|
<!doctype html> |
|
<html lang="en"> |
|
<head> |
|
<meta charset="utf-8" /> |
|
<meta name="viewport" content="width=device-width" /> |
|
<title>Iqra’Eval Shared Task</title> |
|
<style> |
|
:root { |
|
--navy-blue: #001f4d; |
|
--coral: #ff6f61; |
|
--light-gray: #f5f7fa; |
|
--text-dark: #222; |
|
} |
|
body { |
|
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; |
|
background-color: var(--light-gray); |
|
color: var(--text-dark); |
|
margin: 20px; |
|
line-height: 1.6; |
|
} |
|
h1, h2, h3 { |
|
color: var(--navy-blue); |
|
font-weight: 700; |
|
margin-top: 1.2em; |
|
} |
|
h1 { |
|
text-align: center; |
|
font-size: 2.8rem; |
|
margin-bottom: 0.3em; |
|
} |
|
h2 { |
|
border-bottom: 3px solid var(--coral); |
|
padding-bottom: 0.3em; |
|
} |
|
h3 { |
|
color: var(--coral); |
|
margin-top: 1em; |
|
} |
|
p, ul, pre { |
|
max-width: 900px; |
|
margin: 0.8em auto; |
|
} |
|
ul { padding-left: 1.2em; } |
|
ul li { margin: 0.4em 0; } |
|
code { |
|
background-color: #eef4f8; |
|
color: var(--navy-blue); |
|
padding: 2px 6px; |
|
border-radius: 4px; |
|
font-family: Consolas, monospace; |
|
font-size: 0.9em; |
|
} |
|
pre { |
|
background-color: #eef4f8; |
|
padding: 1em; |
|
border-radius: 8px; |
|
overflow-x: auto; |
|
font-size: 0.95em; |
|
} |
|
a { |
|
color: var(--coral); |
|
text-decoration: none; |
|
} |
|
a:hover { text-decoration: underline; } |
|
.card { |
|
max-width: 960px; |
|
background: white; |
|
margin: 0 auto 40px; |
|
padding: 2em 2.5em; |
|
box-shadow: 0 4px 14px rgba(0,0,0,0.1); |
|
border-radius: 12px; |
|
} |
|
img { |
|
display: block; |
|
margin: 20px auto; |
|
max-width: 100%; |
|
height: auto; |
|
border-radius: 8px; |
|
box-shadow: 0 4px 8px rgba(0,31,77,0.15); |
|
} |
|
.centered p { |
|
text-align: center; |
|
font-style: italic; |
|
color: var(--navy-blue); |
|
margin-top: 0.4em; |
|
} |
|
.highlight { |
|
color: var(--coral); |
|
font-weight: 700; |
|
} |
|
|
|
p > ul { margin-top: 0.3em; } |
|
</style> |
|
</head> |
|
<body> |
|
<div class="card"> |
|
<h1>Iqra’Eval Shared Task</h1> |
|
|
|
<img src="IqraEval.png" alt="IqraEval Logo" /> |
|
|
|
<h2>Overview</h2> |
|
<p> |
|
<strong>Iqra'Eval</strong> is a shared task aimed at advancing <strong>automatic assessment of Qur’anic recitation pronunciation</strong> by leveraging computational methods to detect and diagnose pronunciation errors. The focus on Qur’anic recitation provides a standardized and well-defined context for evaluating Modern Standard Arabic (MSA) pronunciation. |
|
</p> |
|
<p> |
|
Participants will develop systems capable of detecting mispronunciations (e.g., substitution, deletion, or insertion of phonemes). |
|
</p> |
|
|
|
<h2>Timeline</h2> |
|
<ul> |
|
<li><strong>June 1, 2025</strong>: Official announcement</li> |
|
<li><strong>June 10, 2025</strong>: Release of training data, dev set, phonetizer, baselines</li> |
|
<li><strong>June 20, 2025</strong>: Opening Leaderboard</li> |
|
<li><strong>July 20, 2025</strong>: Registration deadline</li> |
|
<li><strong>July 24, 2025</strong>: QuranMB test data release</li> |
|
<li><strong>July 29, 2025</strong>: Test set submission closes</li> |
|
<li><strong>July 30, 2025</strong>: Final results released</li> |
|
<li><strong>August 15, 2025</strong>: System description papers due</li> |
|
<li><strong>August 22, 2025</strong>: Notification of acceptance</li> |
|
<li><strong>September 5, 2025</strong>: Camera-ready versions due</li> |
|
</ul> |
|
|
|
<h2>Task Description: Quranic Mispronunciation Detection System</h2> |
|
<p> |
|
Design a model to detect and provide detailed feedback on mispronunciations in Quranic recitations. Users read vowelized verses; the model predicts the spoken phoneme sequence and flags deviations. Evaluation is on the <strong>QuranMB.v2</strong> dataset with human‐annotated errors. |
|
</p> |
|
<div class="centered"> |
|
<img src="task.png" alt="System Overview" /> |
|
<p>Figure: Overview of the Mispronunciation Detection Workflow</p> |
|
</div> |
|
|
|
<h3>1. Read the Verse</h3> |
|
<p> |
|
System shows a <strong>Reference Verse</strong> plus its <strong>Reference Phoneme Sequence</strong>. |
|
</p> |
|
<p><strong>Example:</strong></p> |
|
<ul> |
|
<li><strong>Arabic:</strong> إِنَّ الصَّفَا وَالْمَرْوَةَ مِنْ شَعَائِرِ اللَّهِ</li> |
|
<li> |
|
<strong>Phoneme:</strong> |
|
<code>< i n n a SS A f aa w a l m a r w a t a m i n $ a E a a < i r i l l a h i</code> |
|
</li> |
|
</ul> |
|
|
|
<h3>2. Save Recording</h3> |
|
<p> |
|
User recites; system captures and stores the audio waveform. |
|
</p> |
|
|
|
<h3>3. Mispronunciation Detection</h3> |
|
<p> |
|
Model predicts the phoneme sequence—deviations from reference indicate mispronunciations. |
|
</p> |
|
<p><strong>Example of Mispronunciation:</strong></p> |
|
<ul> |
|
<li><strong>Reference:</strong> <code>< i n n a SS A f aa w a l m a r w a t a m i n $ a E a a < i r i l l a h i</code></li> |
|
<li><strong>Predicted:</strong> <code>< i n n a SS A f aa w a l m a r w a t a m i n s a E a a < i r u l l a h i</code></li> |
|
<li> |
|
<strong>Annotated:</strong> |
|
<code>< i n n a SS A f aa w a l m a r w <span class="highlight">s</span> a E a a < i <span class="highlight">r u</span> l l a h i</code> |
|
</li> |
|
</ul> |
|
<p> |
|
Here, <code>$</code>→<code>s</code> and <code>i</code>→<code>u</code>; omission of <code>ta</code> went undetected. |
|
</p> |
|
|
|
<h2>Training Dataset: Description</h2> |
|
<p> |
|
Hosted on Hugging Face: |
|
</p> |
|
<ul> |
|
<li> |
|
<strong>Training:</strong> 79 hours of MSA speech augmented with Qur’anic recitations |
|
<code>load_dataset("IqraEval/Iqra_train", split="train")</code> |
|
</li> |
|
<li> |
|
<strong>Development:</strong> 3.4 hours as dev set |
|
<code>load_dataset("IqraEval/Iqra_train", split="dev")</code> |
|
</li> |
|
</ul> |
|
<p> |
|
<strong>Columns:</strong> |
|
<ul> |
|
<li><code>audio</code>: waveform</li> |
|
<li><code>sentence</code>: original text (verse)</li> |
|
<li><code>index</code>: verse ID</li> |
|
<li><code>tashkeel_sentence</code>: fully diacritized text (verse)</li> |
|
<li><code>phoneme</code>: phoneme sequence (using phonetizer)</li> |
|
</ul> |
|
</p> |
|
|
|
<h2>Training Dataset: TTS Data (Optional)</h2> |
|
<p> |
|
Auxiliary high-quality TTS corpus for augmentation: |
|
<code>load_dataset("IqraEval/Iqra_TTS")</code> |
|
</p> |
|
|
|
<h2>Test Dataset: QuranMB.v2</h2> |
|
<p> |
|
98 verses × 18 speakers ≈ 2 h, with deliberate errors and human annotations. |
|
<code>load_dataset("IqraEval/Iqra_QuranMB_v2")</code> |
|
</p> |
|
|
|
<h2>Resources & Links</h2> |
|
<ul> |
|
<li><a href="https://github.com/Iqra-Eval/MSA_phonetiser" target="_blank">Phonetiser script (GitHub)</a></li> |
|
<li><a href="https://huggingface.co/datasets/IqraEval/Iqra_train" target="_blank">Training & Dev Data (Hugging Face)</a></li> |
|
<li><a href="https://huggingface.co/datasets/IqraEval/Iqra_TTS" target="_blank">TTS Data (Hugging Face)</a></li> |
|
<li><a href="https://github.com/Iqra-Eval/interspeech_IqraEval" target="_blank">Baseline Systems & Scripts (GitHub)</a></li> |
|
</ul> |
|
|
|
<h2>Submission Details (Draft)</h2> |
|
<p> |
|
Submit a UTF-8 CSV named <code>teamID_submission.csv</code> with two columns: |
|
</p> |
|
<ul> |
|
<li><strong>ID:</strong> audio filename (no extension)</li> |
|
<li><strong>Labels:</strong> predicted phoneme sequence (space-separated)</li> |
|
</ul> |
|
<pre> |
|
ID,Labels |
|
0000_0001, i n n a m a a y a … |
|
0000_0002, m a a n a n s a … |
|
… |
|
</pre> |
|
<p> |
|
<strong>Note:</strong> no extra spaces, single CSV, no archives. |
|
</p> |
|
|
|
<h2>Evaluation Criteria</h2> |
|
<p> |
|
IqraEval Leaderboard is based on phoneme-level <strong>F1-score</strong>. |
|
We use a hierarchical evaluation (detection + diagnostic) per <a href="https://arxiv.org/pdf/2310.13974" target="_blank">MDD Overview</a>. |
|
</p> |
|
<ul> |
|
<li><em><strong>What is said</strong></em>: annotated phoneme sequence</li> |
|
<li><em><strong>What is predicted</strong></em>: model output</li> |
|
<li><em><strong>What should have been said</strong></em>: reference sequence</li> |
|
</ul> |
|
<p>From these we compute:</p> |
|
<ul> |
|
<li><strong>TA:</strong> correct phonemes accepted</li> |
|
<li><strong>TR:</strong> mispronunciations correctly detected</li> |
|
<li><strong>FR:</strong> correct phonemes flagged as errors</li> |
|
<li><strong>FA:</strong> mispronunciations missed</li> |
|
</ul> |
|
<p>Rates:</p> |
|
<ul> |
|
<li><strong>FRR:</strong> FR/(TA+FR)</li> |
|
<li><strong>FAR:</strong> FA/(FA+TR)</li> |
|
<li><strong>DER:</strong> DE/(CD+DE)</li> |
|
</ul> |
|
<p> |
|
Plus standard Precision, Recall, F1 for detection: |
|
<ul> |
|
<li>Precision = TR/(TR+FR)</li> |
|
<li>Recall = TR/(TR+FA)</li> |
|
<li>F1 = 2·P·R/(P+R)</li> |
|
</ul> |
|
</p> |
|
|
|
<h2>Suggested Research Directions</h2> |
|
<ol> |
|
<li> |
|
<strong>Advanced Mispronunciation Detection Models</strong><br> |
|
Apply state-of-the-art self-supervised models (e.g., Wav2Vec2.0, HuBERT), using variants that are pre-trained/fine-tuned on Arabic speech. These models can then be fine-tuned on Quranic recitations to improve phoneme-level accuracy. |
|
</li> |
|
<li> |
|
<strong>Data Augmentation Strategies</strong><br> |
|
Create synthetic mispronunciation examples using pipelines like |
|
<a href="https://arxiv.org/abs/2211.00923" target="_blank">SpeechBlender</a>. |
|
Augmenting limited Arabic/Quranic speech data helps mitigate data scarcity and improves model robustness. |
|
</li> |
|
<li> |
|
<strong>Analysis of Common Mispronunciation Patterns</strong><br> |
|
Perform statistical analysis on the QuranMB dataset to identify prevalent errors (e.g., substituting similar phonemes, swapping vowels). |
|
These insights can drive targeted training and tailored feedback rules. |
|
</li> |
|
</ol> |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<h2>Registration</h2> |
|
<p> |
|
Teams and individual participants must register to gain access to the test set. Please complete the registration form using the link below: |
|
</p> |
|
<p> |
|
<a href="https://docs.google.com/forms/d/e/1FAIpQLSf8qVKV1C9JVY7gUloQRLX8iMBUaZNFtYHBcqG6obJU0JauGw/viewform" target="_blank">Registration Form</a> |
|
</p> |
|
<p> |
|
Registration opens on June 10, 2025. |
|
</p> |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<h2>Future Updates</h2> |
|
<p> |
|
Further details on the open-set leaderboard submission will be posted on the shared task website (June 20, 2025). Stay tuned! |
|
</p> |
|
|
|
|
|
<h2>Contact and Support</h2> |
|
<p> |
|
For inquiries and support, reach out to the task coordinators at |
|
<a href="mailto:iqraeval@googlegroups.com">iqraeval@googlegroups.com</a>. |
|
</p> |
|
|
|
<h2>References</h2> |
|
<ul> |
|
<li>El Kheir Y. et al., “SpeechBlender: Speech Augmentation Framework for Mispronunciation Data Generation,” arXiv:2211.00923, 2022.</li> |
|
<li>Al Harere A. & Al Jallad K., “Mispronunciation Detection of Basic Quranic Recitation Rules using Deep Learning,” arXiv:2305.06429, 2023.</li> |
|
<li>Aly S. A. et al., “ASMDD: Arabic Speech Mispronunciation Detection Dataset,” arXiv:2111.01136, 2021.</li> |
|
<li>Moustafa A. & Aly S. A., “Efficient Voice Identification Using Wav2Vec2.0 and HuBERT…,” arXiv:2111.06331, 2021.</li> |
|
<li>El Kheir Y. et al., “Automatic Pronunciation Assessment – A Review,” arXiv:2310.13974, 2021.</li> |
|
</ul> |
|
</div> |
|
</body> |
|
</html> |
|
|
|
|