File size: 4,399 Bytes
43317b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import pickle
from ultralytics import YOLO
import cv2
import mediapipe as mp
import numpy as np



model = YOLO('best.pt')

cap = cv2.VideoCapture(0)

mp_hands = mp.solutions.hands
mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles

hands = mp_hands.Hands(static_image_mode=True, min_detection_confidence=0.3)
language = ''
labels_dict = {0: '0', 1: 'B', 2: 'C', 3: 'D', 4: 'E', 5: 'F', 6: 'G', 7: 'H', 8: 'I', 9: 'J', 10: 'K', 11: 'L', 12: 'M', 13: 'N', 14: 'O', 15: 'P', 16: 'Q', 17: 'R', 18: 'S', 19: 'T', 20: 'U', 21: 'V', 22: 'W', 23: 'X', 24: 'Y', 25: 'Z', 26: 'del', 27: 'nothing', 28: 'space'}
while True:

    data_aux = []
    x_ = []
    y_ = []
    

    ret, frame = cap.read()
    if not ret:
        print("Failed to capture frame. Exiting...")
        break    

    H, W, _ = frame.shape

    frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

    results = hands.process(frame_rgb)
    if results.multi_hand_landmarks:
        for hand_landmarks in results.multi_hand_landmarks:
            mp_drawing.draw_landmarks(
                frame, 
                hand_landmarks,  
                mp_hands.HAND_CONNECTIONS,  
                mp_drawing_styles.get_default_hand_landmarks_style(),
                mp_drawing_styles.get_default_hand_connections_style())

        for hand_landmarks in results.multi_hand_landmarks:
            for i in range(len(hand_landmarks.landmark)):
                x = hand_landmarks.landmark[i].x
                y = hand_landmarks.landmark[i].y

                x_.append(x)
                y_.append(y)

            for i in range(len(hand_landmarks.landmark)):
                x = hand_landmarks.landmark[i].x
                y = hand_landmarks.landmark[i].y
                data_aux.append(x - min(x_))
                data_aux.append(y - min(y_))

        x1 = int(min(x_) * W) - 10
        y1 = int(min(y_) * H) - 10

        x2 = int(max(x_) * W) - 10
        y2 = int(max(y_) * H) - 10
       
        prediction = model.predict(frame, conf=0.25, iou=0.45)
        names_dict = prediction[0].names
        probs = prediction[0].probs.data.numpy()
        detected_gesture = names_dict[np.argmax(probs)]
        print(names_dict[np.argmax(probs)])
        print("Gesture:", detected_gesture)
        if detected_gesture == 'A':
            language = 'Arabic'
        elif detected_gesture == 'B':
            language = 'Bengali'
        elif detected_gesture == 'C':
            language = 'Chinese'
        elif detected_gesture == 'D':
            language = 'Dutch'
        elif detected_gesture == 'E':
            language = 'English'
        elif detected_gesture == 'F':
            language = 'French'
        elif detected_gesture == 'G':
            language = 'German'
        elif detected_gesture == 'H':
            language = 'Hindi'
        elif detected_gesture == 'I':
            language = 'Italian'
        elif detected_gesture == 'J':
            language = 'Japanese'
        elif detected_gesture == 'K':
            language = 'Korean'
        elif detected_gesture == 'L':
            language = 'Latin'
        elif detected_gesture == 'M':
            language = 'Malay'
        elif detected_gesture == 'N':
            language = 'Norwegian'
        elif detected_gesture == 'O':
            language = 'Oriya'
        elif detected_gesture == 'P':
            language = 'Polish'
        elif detected_gesture == 'Q':
            language = 'Quechua'
        elif detected_gesture == 'R':
            language = 'Russian'
        elif detected_gesture == 'S':
            language = 'Spanish'
        elif detected_gesture == 'T':
            language = 'Turkish'
        elif detected_gesture == 'U':
            language = 'Urdu'
        elif detected_gesture == 'V':
            language = 'Vietnamese'
        elif detected_gesture == 'W':
            language = 'Welsh'
        elif detected_gesture == 'X':
            language = 'Xhosa'
        elif detected_gesture == 'Y':
            language = 'Yoruba'
        elif detected_gesture == 'Z':
            language = 'Zulu'


        cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0, 0), 4)
        cv2.putText(frame, language, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 1.3, (0, 0, 0), 3,
                    cv2.LINE_AA)

    cv2.imshow('frame', frame)
    cv2.waitKey(1)


cap.release()
cv2.destroyAllWindows()