File size: 3,803 Bytes
a36de18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
from langchain_core.tools import tool
import os
from typing import List, Dict, Any, Optional
import tempfile
import requests
from urllib.parse import urlparse
import pytesseract
from PIL import Image
import pandas as pd
import uuid
@tool
def save_and_read_file(content: str, filename: Optional[str] = None) -> str:
"""
Save content to a file and return the path.
Args:
content (str): the content to save to the file
filename (str, optional): the name of the file. If not provided, a random name file will be created.
"""
temp_dir = tempfile.gettempdir()
if filename is None:
temp_file = tempfile.NamedTemporaryFile(delete=False, dir=temp_dir)
filepath = temp_file.name
else:
filepath = os.path.join(temp_dir, filename)
with open(filepath, "w") as f:
f.write(content)
return f"File saved to {filepath}. You can read this file to process its contents."
@tool
def download_file_from_url(url: str, filename: Optional[str] = None) -> str:
"""
Download a file from a URL and save it to a temporary location.
Args:
url (str): the URL of the file to download.
filename (str, optional): the name of the file. If not provided, a random name file will be created.
"""
try:
if not filename:
path = urlparse(url).path
filename = os.path.basename(path)
if not filename:
filename = f"downloaded_{uuid.uuid4().hex[:8]}"
temp_dir = tempfile.gettempdir()
filepath = os.path.join(temp_dir, filename)
response = requests.get(url, stream=True)
response.raise_for_status()
# Save the file
with open(filepath, "wb") as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
return f"File downloaded to {filepath}. You can read this file to process its contents."
except Exception as e:
return f"Error downloading file: {str(e)}"
@tool
def extract_text_from_image(image_path: str) -> str:
"""
Extract text from an image using OCR library pytesseract (if available).
Args:
image_path (str): the path to the image file.
"""
try:
image = Image.open(image_path)
# Extract text from the image
text = pytesseract.image_to_string(image)
return f"Extracted text from image:\n\n{text}"
except Exception as e:
return f"Error extracting text from image: {str(e)}"
@tool
def analyze_csv_file(file_path: str, query: str) -> str:
"""
Analyze a CSV file using pandas and answer a question about it.
Args:
file_path (str): the path to the CSV file.
query (str): Question about the data
"""
try:
df = pd.read_csv(file_path)
result = f"CSV file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
result += f"Columns: {', '.join(df.columns)}\n\n"
result += "Summary statistics:\n"
result += str(df.describe())
return result
except Exception as e:
return f"Error analyzing CSV file: {str(e)}"
@tool
def analyze_excel_file(file_path: str, query: str) -> str:
"""
Analyze an Excel file using pandas and answer a question about it.
Args:
file_path (str): the path to the Excel file.
query (str): Question about the data
"""
try:
df = pd.read_excel(file_path)
result = (
f"Excel file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
)
result += f"Columns: {', '.join(df.columns)}\n\n"
result += "Summary statistics:\n"
result += str(df.describe())
return result
except Exception as e:
return f"Error analyzing Excel file: {str(e)}"
|