File size: 10,138 Bytes
e487cc6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
import spacy
import requests
from time import sleep
from tqdm import tqdm
from fastapi import HTTPException
from pydantic import BaseModel
from concurrent.futures import ThreadPoolExecutor
from datetime import datetime
from fastapi import APIRouter, Request
from fastapi.templating import Jinja2Templates
from fastapi.responses import HTMLResponse
import json
# Load spaCy model
nlp = spacy.load("en_core_sci_sm")
templates = Jinja2Templates(directory="templates")
# Constants
OPENALEX_API_URL = "https://api.openalex.org/works"
PER_PAGE = 100
REQUEST_DELAY = 0.5
MAX_RESULTS = 1000
router = APIRouter()
# Pydantic Models
class CitationAnalysisRequest(BaseModel):
userId: str
topic: str
year: int
# 1. Keyword Extraction
def extract_keywords(text):
doc = nlp(text.lower())
noun_chunks = [chunk.text for chunk in doc.noun_chunks]
individual_tokens = [token.text for token in doc if token.pos_ in ["NOUN", "VERB"] and not token.is_stop]
keywords = set(noun_chunks + individual_tokens)
cleaned_keywords = set()
for keyword in keywords:
if not any(keyword in chunk for chunk in noun_chunks if keyword != chunk):
cleaned_keywords.add(keyword)
return sorted(list(cleaned_keywords))
# 2. Citation Batch Fetching
def fetch_citing_papers_for_batch(paper_ids):
citing_map = {pid: [] for pid in paper_ids}
batch_size = 100
def fetch_batch(batch_ids):
filter_query = "|".join(batch_ids)
cursor = "*"
local_citing_map = {pid: [] for pid in batch_ids}
while True:
params = {
"filter": f"cites:{filter_query}",
"per_page": 200,
"cursor": cursor
}
try:
response = requests.get(OPENALEX_API_URL, params=params)
if response.status_code != 200:
print(f"β Error while fetching citing papers: {response.status_code}")
break
data = response.json()
for citing_work in data.get("results", []):
refs = citing_work.get("referenced_works", [])
for ref_id in refs:
if ref_id in local_citing_map:
local_citing_map[ref_id].append(citing_work["id"])
next_cursor = data.get("meta", {}).get("next_cursor")
if not next_cursor:
break
cursor = next_cursor
sleep(REQUEST_DELAY)
except Exception as e:
print(f"β Exception: {e}")
break
return local_citing_map
print("\nπ Fetching citing papers for all topic papers...")
with ThreadPoolExecutor(max_workers=10) as executor:
futures = []
for i in range(0, len(paper_ids), batch_size):
batch_ids = paper_ids[i:i + batch_size]
futures.append(executor.submit(fetch_batch, batch_ids))
for future in tqdm(futures, desc="ParallelGroup"):
local_citing_map = future.result()
citing_map.update(local_citing_map)
return citing_map
# 3. Fetch topic papers
def fetch_papers_with_citations(keywords, year, concept_threshold=0.8, max_results=MAX_RESULTS):
query = " + ".join(keywords)
print(f"\nπ Final OpenAlex Query: {query}")
params = {
"filter": f"title_and_abstract.search:{query},publication_year:{year}",
"per_page": PER_PAGE,
"cursor": "*"
}
all_papers = []
paper_id_map = {}
print("\nπ Fetching topic papers from OpenAlex...")
while len(all_papers) < max_results:
response = requests.get(OPENALEX_API_URL, params=params)
if response.status_code != 200:
print(f"β Error: {response.status_code}")
break
data = response.json()
results = data.get("results", [])
for paper in tqdm(results, desc="π Collecting papers"):
paper_id = paper.get("id", "")
concepts = [
c["display_name"]
for c in paper.get("concepts", [])
if c.get("score", 0) >= concept_threshold
]
paper_data = {
"id": paper_id,
"title": paper.get("title", "No title"),
"cited_by_count": paper.get("cited_by_count", 0),
"publication_date": paper.get("publication_date", ""),
"referenced_works": paper.get("referenced_works", []),
"concepts": concepts,
"cited_by_ids": [] # to be filled later
}
paper_id_map[paper_id] = paper_data
all_papers.append(paper_data)
next_cursor = data.get("meta", {}).get("next_cursor")
if not next_cursor:
break
params["cursor"] = next_cursor
sleep(REQUEST_DELAY)
all_ids = list(paper_id_map.keys())
citing_map = fetch_citing_papers_for_batch(all_ids)
for pid, citing_ids in citing_map.items():
paper_id_map[pid]["cited_by_ids"] = citing_ids
cleaned_papers = []
for paper in all_papers:
if paper.get("referenced_works") or paper.get("cited_by_ids"):
cleaned_papers.append(paper)
print(f"\nπ§Ή Removed {len(all_papers) - len(cleaned_papers)} papers without references or citations.")
return cleaned_papers[:max_results]
# 4. Save to MongoDB
async def save_to_mongodb(userId, topic, year, papers, request: Request):
metadata = {
"userId": userId,
"topic": topic,
"year": year,
"scraped_on": datetime.utcnow().isoformat() + "Z",
"papers": papers
}
collection = request.app.state.collection1
result = await collection.insert_one(metadata)
print(f"\nβ
Saved metadata to MongoDB with ID: {result.inserted_id}")
return str(result.inserted_id)
# 5. FastAPI Endpoints
@router.post("/save")
async def save_data(data_request: CitationAnalysisRequest, saveRequest: Request):
userId = data_request.userId
topic = data_request.topic
year = data_request.year
keywords = extract_keywords(topic)
print("\nπ Extracted Keywords:")
print(keywords)
if not keywords:
raise HTTPException(status_code=400, detail="No keywords extracted. Please provide a valid topic.")
papers = fetch_papers_with_citations(keywords, year)
if not papers:
raise HTTPException(status_code=404, detail="No papers retrieved for the given topic and year.")
document_id = await save_to_mongodb(userId, topic, year, papers, saveRequest)
return {"message": "Data saved successfully!", "document_id": document_id}
# NEW ENDPOINT: Get citation data from MongoDB
# @router.post("/citation-data",response_class=HTMLResponse)
# async def get_citation_data(data_request:CitationAnalysisRequest , saveRequest: Request):
# # Build the query based on provided parameters
# query = {"userId": data_request.userId}
# if data_request.topic:
# query["topic"] = data_request.topic
# if data_request.year:
# query["year"] = data_request.year
# collection = saveRequest.app.state.collection1
# result = await collection.find_one(
# query,
# sort=[("scraped_on", 1)] # Sort by scraped_on in descending order to get the most recent
# )
# if not result:
# raise HTTPException(status_code=404, detail="No data found for the specified criteria")
# # Convert ObjectId to string for JSON serialization
# result["_id"] = str(result["_id"])
# data = result["papers"]
# data_json = json.dumps(data)
# print(" i am here")
# return templates.TemplateResponse("gra.html", {"request": saveRequest,"data":data_json})
@router.get("/citation-data", response_class=HTMLResponse)
async def get_citation_data(request: Request):
# Extract query parameters
user_id = request.query_params.get("userId")
topic = request.query_params.get("topic")
year = request.query_params.get("year")
if not user_id or not topic or not year:
raise HTTPException(status_code=400, detail="Missing required query parameters.")
# Build the query based on provided parameters
query = {"userId": user_id, "topic": topic, "year": int(year)}
collection = request.app.state.collection1
result = await collection.find_one(
query,
sort=[("scraped_on", -1)] # Sort by scraped_on in descending order to get the most recent
)
if not result:
raise HTTPException(status_code=404, detail="No data found for the specified criteria")
# Convert ObjectId to string for JSON serialization
result["_id"] = str(result["_id"])
data = result["papers"]
if not data:
raise HTTPException(status_code=404, detail="No papers found in the database.")
data_json = json.dumps(data)
return templates.TemplateResponse("gra.html", {"request": request, "data": data_json})
@router.post("/check-data-exists-citation/")
async def check_data_exists(data_request: CitationAnalysisRequest, saveRequest: Request):
# Build the query based on provided parameters
query = {
"userId": data_request.userId,
"topic": data_request.topic,
"year": data_request.year
}
# Access the MongoDB collection from the app state
collection = saveRequest.app.state.collection1
# Check if a document matching the query exists
document = await collection.find_one(query)
# Return the result
if document:
return {
"exists": True,
"message": "Data found for the given userId, topic, and year."
}
else:
return {
"exists": False,
"message": "No data found for the given userId, topic, and year."
}
|