind_tools(tools) def assistant(state: MessagesState): """Assistant Node""" return {"messages": [llm_with_tools.invoke(state['messages'])]} def retriever(state: MessagesState): """Retriever Node""" # Extract the latest message content query = state['messages'][-1].content similar_question = vector_store.similarity_search(query, k = 2) if similar_question: example_msg = HumanMessage( content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}", ) return {"messages": [sys_msg] + state["messages"] + [example_msg]} else: return {"messages": [sys_msg] + state["messages"]} builder = StateGraph(MessagesState) builder.add_node("retriever", retriever) builder.add_node("assistant", assistant) builder.add_node("tools", ToolNode(tools)) builder.add_edge(START, "retriever") builder.add_edge("retriever", "assistant") builder.add_conditional_edges("assistant", tools_condition) builder.add_edge("tools", "assistant") return builder.compile() if __name__ == "__main__": question = "How many studio albums were published by Mercedes Sosa between 2000 and 2009 (included)? You can use the latest 2022 version of english wikipedia." # question = """Q is Examine the video at https://www.youtube.com/watch?v=1htKBjuUWec. What does Teal'c say in response to the question "Isn't that hot?""" graph = build_graph(provider="groq") messages = [HumanMessage(content=question)] messages = graph.invoke({"messages": messages}) for m in messages["messages"]: m.pretty_print()