File size: 38,130 Bytes
fa9cb80 4826925 fa9cb80 4826925 fa9cb80 4826925 fa9cb80 4826925 839c577 4826925 fa9cb80 4826925 fa9cb80 4826925 fa9cb80 4826925 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 |
from motor.motor_asyncio import AsyncIOMotorClient
import pandas as pd
import numpy as np
import re
import json
import umap
import plotly.io as pio
import hdbscan
from bertopic import BERTopic
from sklearn.feature_extraction.text import ENGLISH_STOP_WORDS
from skopt import gp_minimize
from sentence_transformers import SentenceTransformer
import torch
import random
import multiprocessing
from sklearn.feature_extraction.text import CountVectorizer
from bertopic.vectorizers import ClassTfidfTransformer
from bertopic.representation import KeyBERTInspired
import optuna
import pandas as pd
import dash
from dash import dcc, html, Input, Output, State
import plotly.graph_objects as go
import plotly.express as px
import numpy as np
import dash_bootstrap_components as dbc
from fastapi import HTTPException, APIRouter, Request
from pydantic import BaseModel
import threading
import time
import webbrowser
import asyncio
# Set seed for reproducibility
def set_seed(seed=42):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
if __name__ == "__main__":
set_seed(42)
multiprocessing.freeze_support()
global TitleName
TitleName = "Dashboard"
router = APIRouter()
class TrendAnalysisRequest(BaseModel):
userId: str
topic: str
year: str = None
page: int = 0
async def fetch_papers_with_pagination(request: Request, userId: str, topic: str, year: str = None, page: int = 0):
# Build the query filter
query_filter = {"userId": userId, "topic": topic}
if year:
query_filter["year"] = year
# Count total matching documents
count_pipeline = [
{"$match": query_filter},
{"$unwind": "$papers"},
{"$count": "total_papers"}
]
collection = request.app.state.collection
count_result = await collection.aggregate(count_pipeline).to_list(length=1)
total_papers = count_result[0]['total_papers'] if count_result else 0
print(f"Total papers matching criteria: {total_papers}")
# If no papers found, return empty result
if total_papers == 0:
return pd.DataFrame(), 0, 0, 0, 0
# Define pagination constants
papers_per_page = 200
min_papers_last_page = 50
# Calculate basic pagination
if total_papers <= papers_per_page:
# Simple case: all papers fit in one page
total_pages = 1
else:
# Multiple pages case
full_pages = total_papers // papers_per_page
remaining = total_papers % papers_per_page
if remaining >= min_papers_last_page:
# If remaining papers meet minimum threshold, create a separate page
total_pages = full_pages + 1
else:
# Otherwise, we'll have exactly 'full_pages' pages
# The remaining papers will be added to the last page
total_pages = full_pages
# Ensure page is within valid range
if page >= total_pages:
return pd.DataFrame(), 0, total_pages, 0, total_papers
# Calculate skip and limit based on page number
if total_pages == 1:
# Only one page - return all papers
skip = 0
limit = total_papers
elif page < total_pages - 1:
# Regular full page
skip = page * papers_per_page
limit = papers_per_page
else:
# Last page - might include remaining papers
remaining = total_papers % papers_per_page
if remaining >= min_papers_last_page or remaining == 0:
# Last page with either enough remaining papers or perfectly divided
skip = page * papers_per_page
limit = remaining if remaining > 0 else papers_per_page
else:
# Last page with remaining papers that don't meet minimum threshold
# We distribute by adding them to the last page
skip = (total_pages - 1) * papers_per_page
limit = papers_per_page + remaining
print(f"Pagination: Page {page + 1} of {total_pages}, Skip {skip}, Limit {limit}")
# MongoDB aggregation pipeline
pipeline = [
{"$match": query_filter},
{"$unwind": "$papers"},
{"$replaceRoot": {"newRoot": "$papers"}},
{"$project": {
"_id": 0,
"paperId": 1,
"url": 1,
"title": 1,
"abstract": 1,
"citationCount": 1,
"influentialCitationCount": 1,
"embedding": 1,
"publicationDate": 1,
"authors": 1
}},
{"$sort": {"publicationDate": 1}},
{"$skip": skip},
{"$limit": limit}
]
# Execute the aggregation pipeline
cursor = collection.aggregate(pipeline)
papers = await cursor.to_list(None)
papers_count = len(papers)
print(f"Papers Retrieved: {papers_count}")
# Convert to DataFrame
df = pd.DataFrame(papers)
df = df.sort_values(by="publicationDate")
print(df[["paperId", "publicationDate"]].head(10))
return df, page, total_pages, papers_count, total_papers
# Preprocessing function
def clean_text(text):
text = str(text).lower()
text = re.sub(r"[^a-zA-Z0-9\s]", "", text)
return ' '.join([word for word in text.split() if word not in ENGLISH_STOP_WORDS])
# Adaptive clustering and topic modeling
def perform_trend_analysis(df):
# Convert embeddings
def convert_embedding(embedding):
return np.array(embedding["vector"], dtype=np.float64) if isinstance(embedding,
dict) and "vector" in embedding else None
df["embedding"] = df["embedding"].apply(convert_embedding)
df = df.dropna(subset=["embedding"])
if df.empty:
return df, {}
df["clean_text"] = (df["abstract"].fillna("")).apply(clean_text)
def objective(trial):
umap_n_components = trial.suggest_int("umap_n_components", 1, 12)
umap_min_dist = trial.suggest_float("umap_min_dist", 0.1, 0.8)
umap_n_neighbors = trial.suggest_int("umap_n_neighbors", 2, 12)
hdbscan_min_cluster_size = trial.suggest_int("hdbscan_min_cluster_size", 2, 10)
hdbscan_min_samples = trial.suggest_int("hdbscan_min_samples", 1, 10)
hdbscan_cluster_selection_epsilon = trial.suggest_float("hdbscan_cluster_selection_epsilon", 0.2, 0.8)
hdbscan_cluster_selection_method = trial.suggest_categorical("hdbscan_cluster_selection_method",
["eom", "leaf"])
reducer_high_dim = umap.UMAP(
n_components=umap_n_components,
random_state=42,
min_dist=umap_min_dist,
n_neighbors=umap_n_neighbors,
metric="cosine"
)
reduced_embeddings_high_dim = reducer_high_dim.fit_transform(np.vstack(df["embedding"].values)).astype(
np.float64)
clusterer = hdbscan.HDBSCAN(
min_cluster_size=hdbscan_min_cluster_size,
min_samples=hdbscan_min_samples,
cluster_selection_epsilon=hdbscan_cluster_selection_epsilon,
cluster_selection_method=hdbscan_cluster_selection_method,
prediction_data=True,
core_dist_n_jobs=1
)
labels = clusterer.fit_predict(reduced_embeddings_high_dim)
if len(set(labels)) > 1:
dbcv_score = hdbscan.validity.validity_index(reduced_embeddings_high_dim, labels)
else:
dbcv_score = -np.inf
return dbcv_score
study = optuna.create_study(
direction="maximize",
sampler=optuna.samplers.TPESampler(seed=42))
study.optimize(objective, n_trials=100)
best_params = study.best_params
umap_model = umap.UMAP(
n_components=best_params["umap_n_components"],
random_state=42,
min_dist=best_params["umap_min_dist"],
n_neighbors=best_params["umap_n_neighbors"],
metric="cosine"
)
hdbscan_model = hdbscan.HDBSCAN(
min_cluster_size=best_params["hdbscan_min_cluster_size"],
min_samples=best_params["hdbscan_min_samples"],
cluster_selection_epsilon=best_params["hdbscan_cluster_selection_epsilon"],
cluster_selection_method=best_params["hdbscan_cluster_selection_method"],
prediction_data=True,
core_dist_n_jobs=1
)
vectorizer = CountVectorizer(
stop_words=list(ENGLISH_STOP_WORDS),
ngram_range=(2, 3)
)
representation_model = KeyBERTInspired()
embedding_model = SentenceTransformer("allenai/specter")
topic_model = BERTopic(
vectorizer_model=vectorizer,
umap_model=umap_model,
hdbscan_model=hdbscan_model,
embedding_model=embedding_model,
nr_topics='auto',
top_n_words=8,
representation_model=representation_model,
ctfidf_model=ClassTfidfTransformer(reduce_frequent_words=False, bm25_weighting=True)
)
topics, _ = topic_model.fit_transform(df["clean_text"], np.vstack(df["embedding"].values))
df["topic"] = topics
topic_labels = {t: " | ".join([word for word, _ in topic_model.get_topic(t)][:8]) for t in set(topics)}
reduced_embeddings_2d = umap.UMAP(n_components=2, random_state=42).fit_transform(
np.vstack(df["embedding"].values)).astype(np.float64)
df["x"] = reduced_embeddings_2d[:, 0]
df["y"] = reduced_embeddings_2d[:, 1]
df["topic_label"] = df["topic"].map(topic_labels)
return df, topic_labels
def build_dashboard(df, titleNm, topic_year,existing_app=None):
global dash_app
TitleName = titleNm + "_" + topic_year
color_palette = px.colors.qualitative.Vivid
unique_topics = sorted(df["topic"].unique())
color_map = {topic: color_palette[i % len(color_palette)] for i, topic in enumerate(unique_topics)}
# Map colors to topics
df["color"] = df["topic"].map(color_map)
# Calculate the number of papers in each cluster
cluster_sizes = df.groupby("topic").size().reset_index(name="paper_count")
df = df.merge(cluster_sizes, on="topic", how="left")
app = existing_app if existing_app else dash.Dash(__name__, external_stylesheets=[dbc.themes.DARKLY])
# Improved marker scaling with a better range
min_size = 50
max_size = 140
df["marker_size"] = ((df["paper_count"] - df["paper_count"].min()) /
(df["paper_count"].max() - df["paper_count"].min())) * (max_size - min_size) + min_size
# Add log-transformed citation and influence columns
df["log_citation"] = np.log1p(df["citationCount"])
df["log_influence"] = np.log1p(df["influentialCitationCount"])
# Bayesian shrinkage for citations and influence
global_median_citation = df["log_citation"].median()
global_median_influence = df["log_influence"].median()
C = 10 # Shrinkage constant
def bayesian_shrinkage(group, global_median, C):
return (group.sum() + C * global_median) / (len(group) + C)
adjusted_citations = df.groupby("topic")["log_citation"].apply(
lambda x: bayesian_shrinkage(x, global_median_citation, C))
adjusted_influence = df.groupby("topic")["log_influence"].apply(
lambda x: bayesian_shrinkage(x, global_median_influence, C))
# Merge adjusted metrics back into the dataframe
df = df.merge(adjusted_citations.rename("adjusted_citation"), on="topic")
df = df.merge(adjusted_influence.rename("adjusted_influence"), on="topic")
# Calculate global percentiles for thresholds
citation_25th = df["adjusted_citation"].quantile(0.25)
citation_75th = df["adjusted_citation"].quantile(0.75)
influence_25th = df["adjusted_influence"].quantile(0.25)
influence_75th = df["adjusted_influence"].quantile(0.75)
# Enhanced theme classification with more distinct emojis
def classify_theme(row):
if row["adjusted_citation"] >= citation_75th and row["adjusted_influence"] >= influence_75th:
return "π₯ Hot Topic"
elif row["adjusted_citation"] <= citation_25th and row["adjusted_influence"] >= influence_75th:
return "π Gap Opportunity"
elif row["adjusted_citation"] >= citation_75th and row["adjusted_influence"] <= influence_25th:
return "β οΈ Risky Theme"
else:
return "π Neutral"
df["theme"] = df.apply(classify_theme, axis=1)
# Create a more visually appealing figure
fig = go.Figure()
# Add subtle grid lines for reference
fig.update_xaxes(
showgrid=True,
gridwidth=0.1,
gridcolor='rgba(255, 255, 255, 0.05)',
zeroline=False
)
fig.update_yaxes(
showgrid=True,
gridwidth=0.1,
gridcolor='rgba(255, 255, 255, 0.05)',
zeroline=False
)
for topic in unique_topics:
topic_data = df[df["topic"] == topic]
# Get cluster center
center_x = topic_data["x"].mean()
center_y = topic_data["y"].mean()
# Get label
full_topic_formatted = topic_data['topic_label'].iloc[
0] if 'topic_label' in topic_data.columns else f"Cluster {topic}"
# Add a subtle glow effect with a larger outer circle
fig.add_trace(
go.Scatter(
x=[center_x],
y=[center_y],
mode="markers",
marker=dict(
color=color_map[topic],
size=topic_data["marker_size"].iloc[0] * 1.2, # Slightly larger for glow effect
opacity=0.3,
line=dict(width=0),
symbol="circle",
),
showlegend=False,
hoverinfo="none",
)
)
# Add main cluster circle with enhanced styling
fig.add_trace(
go.Scatter(
x=[center_x],
y=[center_y],
mode="markers+text",
marker=dict(
color=color_map[topic],
size=topic_data["marker_size"].iloc[0],
opacity=0.85,
line=dict(width=2, color="white"),
symbol="circle",
),
text=[f"{topic}"],
textposition="middle center",
textfont=dict(
family="Arial Black",
size=16,
color="white"
),
name=f"{topic}",
hovertemplate=(
"<b>Cluster ID:</b> %{text}<br>" +
"<b>Name:</b><br>" + full_topic_formatted + "<br>" +
"<b>Papers:</b> " + str(topic_data["paper_count"].iloc[0]) + "<br>" +
"<b>Popularity:</b> " + (
"πΌ High" if topic_data["adjusted_citation"].iloc[0] >= citation_75th else "π½ Low") +
f" (Adjusted Citation: {topic_data['adjusted_citation'].iloc[0]:.2f})<br>" +
"<b>Impactfulness:</b> " + (
"πΌ High" if topic_data["adjusted_influence"].iloc[0] >= influence_75th else "π½ Low") +
f" (Adjusted Influence: {topic_data['adjusted_influence'].iloc[0]:.2f})<br>" +
"<b>Theme:</b> " + topic_data["theme"].iloc[0] +
"<extra></extra>"
),
customdata=[[topic]],
)
)
# Add an aesthetic background with gradient
fig.update_layout(
shapes=[
# Improved gradient background
dict(
type="rect",
xref="paper",
yref="paper",
x0=0,
y0=0,
x1=1,
y1=1,
fillcolor="rgba(0, 0, 40, 0.95)",
line_width=0,
layer="below"
),
# Add a subtle radial gradient effect
dict(
type="circle",
xref="paper",
yref="paper",
x0=0.3,
y0=0.3,
x1=0.7,
y1=0.7,
fillcolor="rgba(50, 50, 120, 0.2)",
line_width=0,
layer="below"
)
],
template="plotly_dark",
title={
'text': f"<b>{TitleName.title()}</b>",
'y': 0.97,
'x': 0.5,
'xanchor': 'center',
'yanchor': 'top',
'font': dict(
family="Arial Black",
size=28,
color="white",
),
'xref': 'paper',
'yref': 'paper',
},
margin=dict(l=40, r=40, b=150, t=100),
hovermode="closest",
xaxis=dict(showticklabels=False),
yaxis=dict(showticklabels=False),
paper_bgcolor="rgba(0,0,0,0)",
plot_bgcolor="rgba(0,0,0,0)",
dragmode="pan",
legend=dict(
orientation="h",
yanchor="bottom",
y=-0.15,
xanchor="center",
x=0.5,
bgcolor="rgba(30,30,60,0.5)",
bordercolor="rgba(255,255,255,0.2)",
borderwidth=1
),
)
# Add subtle animation options
fig.update_layout(
updatemenus=[
dict(
type="buttons",
showactive=False,
buttons=[
dict(
label="Reset View",
method="relayout",
args=[{"xaxis.range": None, "yaxis.range": None}]
),
],
x=0.05,
y=0.05,
xanchor="left",
yanchor="bottom",
bgcolor="rgba(50,50,80,0.7)",
bordercolor="rgba(255,255,255,0.2)",
)
]
)
# Enhanced app layout with modern design elements
app.layout = dbc.Container(
fluid=True,
style={
"backgroundColor": "#111122",
"minHeight": "100vh",
"height": "100%",
"width": "100%",
"backgroundImage": "linear-gradient(135deg, #111122 0%, #15162c 100%)",
"padding": "20px"
},
children=[
dbc.Row([
dbc.Col(html.H1(
"Trend Analysis Dashboard ",
style={
"textAlign": "center",
"color": "white",
"marginBottom": "5px",
"fontFamily": "Arial Black",
"textShadow": "2px 2px 8px rgba(0,0,0,0.7)",
"letterSpacing": "2px",
"fontSize": "42px",
"background": "linear-gradient(135deg, #790091 0%, #565cd5 100%)",
"WebkitBackgroundClip": "text",
"WebkitTextFillColor": "transparent",
"paddingTop": "10px"
}
), width=10),
dbc.Col([
html.Button(
[
html.I(className="fas fa-download mr-2"),
" Save Dashboard"
],
id="download-button",
className="btn btn-outline-light",
style={
"marginTop": "10px",
"backgroundColor": "rgba(80, 80, 150, 0.4)",
"border": "1px solid rgba(100, 100, 200, 0.5)",
"borderRadius": "8px",
"padding": "8px 15px",
"boxShadow": "0px 4px 8px rgba(0, 0, 0, 0.3)",
"transition": "all 0.3s ease",
"fontSize": "14px",
"fontWeight": "bold"
}
),
# Add the download component
dcc.Download(id="download-dashboard")
], width=2),
dbc.Col(html.P(
"Interactive visualization of research topics and their relationships",
style={
"textAlign": "center",
"color": "#aaddff",
"marginBottom": "15px",
"fontStyle": "italic",
"fontSize": "16px",
"fontWeight": "300",
"letterSpacing": "0.5px",
"textShadow": "1px 1px 3px rgba(0,0,0,0.5)",
}
), width=12),
]),
dbc.Row([
dbc.Col(
dbc.Card(
dbc.CardBody([
dcc.Graph(
id="cluster-graph",
figure=fig,
config={
"scrollZoom": True,
"displayModeBar": True,
"modeBarButtonsToRemove": ["select2d", "lasso2d"]
}, style={"height": "80vh", "min-height": "800px"}
)
], style={"height": "80vh", "min-height": "800px"}),
style={
"backgroundColor": "rgba(20, 20, 40, 0.7)",
"borderRadius": "15px",
"boxShadow": "0px 10px 30px rgba(0, 0, 0, 0.5)",
"border": "1px solid rgba(100, 100, 200, 0.3)",
"height": "80vh",
"min-height": "800px" # Ensure minimum height
}
),
width=9
),
dbc.Col(
dbc.Card(
dbc.CardBody([
html.H3("Paper List", style={
"textAlign": "center",
"marginBottom": "15px",
"color": "#ffffff",
"fontFamily": "Arial",
"fontWeight": "bold",
"textShadow": "1px 1px 3px rgba(0,0,0,0.3)"
}),
html.Hr(style={"borderColor": "rgba(100, 100, 200, 0.3)", "margin": "10px 0 20px 0"}),
html.Div(
id="paper-list",
style={
"overflowY": "auto",
"height": "700px",
"padding": "5px"
},
children=html.Div([
html.Div(
html.I(className="fas fa-mouse-pointer", style={"marginRight": "10px"}),
style={"textAlign": "center", "fontSize": "24px", "marginBottom": "10px",
"color": "#7f8fa6"}
),
html.P("Click on a cluster to view its papers",
style={"textAlign": "center", "color": "#7f8fa6"})
])
),
],
style={
"backgroundColor": "rgba(30, 30, 50, 0.8)",
"borderRadius": "15px",
"padding": "20px",
"height": "100%"
}),
style={
"height": "800px",
"boxShadow": "0px 10px 30px rgba(0, 0, 0, 0.5)",
"border": "1px solid rgba(100, 100, 200, 0.3)",
"borderRadius": "15px"
}
),
width=3
),
], style={"marginTop": "20px"}),
# Add a footer with theme legend
dbc.Row([
dbc.Col(
dbc.Card(
dbc.CardBody([
html.H5("Theme Legend", style={"textAlign": "center", "marginBottom": "15px"}),
dbc.Row([
dbc.Col(html.Div([
html.Span("π₯", style={"fontSize": "20px", "marginRight": "10px"}),
"Hot Topic: High citations & high influence"
]), width=3),
dbc.Col(html.Div([
html.Span("π", style={"fontSize": "20px", "marginRight": "10px"}),
"Gap Opportunity: Low citations but high influence"
]), width=3),
dbc.Col(html.Div([
html.Span("β οΈ", style={"fontSize": "20px", "marginRight": "10px"}),
"Risky Theme: High citations but low influence"
]), width=3),
dbc.Col(html.Div([
html.Span("π", style={"fontSize": "20px", "marginRight": "10px"}),
"Neutral: Average citations and influence"
]), width=3),
])
]),
style={
"backgroundColor": "rgba(30, 30, 50, 0.8)",
"borderRadius": "15px",
"marginTop": "20px",
"boxShadow": "0px 5px 15px rgba(0, 0, 0, 0.3)",
"border": "1px solid rgba(100, 100, 200, 0.3)"
}
),
width=12
),
]),
dcc.Store(id="stored-figure", data=fig)
]
)
@app.callback(
Output("download-dashboard", "data"),
Input("download-button", "n_clicks"),
State("cluster-graph", "figure"),
prevent_initial_call=True
)
def download_dashboard(n_clicks, figure):
if n_clicks is None:
return None
# Save the figure as HTML with full plotly.js included
dashboard_html = pio.to_html(
figure,
full_html=True,
include_plotlyjs='cdn',
config={'responsive': True}
)
# Return the dashboard as an HTML file
return dict(
content=dashboard_html,
filename="research_dashboard.html",
type="text/html",
)
# Enhanced callback to update paper list with better styling
# Enhanced callback to update paper list with better styling
@app.callback(
Output("paper-list", "children"),
[Input("cluster-graph", "clickData")]
)
def update_paper_list(clickData):
if clickData is None:
return html.Div([
html.Div(
html.I(className="fas fa-mouse-pointer", style={"marginRight": "10px"}),
style={"textAlign": "center", "fontSize": "24px", "marginBottom": "10px", "color": "#7f8fa6"}
),
html.P("Click on a cluster to view its papers",
style={"textAlign": "center", "color": "#7f8fa6"})
])
# Extract the clicked cluster ID
try:
clicked_topic = clickData["points"][0]["customdata"][0]
# Get the color for this topic for styling consistency
topic_color = color_map[clicked_topic]
# Get the theme for this topic
topic_theme = df[df["topic"] == clicked_topic]["theme"].iloc[0]
except (KeyError, IndexError):
return html.Div("Error retrieving cluster data.", style={"textAlign": "center", "marginTop": "20px"})
# Filter papers in the clicked cluster - UPDATED to include titles AND urls
papers_in_cluster = df[df["topic"] == clicked_topic][["title", "url", "paperId"]]
if papers_in_cluster.empty:
return html.Div(f"No papers found for Cluster {clicked_topic}.",
style={"textAlign": "center", "marginTop": "20px"})
# Get topic label
topic_label = df[df["topic"] == clicked_topic]['topic_label'].iloc[
0] if 'topic_label' in df.columns else f"Cluster {clicked_topic}"
# Create an enhanced styled list of paper titles - UPDATED to make clickable
paper_list = []
for i, (_, paper) in enumerate(papers_in_cluster.iterrows()):
paper_url = paper["url"]
paper_title = paper["title"]
paper_list.append(
dbc.Card(
dbc.CardBody([
html.A(
html.H6(
f"{i + 1}. {paper_title}",
className="card-title",
style={
"fontSize": "14px",
"margin": "5px 0",
"fontWeight": "normal",
"lineHeight": "1.4",
"color": "#aaccff", # Blue color to indicate clickable link
"cursor": "pointer"
}
),
href=paper_url,
target="_blank", # Open in new tab
style={"textDecoration": "none"}
),
], style={"padding": "12px"}),
style={
"marginBottom": "10px",
"backgroundColor": "rgba(40, 45, 60, 0.8)",
"borderRadius": "8px",
"borderLeft": f"4px solid {topic_color}",
"boxShadow": "0px 3px 8px rgba(0, 0, 0, 0.2)",
"transition": "transform 0.2s",
":hover": {
"transform": "translateY(-2px)",
"boxShadow": "0px 5px 10px rgba(0, 0, 0, 0.3)"
}
},
className="paper-card"
)
)
return html.Div([
html.Div([
html.H4(
f"Cluster {clicked_topic}",
style={
"textAlign": "center",
"marginBottom": "5px",
"color": topic_color,
"fontWeight": "bold"
}
),
html.H5(
topic_label,
style={
"textAlign": "center",
"marginBottom": "5px",
"color": "#aaaacc",
"fontStyle": "italic",
"fontWeight": "normal"
}
),
html.Div(
topic_theme,
style={
"textAlign": "center",
"marginBottom": "15px",
"fontSize": "16px",
"fontWeight": "bold"
}
),
html.Hr(style={"borderColor": "rgba(100, 100, 200, 0.3)", "margin": "10px 0 20px 0"}),
html.H5(
f"Papers ({len(papers_in_cluster)})",
style={
"textAlign": "left",
"marginBottom": "15px",
"color": "#ffffff",
"fontWeight": "bold"
}
),
]),
html.Div(
paper_list,
style={"paddingRight": "10px"},
)
])
# Add custom CSS for hover effects
app.index_string = '''
<!DOCTYPE html>
<html>
<head>
{%metas%}
<title>Trend Analysis Clusters Dashboard</title>
{%favicon%}
{%css%}
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.15.4/css/all.min.css">
<style>
.paper-card:hover {
transform: translateY(-2px);
box-shadow: 0px 5px 10px rgba(0, 0, 0, 0.3);
background-color: rgba(50, 55, 70, 0.8) !important;
}
a h6:hover {
color: #ffffff !important;
text-decoration: underline;
}
/* Add subtle scroll bar styling */
::-webkit-scrollbar {
width: 8px;
}
::-webkit-scrollbar-track {
background: rgba(30, 30, 50, 0.3);
border-radius: 10px;
}
::-webkit-scrollbar-thumb {
background: rgba(100, 100, 200, 0.5);
border-radius: 10px;
}
::-webkit-scrollbar-thumb:hover {
background: rgba(120, 120, 220, 0.7);
}
</style>
</head>
<body>
{%app_entry%}
<footer>
{%config%}
{%scripts%}
{%renderer%}
</footer>
</body>
</html>
'''
return app
@router.post("/analyze-trends/")
async def analyze_trends(request: Request, data_request: TrendAnalysisRequest):
global dash_thread
TitleName = data_request.topic
Topic_year = data_request.year
# Fetch and process data
df, current_page, total_pages, papers_count, total_papers = await fetch_papers_with_pagination(
request, data_request.userId, data_request.topic, data_request.year, data_request.page
)
if df.empty and total_papers > 0:
raise HTTPException(
status_code=404,
detail=f"No papers found for page {data_request.page + 1}. Valid pages are 1 to {total_pages}."
)
elif df.empty:
raise HTTPException(
status_code=404,
detail=f"No papers found for userId '{data_request.userId}', topic '{data_request.topic}'" +
(f", and year '{data_request.year}'" if data_request.year else "")
)
# Perform the trend analysis
df, topic_labels = perform_trend_analysis(df)
if df.empty:
raise HTTPException(status_code=500, detail="Failed to process embeddings for trend analysis")
# Create cluster statistics
cluster_sizes = df.groupby("topic").size().to_dict()
# Build the dashboard
from app import get_or_create_dash_app
dash_app = get_or_create_dash_app()
# Build the dashboard using existing dash_app
updated_dash_app = build_dashboard(df, TitleName, Topic_year if Topic_year else "", existing_app=dash_app)
# Update the global dash_app in the main app
from app import dash_app as main_dash_app
main_dash_app.layout = updated_dash_app.layout
# Add dashboard_path to the response
dashboard_path = f"/dash"
# Get base URL from request and build complete URL
scheme = request.url.scheme # 'http' or 'https'
base_url = f"{scheme}://{request.headers['host']}"
dashboard_url = f"{base_url}/dash"
# Open browser in a new thread
def open_browser():
import webbrowser
webbrowser.open(dashboard_url,new=2)
# Start a thread to open the browser after a short delay
import threading
browser_thread = threading.Timer(1.5, open_browser)
browser_thread.daemon = True
browser_thread.start()
return {
"message": f"Trend analysis completed for papers (page {current_page + 1} of {total_pages})",
"current_page": current_page,
"total_pages": total_pages,
"papers_count": papers_count,
"total_papers": total_papers,
"cluster_sizes": cluster_sizes,
"cluster_titles": topic_labels,
"dashboard_url": dashboard_url,
"redirect": True # Add a flag to indicate redirect is needed
}
# Additional function to add at the bottom of TrendAnalysis.py to ensure browser opening works
# on direct dashboard access as well
@router.get("/dashboard/{userId}/{topic}/{year}")
@router.get("/dashboard/{userId}/{topic}")
async def get_dashboard(request: Request, userId: str, topic: str, year: str = None):
# Fetch and process data
from pydantic import BaseModel
import webbrowser
import threading
class TempRequest(BaseModel):
userId: str
topic: str
year: str = None
page: int = 0
data_request = TempRequest(userId=userId, topic=topic, year=year)
# Get base URL from request and build complete URL
base_url = str(request.base_url)
dashboard_url = f"{base_url}dash"
# Open browser in a new thread
def open_browser():
webbrowser.open(dashboard_url,new=2)
# Start a thread to open the browser after a short delay
browser_thread = threading.Timer(1.5, open_browser)
browser_thread.daemon = True
browser_thread.start()
# Reuse the analyze_trends logic to create the dashboard
result = await analyze_trends(request, data_request)
# Redirect to the dash app
from fastapi.responses import RedirectResponse
return RedirectResponse(url="/dash") |