File size: 16,486 Bytes
343e5a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
import random
import numpy as np
from PIL import Image, ImageOps
import base64
from io import BytesIO
import torch
import torchvision.transforms.functional as F
from transformers import BlipProcessor, BlipForConditionalGeneration
from src.pix2pix_turbo import Pix2Pix_Turbo
import nltk
from nltk import pos_tag
from nltk.tokenize import word_tokenize
import re
import os
import threading
import hashlib
from flask import Flask, request, send_file, jsonify, render_template_string
from flask_cors import CORS
import signal
import sys
import logging
import json
import gc
from torch.cuda.amp import autocast

# Set environment variable for better memory management
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:128'

# Function to clear CUDA cache and collect garbage
def clear_memory():
    torch.cuda.empty_cache()
    gc.collect()

# Load the configuration from config.json
with open('config.json', 'r') as config_file:
    config = json.load(config_file)

# Setup logging as per config
logging.basicConfig(level=config["logging"]["level"], format=config["logging"]["format"])

# Ensure NLTK resources are downloaded
nltk.download('averaged_perceptron_tagger', quiet=True)
nltk.download('punkt', quiet=True)

# File paths for storing sketches and outputs
SKETCH_PATH = config["file_paths"]["sketch_path"]
OUTPUT_PATH = config["file_paths"]["output_path"]

# Processing queue
processing_queue = []

# Global Constants and Configuration
STYLE_LIST = config["style_list"]
STYLES = {style["name"]: style["prompt"] for style in STYLE_LIST}
DEFAULT_STYLE_NAME = config["default_style_name"]
RANDOM_VALUES = config["random_values"]
PIX2PIX_MODEL_NAME = config["model_params"]["pix2pix_model_name"]
DEVICE = config["model_params"]["device"]
DEFAULT_SEED = config["model_params"]["default_seed"]
VAL_R_DEFAULT = config["model_params"]["val_r_default"]
MAX_SEED = config["model_params"]["max_seed"]

# Canvas configuration
CANVAS_WIDTH = config["canvas"]["width"]
CANVAS_HEIGHT = config["canvas"]["height"]
BACKGROUND_COLOR = config["canvas"]["background_color"]
DEFAULT_BRUSH_COLOR = config["canvas"]["default_brush_color"]
DEFAULT_BRUSH_SIZE = config["canvas"]["default_brush_size"]
ERASER_COLOR = config["canvas"]["eraser_color"]
MAX_BRUSH_SIZE = config["canvas"]["max_brush_size"]
MIN_BRUSH_SIZE = config["canvas"]["min_brush_size"]

# Preload Models
logging.debug("Loading BLIP and Pix2Pix models...")
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to(DEVICE).eval()  # Set model to eval mode
pix2pix_model = Pix2Pix_Turbo(PIX2PIX_MODEL_NAME).to(DEVICE).eval()  # Set model to eval mode
logging.debug("Models loaded.")

style_list = [
    {
        "name": "Cinematic",
        "prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
    },
    # Other styles...
]

styles = {k["name"]: k["prompt"] for k in style_list}
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "Fantasy art"
MAX_SEED = np.iinfo(np.int32).max

# Shared flag and thread for managing the current processing
current_thread = None
cancel_flag = threading.Event()

def pil_image_to_data_uri(img: Image, format="PNG") -> str:
    """Converts a PIL image to a data URI."""
    buffered = BytesIO()
    img.save(buffered, format=format)
    img_str = base64.b64encode(buffered.getvalue()).decode()
    return f"data:image/{format.lower()};base64,{img_str}"

def generate_prompt_from_sketch(image: Image) -> str:
    """Generates a text prompt based on a sketch using the BLIP model."""
    logging.debug("Generating prompt from sketch...")
    
    image = ImageOps.fit(image, (CANVAS_WIDTH, CANVAS_HEIGHT), Image.LANCZOS)
    inputs = processor(image, return_tensors="pt").to(DEVICE)

    with torch.no_grad():
        out = blip_model.generate(**inputs, max_new_tokens=50)
    
    text_prompt = processor.decode(out[0], skip_special_tokens=True)
    logging.debug(f"Generated prompt: {text_prompt}")

    recognized_items = [extract_main_words(item) for item in text_prompt.split(', ') if item.strip()]
    random_prefix = random.choice(RANDOM_VALUES)
    
    prompt = f"a photo of a {' and '.join(recognized_items)}, {random_prefix}"
    logging.debug(f"Final prompt: {prompt}")
    return prompt

def extract_main_words(item: str) -> str:
    """Extracts all nouns from a given text fragment and returns them as a space-separated string."""
    words = word_tokenize(item.strip())
    tagged = pos_tag(words)
    nouns = [word.capitalize() for word, tag in tagged if tag in ('NN', 'NNP', 'NNPS', 'NNS')]
    return ' '.join(nouns)

def run(image, prompt, prompt_template, style_name, seed, val_r):
    """Runs the main image processing pipeline."""
    logging.debug("Running model inference...")
    if image is None:
        blank_image = Image.new("L", (CANVAS_WIDTH, CANVAS_HEIGHT), 255)
        blank_image.save(SKETCH_PATH)  # Save blank image as sketch
        logging.debug("No image provided. Saving blank image.")
        return "", "", "", ""

    if not prompt.strip():
        prompt = generate_prompt_from_sketch(image)

    # Save the sketch to a file
    image.save(SKETCH_PATH)

    # Show the original prompt before processing
    original_prompt = f"Original Prompt: {prompt}"
    logging.debug(original_prompt)

    # Add the task to the processing queue
    processing_queue.append({"prompt": prompt, "status": "processing"})

    prompt = prompt_template.replace("{prompt}", prompt)
    logging.debug(f"Processing with prompt: {prompt}")
    image = image.convert("RGB")
    image_tensor = F.to_tensor(image) * 2 - 1  # Normalize to [-1, 1]
    
    clear_memory()  # Clear memory before running the model

    try:
        with torch.no_grad():
            c_t = image_tensor.unsqueeze(0).to(DEVICE).float()
            torch.manual_seed(seed)
            B, C, H, W = c_t.shape
            
            noise = torch.randn((1, 4, H // 8, W // 8), device=c_t.device)
            logging.debug("Calling Pix2Pix model...")

            # Enable mixed precision
            with autocast():
                if cancel_flag.is_set():
                    logging.debug("Processing canceled.")
                    return "", "", "", original_prompt

                output_image = pix2pix_model(c_t, prompt, deterministic=False, r=val_r, noise_map=noise)

            logging.debug("Model inference completed.")
    except RuntimeError as e:
        if "CUDA out of memory" in str(e):
            logging.warning("CUDA out of memory error. Falling back to CPU.")
            with torch.no_grad():
                c_t = c_t.cpu()
                noise = noise.cpu()
                pix2pix_model_cpu = pix2pix_model.cpu()  # Move the model to CPU
                output_image = pix2pix_model_cpu(c_t, prompt, deterministic=False, r=val_r, noise_map=noise)
        else:
            raise e

    output_pil = F.to_pil_image(output_image[0].cpu() * 0.5 + 0.5)
    output_pil.save(OUTPUT_PATH)
    logging.debug("Output image saved.")

    input_sketch_uri = pil_image_to_data_uri(Image.fromarray(255 - np.array(image)))
    output_image_uri = pil_image_to_data_uri(output_pil)
    logging.debug(f"Generated output URI: {output_image_uri}")
    
    clear_memory()  # Clear memory after running the model

    return output_image_uri, input_sketch_uri, output_image_uri, original_prompt

def process_image_task(image, prompt, style_name, seed, val_r):
    try:
        global cancel_flag
        cancel_flag.clear()  # Clear any previous cancellation flag

        output_image_uri, _, _, _ = run(image, prompt, STYLES.get(style_name, DEFAULT_STYLE_NAME), style_name, seed, val_r)
        logging.debug(f"Processed image URI: {output_image_uri}")

        return jsonify({"image": output_image_uri})

    except Exception as e:
        logging.error(f"Error processing image: {e}")
        return jsonify({"error": str(e)}), 500

# Flask Server Setup for Preview and JSON endpoint
app = Flask(__name__)
CORS(app)  # Enable CORS

@app.route('/process-image', methods=['POST'])
def process_image():
    global current_thread, cancel_flag

    # Cancel any ongoing processing
    if current_thread is not None and current_thread.is_alive():
        logging.debug("Cancelling previous processing...")
        cancel_flag.set()
        current_thread.join()  # Wait for the thread to finish

    data = request.get_json()

    # Extract and decode the base64 image
    image_data = data.get("image", "").split(",")[1]
    image = Image.open(BytesIO(base64.b64decode(image_data))).convert("RGB")

    prompt = data.get("prompt", "")
    style_name = data.get("style_name", DEFAULT_STYLE_NAME)
    seed = int(data.get("seed", DEFAULT_SEED))
    val_r = float(data.get("val_r", VAL_R_DEFAULT))

    # Start new processing in a separate thread
    current_thread = threading.Thread(target=process_image_task, args=(image, prompt, style_name, seed, val_r))
    current_thread.start()

    return jsonify({"status": "processing_started"})

@app.route('/get_sketch', methods=['GET'])
def get_sketch():
    if os.path.exists(SKETCH_PATH):
        return send_file(SKETCH_PATH, mimetype='image/png')
    return jsonify({"status": "error", "message": "Sketch not found."}), 404

@app.route('/get_output', methods=['GET'])
def get_output():
    if os.path.exists(OUTPUT_PATH):
        return send_file(OUTPUT_PATH, mimetype='image/png')
    return jsonify({"status": "error", "message": "Output not found."}), 404

@app.route('/get_status', methods=['GET'])
def get_status():
    """Returns a JSON with the last image base64 encoded, its checksum, and the processing queue."""
    if os.path.exists(OUTPUT_PATH):
        with open(OUTPUT_PATH, "rb") as f:
            img_data = f.read()
            base64_image = base64.b64encode(img_data).decode('utf-8')
            checksum = hashlib.sha256(img_data).hexdigest()
    else:
        base64_image = ""
        checksum = ""

    return jsonify({
        "image_base64": base64_image,
        "checksum": checksum,
        "processing_queue": processing_queue
    })

@app.route('/')
def index():
    # HTML template for the preview page
    html_template = """
    <!doctype html>
    <html lang="en">
      <head>
        <meta charset="utf-8">
        <meta name="viewport" content="width=device-width, initial-scale=1.0">
        <title>Preview Page</title>
        <style>
          body, html {
            margin: 0;
            padding: 0;
            height: 100%;
            background-color: black;
          }
          .full-screen-image {
            width: 100%;
            height: 100%;
            object-fit: contain;
          }
        </style>
        <script>
          function refreshImage() {
            var img = document.getElementById("output-image");
            img.src = "/get_output?" + new Date().getTime();
          }
          
          // Auto-refresh every 2 seconds to show the latest image
          setInterval(refreshImage, 2000);
        </script>
      </head>
      <body>
        <img id="output-image" src="/get_output" class="full-screen-image">
      </body>
    </html>
    """
    return render_template_string(html_template)

@app.route('/draw')
def draw_page():
    # HTML template for the drawing page at /draw
    html_template = """
    <!doctype html>
    <html lang="en">
    <head>
        <meta charset="utf-8">
        <meta name="viewport" content="width=device-width, initial-scale=1.0">
        <title>Drawing Page</title>
        <style>
            body, html {
                margin: 0;
                padding: 0;
                height: 100%;
                display: flex;
                justify-content: center;
                align-items: center;
                background-color: #f0f0f0;
            }
            .canvas-container {
                border: none;
                position: relative;
            }
            .toolbar {
                display: flex;
                justify-content: center;
                margin-bottom: 10px;
            }
            button {
                margin-right: 5px;
            }
            canvas {
                cursor: crosshair;
            }
        </style>
    </head>
    <body>
    <div style="position: fixed;
    bottom: 0;
    width: 100%;">
        <div class="toolbar">
            <button id="brush" onclick="setTool('brush')">Brush</button>
            <button id="line" onclick="setTool('line')">Line</button>
            <button id="eraser" onclick="setTool('eraser')">Eraser</button>
            <button id="clear" onclick="clearCanvas()">Clear</button>
            <input type="color" id="colorPicker" value="#000000">
            <input type="range" id="brushSize" min="1" max="20" value="4">
        </div>
        </div>
        <div class="canvas-container">
            <canvas id="drawingCanvas" width="512" height="512"></canvas>
        </div>
        <script>
            let canvas = document.getElementById('drawingCanvas');
            let ctx = canvas.getContext('2d');
            let drawing = false;
            let tool = 'brush';
            let lastX = 0, lastY = 0;

            // Fill the canvas with white background
            ctx.fillStyle = "#ffffff";
            ctx.fillRect(0, 0, canvas.width, canvas.height);

            canvas.addEventListener('mousedown', (e) => {
                drawing = true;
                [lastX, lastY] = [e.offsetX, e.offsetY];
            });

            canvas.addEventListener('mousemove', draw);
            canvas.addEventListener('mouseup', () => {
                drawing = false;
                sendDrawingToBackend();
            });
            canvas.addEventListener('mouseout', () => drawing = false);

            function draw(e) {
                if (!drawing) return;

                ctx.strokeStyle = document.getElementById('colorPicker').value;
                ctx.lineWidth = document.getElementById('brushSize').value;
                ctx.lineJoin = 'round';
                ctx.lineCap = 'round';

                ctx.beginPath();
                ctx.moveTo(lastX, lastY);
                ctx.lineTo(e.offsetX, e.offsetY);
                ctx.stroke();
                [lastX, lastY] = [e.offsetX, e.offsetY];
            }

            function setTool(selectedTool) {
                tool = selectedTool;
                if (tool === 'eraser') {
                    ctx.strokeStyle = "#ffffff";  // Use white color for eraser
                } else {
                    ctx.strokeStyle = document.getElementById('colorPicker').value;
                }
                ctx.globalCompositeOperation = 'source-over';
            }

            function clearCanvas() {
                ctx.fillStyle = "#ffffff";
                ctx.fillRect(0, 0, canvas.width, canvas.height);
                fetch('/clear_preview', { method: 'POST' })
                .then(response => response.json())
                .then(data => console.log('Cleared preview', data))
                .catch(error => console.error('Error clearing preview:', error));
            }

            function sendDrawingToBackend() {
                let dataURL = canvas.toDataURL('image/png');
                fetch('/process-image', {
                    method: 'POST',
                    headers: {
                        'Content-Type': 'application/json',
                    },
                    body: JSON.stringify({ image: dataURL }),
                })
                .then(response => response.json())
                .then(data => console.log('Image processed', data))
                .catch(error => console.error('Error processing image:', error));
            }
        </script>
    </body>
    </html>
    """
    return render_template_string(html_template)

@app.route('/clear_preview', methods=['POST'])
def clear_preview():
    if os.path.exists(OUTPUT_PATH):
        os.remove(OUTPUT_PATH)
    return jsonify({"status": "cleared"})

def start_flask_app():
    app.run(host=config["server"]["host"], port=config["server"]["port"], threaded=True)

def signal_handler(sig, frame):
    print("Ctrl+C pressed, shutting down.")
    sys.exit(0)

# Register the signal handler for Ctrl+C
signal.signal(signal.SIGINT, signal_handler)

if __name__ == "__main__":
    start_flask_app()