Update index.html
Browse files- index.html +59 -59
index.html
CHANGED
@@ -17,21 +17,17 @@
|
|
17 |
<!-- Overview Section -->
|
18 |
<h2>Overview</h2>
|
19 |
<p>
|
20 |
-
<strong>Iqra’Eval</strong> is a shared task aimed at advancing <strong>automatic assessment of Qur’anic recitation pronunciation</strong> by leveraging computational methods to detect and diagnose pronunciation errors. The focus on Qur’anic recitation provides a standardized and well-defined context for evaluating Modern Standard Arabic (MSA) pronunciation
|
21 |
</p>
|
22 |
<p>
|
23 |
-
Participants will develop systems capable of
|
24 |
</p>
|
25 |
-
<ul>
|
26 |
-
<li>Detecting whether a segment of Qur’anic recitation contains pronunciation errors.</li>
|
27 |
-
<li>Diagnosing the nature of the error (e.g., substitution, deletion, or insertion of phonemes).</li>
|
28 |
-
</ul>
|
29 |
|
30 |
<!-- Timeline Section -->
|
31 |
<h2>Timeline</h2>
|
32 |
<ul>
|
33 |
<li><strong>June 1, 2025</strong>: Official announcement of the shared task</li>
|
34 |
-
<li><strong>June
|
35 |
<li><strong>July 24, 2025</strong>: Registration deadline and release of test data</li>
|
36 |
<li><strong>July 27, 2025</strong>: End of evaluation cycle (test set submission closes)</li>
|
37 |
<li><strong>July 30, 2025</strong>: Final results released</li>
|
@@ -93,27 +89,8 @@
|
|
93 |
<p>
|
94 |
The annotated phoneme sequence indicates that the phoneme <code>ta</code> was omitted, but the model failed to detect it.
|
95 |
</p>
|
96 |
-
|
97 |
-
|
98 |
-
<ol>
|
99 |
-
<li>
|
100 |
-
<strong>Advanced Mispronunciation Detection Models</strong><br>
|
101 |
-
Apply state-of-the-art self-supervised models (e.g.,
|
102 |
-
<a href="https://arxiv.org/abs/2111.06331" target="_blank">Wav2Vec2.0</a>, HuBERT)
|
103 |
-
pre-trained on Arabic speech. These models can be fine-tuned on Quranic recitations to improve phoneme-level accuracy.
|
104 |
-
</li>
|
105 |
-
<li>
|
106 |
-
<strong>Data Augmentation Strategies</strong><br>
|
107 |
-
Create synthetic mispronunciation examples using pipelines like
|
108 |
-
<a href="https://arxiv.org/abs/2211.00923" target="_blank">SpeechBlender</a>.
|
109 |
-
Augmenting limited Arabic/Quranic speech data helps mitigate data scarcity and improves model robustness.
|
110 |
-
</li>
|
111 |
-
<li>
|
112 |
-
<strong>Analysis of Common Mispronunciation Patterns</strong><br>
|
113 |
-
Perform statistical analysis on the QuranMB dataset to identify prevalent errors (e.g., substituting similar phonemes, swapping vowels).
|
114 |
-
These insights can drive targeted training and tailored feedback rules.
|
115 |
-
</li>
|
116 |
-
</ol>
|
117 |
|
118 |
<h2>Training Dataset: Description</h2>
|
119 |
<p>
|
@@ -189,7 +166,38 @@
|
|
189 |
For detailed instructions on data access, phonetizer installation, and baseline usage, please refer to the GitHub README.
|
190 |
</em>
|
191 |
</p>
|
192 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
<h2>Evaluation Criteria</h2>
|
194 |
<p>
|
195 |
The primary evaluation metric for the IqraEval system is the <strong>F1-score</strong> at the phoneme level. In addition, we adopt a hierarchical evaluation structure, <a href="https://arxiv.org/pdf/2310.13974" target="_blank">MDD Overview</a>, that breaks down performance into detection and diagnostic phases.
|
@@ -253,37 +261,29 @@
|
|
253 |
</ul>
|
254 |
</p>
|
255 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
256 |
|
257 |
-
<!-- Submission Details -->
|
258 |
-
<h2>Submission Details (Draft)</h2>
|
259 |
-
<p>
|
260 |
-
Participants are required to submit a CSV file named <code>submission.csv</code> containing the predicted phoneme sequences for each audio sample. The file must have exactly two columns:
|
261 |
-
</p>
|
262 |
-
<ul>
|
263 |
-
<li><strong>ID:</strong> Unique identifier of the audio sample.</li>
|
264 |
-
<li><strong>Labels:</strong> The predicted phoneme sequence, with each phoneme separated by a single space.</li>
|
265 |
-
</ul>
|
266 |
-
<p>
|
267 |
-
Below is a minimal example illustrating the required format:
|
268 |
-
</p>
|
269 |
-
<pre>
|
270 |
-
ID,Labels
|
271 |
-
0000_0001, i n n a m a a y a k h a l l a h a m i n ʕ i b a a d i h u l ʕ u l a m
|
272 |
-
0000_0002, m a a n a n s a k h u m i n i ʕ a a y a t i n
|
273 |
-
0000_0003, y u k h i k u m u n n u ʔ a u ʔ a m a n a t a n m m i n h u
|
274 |
-
…
|
275 |
-
</pre>
|
276 |
-
<p>
|
277 |
-
The first column (ID) should match exactly the audio filenames (without extension). The second column (Labels) is the predicted phoneme string.
|
278 |
-
</p>
|
279 |
-
<p>
|
280 |
-
<strong>Important:</strong>
|
281 |
-
<ul>
|
282 |
-
<li>Use UTF-8 encoding.</li>
|
283 |
-
<li>Do not include extra spaces at the start or end of each line.</li>
|
284 |
-
<li>Submit a single CSV file (no archives). Filename must be <code>teamID_submission.csv</code>.</li>
|
285 |
-
</ul>
|
286 |
-
</p>
|
287 |
|
288 |
<!-- Placeholder for Future Details -->
|
289 |
<h2>Future Updates</h2>
|
|
|
17 |
<!-- Overview Section -->
|
18 |
<h2>Overview</h2>
|
19 |
<p>
|
20 |
+
<strong>Iqra’Eval</strong> is a shared task aimed at advancing <strong>automatic assessment of Qur’anic recitation pronunciation</strong> by leveraging computational methods to detect and diagnose pronunciation errors. The focus on Qur’anic recitation provides a standardized and well-defined context for evaluating Modern Standard Arabic (MSA) pronunciation.
|
21 |
</p>
|
22 |
<p>
|
23 |
+
Participants will develop systems capable of Detecting Mispronunciations (e.g., substitution, deletion, or insertion of phonemes).
|
24 |
</p>
|
|
|
|
|
|
|
|
|
25 |
|
26 |
<!-- Timeline Section -->
|
27 |
<h2>Timeline</h2>
|
28 |
<ul>
|
29 |
<li><strong>June 1, 2025</strong>: Official announcement of the shared task</li>
|
30 |
+
<li><strong>June 10, 2025</strong>: Release of training data, development set (QuranMB), phonetizer script, and baseline systems</li>
|
31 |
<li><strong>July 24, 2025</strong>: Registration deadline and release of test data</li>
|
32 |
<li><strong>July 27, 2025</strong>: End of evaluation cycle (test set submission closes)</li>
|
33 |
<li><strong>July 30, 2025</strong>: Final results released</li>
|
|
|
89 |
<p>
|
90 |
The annotated phoneme sequence indicates that the phoneme <code>ta</code> was omitted, but the model failed to detect it.
|
91 |
</p>
|
92 |
+
|
93 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
<h2>Training Dataset: Description</h2>
|
96 |
<p>
|
|
|
166 |
For detailed instructions on data access, phonetizer installation, and baseline usage, please refer to the GitHub README.
|
167 |
</em>
|
168 |
</p>
|
169 |
+
|
170 |
+
<!-- Submission Details -->
|
171 |
+
<h2>Submission Details (Draft)</h2>
|
172 |
+
<p>
|
173 |
+
Participants are required to submit a CSV file named <code>submission.csv</code> containing the predicted phoneme sequences for each audio sample. The file must have exactly two columns:
|
174 |
+
</p>
|
175 |
+
<ul>
|
176 |
+
<li><strong>ID:</strong> Unique identifier of the audio sample.</li>
|
177 |
+
<li><strong>Labels:</strong> The predicted phoneme sequence, with each phoneme separated by a single space.</li>
|
178 |
+
</ul>
|
179 |
+
<p>
|
180 |
+
Below is a minimal example illustrating the required format:
|
181 |
+
</p>
|
182 |
+
<pre>
|
183 |
+
ID,Labels
|
184 |
+
0000_0001, i n n a m a a y a k h a l l a h a m i n ʕ i b a a d i h u l ʕ u l a m
|
185 |
+
0000_0002, m a a n a n s a k h u m i n i ʕ a a y a t i n
|
186 |
+
0000_0003, y u k h i k u m u n n u ʔ a u ʔ a m a n a t a n m m i n h u
|
187 |
+
…
|
188 |
+
</pre>
|
189 |
+
<p>
|
190 |
+
The first column (ID) should match exactly the audio filenames (without extension). The second column (Labels) is the predicted phoneme string.
|
191 |
+
</p>
|
192 |
+
<p>
|
193 |
+
<strong>Important:</strong>
|
194 |
+
<ul>
|
195 |
+
<li>Use UTF-8 encoding.</li>
|
196 |
+
<li>Do not include extra spaces at the start or end of each line.</li>
|
197 |
+
<li>Submit a single CSV file (no archives). Filename must be <code>teamID_submission.csv</code>.</li>
|
198 |
+
</ul>
|
199 |
+
</p>
|
200 |
+
|
201 |
<h2>Evaluation Criteria</h2>
|
202 |
<p>
|
203 |
The primary evaluation metric for the IqraEval system is the <strong>F1-score</strong> at the phoneme level. In addition, we adopt a hierarchical evaluation structure, <a href="https://arxiv.org/pdf/2310.13974" target="_blank">MDD Overview</a>, that breaks down performance into detection and diagnostic phases.
|
|
|
261 |
</ul>
|
262 |
</p>
|
263 |
|
264 |
+
|
265 |
+
<h2>Potential Research Directions</h2>
|
266 |
+
<ol>
|
267 |
+
<li>
|
268 |
+
<strong>Advanced Mispronunciation Detection Models</strong><br>
|
269 |
+
Apply state-of-the-art self-supervised models (e.g.,
|
270 |
+
<a href="https://arxiv.org/abs/2111.06331" target="_blank">Wav2Vec2.0</a>, HuBERT)
|
271 |
+
pre-trained on Arabic speech. These models can be fine-tuned on Quranic recitations to improve phoneme-level accuracy.
|
272 |
+
</li>
|
273 |
+
<li>
|
274 |
+
<strong>Data Augmentation Strategies</strong><br>
|
275 |
+
Create synthetic mispronunciation examples using pipelines like
|
276 |
+
<a href="https://arxiv.org/abs/2211.00923" target="_blank">SpeechBlender</a>.
|
277 |
+
Augmenting limited Arabic/Quranic speech data helps mitigate data scarcity and improves model robustness.
|
278 |
+
</li>
|
279 |
+
<li>
|
280 |
+
<strong>Analysis of Common Mispronunciation Patterns</strong><br>
|
281 |
+
Perform statistical analysis on the QuranMB dataset to identify prevalent errors (e.g., substituting similar phonemes, swapping vowels).
|
282 |
+
These insights can drive targeted training and tailored feedback rules.
|
283 |
+
</li>
|
284 |
+
</ol>
|
285 |
+
|
286 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
287 |
|
288 |
<!-- Placeholder for Future Details -->
|
289 |
<h2>Future Updates</h2>
|