feat: add agent file, prepare workflow
Browse files- agent.py +148 -0
- app.py +9 -4
- requirements.txt +21 -1
- system_prompt.txt +5 -0
agent.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from dotenv import load_dotenv
|
3 |
+
from typing import List, Dict, Any, Optional
|
4 |
+
import tempfile
|
5 |
+
import re
|
6 |
+
import json
|
7 |
+
import requests
|
8 |
+
from urllib.parse import urlparse
|
9 |
+
import pytesseract
|
10 |
+
from PIL import Image, ImageDraw, ImageFont, ImageEnhance, ImageFilter
|
11 |
+
import cmath
|
12 |
+
import pandas as pd
|
13 |
+
import uuid
|
14 |
+
import numpy as np
|
15 |
+
from code_interpreter import CodeInterpreter
|
16 |
+
|
17 |
+
interpreter_instance = CodeInterpreter()
|
18 |
+
|
19 |
+
from image_processing import *
|
20 |
+
|
21 |
+
"""Langraph"""
|
22 |
+
from langgraph.graph import START, StateGraph, MessagesState
|
23 |
+
from langchain_community.tools.tavily_search import TavilySearchResults
|
24 |
+
from langchain_community.document_loaders import WikipediaLoader
|
25 |
+
from langchain_community.document_loaders import ArxivLoader
|
26 |
+
from langgraph.prebuilt import ToolNode, tools_condition
|
27 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
28 |
+
from langchain_groq import ChatGroq
|
29 |
+
from langchain_huggingface import (
|
30 |
+
ChatHuggingFace,
|
31 |
+
HuggingFaceEndpoint,
|
32 |
+
HuggingFaceEmbeddings,
|
33 |
+
)
|
34 |
+
from langchain_community.vectorstores import SupabaseVectorStore
|
35 |
+
from langchain_core.messages import SystemMessage, HumanMessage
|
36 |
+
from langchain_core.tools import tool
|
37 |
+
from langchain.tools.retriever import create_retriever_tool
|
38 |
+
from supabase.client import Client, create_client
|
39 |
+
# ------- Tools
|
40 |
+
from tools.browse import web_search, wiki_search, arxiv_search
|
41 |
+
from tools.document_process import save_and_read_file, analyze_csv_file, analyze_excel_file, extract_text_from_image, download_file_from_url
|
42 |
+
from tools.image_tools import analyze_image, generate_simple_image
|
43 |
+
from tools.simple_math import multiply, add, subtract, divide, modulus, power, square_root
|
44 |
+
from tools.python_interpreter import execute_code_lang
|
45 |
+
|
46 |
+
load_dotenv()
|
47 |
+
|
48 |
+
with open("system_prompt.txt", "r", encoding="utf-8") as f:
|
49 |
+
system_prompt = f.read()
|
50 |
+
print(system_prompt)
|
51 |
+
|
52 |
+
# System message
|
53 |
+
sys_msg = SystemMessage(content=system_prompt)
|
54 |
+
|
55 |
+
# build a retriever
|
56 |
+
embeddings = HuggingFaceEmbeddings(
|
57 |
+
model_name="sentence-transformers/all-mpnet-base-v2",
|
58 |
+
) # dim=768
|
59 |
+
supabase: Client = create_client(
|
60 |
+
os.environ.get("SUPABASE_URL_HUGGING_FACE"), os.environ.get("SUPABASE_SERVICE_ROLE_HUGGING_FACE")
|
61 |
+
)
|
62 |
+
vector_store = SupabaseVectorStore(
|
63 |
+
client=supabase,
|
64 |
+
embedding=embeddings,
|
65 |
+
table_name="documents2",
|
66 |
+
query_name="match_documents_2",
|
67 |
+
)
|
68 |
+
create_retriever_tool = create_retriever_tool(
|
69 |
+
retriever=vector_store.as_retriever(),
|
70 |
+
name="Question Search",
|
71 |
+
description="A tool to retrieve similar questions from a vector store.",
|
72 |
+
)
|
73 |
+
|
74 |
+
|
75 |
+
tools = [
|
76 |
+
web_search,
|
77 |
+
wiki_search,
|
78 |
+
arxiv_search,
|
79 |
+
multiply,
|
80 |
+
add,
|
81 |
+
subtract,
|
82 |
+
divide,
|
83 |
+
modulus,
|
84 |
+
power,
|
85 |
+
square_root,
|
86 |
+
save_and_read_file,
|
87 |
+
download_file_from_url,
|
88 |
+
extract_text_from_image,
|
89 |
+
analyze_csv_file,
|
90 |
+
analyze_excel_file,
|
91 |
+
execute_code_lang,
|
92 |
+
analyze_image,
|
93 |
+
generate_simple_image,
|
94 |
+
]
|
95 |
+
|
96 |
+
def build_graph(provider: str = "groq"):
|
97 |
+
if provider == "groq":
|
98 |
+
# Groq https://console.groq.com/docs/models
|
99 |
+
llm = ChatGroq(model="qwen-qwq-32b", temperature=0)
|
100 |
+
elif provider == "huggingface":
|
101 |
+
llm = ChatHuggingFace(
|
102 |
+
llm=HuggingFaceEndpoint(
|
103 |
+
repo_id="TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
104 |
+
task="text-generation", # for chat‐style use “text-generation”
|
105 |
+
max_new_tokens=1024,
|
106 |
+
do_sample=False,
|
107 |
+
repetition_penalty=1.03,
|
108 |
+
temperature=0,
|
109 |
+
),
|
110 |
+
verbose=True,
|
111 |
+
)
|
112 |
+
else:
|
113 |
+
raise ValueError("Invalid provider. Choose 'groq' or 'huggingface'.")
|
114 |
+
|
115 |
+
llm_with_tools = llm.bind_tools(tools)
|
116 |
+
|
117 |
+
def assistant(state: MessagesState):
|
118 |
+
"""Assistant Node"""
|
119 |
+
return {"messages": [llm_with_tools.invoke(state['messages'])]}
|
120 |
+
|
121 |
+
def retriever(state: MessagesState):
|
122 |
+
"""Retriever Node"""
|
123 |
+
similar_question = vector_store.similiarity_search(state['messages'])
|
124 |
+
if similar_question:
|
125 |
+
example_msg = HumanMessage(
|
126 |
+
content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
|
127 |
+
)
|
128 |
+
return {"messages": [sys_msg] + state["messages"] + [example_msg]}
|
129 |
+
else:
|
130 |
+
return {"messages": [sys_msg] + state["messages"]}
|
131 |
+
|
132 |
+
builder = StateGraph(MessagesState)
|
133 |
+
builder.add_node("retriever", retriever)
|
134 |
+
builder.add_node("assistant", assistant)
|
135 |
+
builder.add_node("tools", ToolNode(tools))
|
136 |
+
builder.add_edge(START, "retriever")
|
137 |
+
builder.add_edge("retriever", "assistant")
|
138 |
+
builder.add_conditional_edges("assistant", tools_condition)
|
139 |
+
builder.add_edge("tools", "assistant")
|
140 |
+
return builder.compile()
|
141 |
+
|
142 |
+
if __name__ == "__main__":
|
143 |
+
question = "When was the Cyrus Cylinder created?"
|
144 |
+
graph = build_graph(provider="groq")
|
145 |
+
messages = [HumanMessage(content=question)]
|
146 |
+
messages = graph.invoke({"messages": messages})
|
147 |
+
for m in messages["messages"]:
|
148 |
+
m.pretty_print()
|
app.py
CHANGED
@@ -3,6 +3,8 @@ import gradio as gr
|
|
3 |
import requests
|
4 |
import inspect
|
5 |
import pandas as pd
|
|
|
|
|
6 |
|
7 |
# (Keep Constants as is)
|
8 |
# --- Constants ---
|
@@ -11,13 +13,16 @@ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
11 |
# --- Basic Agent Definition ---
|
12 |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
13 |
class BasicAgent:
|
|
|
14 |
def __init__(self):
|
15 |
print("BasicAgent initialized.")
|
|
|
16 |
def __call__(self, question: str) -> str:
|
17 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
21 |
|
22 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
23 |
"""
|
@@ -193,4 +198,4 @@ if __name__ == "__main__":
|
|
193 |
print("-"*(60 + len(" App Starting ")) + "\n")
|
194 |
|
195 |
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
196 |
-
demo.launch(debug=True, share=False)
|
|
|
3 |
import requests
|
4 |
import inspect
|
5 |
import pandas as pd
|
6 |
+
from langchain_core.messages import HumanMessage
|
7 |
+
from agent import build_graph
|
8 |
|
9 |
# (Keep Constants as is)
|
10 |
# --- Constants ---
|
|
|
13 |
# --- Basic Agent Definition ---
|
14 |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
15 |
class BasicAgent:
|
16 |
+
"An Agent Based on LangGraph"
|
17 |
def __init__(self):
|
18 |
print("BasicAgent initialized.")
|
19 |
+
self.graph = build_graph()
|
20 |
def __call__(self, question: str) -> str:
|
21 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
22 |
+
messages = [HumanMessage(content=question)]
|
23 |
+
messages = self.graph.invoke({"messages": messages})
|
24 |
+
answer = messages["messages"][-1].content
|
25 |
+
return answer[14:]
|
26 |
|
27 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
28 |
"""
|
|
|
198 |
print("-"*(60 + len(" App Starting ")) + "\n")
|
199 |
|
200 |
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
201 |
+
demo.launch(debug=True, share=False)
|
requirements.txt
CHANGED
@@ -1,2 +1,22 @@
|
|
1 |
gradio
|
2 |
-
requests
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
gradio
|
2 |
+
requests
|
3 |
+
gradio
|
4 |
+
requests
|
5 |
+
langchain
|
6 |
+
langchain-community
|
7 |
+
langchain-core
|
8 |
+
langchain-google-genai
|
9 |
+
langchain-huggingface
|
10 |
+
langchain-groq
|
11 |
+
langchain-tavily
|
12 |
+
langchain-chroma
|
13 |
+
langgraph
|
14 |
+
huggingface_hub
|
15 |
+
supabase
|
16 |
+
arxiv
|
17 |
+
pymupdf
|
18 |
+
wikipedia
|
19 |
+
pgvector
|
20 |
+
python-dotenv
|
21 |
+
pytesseract
|
22 |
+
matplotlib
|
system_prompt.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
You are a helpful assistant tasked with answering questions using a set of tools.
|
2 |
+
Now, I will ask you a question. Report your thoughts, and finish your answer with the following template:
|
3 |
+
FINAL ANSWER: [YOUR FINAL ANSWER].
|
4 |
+
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, Apply the rules above for each element (number or string), ensure there is exactly one space after each comma.
|
5 |
+
Your answer should only start with "FINAL ANSWER: ", then follows with the answer.
|