01Yassine commited on
Commit
290e06d
·
verified ·
1 Parent(s): cb75d3d

Update index.html

Browse files
Files changed (1) hide show
  1. index.html +211 -178
index.html CHANGED
@@ -1,173 +1,127 @@
1
  <!doctype html>
2
  <html lang="en">
3
  <head>
4
- <meta charset="utf-8" />
5
- <meta name="viewport" content="width=device-width" />
6
- <title>Iqra’Eval Shared Task</title>
7
- <style>
8
- /* Color Palette */
9
- :root {
10
- --navy-blue: #001f4d;
11
- --coral: #ff6f61;
12
- --light-gray: #f5f7fa;
13
- --text-dark: #222;
14
- }
15
-
16
- body {
17
- font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
18
- background-color: var(--light-gray);
19
- color: var(--text-dark);
20
- margin: 20px;
21
- line-height: 1.6;
22
- }
23
-
24
- h1, h2, h3 {
25
- color: var(--navy-blue);
26
- font-weight: 700;
27
- margin-top: 1.2em;
28
- }
29
-
30
- h1 {
31
- text-align: center;
32
- font-size: 2.8rem;
33
- margin-bottom: 0.3em;
34
- }
35
-
36
- h2 {
37
- border-bottom: 3px solid var(--coral);
38
- padding-bottom: 0.3em;
39
- }
40
-
41
- h3 {
42
- color: var(--coral);
43
- margin-top: 1em;
44
- }
45
-
46
- p {
47
- max-width: 900px;
48
- margin: 0.8em auto;
49
- }
50
-
51
- strong {
52
- color: var(--navy-blue);
53
- }
54
-
55
- ul {
56
- max-width: 900px;
57
- margin: 0.5em auto 1.5em auto;
58
- padding-left: 1.2em;
59
- }
60
-
61
- ul li {
62
- margin: 0.4em 0;
63
- }
64
-
65
- code {
66
- background-color: #eef4f8;
67
- color: var(--navy-blue);
68
- padding: 2px 6px;
69
- border-radius: 4px;
70
- font-family: Consolas, monospace;
71
- font-size: 0.9em;
72
- }
73
-
74
- pre {
75
- max-width: 900px;
76
- background-color: #eef4f8;
77
- color: var(--navy-blue);
78
- padding: 1em;
79
- border-radius: 8px;
80
- overflow-x: auto;
81
- font-family: Consolas, monospace;
82
- font-size: 0.95em;
83
- margin: 0.8em auto;
84
- }
85
-
86
- a {
87
- color: var(--coral);
88
- text-decoration: none;
89
- }
90
-
91
- a:hover {
92
- text-decoration: underline;
93
- }
94
-
95
- .card {
96
- max-width: 1200px;
97
- background: white;
98
- margin: 0 auto 40px auto;
99
- padding: 2em 2.5em;
100
- box-shadow: 0 4px 14px rgba(0,0,0,0.1);
101
- border-radius: 12px;
102
- }
103
-
104
- /* Centering images and captions */
105
- div img {
106
- display: block;
107
- margin: 20px auto;
108
- max-width: 100%;
109
- height: auto;
110
- border-radius: 8px;
111
- box-shadow: 0 4px 8px rgba(0,31,77,0.15);
112
- }
113
-
114
- .centered p {
115
- text-align: center;
116
- font-style: italic;
117
- color: var(--navy-blue);
118
- margin-top: 0.4em;
119
- }
120
-
121
- .highlight {
122
- color: var(--coral);
123
- font-weight: 700;
124
- }
125
-
126
- /* Lists inside paragraphs */
127
- p > ul {
128
- margin-top: 0.3em;
129
- }
130
-
131
- </style>
132
  </head>
133
  <body>
134
- <div class="card">
135
  <h1>Iqra’Eval Shared Task</h1>
136
 
137
- <div>
138
- <img src="IqraEval.png" alt="IqraEval Logo" />
139
- </div>
140
 
141
- <!-- Overview Section -->
142
  <h2>Overview</h2>
143
  <p>
144
- <strong>Iqra'Eval</strong> is a shared task aimed at advancing <strong>automatic assessment of Qur’anic recitation pronunciation</strong> by leveraging computational methods to detect and diagnose pronunciation errors. The focus on Qur’anic recitation provides a standardized and well-defined context for evaluating Modern Standard Arabic (MSA) pronunciation.
145
  </p>
146
  <p>
147
- Participants will develop systems capable of detecting mispronunciations (e.g., substitution, deletion, or insertion of phonemes).
148
  </p>
149
 
150
- <!-- Timeline Section -->
151
  <h2>Timeline</h2>
152
  <ul>
153
- <li><strong>June 1, 2025</strong>: Official announcement of the shared task</li>
154
- <li><strong>June 10, 2025</strong>: Release of training data, development set (QuranMB), phonetizer script, and baseline systems</li>
155
- <li><strong>July 24, 2025</strong>: Registration deadline and release of test data</li>
156
- <li><strong>July 27, 2025</strong>: End of evaluation cycle (test set submission closes)</li>
157
- <li><strong>July 30, 2025</strong>: Final results released</li>
158
- <li><strong>August 15, 2025</strong>: System description paper submissions due</li>
159
- <li><strong>August 22, 2025</strong>: Notification of acceptance</li>
160
- <li><strong>September 5, 2025</strong>: Camera-ready versions due</li>
161
  </ul>
162
 
163
- <!-- Task Description -->
164
  <h2>Task Description: Quranic Mispronunciation Detection System</h2>
165
  <p>
166
- The aim is to design a model to detect and provide detailed feedback on mispronunciations in Quranic recitations.
167
- Users read aloud vowelized Quranic verses; this model predicts the phoneme sequence uttered by the speaker, which may contain mispronunciations.
168
- Models are evaluated on the <strong>QuranMB.v2</strong> dataset, which contains human‐annotated mispronunciations.
169
  </p>
170
-
171
  <div class="centered">
172
  <img src="task.png" alt="System Overview" />
173
  <p>Figure: Overview of the Mispronunciation Detection Workflow</p>
@@ -175,7 +129,7 @@
175
 
176
  <h3>1. Read the Verse</h3>
177
  <p>
178
- The user is shown a <strong>Reference Verse</strong> (What should have been said) in Arabic script along with its corresponding <strong>Reference Phoneme Sequence</strong>.
179
  </p>
180
  <p><strong>Example:</strong></p>
181
  <ul>
@@ -188,64 +142,143 @@
188
 
189
  <h3>2. Save Recording</h3>
190
  <p>
191
- The user recites the verse aloud; the system captures and stores the audio waveform for subsequent analysis.
192
  </p>
193
 
194
  <h3>3. Mispronunciation Detection</h3>
195
  <p>
196
- The stored audio is fed into a <strong>Mispronunciation Detection Model</strong>.
197
- This model predicts the phoneme sequence uttered by the speaker, which may contain mispronunciations.
198
  </p>
199
  <p><strong>Example of Mispronunciation:</strong></p>
200
  <ul>
201
- <li><strong>Reference Phoneme Sequence (What should have been said):</strong> <code>&lt; i n n a SS A f aa w a l m a r w a t a m i n $ a E a a &lt; i r i l l a h i</code></li>
202
- <li><strong>Model Phoneme Prediction (What is predicted):</strong> <code>&lt; i n n a SS A f aa w a l m a r w a t a m i n s a E a a &lt; i r u l l a h i</code></li>
203
  <li>
204
- <strong>Annotated Phoneme Sequence (What is said):</strong>
205
  <code>&lt; i n n a SS A f aa w a l m a r w <span class="highlight">s</span> a E a a &lt; i <span class="highlight">r u</span> l l a h i</code>
206
  </li>
207
  </ul>
208
  <p>
209
- In this case, the phoneme <code>$</code> was mispronounced as <code>s</code>, and <code>i</code> was mispronounced as <code>u</code>.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
210
  </p>
 
 
211
  <p>
212
- The annotated phoneme sequence indicates that the phoneme <code>ta</code> was omitted, but the model failed to detect it.
 
213
  </p>
214
 
215
- <h2>Training Dataset: Description</h2>
216
  <p>
217
- All data are hosted on Hugging Face. Two main splits are provided:
 
218
  </p>
 
 
219
  <ul>
220
- <li>
221
- <strong>Training set:</strong> 79 hours of Modern Standard Arabic (MSA) Quran recitations (5,167 audio files)
222
- </li>
223
- <li>
224
- <strong>Evaluation set:</strong> QuranMB.v2 dataset with phoneme-level mispronunciation annotations, which includes:
225
- <ul>
226
- <li>QuranMB-Train: 9 hours (1,218 files) for development</li>
227
- <li>QuranMB-Test: 8 hours (1,018 files) for evaluation</li>
228
- </ul>
229
- </li>
230
  </ul>
 
231
 
232
- <h2>Submission Guidelines</h2>
 
 
 
 
 
 
 
 
 
 
 
 
 
233
  <p>
234
- Participants should submit their predicted phoneme sequences on the test set by the deadline (July 27, 2025). Submissions will be automatically evaluated using the official scoring scripts.
235
  </p>
236
 
237
- <h2>Evaluation Metrics</h2>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
238
  <p>
239
- Systems will be evaluated based on phoneme error rates (PER) computed over the test set, measuring accuracy in detecting and localizing mispronunciations.
 
 
 
 
 
240
  </p>
241
 
242
- <h2>Contact and Support</h2>
 
 
 
 
 
 
 
243
  <p>
244
- For inquiries and support, reach out to the task coordinators at
245
- <a href="mailto:support@iqraeval.org">support@iqraeval.org</a>.
246
  </p>
247
 
248
- </div>
 
 
 
 
 
 
 
 
249
  </body>
250
  </html>
251
 
 
1
  <!doctype html>
2
  <html lang="en">
3
  <head>
4
+ <meta charset="utf-8" />
5
+ <meta name="viewport" content="width=device-width" />
6
+ <title>Iqra’Eval Shared Task</title>
7
+ <style>
8
+ :root {
9
+ --navy-blue: #001f4d;
10
+ --coral: #ff6f61;
11
+ --light-gray: #f5f7fa;
12
+ --text-dark: #222;
13
+ }
14
+ body {
15
+ font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
16
+ background-color: var(--light-gray);
17
+ color: var(--text-dark);
18
+ margin: 20px;
19
+ line-height: 1.6;
20
+ }
21
+ h1, h2, h3 {
22
+ color: var(--navy-blue);
23
+ font-weight: 700;
24
+ margin-top: 1.2em;
25
+ }
26
+ h1 {
27
+ text-align: center;
28
+ font-size: 2.8rem;
29
+ margin-bottom: 0.3em;
30
+ }
31
+ h2 {
32
+ border-bottom: 3px solid var(--coral);
33
+ padding-bottom: 0.3em;
34
+ }
35
+ h3 {
36
+ color: var(--coral);
37
+ margin-top: 1em;
38
+ }
39
+ p, ul, pre {
40
+ max-width: 900px;
41
+ margin: 0.8em auto;
42
+ }
43
+ ul { padding-left: 1.2em; }
44
+ ul li { margin: 0.4em 0; }
45
+ code {
46
+ background-color: #eef4f8;
47
+ color: var(--navy-blue);
48
+ padding: 2px 6px;
49
+ border-radius: 4px;
50
+ font-family: Consolas, monospace;
51
+ font-size: 0.9em;
52
+ }
53
+ pre {
54
+ background-color: #eef4f8;
55
+ padding: 1em;
56
+ border-radius: 8px;
57
+ overflow-x: auto;
58
+ font-size: 0.95em;
59
+ }
60
+ a {
61
+ color: var(--coral);
62
+ text-decoration: none;
63
+ }
64
+ a:hover { text-decoration: underline; }
65
+ .card {
66
+ max-width: 960px;
67
+ background: white;
68
+ margin: 0 auto 40px;
69
+ padding: 2em 2.5em;
70
+ box-shadow: 0 4px 14px rgba(0,0,0,0.1);
71
+ border-radius: 12px;
72
+ }
73
+ img {
74
+ display: block;
75
+ margin: 20px auto;
76
+ max-width: 100%;
77
+ height: auto;
78
+ border-radius: 8px;
79
+ box-shadow: 0 4px 8px rgba(0,31,77,0.15);
80
+ }
81
+ .centered p {
82
+ text-align: center;
83
+ font-style: italic;
84
+ color: var(--navy-blue);
85
+ margin-top: 0.4em;
86
+ }
87
+ .highlight {
88
+ color: var(--coral);
89
+ font-weight: 700;
90
+ }
91
+ /* nested lists in paragraphs */
92
+ p > ul { margin-top: 0.3em; }
93
+ </style>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94
  </head>
95
  <body>
96
+ <div class="card">
97
  <h1>Iqra’Eval Shared Task</h1>
98
 
99
+ <img src="IqraEval.png" alt="IqraEval Logo" />
 
 
100
 
 
101
  <h2>Overview</h2>
102
  <p>
103
+ <strong>Iqra'Eval</strong> is a shared task aimed at advancing <strong>automatic assessment of Qur’anic recitation pronunciation</strong> by leveraging computational methods to detect and diagnose pronunciation errors. The focus on Qur’anic recitation provides a standardized and well-defined context for evaluating Modern Standard Arabic (MSA) pronunciation.
104
  </p>
105
  <p>
106
+ Participants will develop systems capable of detecting mispronunciations (e.g., substitution, deletion, or insertion of phonemes).
107
  </p>
108
 
 
109
  <h2>Timeline</h2>
110
  <ul>
111
+ <li><strong>June 1, 2025</strong>: Official announcement</li>
112
+ <li><strong>June 10, 2025</strong>: Release of training data, dev set, phonetizer, baselines</li>
113
+ <li><strong>July 24, 2025</strong>: Registration deadline & test data release</li>
114
+ <li><strong>July 27, 2025</strong>: Test set submission closes</li>
115
+ <li><strong>July 30, 2025</strong>: Final results released</li>
116
+ <li><strong>August 15, 2025</strong>: System description papers due</li>
117
+ <li><strong>August 22, 2025</strong>: Notification of acceptance</li>
118
+ <li><strong>September 5, 2025</strong>: Camera-ready versions due</li>
119
  </ul>
120
 
 
121
  <h2>Task Description: Quranic Mispronunciation Detection System</h2>
122
  <p>
123
+ Design a model to detect and provide detailed feedback on mispronunciations in Quranic recitations. Users read vowelized verses; the model predicts the spoken phoneme sequence and flags deviations. Evaluation is on the <strong>QuranMB.v2</strong> dataset with human‐annotated errors.
 
 
124
  </p>
 
125
  <div class="centered">
126
  <img src="task.png" alt="System Overview" />
127
  <p>Figure: Overview of the Mispronunciation Detection Workflow</p>
 
129
 
130
  <h3>1. Read the Verse</h3>
131
  <p>
132
+ System shows a <strong>Reference Verse</strong> plus its <strong>Reference Phoneme Sequence</strong>.
133
  </p>
134
  <p><strong>Example:</strong></p>
135
  <ul>
 
142
 
143
  <h3>2. Save Recording</h3>
144
  <p>
145
+ User recites; system captures and stores the audio waveform.
146
  </p>
147
 
148
  <h3>3. Mispronunciation Detection</h3>
149
  <p>
150
+ Model predicts the phoneme sequence—deviations from reference indicate mispronunciations.
 
151
  </p>
152
  <p><strong>Example of Mispronunciation:</strong></p>
153
  <ul>
154
+ <li><strong>Reference:</strong> <code>&lt; i n n a SS A f aa w a l m a r w a t a m i n $ a E a a &lt; i r i l l a h i</code></li>
155
+ <li><strong>Predicted:</strong> <code>&lt; i n n a SS A f aa w a l m a r w a t a m i n s a E a a &lt; i r u l l a h i</code></li>
156
  <li>
157
+ <strong>Annotated:</strong>
158
  <code>&lt; i n n a SS A f aa w a l m a r w <span class="highlight">s</span> a E a a &lt; i <span class="highlight">r u</span> l l a h i</code>
159
  </li>
160
  </ul>
161
  <p>
162
+ Here, <code>$</code>→<code>s</code> and <code>i</code>→<code>u</code>; omission of <code>ta</code> went undetected.
163
+ </p>
164
+
165
+ <h2>Training Dataset: Description</h2>
166
+ <p>
167
+ Hosted on Hugging Face:
168
+ </p>
169
+ <ul>
170
+ <li>
171
+ <strong>Training:</strong> 79 h of MSA speech (Qur’anic recitations)
172
+ <code>load_dataset("IqraEval/Iqra_train", split="train")</code>
173
+ </li>
174
+ <li>
175
+ <strong>Development:</strong> 3.4 h for tuning
176
+ <code>load_dataset("IqraEval/Iqra_train", split="dev")</code>
177
+ </li>
178
+ </ul>
179
+ <p>
180
+ <strong>Columns:</strong>
181
+ <ul>
182
+ <li><code>audio</code>: waveform</li>
183
+ <li><code>sentence</code>: original text</li>
184
+ <li><code>index</code>: verse ID or –1</li>
185
+ <li><code>tashkeel_sentence</code>: fully diacritized</li>
186
+ <li><code>phoneme</code>: Nawar Halabi phonetizer output</li>
187
+ </ul>
188
  </p>
189
+
190
+ <h2>Training Dataset: TTS Data (Optional)</h2>
191
  <p>
192
+ Auxiliary high-quality TTS corpus for augmentation:
193
+ <code>load_dataset("IqraEval/Iqra_TTS")</code>
194
  </p>
195
 
196
+ <h2>Test Dataset: QuranMB_v2</h2>
197
  <p>
198
+ 98 verses × 18 speakers 2 h, with deliberate errors and human annotations.
199
+ <code>load_dataset("IqraEval/Iqra_QuranMB_v2")</code>
200
  </p>
201
+
202
+ <h2>Resources & Links</h2>
203
  <ul>
204
+ <li><a href="https://github.com/Iqra-Eval/MSA_phonetiser" target="_blank">Phonetiser script (GitHub)</a></li>
205
+ <li><a href="https://huggingface.co/datasets/IqraEval/Iqra_train" target="_blank">Training & Dev Data (Hugging Face)</a></li>
206
+ <li><a href="https://huggingface.co/datasets/IqraEval/Iqra_TTS" target="_blank">TTS Data (Hugging Face)</a></li>
207
+ <li><a href="https://github.com/Iqra-Eval/interspeech_IqraEval" target="_blank">Baseline Systems & Scripts (GitHub)</a></li>
 
 
 
 
 
 
208
  </ul>
209
+ <p><em>See the main <a href="https://github.com/Iqra-Eval" target="_blank">GitHub</a> for full instructions.</em></p>
210
 
211
+ <h2>Submission Details (Draft)</h2>
212
+ <p>
213
+ Submit a UTF-8 CSV named <code>teamID_submission.csv</code> with two columns:
214
+ </p>
215
+ <ul>
216
+ <li><strong>ID:</strong> audio filename (no extension)</li>
217
+ <li><strong>Labels:</strong> predicted phoneme sequence (space-separated)</li>
218
+ </ul>
219
+ <pre>
220
+ ID,Labels
221
+ 0000_0001, i n n a m a a y a …
222
+ 0000_0002, m a a n a n s a …
223
+
224
+ </pre>
225
  <p>
226
+ <strong>Note:</strong> no extra spaces, single CSV, no archives.
227
  </p>
228
 
229
+ <h2>Evaluation Criteria</h2>
230
+ <p>
231
+ Leaderboard based on phoneme-level F1-score.
232
+ We use a hierarchical evaluation (detection + diagnostic) per <a href="https://arxiv.org/pdf/2310.13974" target="_blank">MDD Overview</a>.
233
+ </p>
234
+ <ul>
235
+ <li><em>What is said</em>: annotated phoneme sequence</li>
236
+ <li><em>What is predicted</em>: model output</li>
237
+ <li><em>What should have been said</em>: reference sequence</li>
238
+ </ul>
239
+ <p>From these we compute:</p>
240
+ <ul>
241
+ <li><strong>TA:</strong> correct phonemes accepted</li>
242
+ <li><strong>TR:</strong> mispronunciations correctly detected</li>
243
+ <li><strong>FR:</strong> correct phonemes flagged as errors</li>
244
+ <li><strong>FA:</strong> mispronunciations missed</li>
245
+ </ul>
246
+ <p>Rates:</p>
247
+ <ul>
248
+ <li><strong>FRR:</strong> FR/(TA+FR)</li>
249
+ <li><strong>FAR:</strong> FA/(FA+TR)</li>
250
+ <li><strong>DER:</strong> DE/(CD+DE)</li>
251
+ </ul>
252
  <p>
253
+ Plus standard Precision, Recall, F1 for detection:
254
+ <ul>
255
+ <li>Precision = TR/(TR+FR)</li>
256
+ <li>Recall = TR/(TR+FA)</li>
257
+ <li>F1 = 2·P·R/(P+R)</li>
258
+ </ul>
259
  </p>
260
 
261
+ <h2>Potential Research Directions</h2>
262
+ <ol>
263
+ <li><strong>Advanced Models:</strong> fine-tune Wav2Vec2.0, HuBERT on Arabic/Quranic speech.</li>
264
+ <li><strong>Data Augmentation:</strong> use SpeechBlender to synthesize mispronunciations.</li>
265
+ <li><strong>Pattern Analysis:</strong> statistical study of QuranMB errors to guide training.</li>
266
+ </ol>
267
+
268
+ <h2>Future Updates</h2>
269
  <p>
270
+ Detailed scoring weights, submission templates, and clarifications will be posted on the shared task site when test data is released (June 5, 2025).
 
271
  </p>
272
 
273
+ <h2>References</h2>
274
+ <ul>
275
+ <li>El Kheir Y. et al., “SpeechBlender: Speech Augmentation Framework for Mispronunciation Data Generation,” arXiv:2211.00923, 2022.</li>
276
+ <li>Al Harere A. & Al Jallad K., “Mispronunciation Detection of Basic Quranic Recitation Rules using Deep Learning,” arXiv:2305.06429, 2023.</li>
277
+ <li>Aly S. A. et al., “ASMDD: Arabic Speech Mispronunciation Detection Dataset,” arXiv:2111.01136, 2021.</li>
278
+ <li>Moustafa A. & Aly S. A., “Efficient Voice Identification Using Wav2Vec2.0 and HuBERT…,” arXiv:2111.06331, 2021.</li>
279
+ <li>El Kheir Y. et al., “Automatic Pronunciation Assessment – A Review,” arXiv:2310.13974, 2021.</li>
280
+ </ul>
281
+ </div>
282
  </body>
283
  </html>
284