Inmental commited on
Commit
ad84c6d
·
verified ·
1 Parent(s): 86183d8

Upload folder using huggingface_hub

Browse files
assets/in.jpg ADDED
assets/out.jpg ADDED
config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "prompt": "A beautiful landscape",
3
+ "style_name": "Fantasy art",
4
+ "seed": 42,
5
+ "val_r": 0.4
6
+ }
gradio_sketch2image.py CHANGED
@@ -379,4 +379,4 @@ with gr.Blocks(css="style.css") as demo:
379
  image.change(run, inputs=inputs, outputs=outputs, queue=False, api_name=False)
380
 
381
  if __name__ == "__main__":
382
- demo.queue().launch(debug=True)
 
379
  image.change(run, inputs=inputs, outputs=outputs, queue=False, api_name=False)
380
 
381
  if __name__ == "__main__":
382
+ demo.queue().launch(debug=True)
i2i_sk.py ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from flask import Flask, request, jsonify
2
+ from io import BytesIO
3
+ import base64
4
+ from PIL import Image
5
+ import torch
6
+ import torchvision.transforms.functional as F
7
+ from torch.cuda.amp import autocast
8
+ from flask_cors import CORS # Import CORS
9
+
10
+ from src.pix2pix_turbo import Pix2Pix_Turbo
11
+
12
+ app = Flask(__name__)
13
+ CORS(app) # Enable CORS for all routes
14
+
15
+ # Configuration Variables
16
+ model_type = "sketch_to_image_stochastic"
17
+ output_format = "PNG"
18
+ desired_size = (768, 768) # Increased resolution for better quality
19
+
20
+ # Load the model when the app starts
21
+ print("Loading model...")
22
+ model = Pix2Pix_Turbo(model_type)
23
+ print("Model loaded successfully.")
24
+
25
+ # Example styles list (update this with your actual styles)
26
+ style_list = [
27
+ {"name": "Cinematic", "prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy"},
28
+ {"name": "3D Model", "prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting"},
29
+ {"name": "Anime", "prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed"},
30
+ {"name": "Digital Art", "prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed"},
31
+ {"name": "Photographic", "prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed"},
32
+ {"name": "Pixel art", "prompt": "pixel-art {prompt} . low-res, blocky, pixel art style, 8-bit graphics"},
33
+ {"name": "Fantasy art", "prompt": "ethereal fantasy concept art of {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy"},
34
+ {"name": "Neonpunk", "prompt": "neonpunk style {prompt} . cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional"},
35
+ {"name": "Manga", "prompt": "manga style {prompt} . vibrant, high-energy, detailed, iconic, Japanese comic style"},
36
+ ]
37
+
38
+ styles = {k["name"]: k["prompt"] for k in style_list}
39
+
40
+ def process_image(image, prompt, prompt_template, style_name, seed, val_r):
41
+ image = image.convert("RGB")
42
+
43
+ # Convert image to tensor and threshold, then convert to float
44
+ image_t = F.to_tensor(image) > 0.5
45
+ image_t = image_t.float()
46
+
47
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
48
+
49
+ with torch.no_grad(), autocast():
50
+ # Move the tensor to the appropriate device
51
+ c_t = image_t.unsqueeze(0).to(device).float()
52
+ torch.manual_seed(seed)
53
+ B, C, H, W = c_t.shape
54
+ noise = torch.randn((1, 4, H // 8, W // 8), device=device) # Ensure noise is on the same device
55
+
56
+ # Pass through the model
57
+ output_image = model(c_t, prompt, deterministic=False, r=val_r, noise_map=noise)
58
+
59
+ output_pil = F.to_pil_image(output_image[0].cpu() * 0.5 + 0.5)
60
+ return output_pil
61
+
62
+ @app.route('/process-image', methods=['POST'])
63
+ def process_image_route():
64
+ data = request.get_json()
65
+
66
+ # Debugging: Print the raw received data
67
+ print("Received JSON data:", data)
68
+
69
+ if not data or 'image' not in data:
70
+ print("Error: No image provided")
71
+ return jsonify({"error": "No image provided"}), 400
72
+
73
+ # Decode the base64 image (remove the prefix 'data:image/png;base64,' if present)
74
+ image_data = data['image']
75
+ print("Received base64 image data (truncated):", image_data[:100]) # Print first 100 chars of base64 data
76
+
77
+ if image_data.startswith('data:image/png;base64,'):
78
+ image_data = image_data.split(",")[1]
79
+
80
+ try:
81
+ image_bytes = base64.b64decode(image_data)
82
+ image = Image.open(BytesIO(image_bytes))
83
+ except Exception as e:
84
+ print("Error decoding base64 image:", str(e))
85
+ return jsonify({"error": "Invalid image data"}), 400
86
+
87
+ # Retrieve other parameters
88
+ prompt = data.get('prompt', 'a cat')
89
+ style_name = data.get('style_name', 'Fantasy art').strip() # Strip any leading/trailing whitespace
90
+ seed = int(data.get('seed', 42))
91
+ val_r = float(data.get('val_r', 0.8))
92
+
93
+ # Debug: print available styles
94
+ print(f"Available styles: {list(styles.keys())}")
95
+ print(f"Received style name: {style_name}")
96
+
97
+ # Case-insensitive lookup
98
+ style_name = next((key for key in styles if key.lower() == style_name.lower()), None)
99
+ if not style_name:
100
+ print(f"Error: Style '{data.get('style_name')}' not found")
101
+ return jsonify({"error": f"Style '{data.get('style_name')}' not found"}), 400
102
+
103
+ prompt_template = styles[style_name]
104
+
105
+ print(f"Using style: {style_name} with prompt: {prompt}")
106
+
107
+ # Process the image
108
+ try:
109
+ processed_image = process_image(image, prompt, prompt_template, style_name, seed, val_r)
110
+ except Exception as e:
111
+ print("Error processing image:", str(e))
112
+ return jsonify({"error": "Failed to process image"}), 500
113
+
114
+ # Convert the processed image to base64
115
+ img_io = BytesIO()
116
+ processed_image.save(img_io, format=output_format)
117
+ img_io.seek(0)
118
+ img_base64 = base64.b64encode(img_io.getvalue()).decode('utf-8')
119
+
120
+ print("Processed image successfully, sending back to client")
121
+ return jsonify({"image": img_base64})
122
+
123
+ if __name__ == "__main__":
124
+ app.run(host='0.0.0.0', port=5000)
image_base64.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ 
in/in.png ADDED
out/generated_image.png ADDED
out/out.txt ADDED
The diff for this file is too large to render. See raw diff
 
output_image.png ADDED
processed/in.jpg ADDED
processed/sketch 02.png ADDED