File size: 3,786 Bytes
a36de18
 
1706d7c
a36de18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
from langchain_core.tools import tool
import os
from typing import Optional
import tempfile
import requests
from urllib.parse import urlparse
import pytesseract
from PIL import Image
import pandas as pd
import uuid

@tool
def save_and_read_file(content: str, filename: Optional[str] = None) -> str:
    """
    Save content to a file and return the path.
    Args:
        content (str): the content to save to the file
        filename (str, optional): the name of the file. If not provided, a random name file will be created.
    """
    temp_dir = tempfile.gettempdir()
    if filename is None:
        temp_file = tempfile.NamedTemporaryFile(delete=False, dir=temp_dir)
        filepath = temp_file.name
    else:
        filepath = os.path.join(temp_dir, filename)

    with open(filepath, "w") as f:
        f.write(content)

    return f"File saved to {filepath}. You can read this file to process its contents."

@tool
def download_file_from_url(url: str, filename: Optional[str] = None) -> str:
    """
    Download a file from a URL and save it to a temporary location.
    Args:
        url (str): the URL of the file to download.
        filename (str, optional): the name of the file. If not provided, a random name file will be created.
    """
    try:
        if not filename:
            path = urlparse(url).path
            filename = os.path.basename(path)
            if not filename:
                filename = f"downloaded_{uuid.uuid4().hex[:8]}"

        temp_dir = tempfile.gettempdir()
        filepath = os.path.join(temp_dir, filename)

        response = requests.get(url, stream=True)
        response.raise_for_status()

        # Save the file
        with open(filepath, "wb") as f:
            for chunk in response.iter_content(chunk_size=8192):
                f.write(chunk)

        return f"File downloaded to {filepath}. You can read this file to process its contents."
    except Exception as e:
        return f"Error downloading file: {str(e)}"

@tool
def extract_text_from_image(image_path: str) -> str:
    """
    Extract text from an image using OCR library pytesseract (if available).
    Args:
        image_path (str): the path to the image file.
    """
    try:
        image = Image.open(image_path)

        # Extract text from the image
        text = pytesseract.image_to_string(image)

        return f"Extracted text from image:\n\n{text}"
    except Exception as e:
        return f"Error extracting text from image: {str(e)}"

@tool
def analyze_csv_file(file_path: str, query: str) -> str:
    """
    Analyze a CSV file using pandas and answer a question about it.
    Args:
        file_path (str): the path to the CSV file.
        query (str): Question about the data
    """
    try:
        df = pd.read_csv(file_path)

        result = f"CSV file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
        result += f"Columns: {', '.join(df.columns)}\n\n"

        result += "Summary statistics:\n"
        result += str(df.describe())

        return result

    except Exception as e:
        return f"Error analyzing CSV file: {str(e)}"

@tool
def analyze_excel_file(file_path: str, query: str) -> str:
    """
    Analyze an Excel file using pandas and answer a question about it.
    Args:
        file_path (str): the path to the Excel file.
        query (str): Question about the data
    """
    try:
        df = pd.read_excel(file_path)

        result = (
            f"Excel file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
        )
        result += f"Columns: {', '.join(df.columns)}\n\n"

        result += "Summary statistics:\n"
        result += str(df.describe())

        return result

    except Exception as e:
        return f"Error analyzing Excel file: {str(e)}"