Spaces:
Paused
Paused
import random | |
import numpy as np | |
from PIL import Image, ImageOps | |
import base64 | |
from io import BytesIO | |
import torch | |
import torchvision.transforms.functional as F | |
from transformers import BlipProcessor, BlipForConditionalGeneration | |
from src.pix2pix_turbo import Pix2Pix_Turbo | |
import nltk | |
from nltk import pos_tag | |
from nltk.tokenize import word_tokenize | |
import re | |
import os | |
import json | |
import logging | |
import gc | |
import gradio as gr | |
from torch.cuda.amp import autocast | |
# Set environment variable for better memory management | |
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:128' | |
# Function to clear CUDA cache and collect garbage | |
def clear_memory(): | |
torch.cuda.empty_cache() | |
gc.collect() | |
# Load the configuration from config.json | |
with open('config.json', 'r') as config_file: | |
config = json.load(config_file) | |
# Setup logging as per config | |
logging.basicConfig(level=config["logging"]["level"], format=config["logging"]["format"]) | |
# Ensure NLTK resources are downloaded | |
nltk.download('averaged_perceptron_tagger') | |
nltk.download('punkt') | |
# File paths for storing sketches and outputs | |
SKETCH_PATH = config["file_paths"]["sketch_path"] | |
OUTPUT_PATH = config["file_paths"]["output_path"] | |
# Global Constants and Configuration | |
STYLE_LIST = config["style_list"] | |
STYLES = {style["name"]: style["prompt"] for style in STYLE_LIST} | |
DEFAULT_STYLE_NAME = config["default_style_name"] | |
RANDOM_VALUES = config["random_values"] | |
PIX2PIX_MODEL_NAME = config["model_params"]["pix2pix_model_name"] | |
DEVICE = config["model_params"]["device"] | |
DEFAULT_SEED = config["model_params"]["default_seed"] | |
VAL_R_DEFAULT = config["model_params"]["val_r_default"] | |
MAX_SEED = config["model_params"]["max_seed"] | |
# Canvas configuration | |
CANVAS_WIDTH = config["canvas"]["width"] | |
CANVAS_HEIGHT = config["canvas"]["height"] | |
# Preload Models | |
logging.debug("Loading BLIP and Pix2Pix models...") | |
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") | |
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to(DEVICE) | |
pix2pix_model = Pix2Pix_Turbo(PIX2PIX_MODEL_NAME) | |
logging.debug("Models loaded.") | |
def pil_image_to_data_uri(img: Image, format="PNG") -> str: | |
"""Converts a PIL image to a data URI.""" | |
buffered = BytesIO() | |
img.save(buffered, format=format) | |
img_str = base64.b64encode(buffered.getvalue()).decode() | |
return f"data:image/{format.lower()};base64,{img_str}" | |
def generate_prompt_from_sketch(image: Image) -> str: | |
"""Generates a text prompt based on a sketch using the BLIP model.""" | |
logging.debug("Generating prompt from sketch...") | |
image = ImageOps.fit(image, (CANVAS_WIDTH, CANVAS_HEIGHT), Image.LANCZOS) | |
inputs = processor(image, return_tensors="pt").to(DEVICE) | |
out = blip_model.generate(**inputs, max_new_tokens=50) | |
text_prompt = processor.decode(out[0], skip_special_tokens=True) | |
logging.debug(f"Generated prompt: {text_prompt}") | |
recognized_items = [extract_main_words(item) for item in text_prompt.split(', ') if item.strip()] | |
random_prefix = random.choice(RANDOM_VALUES) | |
prompt = f"a photo of a {' and '.join(recognized_items)}, {random_prefix}" | |
logging.debug(f"Final prompt: {prompt}") | |
return prompt | |
def extract_main_words(item: str) -> str: | |
"""Extracts all nouns from a given text fragment and returns them as a space-separated string.""" | |
words = word_tokenize(item.strip()) | |
tagged = pos_tag(words) | |
nouns = [word.capitalize() for word, tag in tagged if tag in ('NN', 'NNP', 'NNPS', 'NNS')] | |
return ' '.join(nouns) | |
def normalize_image(image, range_from=(-1, 1)): | |
""" | |
Normalize the input image to a specified range. | |
:param image: The PIL Image to be normalized. | |
:param range_from: The target range for normalization, typically (-1, 1) or (0, 1). | |
:return: Normalized image tensor. | |
""" | |
# Convert the image to a tensor | |
image_t = F.to_tensor(image) | |
if range_from == (-1, 1): | |
# Normalize from [0, 1] to [-1, 1] | |
image_t = image_t * 2 - 1 | |
return image_t | |
def run(image, prompt, prompt_template, style_name, seed, val_r): | |
"""Runs the main image processing pipeline.""" | |
logging.debug("Running model inference...") | |
if image is None: | |
blank_image = Image.new("L", (CANVAS_WIDTH, CANVAS_HEIGHT), 255) | |
blank_image.save(SKETCH_PATH) # Save blank image as sketch | |
logging.debug("No image provided. Saving blank image.") | |
return "", "", "", "" | |
if not prompt.strip(): | |
prompt = generate_prompt_from_sketch(image) | |
# Save the sketch to a file | |
image.save(SKETCH_PATH) | |
# Show the original prompt before processing | |
original_prompt = f"Original Prompt: {prompt}" | |
logging.debug(original_prompt) | |
prompt = prompt_template.replace("{prompt}", prompt) | |
logging.debug(f"Processing with prompt: {prompt}") | |
image = image.convert("RGB") | |
image_tensor = F.to_tensor(image) * 2 - 1 # Normalize to [-1, 1] | |
clear_memory() # Clear memory before running the model | |
try: | |
with torch.no_grad(): | |
c_t = image_tensor.unsqueeze(0).to(DEVICE).float() | |
torch.manual_seed(seed) | |
B, C, H, W = c_t.shape | |
noise = torch.randn((1, 4, H // 8, W // 8), device=c_t.device) | |
logging.debug("Calling Pix2Pix model...") | |
# Enable mixed precision | |
with autocast(): | |
output_image = pix2pix_model(c_t, prompt, deterministic=False, r=val_r, noise_map=noise) | |
logging.debug("Model inference completed.") | |
except RuntimeError as e: | |
if "CUDA out of memory" in str(e): | |
logging.warning("CUDA out of memory error. Falling back to CPU.") | |
with torch.no_grad(): | |
c_t = c_t.cpu() | |
noise = noise.cpu() | |
pix2pix_model_cpu = pix2pix_model.cpu() # Move the model to CPU | |
output_image = pix2pix_model_cpu(c_t, prompt, deterministic=False, r=val_r, noise_map=noise) | |
else: | |
raise e | |
output_pil = F.to_pil_image(output_image[0].cpu() * 0.5 + 0.5) | |
output_pil.save(OUTPUT_PATH) | |
logging.debug("Output image saved.") | |
return output_pil | |
def gradio_interface(image, prompt, style_name, seed, val_r): | |
"""Gradio interface function to handle inputs and generate outputs.""" | |
# Endpoint: `image` - Input image from user (Sketch Image) | |
# Endpoint: `prompt` - Text prompt (optional) | |
# Endpoint: `style_name` - Selected style from dropdown | |
# Endpoint: `seed` - Seed for reproducibility | |
# Endpoint: `val_r` - Sketch guidance value | |
prompt_template = STYLES.get(style_name, STYLES[DEFAULT_STYLE_NAME]) | |
result_image = run(image, prompt, prompt_template, style_name, seed, val_r) | |
return result_image | |
# Create the Gradio Interface | |
interface = gr.Interface( | |
fn=gradio_interface, | |
inputs=[ | |
gr.Image(source="upload", type="pil", label="Sketch Image"), # Endpoint: `image` | |
gr.Textbox(lines=2, placeholder="Enter a text prompt (optional)", label="Prompt"), # Endpoint: `prompt` | |
gr.Dropdown(choices=list(STYLES.keys()), value=DEFAULT_STYLE_NAME, label="Style"), # Endpoint: `style_name` | |
gr.Slider(minimum=0, maximum=MAX_SEED, step=1, default=DEFAULT_SEED, label="Seed"), # Endpoint: `seed` | |
gr.Slider(minimum=0.0, maximum=1.0, step=0.01, default=VAL_R_DEFAULT, label="Sketch Guidance") # Endpoint: `val_r` | |
], | |
outputs=gr.Image(label="Generated Image"), # Output endpoint: `result_image` | |
title="Sketch to Image Generation", | |
description="Upload a sketch and generate an image based on a prompt and style." | |
) | |
if __name__ == "__main__": | |
# Launch the Gradio interface | |
interface.launch(share=True) | |