Update index.html
Browse files- index.html +101 -106
index.html
CHANGED
@@ -42,114 +42,109 @@
|
|
42 |
|
43 |
<!-- Task Description -->
|
44 |
|
45 |
-
<
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
<div class="centered">
|
54 |
-
<img src="task.png" alt="System Overview" style="max-width:100%; height:auto;" />
|
55 |
-
<p><em>Figure: Overview of the Mispronunciation Detection Workflow</em></p>
|
56 |
-
</div>
|
57 |
-
|
58 |
-
<h2>1. Read the Verse</h2>
|
59 |
-
<p>
|
60 |
-
The user is shown a <strong>Reference Verse</strong> in Arabic script along with its corresponding <strong>Reference Phoneme Sequence</strong>.
|
61 |
-
</p>
|
62 |
-
<p><strong>Example:</strong></p>
|
63 |
-
<ul>
|
64 |
-
<li><strong>Arabic:</strong> إِنَّ الصَّفَا وَالْمَرْوَةَ مِنْ شَعَائِرِ اللَّهِ</li>
|
65 |
-
<li>
|
66 |
-
<strong>Phoneme:</strong>
|
67 |
-
<code>< i n n a SS A f aa w a l m a r w a t a m i n $ a E a a < i r i l l a h i</code>
|
68 |
-
</li>
|
69 |
-
</ul>
|
70 |
-
|
71 |
-
<h2>2. Save Recording</h2>
|
72 |
-
<p>
|
73 |
-
The user recites the verse aloud; the system captures and stores the audio waveform for subsequent analysis.
|
74 |
-
</p>
|
75 |
-
|
76 |
-
<h2>3. Pronunciation Assessment</h2>
|
77 |
-
<p>
|
78 |
-
The stored audio is fed into a <strong>Mispronunciation Detection Model</strong>.
|
79 |
-
This model aligns the user’s pronunciation with the <em>Reference Phoneme Sequence</em> to detect any mismatches.
|
80 |
-
</p>
|
81 |
-
<p><strong>Example of Mispronunciation:</strong></p>
|
82 |
-
<ul>
|
83 |
-
<li><strong>Reference Sequence:</strong> <code>... m i n $ a E a a < i r i l l a h i</code></li>
|
84 |
-
<li><strong>User’s Pronunciation:</strong> <code>... m i n s a E a a < i r u l l a h i</code></li>
|
85 |
-
<li>
|
86 |
-
<strong>Annotated Feedback:</strong>
|
87 |
-
<code>... m i n <span class="highlight">s</span> a E a a < i <span class="highlight">r u</span> l l a h i</code>
|
88 |
-
</li>
|
89 |
-
</ul>
|
90 |
-
<p>
|
91 |
-
In this case, the phoneme <code>$</code> was mispronounced as <code>s</code>, and <code>i</code> was mispronounced as <code>u</code>.
|
92 |
-
</p>
|
93 |
-
|
94 |
-
<h2>4. Feedback</h2>
|
95 |
-
<p>
|
96 |
-
The system generates an <strong>Annotated Verse</strong> and phoneme‐level feedback.
|
97 |
-
Mispronunciations are highlighted (for example, in red) to help the user identify and correct their errors.
|
98 |
-
</p>
|
99 |
-
|
100 |
-
<h2>Research Directions</h2>
|
101 |
-
<ol>
|
102 |
-
<li>
|
103 |
-
<strong>Advanced Mispronunciation Detection Models</strong><br>
|
104 |
-
Apply state-of-the-art self-supervised models (e.g.,
|
105 |
-
<a href="https://arxiv.org/abs/2111.06331" target="_blank">Wav2Vec2.0</a>, HuBERT)
|
106 |
-
pre-trained on Arabic speech. These models can be fine-tuned on Quranic recitations to improve phoneme-level accuracy.
|
107 |
-
</li>
|
108 |
-
<li>
|
109 |
-
<strong>Data Augmentation Strategies</strong><br>
|
110 |
-
Create synthetic mispronunciation examples using pipelines like
|
111 |
-
<a href="https://arxiv.org/abs/2211.00923" target="_blank">SpeechBlender</a>.
|
112 |
-
Augmenting limited Arabic/Quranic speech data helps mitigate data scarcity and improves model robustness.
|
113 |
-
</li>
|
114 |
-
<li>
|
115 |
-
<strong>Analysis of Common Mispronunciation Patterns</strong><br>
|
116 |
-
Perform statistical analysis on the QuranMB dataset to identify prevalent errors (e.g., substituting similar phonemes, swapping vowels).
|
117 |
-
These insights can drive targeted training and tailored feedback rules.
|
118 |
-
</li>
|
119 |
-
<li>
|
120 |
-
<strong>Integration with Tajwīd Rules</strong><br>
|
121 |
-
Incorporate classical Tajwīd rules (e.g., madd, qalqalah, ikhfa͑) into the detection pipeline so that feedback not only flags errors but also explains the correct recitation rule.
|
122 |
-
</li>
|
123 |
-
<li>
|
124 |
-
<strong>Adaptive Learning Paths</strong><br>
|
125 |
-
Design a system that adapts the sequence of verses based on each user’s error patterns—focusing on the next set of verses that emphasize their weak phonemes.
|
126 |
-
</li>
|
127 |
-
</ol>
|
128 |
-
|
129 |
-
<h2>References</h2>
|
130 |
-
<ul>
|
131 |
-
<li>
|
132 |
-
El Kheir, Y., et al.
|
133 |
-
"<a href="https://arxiv.org/abs/2211.00923" target="_blank">SpeechBlender: Speech Augmentation Framework for Mispronunciation Data Generation</a>,"
|
134 |
-
<em>arXiv preprint arXiv:2211.00923</em>, 2022.
|
135 |
-
</li>
|
136 |
-
<li>
|
137 |
-
Al Harere, A., & Al Jallad, K.
|
138 |
-
"<a href="https://arxiv.org/abs/2305.06429" target="_blank">Mispronunciation Detection of Basic Quranic Recitation Rules using Deep Learning</a>,"
|
139 |
-
<em>arXiv preprint arXiv:2305.06429</em>, 2023.
|
140 |
-
</li>
|
141 |
-
<li>
|
142 |
-
Aly, S. A., et al.
|
143 |
-
"<a href="https://arxiv.org/abs/2111.01136" target="_blank">ASMDD: Arabic Speech Mispronunciation Detection Dataset</a>,"
|
144 |
-
<em>arXiv preprint arXiv:2111.01136</em>, 2021.
|
145 |
-
</li>
|
146 |
-
<li>
|
147 |
-
Moustafa, A., & Aly, S. A.
|
148 |
-
"<a href="https://arxiv.org/abs/2111.06331" target="_blank">Towards an Efficient Voice Identification Using Wav2Vec2.0 and HuBERT Based on the Quran Reciters Dataset</a>,"
|
149 |
-
<em>arXiv preprint arXiv:2111.06331</em>, 2021.
|
150 |
-
</li>
|
151 |
-
</ul>
|
152 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
|
154 |
<h2>🔊 Task Description</h2>
|
155 |
<p>
|
|
|
42 |
|
43 |
<!-- Task Description -->
|
44 |
|
45 |
+
<h2>Task Description: Quranic Mispronunciation Detection System</h2>
|
46 |
|
47 |
+
<p>
|
48 |
+
The aim is to design a model to detect and provide detailed feedback on mispronunciations in Quranic recitations.
|
49 |
+
Users read aloud vowelized Quranic verses; This model predicts the phoneme sequence uttered by the speaker, which may contain mispronunciations.
|
50 |
+
Models are evaluated on the <strong>QuranMB.v2</strong> dataset, which contains human‐annotated mispronunciations.
|
51 |
+
</p>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
+
<div class="centered">
|
54 |
+
<img src="task.png" alt="System Overview" style="max-width:100%; height:auto;" />
|
55 |
+
<p><em>Figure: Overview of the Mispronunciation Detection Workflow</em></p>
|
56 |
+
</div>
|
57 |
+
|
58 |
+
<h3>1. Read the Verse</h3>
|
59 |
+
<p>
|
60 |
+
The user is shown a <strong>Reference Verse</strong> in Arabic script along with its corresponding <strong>Reference Phoneme Sequence</strong>.
|
61 |
+
</p>
|
62 |
+
<p><strong>Example:</strong></p>
|
63 |
+
<ul>
|
64 |
+
<li><strong>Arabic:</strong> إِنَّ الصَّفَا وَالْمَرْوَةَ مِنْ شَعَائِرِ اللَّهِ</li>
|
65 |
+
<li>
|
66 |
+
<strong>Phoneme:</strong>
|
67 |
+
<code>< i n n a SS A f aa w a l m a r w a t a m i n $ a E a a < i r i l l a h i</code>
|
68 |
+
</li>
|
69 |
+
</ul>
|
70 |
+
|
71 |
+
<h3>2. Save Recording</h3>
|
72 |
+
<p>
|
73 |
+
The user recites the verse aloud; the system captures and stores the audio waveform for subsequent analysis.
|
74 |
+
</p>
|
75 |
+
|
76 |
+
<h3>3. Mispronunciation Detection</h3>
|
77 |
+
<p>
|
78 |
+
The stored audio is fed into a <strong>Mispronunciation Detection Model</strong>.
|
79 |
+
This model predicts the phoneme sequence uttered by the speaker, which may contain mispronunciations.
|
80 |
+
</p>
|
81 |
+
<p><strong>Example of Mispronunciation:</strong></p>
|
82 |
+
<ul>
|
83 |
+
<li><strong>Reference Sequence:</strong> <code>... m i n $ a E a a < i r i l l a h i</code></li>
|
84 |
+
<li><strong>User’s Pronunciation:</strong> <code>... m i n s a E a a < i r u l l a h i</code></li>
|
85 |
+
<li>
|
86 |
+
<strong>Annotated Feedback:</strong>
|
87 |
+
<code>... m i n <span class="highlight">s</span> a E a a < i <span class="highlight">r u</span> l l a h i</code>
|
88 |
+
</li>
|
89 |
+
</ul>
|
90 |
+
<p>
|
91 |
+
In this case, the phoneme <code>$</code> was mispronounced as <code>s</code>, and <code>i</code> was mispronounced as <code>u</code>.
|
92 |
+
</p>
|
93 |
+
|
94 |
+
|
95 |
+
<h2>Research Directions</h2>
|
96 |
+
<ol>
|
97 |
+
<li>
|
98 |
+
<strong>Advanced Mispronunciation Detection Models</strong><br>
|
99 |
+
Apply state-of-the-art self-supervised models (e.g.,
|
100 |
+
<a href="https://arxiv.org/abs/2111.06331" target="_blank">Wav2Vec2.0</a>, HuBERT)
|
101 |
+
pre-trained on Arabic speech. These models can be fine-tuned on Quranic recitations to improve phoneme-level accuracy.
|
102 |
+
</li>
|
103 |
+
<li>
|
104 |
+
<strong>Data Augmentation Strategies</strong><br>
|
105 |
+
Create synthetic mispronunciation examples using pipelines like
|
106 |
+
<a href="https://arxiv.org/abs/2211.00923" target="_blank">SpeechBlender</a>.
|
107 |
+
Augmenting limited Arabic/Quranic speech data helps mitigate data scarcity and improves model robustness.
|
108 |
+
</li>
|
109 |
+
<li>
|
110 |
+
<strong>Analysis of Common Mispronunciation Patterns</strong><br>
|
111 |
+
Perform statistical analysis on the QuranMB dataset to identify prevalent errors (e.g., substituting similar phonemes, swapping vowels).
|
112 |
+
These insights can drive targeted training and tailored feedback rules.
|
113 |
+
</li>
|
114 |
+
<li>
|
115 |
+
<strong>Integration with Tajwīd Rules</strong><br>
|
116 |
+
Incorporate classical Tajwīd rules (e.g., madd, qalqalah, ikhfa͑) into the detection pipeline so that feedback not only flags errors but also explains the correct recitation rule.
|
117 |
+
</li>
|
118 |
+
<li>
|
119 |
+
<strong>Adaptive Learning Paths</strong><br>
|
120 |
+
Design a system that adapts the sequence of verses based on each user’s error patterns—focusing on the next set of verses that emphasize their weak phonemes.
|
121 |
+
</li>
|
122 |
+
</ol>
|
123 |
+
|
124 |
+
<h2>References</h2>
|
125 |
+
<ul>
|
126 |
+
<li>
|
127 |
+
El Kheir, Y., et al.
|
128 |
+
"<a href="https://arxiv.org/abs/2211.00923" target="_blank">SpeechBlender: Speech Augmentation Framework for Mispronunciation Data Generation</a>,"
|
129 |
+
<em>arXiv preprint arXiv:2211.00923</em>, 2022.
|
130 |
+
</li>
|
131 |
+
<li>
|
132 |
+
Al Harere, A., & Al Jallad, K.
|
133 |
+
"<a href="https://arxiv.org/abs/2305.06429" target="_blank">Mispronunciation Detection of Basic Quranic Recitation Rules using Deep Learning</a>,"
|
134 |
+
<em>arXiv preprint arXiv:2305.06429</em>, 2023.
|
135 |
+
</li>
|
136 |
+
<li>
|
137 |
+
Aly, S. A., et al.
|
138 |
+
"<a href="https://arxiv.org/abs/2111.01136" target="_blank">ASMDD: Arabic Speech Mispronunciation Detection Dataset</a>,"
|
139 |
+
<em>arXiv preprint arXiv:2111.01136</em>, 2021.
|
140 |
+
</li>
|
141 |
+
<li>
|
142 |
+
Moustafa, A., & Aly, S. A.
|
143 |
+
"<a href="https://arxiv.org/abs/2111.06331" target="_blank">Towards an Efficient Voice Identification Using Wav2Vec2.0 and HuBERT Based on the Quran Reciters Dataset</a>,"
|
144 |
+
<em>arXiv preprint arXiv:2111.06331</em>, 2021.
|
145 |
+
</li>
|
146 |
+
</ul>
|
147 |
+
|
148 |
|
149 |
<h2>🔊 Task Description</h2>
|
150 |
<p>
|