import streamlit as st from transformers import pipeline from concurrent.futures import ProcessPoolExecutor prompt_template = ( "<|system|>\n" "You are a friendly chatbot who always gives helpful, detailed, and polite answers.\n" "<|user|>\n" "{input_text}\n" "<|assistant|>\n" ) def generate_base_response(input_text): base_pipe = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T", max_length=512) return base_pipe(input_text)[0]["generated_text"] def generate_irai_response(input_text): irai_pipe = pipeline("text-generation", model="InvestmentResearchAI/LLM-ADE_tiny-v0.001", max_length=512) return irai_pipe(prompt_template.format(input_text=input_text))[0]["generated_text"].split("<|assistant|>")[1].strip() def generate_response(input_text): with ProcessPoolExecutor() as executor: try: future_base = executor.submit(generate_base_response, input_text) future_irai = executor.submit(generate_irai_response, input_text) base_resp = future_base.result() irai_resp = future_irai.result() except Exception as e: st.error(f"An error occurred: {e}") return None, None return base_resp, irai_resp st.title("IRAI LLM-ADE Model vs Base Model") user_input = st.text_area("Enter a financial question:", "") if st.button("Generate"): if user_input: base_response, irai_response = generate_response(user_input) col1, col2 = st.columns(2) # Updated to use `st.columns` with col1: st.header("Base Model Response") st.text_area("", base_response, height=300) with col2: st.header("IRAI LLM-ADE Model Response") st.text_area("", irai_response, height=300) else: st.warning("Please enter some text to generate a response.")