01Yassine commited on
Commit
13c405b
·
verified ·
1 Parent(s): 02de5b7

Update index.html

Browse files
Files changed (1) hide show
  1. index.html +101 -106
index.html CHANGED
@@ -42,114 +42,109 @@
42
 
43
  <!-- Task Description -->
44
 
45
- <h1>IqraEval: Quranic Mispronunciation Detection System</h1>
46
 
47
- <p>
48
- <strong>IqraEval</strong> is an AI-powered framework designed to detect and provide detailed feedback on mispronunciations in Quranic recitations.
49
- Users read aloud vowelized Quranic verses; the system analyzes the recorded audio against reference phoneme sequences and highlights any deviations.
50
- Models are evaluated on the <strong>QuranMB</strong> dataset, which contains human‐annotated mispronunciations.
51
- </p>
52
-
53
- <div class="centered">
54
- <img src="task.png" alt="System Overview" style="max-width:100%; height:auto;" />
55
- <p><em>Figure: Overview of the Mispronunciation Detection Workflow</em></p>
56
- </div>
57
-
58
- <h2>1. Read the Verse</h2>
59
- <p>
60
- The user is shown a <strong>Reference Verse</strong> in Arabic script along with its corresponding <strong>Reference Phoneme Sequence</strong>.
61
- </p>
62
- <p><strong>Example:</strong></p>
63
- <ul>
64
- <li><strong>Arabic:</strong> إِنَّ الصَّفَا وَالْمَرْوَةَ مِنْ شَعَائِرِ اللَّهِ</li>
65
- <li>
66
- <strong>Phoneme:</strong>
67
- <code>&lt; i n n a SS A f aa w a l m a r w a t a m i n $ a E a a &lt; i r i l l a h i</code>
68
- </li>
69
- </ul>
70
-
71
- <h2>2. Save Recording</h2>
72
- <p>
73
- The user recites the verse aloud; the system captures and stores the audio waveform for subsequent analysis.
74
- </p>
75
-
76
- <h2>3. Pronunciation Assessment</h2>
77
- <p>
78
- The stored audio is fed into a <strong>Mispronunciation Detection Model</strong>.
79
- This model aligns the user’s pronunciation with the <em>Reference Phoneme Sequence</em> to detect any mismatches.
80
- </p>
81
- <p><strong>Example of Mispronunciation:</strong></p>
82
- <ul>
83
- <li><strong>Reference Sequence:</strong> <code>... m i n $ a E a a &lt; i r i l l a h i</code></li>
84
- <li><strong>User’s Pronunciation:</strong> <code>... m i n s a E a a &lt; i r u l l a h i</code></li>
85
- <li>
86
- <strong>Annotated Feedback:</strong>
87
- <code>... m i n <span class="highlight">s</span> a E a a &lt; i <span class="highlight">r u</span> l l a h i</code>
88
- </li>
89
- </ul>
90
- <p>
91
- In this case, the phoneme <code>$</code> was mispronounced as <code>s</code>, and <code>i</code> was mispronounced as <code>u</code>.
92
- </p>
93
-
94
- <h2>4. Feedback</h2>
95
- <p>
96
- The system generates an <strong>Annotated Verse</strong> and phoneme‐level feedback.
97
- Mispronunciations are highlighted (for example, in red) to help the user identify and correct their errors.
98
- </p>
99
-
100
- <h2>Research Directions</h2>
101
- <ol>
102
- <li>
103
- <strong>Advanced Mispronunciation Detection Models</strong><br>
104
- Apply state-of-the-art self-supervised models (e.g.,
105
- <a href="https://arxiv.org/abs/2111.06331" target="_blank">Wav2Vec2.0</a>, HuBERT)
106
- pre-trained on Arabic speech. These models can be fine-tuned on Quranic recitations to improve phoneme-level accuracy.
107
- </li>
108
- <li>
109
- <strong>Data Augmentation Strategies</strong><br>
110
- Create synthetic mispronunciation examples using pipelines like
111
- <a href="https://arxiv.org/abs/2211.00923" target="_blank">SpeechBlender</a>.
112
- Augmenting limited Arabic/Quranic speech data helps mitigate data scarcity and improves model robustness.
113
- </li>
114
- <li>
115
- <strong>Analysis of Common Mispronunciation Patterns</strong><br>
116
- Perform statistical analysis on the QuranMB dataset to identify prevalent errors (e.g., substituting similar phonemes, swapping vowels).
117
- These insights can drive targeted training and tailored feedback rules.
118
- </li>
119
- <li>
120
- <strong>Integration with Tajwīd Rules</strong><br>
121
- Incorporate classical Tajwīd rules (e.g., madd, qalqalah, ikhfa͑) into the detection pipeline so that feedback not only flags errors but also explains the correct recitation rule.
122
- </li>
123
- <li>
124
- <strong>Adaptive Learning Paths</strong><br>
125
- Design a system that adapts the sequence of verses based on each user’s error patterns—focusing on the next set of verses that emphasize their weak phonemes.
126
- </li>
127
- </ol>
128
-
129
- <h2>References</h2>
130
- <ul>
131
- <li>
132
- El Kheir, Y., et al.
133
- "<a href="https://arxiv.org/abs/2211.00923" target="_blank">SpeechBlender: Speech Augmentation Framework for Mispronunciation Data Generation</a>,"
134
- <em>arXiv preprint arXiv:2211.00923</em>, 2022.
135
- </li>
136
- <li>
137
- Al Harere, A., & Al Jallad, K.
138
- "<a href="https://arxiv.org/abs/2305.06429" target="_blank">Mispronunciation Detection of Basic Quranic Recitation Rules using Deep Learning</a>,"
139
- <em>arXiv preprint arXiv:2305.06429</em>, 2023.
140
- </li>
141
- <li>
142
- Aly, S. A., et al.
143
- "<a href="https://arxiv.org/abs/2111.01136" target="_blank">ASMDD: Arabic Speech Mispronunciation Detection Dataset</a>,"
144
- <em>arXiv preprint arXiv:2111.01136</em>, 2021.
145
- </li>
146
- <li>
147
- Moustafa, A., & Aly, S. A.
148
- "<a href="https://arxiv.org/abs/2111.06331" target="_blank">Towards an Efficient Voice Identification Using Wav2Vec2.0 and HuBERT Based on the Quran Reciters Dataset</a>,"
149
- <em>arXiv preprint arXiv:2111.06331</em>, 2021.
150
- </li>
151
- </ul>
152
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
153
 
154
  <h2>🔊 Task Description</h2>
155
  <p>
 
42
 
43
  <!-- Task Description -->
44
 
45
+ <h2>Task Description: Quranic Mispronunciation Detection System</h2>
46
 
47
+ <p>
48
+ The aim is to design a model to detect and provide detailed feedback on mispronunciations in Quranic recitations.
49
+ Users read aloud vowelized Quranic verses; This model predicts the phoneme sequence uttered by the speaker, which may contain mispronunciations.
50
+ Models are evaluated on the <strong>QuranMB.v2</strong> dataset, which contains human‐annotated mispronunciations.
51
+ </p>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52
 
53
+ <div class="centered">
54
+ <img src="task.png" alt="System Overview" style="max-width:100%; height:auto;" />
55
+ <p><em>Figure: Overview of the Mispronunciation Detection Workflow</em></p>
56
+ </div>
57
+
58
+ <h3>1. Read the Verse</h3>
59
+ <p>
60
+ The user is shown a <strong>Reference Verse</strong> in Arabic script along with its corresponding <strong>Reference Phoneme Sequence</strong>.
61
+ </p>
62
+ <p><strong>Example:</strong></p>
63
+ <ul>
64
+ <li><strong>Arabic:</strong> إِنَّ الصَّفَا وَالْمَرْوَةَ مِنْ شَعَائِرِ اللَّهِ</li>
65
+ <li>
66
+ <strong>Phoneme:</strong>
67
+ <code>&lt; i n n a SS A f aa w a l m a r w a t a m i n $ a E a a &lt; i r i l l a h i</code>
68
+ </li>
69
+ </ul>
70
+
71
+ <h3>2. Save Recording</h3>
72
+ <p>
73
+ The user recites the verse aloud; the system captures and stores the audio waveform for subsequent analysis.
74
+ </p>
75
+
76
+ <h3>3. Mispronunciation Detection</h3>
77
+ <p>
78
+ The stored audio is fed into a <strong>Mispronunciation Detection Model</strong>.
79
+ This model predicts the phoneme sequence uttered by the speaker, which may contain mispronunciations.
80
+ </p>
81
+ <p><strong>Example of Mispronunciation:</strong></p>
82
+ <ul>
83
+ <li><strong>Reference Sequence:</strong> <code>... m i n $ a E a a &lt; i r i l l a h i</code></li>
84
+ <li><strong>User’s Pronunciation:</strong> <code>... m i n s a E a a &lt; i r u l l a h i</code></li>
85
+ <li>
86
+ <strong>Annotated Feedback:</strong>
87
+ <code>... m i n <span class="highlight">s</span> a E a a &lt; i <span class="highlight">r u</span> l l a h i</code>
88
+ </li>
89
+ </ul>
90
+ <p>
91
+ In this case, the phoneme <code>$</code> was mispronounced as <code>s</code>, and <code>i</code> was mispronounced as <code>u</code>.
92
+ </p>
93
+
94
+
95
+ <h2>Research Directions</h2>
96
+ <ol>
97
+ <li>
98
+ <strong>Advanced Mispronunciation Detection Models</strong><br>
99
+ Apply state-of-the-art self-supervised models (e.g.,
100
+ <a href="https://arxiv.org/abs/2111.06331" target="_blank">Wav2Vec2.0</a>, HuBERT)
101
+ pre-trained on Arabic speech. These models can be fine-tuned on Quranic recitations to improve phoneme-level accuracy.
102
+ </li>
103
+ <li>
104
+ <strong>Data Augmentation Strategies</strong><br>
105
+ Create synthetic mispronunciation examples using pipelines like
106
+ <a href="https://arxiv.org/abs/2211.00923" target="_blank">SpeechBlender</a>.
107
+ Augmenting limited Arabic/Quranic speech data helps mitigate data scarcity and improves model robustness.
108
+ </li>
109
+ <li>
110
+ <strong>Analysis of Common Mispronunciation Patterns</strong><br>
111
+ Perform statistical analysis on the QuranMB dataset to identify prevalent errors (e.g., substituting similar phonemes, swapping vowels).
112
+ These insights can drive targeted training and tailored feedback rules.
113
+ </li>
114
+ <li>
115
+ <strong>Integration with Tajwīd Rules</strong><br>
116
+ Incorporate classical Tajwīd rules (e.g., madd, qalqalah, ikhfa͑) into the detection pipeline so that feedback not only flags errors but also explains the correct recitation rule.
117
+ </li>
118
+ <li>
119
+ <strong>Adaptive Learning Paths</strong><br>
120
+ Design a system that adapts the sequence of verses based on each user’s error patterns—focusing on the next set of verses that emphasize their weak phonemes.
121
+ </li>
122
+ </ol>
123
+
124
+ <h2>References</h2>
125
+ <ul>
126
+ <li>
127
+ El Kheir, Y., et al.
128
+ "<a href="https://arxiv.org/abs/2211.00923" target="_blank">SpeechBlender: Speech Augmentation Framework for Mispronunciation Data Generation</a>,"
129
+ <em>arXiv preprint arXiv:2211.00923</em>, 2022.
130
+ </li>
131
+ <li>
132
+ Al Harere, A., & Al Jallad, K.
133
+ "<a href="https://arxiv.org/abs/2305.06429" target="_blank">Mispronunciation Detection of Basic Quranic Recitation Rules using Deep Learning</a>,"
134
+ <em>arXiv preprint arXiv:2305.06429</em>, 2023.
135
+ </li>
136
+ <li>
137
+ Aly, S. A., et al.
138
+ "<a href="https://arxiv.org/abs/2111.01136" target="_blank">ASMDD: Arabic Speech Mispronunciation Detection Dataset</a>,"
139
+ <em>arXiv preprint arXiv:2111.01136</em>, 2021.
140
+ </li>
141
+ <li>
142
+ Moustafa, A., & Aly, S. A.
143
+ "<a href="https://arxiv.org/abs/2111.06331" target="_blank">Towards an Efficient Voice Identification Using Wav2Vec2.0 and HuBERT Based on the Quran Reciters Dataset</a>,"
144
+ <em>arXiv preprint arXiv:2111.06331</em>, 2021.
145
+ </li>
146
+ </ul>
147
+
148
 
149
  <h2>🔊 Task Description</h2>
150
  <p>