Interview_Bot / app.py
Imsachinsingh00's picture
Update app.py
78cbc5c verified
raw
history blame
2.43 kB
# streamlit_app.py
import os
import streamlit as st
from huggingface_hub import InferenceClient
from dotenv import load_dotenv
# Load environment variables for local development
load_dotenv()
# Initialize the Hugging Face Inference client
hf_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
client = InferenceClient(provider="auto", api_key=hf_token)
# Streamlit configuration
st.set_page_config(
page_title="Interview Prep Bot",
page_icon="🧠",
layout="centered"
)
st.title("πŸŽ“ Interview Preparation Chatbot")
# Session state for conversation history and selected topic
if "history" not in st.session_state:
st.session_state.history = []
if "topic" not in st.session_state:
st.session_state.topic = "Machine Learning"
# Sidebar: Topic selection
st.sidebar.header("Practice Topic")
st.session_state.topic = st.sidebar.selectbox(
"Select a topic:",
[
"Machine Learning",
"Data Structures",
"Python",
"Generative AI",
"Computer Vision",
"Deep Learning",
],
index=["Machine Learning","Data Structures","Python","Generative AI","Computer Vision","Deep Learning"].index(st.session_state.topic)
)
# Display existing chat history
for sender, message in st.session_state.history:
role = "user" if sender == "You" else "assistant"
st.chat_message(role).write(message)
# User input
user_input = st.chat_input("Ask me anything about " + st.session_state.topic + "…")
if user_input:
# Append user message
st.session_state.history.append(("You", user_input))
st.chat_message("user").write(user_input)
# Placeholder for bot response
placeholder = st.chat_message("assistant")
placeholder.write("⏳ Thinking...")
# Build messages for the API call
messages = []
for role, text in [("user", msg) if s == "You" else ("assistant", msg)
for s, msg in st.session_state.history]:
messages.append({"role": role, "content": text})
# Call the Inference API
try:
response = client.chat.completions.create(
model="mistralai/Mistral-7B-Instruct-v0.1",
messages=messages
)
bot_reply = response.choices[0].message["content"].strip()
except Exception as e:
bot_reply = f"❌ API Error: {e}"
# Display and store bot reply
placeholder.write(bot_reply)
st.session_state.history.append(("Bot", bot_reply))
```