01Yassine commited on
Commit
fd168fe
·
verified ·
1 Parent(s): 0469dbf

Update index.html

Browse files
Files changed (1) hide show
  1. index.html +9 -10
index.html CHANGED
@@ -223,15 +223,15 @@
223
  From these counts, we derive three rates:
224
  <ul>
225
  <li><strong>False Rejection Rate (FRR):</strong>
226
- \( \displaystyle \text{FRR} = \frac{\text{FR}}{\text{TA} + \text{FR}} \)
227
  (Proportion of correctly pronounced phonemes that were mistakenly flagged as errors.)
228
  </li>
229
- <li><strong>False Acceptance Rate (FAR):</strong>
230
- \( \displaystyle \text{FAR} = \frac{\text{FA}}{\text{FA} + \text{TR}} \)
231
  (Proportion of mispronounced phonemes that were mistakenly classified as correct.)
232
  </li>
233
- <li><strong>Diagnostic Error Rate (DER):</strong>
234
- \( \displaystyle \text{DER} = \frac{\text{DE}}{\text{CD} + \text{DE}} \)
235
  where DE is the number of misdiagnosed phonemes and CD is the number of correctly diagnosed ones.
236
  </li>
237
  </ul>
@@ -240,16 +240,15 @@
240
  In addition to these hierarchical measures, we compute the standard <strong>Precision</strong>, <strong>Recall</strong>, and <strong>F-measure</strong> for mispronunciation detection:
241
  <ul>
242
  <li><strong>Precision:</strong>
243
- \( \displaystyle \text{Precision} = \frac{\text{TR}}{\text{TR} + \text{FR}} \)
244
  (Of all phonemes predicted as mispronounced, how many were actually mispronounced?)
245
  </li>
246
  <li><strong>Recall:</strong>
247
- \( \displaystyle \text{Recall} = \frac{\text{TR}}{\text{TR} + \text{FA}} \;=\; 1 - \text{FAR} \)
248
  (Of all truly mispronounced phonemes, how many did we correctly detect?)
249
  </li>
250
- <li><strong>F-measure (F1):</strong>
251
- \( \displaystyle F1 = 2 \times \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}} \)
252
- (Harmonic mean of Precision and Recall.)
253
  </li>
254
  </ul>
255
  </p>
 
223
  From these counts, we derive three rates:
224
  <ul>
225
  <li><strong>False Rejection Rate (FRR):</strong>
226
+ FRR = FR/(TA + FR)
227
  (Proportion of correctly pronounced phonemes that were mistakenly flagged as errors.)
228
  </li>
229
+ <li><strong>False Acceptance Rate (FAR):</strong>
230
+ FAR = FA/(FA + TR)
231
  (Proportion of mispronounced phonemes that were mistakenly classified as correct.)
232
  </li>
233
+ <li><strong>Diagnostic Error Rate (DER):</strong>
234
+ DER = DE/(CD + DE)
235
  where DE is the number of misdiagnosed phonemes and CD is the number of correctly diagnosed ones.
236
  </li>
237
  </ul>
 
240
  In addition to these hierarchical measures, we compute the standard <strong>Precision</strong>, <strong>Recall</strong>, and <strong>F-measure</strong> for mispronunciation detection:
241
  <ul>
242
  <li><strong>Precision:</strong>
243
+ Precision = TR/(TR + FR)
244
  (Of all phonemes predicted as mispronounced, how many were actually mispronounced?)
245
  </li>
246
  <li><strong>Recall:</strong>
247
+ Recall = TR/(TR + FA)
248
  (Of all truly mispronounced phonemes, how many did we correctly detect?)
249
  </li>
250
+ <li><strong>F1-score:</strong>
251
+ F1-score = 2 * Precision * Recall / (Precision + Recall)
 
252
  </li>
253
  </ul>
254
  </p>