from langchain_core.tools import tool from tools.image import decode_image, encode_image, save_image from typing import Dict, Any, Optional import numpy as np @tool def analyze_image(image_base64: str) -> Dict[str, Any]: """ Analyze basic properties of an image (size, mode, color analysis, thumbnail preview). Args: image_base64 (str): Base64 encoded image string Returns: Dictionary with analysis result """ try: img = decode_image(image_base64) width, height = img.size mode = img.mode if mode in ("RGB", "RGBA"): arr = np.array(img) avg_colors = arr.mean(axis=(0, 1)) dominant = ["Red", "Green", "Blue"][np.argmax(avg_colors[:3])] brightness = avg_colors.mean() color_analysis = { "average_rgb": avg_colors.tolist(), "brightness": brightness, "dominant_color": dominant, } else: color_analysis = {"note": f"No color analysis for mode {mode}"} thumbnail = img.copy() thumbnail.thumbnail((100, 100)) thumb_path = save_image(thumbnail, "thumbnails") thumbnail_base64 = encode_image(thumb_path) return { "dimensions": (width, height), "mode": mode, "color_analysis": color_analysis, "thumbnail": thumbnail_base64, } except Exception as e: return {"error": str(e)} @tool def generate_simple_image( image_type: str, width: int = 500, height: int = 500, params: Optional[Dict[str, Any]] = None, ) -> Dict[str, Any]: """ Generate a simple image (gradient, noise, pattern, chart). Args: image_type (str): Type of image width (int), height (int) params (Dict[str, Any], optional): Specific parameters Returns: Dictionary with generated image (base64) """ try: params = params or {} if image_type == "gradient": direction = params.get("direction", "horizontal") start_color = params.get("start_color", (255, 0, 0)) end_color = params.get("end_color", (0, 0, 255)) img = Image.new("RGB", (width, height)) draw = ImageDraw.Draw(img) if direction == "horizontal": for x in range(width): r = int( start_color[0] + (end_color[0] - start_color[0]) * x / width ) g = int( start_color[1] + (end_color[1] - start_color[1]) * x / width ) b = int( start_color[2] + (end_color[2] - start_color[2]) * x / width ) draw.line([(x, 0), (x, height)], fill=(r, g, b)) else: for y in range(height): r = int( start_color[0] + (end_color[0] - start_color[0]) * y / height ) g = int( start_color[1] + (end_color[1] - start_color[1]) * y / height ) b = int( start_color[2] + (end_color[2] - start_color[2]) * y / height ) draw.line([(0, y), (width, y)], fill=(r, g, b)) elif image_type == "noise": noise_array = np.random.randint(0, 256, (height, width, 3), dtype=np.uint8) img = Image.fromarray(noise_array, "RGB") else: return {"error": f"Unsupported image_type {image_type}"} result_path = save_image(img) result_base64 = encode_image(result_path) return {"generated_image": result_base64} except Exception as e: return {"error": str(e)}