Responsible-Ai-Fairness / src /fairness /service /service_success_rates.py
InfosysResponsibleAiToolKit's picture
fairness files
38d6a33
"""
Copyright 2024 Infosys Ltd.”
Use of this source code is governed by MIT license that can be found in the LICENSE file or at
MIT license https://opensource.org/licenses/MIT
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
"""
import base64
import datetime
from io import BytesIO
import time
from fastapi import HTTPException
import numpy as np
import pandas
import os
import matplotlib.pyplot as plt
from matplotlib.backends.backend_pdf import PdfPages
import requests
from fairness.constants.llm_constants import SUCCESS_RATE_INFO
from fairness.dao.WorkBench.Tenet import Tenet
from fairness.dao.WorkBench.Batch import Batch
from fairness.dao.WorkBench.Data import Dataset,DataAttributes,DataAttributeValues
from fairness.dao.databaseconnection import DataBase
from fairness.dao.WorkBench.FileStoreDb import FileStoreReportDb
from fairness.dao.WorkBench.report import Report
from fairness.dao.WorkBench.html import Html
import uuid
from fpdf import FPDF
from PIL import Image
from scipy import stats
from fairness.config.logger import CustomLogger
log = CustomLogger()
LOCAL_FILE_PATH="../output/datasets/"
SUCCESS_RATE_LOCAL_PATH='../output/graphs/success_rates/'
OUTPUT_FOLDER='../output/'
class SuccessRateService:
def __init__(self, db=None):
self.db = DataBase().db
self.fileStore = FileStoreReportDb()
self.batch = Batch()
self.tenet = Tenet()
self.dataset = Dataset()
self.dataAttributes = DataAttributes()
self.dataAttributeValues = DataAttributeValues()
def check_categorical_attributes(categorical_attributes,data):
for each in categorical_attributes:
if each not in list(data.columns):
raise HTTPException({"error": "Categorical attribute not found"}, "Categorical attribute not found", "Categorical attribute not found")
def get_extension(fileName: str):
if fileName.endswith(".csv"):
return "csv"
elif fileName.endswith(".feather"):
return "feather"
elif fileName.endswith(".parquet"):
return "parquet"
elif fileName.endswith(".json"):
return "json"
def get_data_frame(extension: str,fileName: str):
return pandas.read_csv(os.path.join(LOCAL_FILE_PATH, fileName))
def get_dataframe(extension,file):
if extension == "csv":
return pandas.read_csv(file)
elif extension=="parquet":
return pandas.read_parquet(file)
elif extension == "feather":
return pandas.read_feather(file)
elif extension == "json":
return pandas.read_json(file)
class HTMLStylePDF(FPDF):
def header(self):
# No standard header
pass
def footer(self):
# No standard footer
pass
def image_to_pdf(image_paths, output_pdf, title=None):
pdf = FPDF()
pdf.add_page()
timestamp = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
# Add title if provided
if title:
PURPLE = (150, 53, 150)
WHITE = (255, 255, 255)
BLACK = (0, 0, 0)
# Header section
pdf.set_font('Helvetica', 'B', 23)
pdf.set_text_color(*WHITE)
pdf.set_fill_color(*PURPLE)
# Full-width header
pdf.cell(0, 15, 'INFOSYS RESPONSIBLE AI OFFICE',
align='C', fill=True, border=0)
# Reset Y position
pdf.set_y(30)
pdf.set_y(25) # Reduce vertical space
pdf.set_text_color(*PURPLE)
pdf.set_font('Helvetica', 'B', 10)
pdf.cell(0, 10, 'REPORT', ln=True)
# Success Rate
pdf.set_font('Helvetica', '', 8)
pdf.set_text_color(*BLACK)
lines = SUCCESS_RATE_INFO.split('\n')
for line in lines:
pdf.cell(0, 10, line, ln=True)
# Add image
# Process each image
for index,image_path in enumerate(image_paths):
# Add a new page
if index!=0:
pdf.add_page()
# Open image to get dimensions
img = Image.open(image_path)
img_width, img_height = img.size
# Calculate scaling to fit page width
page_width = pdf.w
page_height = pdf.h
# Calculate scaling factor
width_scale = page_width / img_width
height_scale = page_height / img_height
# Use the smaller scale to ensure image fits
scale_factor = min(width_scale, height_scale)
new_width = img_width * scale_factor
new_height = img_height * scale_factor
# Calculate positioning to center the image
x_position = (page_width - new_width) / 2
y_position = (page_height - new_height) / 2
# Add image to PDF
pdf.image(image_path, x=x_position, y=y_position, w=new_width, h=new_height)
# Save PDF
pdf.output(output_pdf)
print(f"PDF created: {output_pdf}")
def create_graphs(success_rates):
pdf_name="population_success_rate_"+str(uuid.uuid4())+".pdf"
pdf_path=os.path.join(SUCCESS_RATE_LOCAL_PATH,pdf_name)
image_paths=[]
try:
with PdfPages(pdf_path) as pdf:
for attribute, each_group in success_rates.items():
subclasses = list(each_group.keys())
grouped_success_rates = [each_group[group]["group_success_rate"] for group in each_group]
population_success_rates = [each_group[group]["population_success_rate"] for group in each_group]
participations = [each_group[group]["population"] for group in each_group]
n_groups=len(subclasses)
bar_width = 0.35 if n_groups<=20 else 0.2
font_size=10 if n_groups<=20 else 8
fig_height=8+n_groups*0.5
x=np.arange(len(subclasses))
figure_width = max(len(subclasses) * 1, 13)
# Add banner at the top
fig,(ax1)=plt.subplots(1,1,figsize=(figure_width,fig_height),gridspec_kw={'height_ratios':[2]})
bars_success_rate=ax1.bar(x,population_success_rates,bar_width,label='Success Rate',color='lightblue')
bars_ppopulation=ax1.bar(x+bar_width,participations,bar_width,label='Population',color='orange')
for i,bar in enumerate(bars_ppopulation):
height=bar.get_height()
if abs(participations[i]-population_success_rates[i])<3.0:
ax1.text(bar.get_x()+bar.get_width()/2,height+5,f'{participations[i]:.2f}',ha='center',va='bottom',fontsize=10,color='black')
else:
ax1.text(bar.get_x()+bar.get_width()/2,height+2,f'{participations[i]:.2f}',ha='center',va='bottom',fontsize=10,color='black')
max_height=0
for i,bar in enumerate(bars_success_rate):
height=bar.get_height()
max_height=max(max_height,height)
ax1.text(bar.get_x()+bar.get_width()/2,height+2,f'{population_success_rates[i]:.2f}',ha='center',va='bottom',fontsize=10,color='black')
line_success_rate=ax1.plot(x+bar_width/2,grouped_success_rates,marker='o',color='b',label='Grouped Success Rate')
for i,rate in enumerate(grouped_success_rates):
ax1.text(x[i]+bar_width/2,rate+2,f'{rate:.2f}',ha='center',va='bottom',fontsize=10,color='b')
ax1.set_ylabel('Population (%)')
ax1.set_title("Population and Success Rate for "+attribute,fontsize=14)
ax1.set_xticks(x+bar_width/2)
ax1.set_xticklabels(subclasses,rotation=90,ha='right',fontdict={'fontsize':8,'fontweight':'bold'})
ax1.margins(y=0.2)
ax1.legend()
plt.tight_layout()
pdf.savefig(fig)
times_stamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
# Save the figure as an image
image_path = os.path.join(SUCCESS_RATE_LOCAL_PATH, f"{attribute}_{times_stamp}.png")
# image_path = OUTPUT_FOLDER + f"{attribute}.png"
fig.savefig(image_path)
image_paths.append(image_path)
plt.close(fig)
SuccessRateService.image_to_pdf(image_paths, pdf_path, title="Responsible AI Office")
return pdf_name
finally:
for image_path in image_paths:
os.remove(image_path)
def create_graphs_workbench(success_rates, label_col=None, favorable_outcome=None, categorical_attributes=None):
formatted_categorical_attributes = str(categorical_attributes).replace('[', '').replace(']', '').replace("'", "")
pdf_name = "population_success_rate_" + ".pdf"
pdfname = "fairness_successrate.pdf"
# pdf_path = os.path.join(SUCCESS_RATE_LOCAL_PATH, pdf_name)
pdf_path = SUCCESS_RATE_LOCAL_PATH+pdf_name
# Ensure the output directory exists
os.makedirs(OUTPUT_FOLDER, exist_ok=True)
# html_path = os.path.join(OUTPUT_FOLDER, "fairness_report.html")
html_path = OUTPUT_FOLDER+"fairness_report.html"
timestamp = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
html_content = f"""
<div style='display: flex; justify-content: center; align-items: left; color:white; background-color: #963596; font-size:23px; font-family: sans-serif; border-radius: 10px; position: relative;'>
<h2 style='margin: 0; style=font-family: sans-serif;'>INFOSYS RESPONSIBLE AI OFFICE</h2>
<span style='position:absolute; right:1; font-size:15px; align-self: center; padding: 0 10px;'>{timestamp}</span>
</div>
"""
html_content += f"""
<body>
<h3 style='color:#963596; text-align:left; font-size:19px; font-family: sans-serif;'>FAIRNESS REPORT</h3>
<p style='font-family: sans-serif; font-size:16px;'>{SUCCESS_RATE_INFO}</p>
</body>
"""
html_content += f"""
<div style='width: 50%; font-family: sans-serif;'>
<h3 class="header" style="color:#963596; font-size:19px;"><strong>DATA INFORMATION</strong></h3>
<table>
<tr><td style="font-size:16px; font-family: sans-serif;">Model's Prediction Column</td><td>:</td><td style="color: darkgray; font-size:16px; font-family: sans-serif;">{label_col}</td></tr>
<tr><td style="font-size:16px; font-family: sans-serif;">Favorable Outcome</td><td>:</td><td style="color: darkgray; font-size:16px; font-family: sans-serif;">{favorable_outcome}</td></tr>
<tr><td style="font-size:16px; font-family: sans-serif;">Attributes For Analysis</td><td>:</td><td style="color: darkgray; font-size:16px; font-family: sans-serif;">{formatted_categorical_attributes}</td></tr>
</table>
</div>
"""
with PdfPages(pdf_path) as pdf:
for attribute, each_group in success_rates.items():
subclasses = list(each_group.keys())
grouped_success_rates = [each_group[group]["group_success_rate"] for group in each_group]
population_success_rates = [each_group[group]["population_success_rate"] for group in each_group]
participations = [each_group[group]["population"] for group in each_group]
n_groups = len(subclasses)
bar_width = 0.35 if n_groups <= 20 else 0.2
font_size = 10 if n_groups <= 20 else 8
fig_height = 8 + n_groups * 0.1
x = np.arange(len(subclasses))
figure_width = max(len(subclasses) * 0.8, 10)
fig, ax1 = plt.subplots(1, 1, figsize=(figure_width, fig_height), gridspec_kw={'height_ratios': [2]})
bars_success_rate = ax1.bar(x, population_success_rates, bar_width, label='Success Rate', color='#1ca0f2')
bars_population = ax1.bar(x + bar_width, participations, bar_width, label='Population', color='#05050F')
# Preventing label overlap for population values
for i, bar in enumerate(bars_population):
height = bar.get_height()
# Check if there's existing text near this position
existing_texts = [t for t in ax1.texts if abs(t.get_position()[0] - (bar.get_x() + bar.get_width() / 2)) < 0.1 and abs(t.get_position()[1] - height) < 5]
# If there is overlap, shift the text upwards
if existing_texts:
ax1.text(bar.get_x() + bar.get_width() / 2, height + 6, f'{participations[i]:.2f}%', ha='center', va='bottom', fontsize=10, color='black')
else:
ax1.text(bar.get_x() + bar.get_width() / 2, height + 2, f'{participations[i]:.2f}%', ha='center', va='bottom', fontsize=10, color='black')
max_height = 0
# Preventing label overlap for success rate values
for i, bar in enumerate(bars_success_rate):
height = bar.get_height()
max_height = max(max_height, height)
# Check if there's existing text near this position
existing_texts = [t for t in ax1.texts if abs(t.get_position()[0] - (bar.get_x() + bar.get_width() / 2)) < 0.1 and abs(t.get_position()[1] - height) < 5]
# If there is overlap, shift the text upwards
if existing_texts:
ax1.text(bar.get_x() + bar.get_width() / 2, height + 6, f'{population_success_rates[i]:.2f}%', ha='center', va='bottom', fontsize=10, color='black')
else:
ax1.text(bar.get_x() + bar.get_width() / 2, height + 1, f'{population_success_rates[i]:.2f}%', ha='center', va='bottom', fontsize=10, color='black')
# Preventing label overlap for grouped success rate values
line_success_rate = ax1.plot(x + bar_width / 2, grouped_success_rates, marker='o', color='#963596', label='Grouped Success Rate')
for i, rate in enumerate(grouped_success_rates):
# Check if there's existing text near this position
existing_texts = [t for t in ax1.texts if abs(t.get_position()[0] - (x[i] + bar_width / 2)) < 0.1 and abs(t.get_position()[1] - rate) < 5]
# If there is overlap, shift the text upwards
if existing_texts:
ax1.text(x[i] + bar_width / 2, rate + 7, f'{rate:.2f}%', ha='center', va='bottom', fontsize=10, color='#963596')
else:
ax1.text(x[i] + bar_width / 2, rate + 4, f'{rate:.2f}%', ha='center', va='bottom', fontsize=10, color='#963596')
ax1.set_ylabel('Population (%)')
ax1.set_title(f"Population and Success Rate for {attribute}", fontsize=14)
ax1.set_xticks(x + bar_width / 2)
ax1.set_xticklabels(subclasses, rotation=90, ha='right', fontdict={'fontsize': 8, 'fontweight': 'bold'})
ax1.margins(y=0.2)
ax1.legend()
plt.tight_layout()
pdf.savefig(fig)
times_stamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
# Save the figure as an image
image_path = os.path.join(OUTPUT_FOLDER, f"{attribute}_{times_stamp}.png")
# image_path = OUTPUT_FOLDER + f"{attribute}.png"
fig.savefig(image_path)
plt.close(fig)
# # Add the image to the HTML content
# html_content += f'<h3>{attribute}</h3><img src="{image_path}" alt="{attribute}""><br>'
# Convert image to base64
with open(image_path, "rb") as image_file:
image_base64 = base64.b64encode(image_file.read()).decode('utf-8')
# Add the base64 image to the HTML content
html_content += f'<h3>{attribute}</h3><img src="data:image/png;base64,{image_base64}" alt="{attribute}"><br>'
html_content += """
</body>
</html>
"""
with open(html_path, "w", encoding="utf-8") as html_file:
html_file.write(html_content)
with open(html_path, "r", encoding="utf-8") as html_file:
html_data = html_file.read()
# pdfkit.from_string(html_data,"../output/"+pdfname)
return html_data
def analyze(payload):
file=payload["file"]
categorical_attributes=payload["categorical_attributes"]
label_col=payload["label"]
favorable_outcome=payload["favourable_outcome"]
extension = SuccessRateService.get_extension(file.filename)
data = SuccessRateService.get_dataframe(extension,file.file)
success_rates = {}
if not isinstance(data[label_col].dtype, str):
data[label_col] = data[label_col].astype(str)
SuccessRateService.check_categorical_attributes(categorical_attributes,data)
favorable_data = data[data[label_col] == str(favorable_outcome)]
total_records=len(data)
for col in categorical_attributes:
if col != label_col: # Skip label column for rates
class_counts = data[col].value_counts()
favorable_subclass_counts = favorable_data[col].value_counts()
success_rates[col] = {}
for k, v in favorable_subclass_counts.items():
success_rates[col][k] = {
"population_success_rate": (v / total_records) * 100 if k in class_counts else 0,
"group_success_rate": (v / class_counts[k]) * 100 if k in class_counts else 0,
"population": (class_counts[k]/total_records)*100 if k in class_counts else 0
}
#for mixed attributes
for i in range(len(categorical_attributes)):
for j in range(i+1,len(categorical_attributes)):
grouped=data.groupby([categorical_attributes[i],categorical_attributes[j]]).agg(total=(label_col,'count'),success=(label_col,lambda x:(x==favorable_outcome).sum()))
grouped[categorical_attributes[i]+"-"+categorical_attributes[j]]=(grouped['success']/grouped['total'])*100
grouped["population_success_rate_"+categorical_attributes[i]+"-"+categorical_attributes[j]]=(grouped['success']/total_records)*100
success_rates[categorical_attributes[i]+"-"+categorical_attributes[j]]={f"{row[categorical_attributes[i]]}-{row[categorical_attributes[j]]}":{"group_success_rate":row[categorical_attributes[i]+"-"+categorical_attributes[j]],"population_success_rate":row["population_success_rate_"+categorical_attributes[i]+"-"+categorical_attributes[j]],"population":(row['total']/total_records)*100} for _,row in grouped.reset_index().iterrows()}
# Calculate the z-scores of success rates
for attribute, each_group in success_rates.items():
rates = [v['population_success_rate'] for v in each_group.values()]
z_scores = stats.zscore(rates)
for i, (k, v) in enumerate(each_group.items()):
v["z_score"] = z_scores[i]
#sort the success rated by the participation desc
for attribute, each_group in success_rates.items():
success_rates[attribute] = {k: v for k, v in sorted(each_group.items(), key=lambda item: item[1]["population"], reverse=True)}
pdf_name=SuccessRateService.create_graphs(success_rates)
success_rates["pdf_name"]=pdf_name
return {"success_rates": success_rates}
def workbench_analyze(self, payload: dict):
try:
if payload['Batch_id'] is None or '':
log.error("Batch Id id missing")
batchId = payload['Batch_id']
self.batch.update(batch_id=batchId, value={"Status": "In-progress"})
tenet_id = self.tenet.find(tenet_name='Fairness')
batch_details = self.batch.find(batch_id=batchId, tenet_id=tenet_id)
datasetId = batch_details['DataId']
dataset_details = self.dataset.find(Dataset_Id=datasetId)
dataset_attribute_ids = self.dataAttributes.find(dataset_attributes=[
'label', 'favorableOutcome', 'protectedAttribute'])
log.info("Dataset Attribute Ids:"+str(dataset_attribute_ids))
dataset_attribute_values = self.dataAttributeValues.find(
dataset_id=datasetId, dataset_attribute_ids=dataset_attribute_ids, batch_id=batchId)
log.info("Dataset Attribute Values:"+str(dataset_attribute_values))
fileId = dataset_details["SampleData"]
label_col = dataset_attribute_values[0]
favorable_outcome = dataset_attribute_values[1]
categorical_attributes = dataset_attribute_values[2]
content=self.fileStore.read_file(fileId)
if content is None:
raise HTTPException(status_code=500, detail="No content received from the POST request")
content=self.fileStore.read_file(fileId)
if content is None:
raise HTTPException(status_code=500, detail="No content received from the POST request")
data = pandas.read_csv(BytesIO(content['data']))
success_rates = {}
if not isinstance(data[label_col].dtype, str):
data[label_col] = data[label_col].astype(str)
SuccessRateService.check_categorical_attributes(categorical_attributes,data)
favorable_data = data[data[label_col] == str(favorable_outcome)]
total_records=len(data)
for col in categorical_attributes:
if col != label_col: # Skip label column for rates
class_counts = data[col].value_counts()
favorable_subclass_counts = favorable_data[col].value_counts()
success_rates[col] = {}
for k, v in favorable_subclass_counts.items():
success_rates[col][k] = {
"population_success_rate": (v / total_records) * 100 if k in class_counts else 0,
"group_success_rate": (v / class_counts[k]) * 100 if k in class_counts else 0,
"population": (class_counts[k]/total_records)*100 if k in class_counts else 0
}
#for mixed attributes
for i in range(len(categorical_attributes)):
for j in range(i+1,len(categorical_attributes)):
grouped=data.groupby([categorical_attributes[i],categorical_attributes[j]]).agg(total=(label_col,'count'),success=(label_col,lambda x:(x==favorable_outcome).sum()))
grouped[categorical_attributes[i]+"-"+categorical_attributes[j]]=(grouped['success']/grouped['total'])*100
grouped["population_success_rate_"+categorical_attributes[i]+"-"+categorical_attributes[j]]=(grouped['success']/total_records)*100
success_rates[categorical_attributes[i]+"-"+categorical_attributes[j]]={f"{row[categorical_attributes[i]]}-{row[categorical_attributes[j]]}":{"group_success_rate":row[categorical_attributes[i]+"-"+categorical_attributes[j]],"population_success_rate":row["population_success_rate_"+categorical_attributes[i]+"-"+categorical_attributes[j]],"population":(row['total']/total_records)*100} for _,row in grouped.reset_index().iterrows()}
# Calculate the z-scores of success rates
for attribute, each_group in success_rates.items():
rates = [v['population_success_rate'] for v in each_group.values()]
z_scores = stats.zscore(rates)
for i, (k, v) in enumerate(each_group.items()):
v["z_score"] = z_scores[i]
#sort the success rated by the participation desc
for attribute, each_group in success_rates.items():
success_rates[attribute] = {k: v for k, v in sorted(each_group.items(), key=lambda item: item[1]["population"], reverse=True)}
html_data=SuccessRateService.create_graphs_workbench(success_rates,label_col,favorable_outcome,categorical_attributes)
# with open(os.path.join(SUCCESS_RATE_LOCAL_PATH,pdf_name), "rb") as f:
# pdf_content = f.read()
# pdf_fileId = self.fileStore.save_file(file=pdf_content, filename=pdf_name, contentType="application/pdf", tenet='Fairness', container_name=PDF_CONTAINER_NAME)
# success_rates["pdf_name"]=pdf_fileId
# report_document={
# "ReportId":time.time(),
# "BatchId":batchId,
# "ReportFileId":pdf_name,
# "TenetId":tenet_id,
# "ReportName":pdf_name,
# "ContentType":"application/pdf",
# "CreatedDateTime":datetime.datetime.now()}
# report_metadata=Report.create(report_document)
# if not report_metadata:
# raise HTTPException(status_code=500, detail="Report Metadata could not be inserted into DB")
tenet_id = self.tenet.find(tenet_name='Fairness')
html_containerName = os.getenv('HTML_CONTAINER_NAME')
htmlFileId = self.fileStore.save_file(file=BytesIO(html_data.encode(
'utf-8')), filename='fairness_successrate.html', contentType='text/html', tenet='Fairness', container_name=html_containerName)
log.info("HtmlFileId:"+ str(htmlFileId))
HtmlId = time.time()
doc = {
'HtmlId': HtmlId,
'BatchId': batchId,
'TenetId': tenet_id,
'ReportName': 'fairness_successrate.html',
'HtmlFileId': htmlFileId,
'CreatedDateTime': datetime.datetime.now(),
}
Html.create(doc)
url = os.getenv("REPORT_URL")
payload = {"batchId": batchId}
response = requests.request(
"POST", url, data=payload, verify=False).json()
print(response)
if response['status'] != "SUCCESS":
raise HTTPException(status_code=500, detail="Report could not be generated")
update_status=self.batch.update(batch_id=batchId, value={"Status": "Completed"})
if not update_status:
raise HTTPException(status_code=500, detail="Batch Status could not be updated in DB")
# os.remove(os.path.join(SUCCESS_RATE_LOCAL_PATH,pdf_name))
return {"success_rates": success_rates, "Html_Id": htmlFileId}
except Exception as e:
self.batch.update(batch_id=batchId, value={"Status": "Failed"})
raise e
def download_pdf(pdf_name):
return os.path.join(SUCCESS_RATE_LOCAL_PATH,pdf_name)