""" Copyright 2024-2025 Infosys Ltd.” Use of this source code is governed by MIT license that can be found in the LICENSE file or at MIT license https://opensource.org/licenses/MIT Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from PIL import Image import google.generativeai as genai import google.ai.generativelanguage as glm from google.generativeai.types import HarmCategory, HarmBlockThreshold import json import datetime import time import os #import pdfkit import ast import matplotlib.pyplot as plt import base64 from mimetypes import guess_type from io import BytesIO import requests from sklearn.neighbors import NearestNeighbors from fairness.dao.WorkBench.FileStoreDb import FileStoreReportDb from fairness.dao.WorkBench.databaseconnection import DataBase_WB from fairness.dao.WorkBench.Tenet import Tenet from fairness.dao.WorkBench.Batch import Batch from fairness.dao.WorkBench.html import Html from fairness.dao.WorkBench.Data import Dataset,DataAttributes,DataAttributeValues from fairness.constants.local_constants import * from fairness.config.logger import CustomLogger import pandas import io from fastapi import HTTPException import tempfile log = CustomLogger() import joblib import pickle from fairlearn.postprocessing import ThresholdOptimizer from fairlearn.metrics import demographic_parity_difference, equalized_odds_difference, true_positive_rate, true_negative_rate, false_positive_rate, false_negative_rate from sklearn.metrics import accuracy_score from sklearn.ensemble import RandomForestClassifier from io import StringIO, BytesIO from fairness.dao.databaseconnection import DataBase from aif360.datasets import BinaryLabelDataset from aif360.algorithms.inprocessing import ExponentiatedGradientReduction from bson import ObjectId import numpy as np import openai from pathlib import Path from dotenv import load_dotenv from sklearn.model_selection import train_test_split from fairness.dao.WorkBench.report import Report load_dotenv() import logging log = logging.getLogger(__name__) log.setLevel(logging.DEBUG) class AttributeDict(dict): __getattr__ = dict.__getitem__ __setattr__ = dict.__setitem__ __delattr__ = dict.__delitem__ class InprocessingService: def __init__(self, MockDB=None): if MockDB is not None: self.db = MockDB.db self.fileStore = FileStoreReportDb(self.db) self.batch = Batch(self.db) self.tenet = Tenet(self.db) self.dataset = Dataset(self.db) self.dataAttributes = DataAttributes(self.db) self.dataAttributeValues = DataAttributeValues(self.db) log.info("Mockdb is executed") self.bias_collection = self.db['bias'] self.mitigation_collection = self.db['mitigation'] self.mitigation_model_collection = self.db['mitigation_model'] self.metrics_collection = self.db['metrics'] self.llm_analysis_collection = self.db['llm_analysis'] self.llm_connection_credentials_collection = self.db['llm_connection_credentails'] else: self.db = DataBase().db self.fileStore = FileStoreReportDb() self.batch = Batch() self.tenet = Tenet() self.dataset = Dataset() self.dataAttributes = DataAttributes() self.dataAttributeValues = DataAttributeValues() self.bias_collection = self.db['bias'] self.mitigation_collection = self.db['mitigation'] self.mitigation_model_collection = self.db['mitigation_model'] self.metrics_collection = self.db['metrics'] self.llm_analysis_collection = self.db['llm_analysis'] self.llm_connection_credentials_collection = self.db['llm_connection_credentails'] request_payload = "" mitigation_payload = "" pretrainMitigation_payload = "" ca_dict = {} AWARE_MODEL_LOCAL_PATH='../output/aware_model/' AWARE_MODEL_UPLOAD_PATH='responsible-ai//responsible-ai-fairness//aware-model' def mitigation_model_analyze(y_true, y_pred, df_sensitive_features): return { 'demographic_parity_difference': demographic_parity_difference(y_true, y_pred, sensitive_features=df_sensitive_features), 'equalized_odds_difference': equalized_odds_difference(y_true, y_pred, sensitive_features=df_sensitive_features), 'true_positive_rate': true_positive_rate(y_true, y_pred), 'true_negative_rate': true_negative_rate(y_true, y_pred), 'false_positive_rate': false_positive_rate(y_true, y_pred), 'false_negative_rate': false_negative_rate(y_true, y_pred), 'accuracy_score': accuracy_score(y_true, y_pred) } def upload_inprocess(self, payload: dict): fileId = payload['fileId'] traindata = self.fileStore.read_file(fileId) df_train = pandas.read_csv(BytesIO(traindata['data'])) feature_list = list(df_train.columns) response = { 'feature_list': feature_list } return response def inprocessing_exponentiated_gradient_reduction(self, payload: dict): if payload['Batch_id'] is None or '': log.error("Batch Id id missing") batchId = payload['Batch_id'] self.batch.update(batch_id=batchId, value={"Status": "In-progress"}) tenet_id = self.tenet.find(tenet_name='Fairness') batch_details = self.batch.find(batch_id=batchId, tenet_id=tenet_id) datasetId = batch_details['DataId'] dataset_details = self.dataset.find(Dataset_Id=datasetId) dataset_attribute_ids = self.dataAttributes.find(dataset_attributes=[ 'sensitiveFeatures', 'favourableLabel', 'label']) log.info("Dataset Attribute Ids: {dataset_attribute_ids}") dataset_attribute_values = self.dataAttributeValues.find( dataset_id=datasetId, dataset_attribute_ids=dataset_attribute_ids, batch_id=batchId) log.info("Dataset Attribute Values: {dataset_attribute_values}") fileId = dataset_details["SampleData"] sensitiveFeatures = dataset_attribute_values[0] log.info(f"sensitiveFeatures: {sensitiveFeatures}") favourableLabel = dataset_attribute_values[1] log.info(f"favourableLabel {favourableLabel}") label = dataset_attribute_values[2] content=self.fileStore.read_file(fileId) if content is None: raise HTTPException(status_code=500, detail="No content received from the POST request") df_train = pandas.read_csv(BytesIO(content['data'])) train, test = train_test_split(df_train, test_size=0.3) favourable_label=int(favourableLabel) unfavourable_label=0 if favourable_label==1 else 1 dataset_train=BinaryLabelDataset( df=train, label_names=[label], favorable_label=favourable_label, unfavorable_label=unfavourable_label, protected_attribute_names=sensitiveFeatures ) dataset_test=BinaryLabelDataset( df=test, label_names=[label], favorable_label=favourable_label, unfavorable_label=unfavourable_label, protected_attribute_names=sensitiveFeatures ) exponentiated_gradient_reduction=ExponentiatedGradientReduction(estimator=RandomForestClassifier(), constraints='EqualizedOdds') exponentiated_gradient_reduction.fit(dataset=dataset_train) model_unique_name='model_'+'.joblib' container_name = os.getenv('Model_CONTAINER_NAME') bytes_buffer = io.BytesIO() joblib.dump(exponentiated_gradient_reduction, bytes_buffer) bytes_data = bytes_buffer.getvalue() fileId = self.fileStore.save_file(file=bytes_data, filename=model_unique_name, contentType="joblib", tenet='Fairness', container_name=container_name) dataset_pred=exponentiated_gradient_reduction.predict(dataset=dataset_test) y_test=dataset_test.labels y_pred=dataset_pred.labels df_test_sensitive_features=test[sensitiveFeatures] metrics=InprocessingService.mitigation_model_analyze(y_test, y_pred, df_test_sensitive_features) model_file_name=model_unique_name+'.joblib' response={ "modelfileId": fileId, "metrics": metrics } report_document={"ReportId":time.time(),"BatchId":batchId,"ReportFileId":fileId,"TenetId":tenet_id,"ReportName":model_unique_name,"ContentType":"joblib","CreatedDateTime":datetime.datetime.now()} self.batch.update(batch_id=batchId, value={"Status": "Completed"}) Report.create(report_document) if response is None: self.batch.update(batch_id=batchId, value={"Status": "Failed"}) raise HTTPException(status_code=500, detail="No response received from the POST request") return response