Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import streamlit as st
|
2 |
import torch
|
3 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
@@ -8,10 +9,10 @@ def combine_title_summary(title, summary):
|
|
8 |
|
9 |
|
10 |
tag2ind = {
|
11 |
-
"
|
12 |
-
"
|
13 |
-
"
|
14 |
-
"
|
15 |
}
|
16 |
|
17 |
|
@@ -19,12 +20,10 @@ tag2ind = {
|
|
19 |
def load_model():
|
20 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
21 |
|
22 |
-
#
|
23 |
-
|
24 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
25 |
-
model = AutoModelForSequenceClassification.from_pretrained(
|
26 |
-
save_dir
|
27 |
-
).to(device)
|
28 |
|
29 |
return tokenizer, model
|
30 |
|
@@ -48,20 +47,36 @@ def run_model(model, tokenizer, title, summary):
|
|
48 |
out = model(**tokens_info)
|
49 |
probs = torch.nn.functional.softmax(out.logits, dim=-1)[0]
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
55 |
|
|
|
|
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
if st.button("Submit"):
|
60 |
-
if title == "" and abstract == "":
|
61 |
-
st.error("At least one of title or abstract must be provided")
|
62 |
-
else:
|
63 |
-
result = combine_title_summary(title, abstract)
|
64 |
-
st.success(result)
|
65 |
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
import streamlit as st
|
3 |
import torch
|
4 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
|
|
9 |
|
10 |
|
11 |
tag2ind = {
|
12 |
+
"Biology": 0,
|
13 |
+
"Physics": 1,
|
14 |
+
"Math": 2,
|
15 |
+
"Computer Science": 3,
|
16 |
}
|
17 |
|
18 |
|
|
|
20 |
def load_model():
|
21 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
22 |
|
23 |
+
# dir_name = "./distilbert/distilbert-base-cased/checkpoint-738"
|
24 |
+
dir_name = "./microsoft/deberta-v3-small/checkpoint-4915"
|
25 |
+
tokenizer = AutoTokenizer.from_pretrained(dir_name, use_fast=False)
|
26 |
+
model = AutoModelForSequenceClassification.from_pretrained(dir_name).to(device)
|
|
|
|
|
27 |
|
28 |
return tokenizer, model
|
29 |
|
|
|
47 |
out = model(**tokens_info)
|
48 |
probs = torch.nn.functional.softmax(out.logits, dim=-1)[0]
|
49 |
|
50 |
+
ids = torch.argsort(probs, descending=True)
|
51 |
+
p = 0
|
52 |
+
best_tags, best_probs = [], []
|
53 |
+
for ind in ids:
|
54 |
+
p += probs[ind]
|
55 |
|
56 |
+
best_tags.append(list(tag2ind.keys())[ind])
|
57 |
+
best_probs.append(probs[ind])
|
58 |
|
59 |
+
if p >= 0.95:
|
60 |
+
break
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
+
return best_tags, best_probs
|
63 |
+
|
64 |
+
|
65 |
+
def main():
|
66 |
+
title = st.text_input(label="Title", value="")
|
67 |
+
abstract = st.text_area(label="Abstract", value="", height=200)
|
68 |
+
if st.button("Classify"):
|
69 |
+
if title == "" and abstract == "":
|
70 |
+
st.error("At least one of title or abstract must be provided")
|
71 |
+
else:
|
72 |
+
best_tags, best_probs = run_model(model, tokenizer, title, abstract)
|
73 |
+
|
74 |
+
df = pd.DataFrame(
|
75 |
+
dict(zip(best_tags, best_probs)).items(),
|
76 |
+
columns=["Theme", "Probability"],
|
77 |
+
)
|
78 |
+
st.table(df)
|
79 |
+
|
80 |
+
|
81 |
+
if __name__ == "__main__":
|
82 |
+
main()
|