Spaces:
Running
Running
import torch | |
import gradio as gr | |
import whisper | |
from transformers import pipeline | |
# πΉ Load Whisper model (base) for transcription | |
model_whisper = whisper.load_model("base") | |
# πΉ Load summarization pipeline using BART | |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn") | |
# πΉ Transcription + Summarization | |
def transcribe_and_summarize(audio_file): | |
try: | |
result = model_whisper.transcribe(audio_file) | |
transcription = result.get("text", "") | |
if not transcription.strip(): | |
return "No speech detected", "Summary not generated" | |
summary = summarizer(transcription, max_length=100, min_length=30, do_sample=False) | |
return transcription, summary[0]['summary_text'] | |
except Exception as e: | |
return "Transcription failed", f"Error: {str(e)}" | |
# πΉ Text-only summarization | |
def summarize_text_input(text_input): | |
if not text_input.strip(): | |
return "", "Input is empty" | |
summary = summarizer(text_input, max_length=100, min_length=30, do_sample=False) | |
return text_input, summary[0]['summary_text'] | |
# πΉ Gradio UI | |
with gr.Blocks() as demo: | |
gr.Markdown("## π₯ Medical Summarization App (Whisper + BART)") | |
with gr.Tab("ποΈ Record & Summarize"): | |
audio_input = gr.Audio(type="filepath", label="Upload or Record Audio") | |
mic_transcript = gr.Textbox(label="Transcript") | |
mic_summary = gr.Textbox(label="Summary", interactive=False) | |
mic_button = gr.Button("Transcribe & Summarize") | |
mic_button.click(transcribe_and_summarize, inputs=[audio_input], outputs=[mic_transcript, mic_summary]) | |
with gr.Tab("π Paste & Summarize"): | |
text_input = gr.Textbox(lines=8, label="Paste Medical Report or Dialogue") | |
text_output = gr.Textbox(label="Summary", interactive=False) | |
text_button = gr.Button("Summarize") | |
text_button.click(summarize_text_input, inputs=[text_input], outputs=[text_input, text_output]) | |
demo.launch(share=True) | |